1
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Staniek J, Kalina T, Andrieux G, Boerries M, Janowska I, Fuentes M, Díez P, Bakardjieva M, Stancikova J, Raabe J, Neumann J, Schwenk S, Arpesella L, Stuchly J, Benes V, García Valiente R, Fernández García J, Carsetti R, Piano Mortari E, Catala A, de la Calle O, Sogkas G, Neven B, Rieux-Laucat F, Magerus A, Neth O, Olbrich P, Voll RE, Alsina L, Allende LM, Gonzalez-Granado LI, Böhler C, Thiel J, Venhoff N, Lorenzetti R, Warnatz K, Unger S, Seidl M, Mielenz D, Schneider P, Ehl S, Rensing-Ehl A, Smulski CR, Rizzi M. Non-apoptotic FAS signaling controls mTOR activation and extrafollicular maturation in human B cells. Sci Immunol 2024; 9:eadj5948. [PMID: 38215192 DOI: 10.1126/sciimmunol.adj5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stancikova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Raabe
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julika Neumann
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Schwenk
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonardo Arpesella
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo García Valiente
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Jonatan Fernández García
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Albert Catala
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Oscar de la Calle
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, University Hospital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Peter Olbrich
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laia Alsina
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Department of Pediatric Allergy and Clinical Immunology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
- School of Medicine, Complutense University, Madrid, Spain
| | - Chiara Böhler
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Zentrum, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristian Roberto Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Denis-Lagache N, Oblet C, Marchiol T, Baylet A, Têteau O, Dalloul I, Dalloul Z, Zawil L, Dézé O, Cook-Moreau J, Saintamand A, Boutouil H, Khamlichi AA, Carrion C, Péron S, Le Noir S, Laffleur B, Cogné M. Attempts to evaluate locus suicide recombination and its potential role in B cell negative selection in the mouse. Front Immunol 2023; 14:1155906. [PMID: 37359540 PMCID: PMC10288998 DOI: 10.3389/fimmu.2023.1155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction In mature B cells, activation-induced deaminase reshapes Ig genes through somatic hypermutation and class switch recombination of the Ig heavy chain (IgH) locus under control of its 3' cis-regulatory region (3'RR). The 3'RR is itself transcribed and can undergo "locus suicide recombination" (LSR), then deleting the constant gene cluster and terminating IgH expression. The relative contribution of LSR to B cell negative selection remains to be determined. Methods Here, we set up a knock-in mouse reporter model for LSR events with the aim to get clearer insights into the circumstances triggering LSR. In order to explore the consequences of LSR defects, we reciprocally explored the presence of autoantibodies in various mutant mouse lines in which LSR was perturbed by the lack of Sµ or of the 3'RR. Results Evaluation of LSR events in a dedicated reporter mouse model showed their occurrence in various conditions of B cell activation, notably in antigen-experienced B cells Studies of mice with LSR defects evidenced increased amounts of self-reactive antibodies. Discussion While the activation pathways associated with LSR are diverse, in vivo as well as in vitro, this study suggests that LSR may contribute to the elimination of self-reactive B cells.
Collapse
Affiliation(s)
- Nicolas Denis-Lagache
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Christelle Oblet
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Tiffany Marchiol
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Audrey Baylet
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Ophélie Têteau
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Iman Dalloul
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Zeinab Dalloul
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Lina Zawil
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | | | - Jeanne Cook-Moreau
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Alexis Saintamand
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Hend Boutouil
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Toulouse University, Toulouse, France
| | - Claire Carrion
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Sophie Péron
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Sandrine Le Noir
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | | | - Michel Cogné
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
- Rennes University, Inserm, Rennes, France
| |
Collapse
|
4
|
Díez P, Pérez-Andrés M, Bøgsted M, Azkargorta M, García-Valiente R, Dégano RM, Blanco E, Mateos-Gomez S, Bárcena P, Santa Cruz S, Góngora R, Elortza F, Landeira-Viñuela A, Juanes-Velasco P, Segura V, Manzano-Román R, Almeida J, Dybkaer K, Orfao A, Fuentes M. Dynamic Intracellular Metabolic Cell Signaling Profiles During Ag-Dependent B-Cell Differentiation. Front Immunol 2021; 12:637832. [PMID: 33859640 PMCID: PMC8043114 DOI: 10.3389/fimmu.2021.637832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Human B-cell differentiation has been extensively investigated on genomic and transcriptomic grounds; however, no studies have accomplished so far detailed analysis of antigen-dependent maturation-associated human B-cell populations from a proteomic perspective. Here, we investigate for the first time the quantitative proteomic profiles of B-cells undergoing antigen-dependent maturation using a label-free LC-MS/MS approach applied on 5 purified B-cell subpopulations (naive, centroblasts, centrocytes, memory and plasma B-cells) from human tonsils (data are available via ProteomeXchange with identifier PXD006191). Our results revealed that the actual differences among these B-cell subpopulations are a combination of expression of a few maturation stage-specific proteins within each B-cell subset and maturation-associated changes in relative protein expression levels, which are related with metabolic regulation. The considerable overlap of the proteome of the 5 studied B-cell subsets strengthens the key role of the regulation of the stoichiometry of molecules associated with metabolic regulation and programming, among other signaling cascades (such as antigen recognition and presentation and cell survival) crucial for the transition between each B-cell maturation stage.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Martín Pérez-Andrés
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | | | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Elena Blanco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Sheila Mateos-Gomez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Paloma Bárcena
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Santiago Santa Cruz
- Service of Otolaryngology and Cervical Facial Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Rafael Góngora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Victor Segura
- Division of Hepatology and Gene Therapy, Proteomics and BioInformatics Unit, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Julia Almeida
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Karen Dybkaer
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alberto Orfao
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
5
|
Dalloul I, Boyer F, Dalloul Z, Pignarre A, Caron G, Fest T, Chatonnet F, Delaloy C, Durandy A, Jeannet R, Lereclus E, Boutouil H, Aldigier JC, Péron S, Le Noir S, Cook-Moreau J, Cogné M. Locus suicide recombination actively occurs on the functionally rearranged IgH allele in B-cells from inflamed human lymphoid tissues. PLoS Genet 2019; 15:e1007721. [PMID: 31199803 PMCID: PMC6594652 DOI: 10.1371/journal.pgen.1007721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/26/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
B-cell activation yields abundant cell death in parallel to clonal amplification and remodeling of immunoglobulin (Ig) genes by activation-induced deaminase (AID). AID promotes affinity maturation of Ig variable regions and class switch recombination (CSR) in mature B lymphocytes. In the IgH locus, these processes are under control of the 3' regulatory region (3'RR) super-enhancer, a region demonstrated in the mouse to be both transcribed and itself targeted by AID-mediated recombination. Alternatively to CSR, IgH deletions joining Sμ to "like-switch" DNA repeats that flank the 3' super-enhancer can thus accomplish so-called "locus suicide recombination" (LSR) in mouse B-cells. Using an optimized LSR-seq high throughput method, we now show that AID-mediated LSR is evolutionarily conserved and also actively occurs in humans, providing an activation-induced cell death pathway in multiple conditions of B-cell activation. LSR either focuses on the functional IgH allele or is bi-allelic, and its signature is mainly detected when LSR is ongoing while it vanishes from fully differentiated plasma cells or from "resting" blood memory B-cells. Highly diversified breakpoints are distributed either within the upstream (3'RR1) or downstream (3'RR2) copies of the IgH 3' super-enhancer and all conditions activating CSR in vitro also seem to trigger LSR although TLR ligation appeared the most efficient. Molecular analysis of breakpoints and junctions confirms that LSR is AID-dependent and reveals junctional sequences somehow similar to CSR junctions but with increased usage of microhomologies.
Collapse
Affiliation(s)
- Iman Dalloul
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | - François Boyer
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | - Zeinab Dalloul
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | | | - Gersende Caron
- INSERM U1236, Université de Rennes; EFS Bretagne, Rennes, France
| | - Thierry Fest
- INSERM U1236, Université de Rennes; EFS Bretagne, Rennes, France
| | | | - Céline Delaloy
- INSERM U1236, Université de Rennes; EFS Bretagne, Rennes, France
| | | | - Robin Jeannet
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | - Emilie Lereclus
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | - Hend Boutouil
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | | | - Sophie Péron
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | - Sandrine Le Noir
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
| | - Jeanne Cook-Moreau
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
- MC and JCM co-directed this work
- * E-mail: (MC); (JCM)
| | - Michel Cogné
- CNRS UMR 7276 / INSERM U1262, Université de Limoges, Limoges, France
- INSERM U1236, Université de Rennes; EFS Bretagne, Rennes, France
- MC and JCM co-directed this work
- * E-mail: (MC); (JCM)
| |
Collapse
|
6
|
Wang L, Müschen M. Portending death in germinal centers - when B cells know their time is up. Cell Res 2017; 28:5-6. [PMID: 29192678 DOI: 10.1038/cr.2017.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells undergo stringent selection in germinal centers (GCs) for expression of high-affinity antibodies, however, mechanisms of negative selection of low-affinity B cell clones remain elusive. A new study by Michel Nussenzweig's group published in Science leverages a new reporter system that marks pre-apoptotic GC B cells to dissect microanatomic regions of GCs and their role in affinity maturation.
Collapse
Affiliation(s)
- Lili Wang
- Department of Systems Biology, Beckman Research Institute and NCI City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute and NCI City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Composite Lymphomas and the Relationship of Hodgkin Lymphoma to Non-Hodgkin Lymphomas. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-68094-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Llibre A, López-Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, Rivellese F, Galson JD, Walker LJ, Milne P, Phillips RE, Kelly DF, Freeman GJ, El Shikh ME, Klenerman P, Willberg CB. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. THE JOURNAL OF IMMUNOLOGY 2016; 196:2085-94. [PMID: 26829983 PMCID: PMC4760235 DOI: 10.4049/jimmunol.1502462] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/03/2016] [Indexed: 01/08/2023]
Abstract
Germinal centers (GCs) are microanatomical structures critical for the development of high-affinity Abs and B cell memory. They are organized into two zones, light and dark, with coordinated roles, controlled by local signaling. The innate lectin-like transcript 1 (LLT1) is known to be expressed on B cells, but its functional role in the GC reaction has not been explored. In this study, we report high expression of LLT1 on GC-associated B cells, early plasmablasts, and GC-derived lymphomas. LLT1 expression was readily induced via BCR, CD40, and CpG stimulation on B cells. Unexpectedly, we found high expression of the LLT1 ligand, CD161, on follicular dendritic cells. Triggering of LLT1 supported B cell activation, CD83 upregulation, and CXCR4 downregulation. Overall, these data suggest that LLT1–CD161 interactions play a novel and important role in B cell maturation within the GC in humans.
Collapse
Affiliation(s)
- Alba Llibre
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Teresa Marafioti
- Department of Histopathology, University College London, London WC1E 6JJ, United Kingdom
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Amy Partridge
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Carina Kanzig
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jacob D Galson
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Lucy J Walker
- Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Paul Milne
- Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Rodney E Phillips
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; and
| | - Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom; Oxford National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom; Oxford National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
9
|
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016; 48:253-64. [PMID: 26780610 DOI: 10.1038/ng.3488] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.
Collapse
|
10
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
11
|
Chen M, Kodali S, Jang A, Kuai L, Wang J. Requirement for autophagy in the long-term persistence but not initial formation of memory B cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2607-15. [PMID: 25672753 DOI: 10.4049/jimmunol.1403001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autophagy is required for the long-term maintenance of Ag-specific memory B cells. However, whether autophagy is also important for the initial formation of memory B cells remains unclear. In this study, we show that newly generated memory B cells do not display active autophagy but are capable of forming Ab-secreting cells after rechallenge with Ags. Increases in autophagy took place over time after the initial formation of memory B cells. The expression of transcription factors involved in autophagy, but not changes in epigenetic regulation by DNA methylation, was required for autophagy gene expression and the development of active autophagy in memory B cells. This indicates that autophagy is not critical for the initial generation of memory B cells but is required for their long-term persistence. Our results suggest that promoting autophagy to improve Ab-dependent immunological memory is more effective during memory B cell maintenance stage.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Srikanth Kodali
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Albert Jang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Le Kuai
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Jin Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
12
|
|
13
|
Swaminathan S, Müschen M. Follicular lymphoma: too many reminders for a memory B cell. J Clin Invest 2014; 124:5095-8. [PMID: 25384212 PMCID: PMC4348960 DOI: 10.1172/jci79189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Memory B cells are a dynamic subset of the mature B cell population that in some cases can reenter germinal centers (GCs) in response to iterative infections. Such a reactivation can lead to accumulation of genetic lesions in these cells, potentially from repetitive activation of the B cell mutator enzyme AID. Normal memory B cells do not survive repeated reentries into GCs. In this issue, Sungalee et al. demonstrate that memory B cells harboring the oncogenic BCL2:IGH translocation, which results in constitutive BCL2 expression, survive multiple GC entries upon repetitive immunization. Through these multiple GC reentries, the hallmark BCL2:IGH translocation enables AID-induced hypermutation and propagates clonal evolution toward malignant follicular lymphoma.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Chen M, Hong MJ, Sun H, Wang L, Shi X, Gilbert BE, Corry DB, Kheradmand F, Wang J. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 2014; 20:503-10. [PMID: 24747745 PMCID: PMC4066663 DOI: 10.1038/nm.3521] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Vaccination has been the most widely used strategy to protect against viral infections for centuries. However, the molecular mechanisms governing the long-term persistence of immunological memory in response to vaccines remain unclear. Here we show that autophagy has a critical role in the maintenance of memory B cells that protect against influenza virus infection. Memory B cells displayed elevated levels of basal autophagy with increased expression of genes that regulate autophagy initiation or autophagosome maturation. Mice with B cell-specific deletion of Atg7 (B/Atg7(-/-) mice) showed normal primary antibody responses after immunization against influenza but failed to generate protective secondary antibody responses when challenged with influenza viruses, resulting in high viral loads, widespread lung destruction and increased fatality. Our results suggest that autophagy is essential for the survival of virus-specific memory B cells in mice and the maintenance of protective antibody responses required to combat infections.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Huanhuan Sun
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Lei Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiurong Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Brian E. Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - David B. Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Jin Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Naji A, Menier C, Morandi F, Agaugué S, Maki G, Ferretti E, Bruel S, Pistoia V, Carosella ED, Rouas-Freiss N. Binding of HLA-G to ITIM-Bearing Ig-like Transcript 2 Receptor Suppresses B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2014; 192:1536-46. [DOI: 10.4049/jimmunol.1300438] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Tan LHC, Tan SY. Aberrant immunoarchitecture distinguishes hyperplastic germinal centres in pattern 1 angioimmunoblastic T-cell lymphoma from reactive follicles. Hematol Oncol 2013; 32:145-54. [PMID: 24254640 DOI: 10.1002/hon.2116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/28/2022]
Abstract
We compare 30 biopsies each of Pattern 1 angioimmunoblastic T-cell lymphoma (AITL1) and reactive lymphoid hyperplasia (RLH) by immunohistology, in-situ hybridization for Epstein-Barr virus-encoded RNA and T-cell receptor-γ (TRG)-clonality. AITL1 cases, more often than RLH controls, were older [median ages 61 (range 23-79) vs 46 (range 11-59) years, p < 10(-4)], non-Chinese [16/30 (53%) vs 8/28 (29%), p = 0.035], presented nodally [29/30 (97%) vs 23/30 (77%), p = 0.024], showed: pan-T cell antigen attenuation [25/29 (86%) vs 5/21 (24%), p = 1.0 × 10(-5)], CD4 predominance [25/28 (89%) vs 12/23 (52%), p = 3.4 × 10(-3)], interfollicular lymphoid CD10-positivity [16/30 (53%) vs 1/29 (3%), p = 1.5 × 10(-5)], TRG clonality [16/28 (57%) vs 1/20 (5%), p = 1.4 × 10(-4)], higher maximum number of Epstein-Barr virus-encoded RNA + nuclei per 0.5-mm high-power field [median 6 (range 0-70) vs 1 (range 0-40), p = 0.012] and interfollicular Ki-67 proliferation fraction [median 40% (range 10-80%) vs 20% (range 5-40), p < 10(-4)], whereas their germinal centres (GCs) more often showed attenuation of CD10 [30/30 (100%) vs 11/29 (38%), p = 5.3 × 10(-8)] and CD57 [18/25 (72%) vs 4/22 (18%), p = 2.4 × 10(-4)] (respectively). GC-predominant PD-1 and ICOS immunoreactivity were more often seen in RLH [20/22 and 9/19 controls (91% and 47%)] than AITL1 [9/25 and 3/19 cases (36% and 16%), p = 1.0 × 10(-4) and 0.033, respectively]. Significant independent predictors against AITL1 were: solid GC CD10 immunoreactivity {p = 0.023, odds ratio (OR) for AITL1 0.01 [95% confidence interval (CI): 0.0002-0.529]}; lower interfollicular proliferation fraction [p = 0.047, OR for AITL1 1.1 (95% CI: 1.001-1.209) per % rise in Ki-67]; younger presenting age [p = 0.028, OR for AITL1 1.136 (95% CI: 1.014-1.272) per year older]. Hence, GCs and perifollicular zones in AITL1 are distinct from those in RLH.
Collapse
|
17
|
Brandtzaeg P. Secretory IgA: Designed for Anti-Microbial Defense. Front Immunol 2013; 4:222. [PMID: 23964273 PMCID: PMC3734371 DOI: 10.3389/fimmu.2013.00222] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/16/2013] [Indexed: 01/30/2023] Open
Abstract
Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor - bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination).
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
18
|
Cattoretti G. MYC expression and distribution in normal mature lymphoid cells. J Pathol 2013; 229:430-40. [PMID: 23165652 DOI: 10.1002/path.4141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/29/2012] [Accepted: 10/13/2012] [Indexed: 11/10/2022]
Abstract
The distribution of the product of the proto-oncogene MYC in lymphoid tissue has not been established in three decades, due to a combination of factors including low abundance, short half-life, and antibody sensitivity and specificity. We sought to validate antibodies in order to define the expression and distribution of MYC in mature normal lymphoid cells by multiparametric immunophenotyping. Having validated two antibodies for flow cytometry and for immunohistochemistry, we analysed normal tonsil tissue. MYC is expressed predominantly in B cells, some of which are interfollicular large, activated, and cycling CD30+, IRF4+, AID± blasts. Follicular mantle, isotype-switched memory B cells and FcRH4/IRTA1+ B cells express MYC in a wide range of levels and are small non-proliferating CDKN1B/p27-positive or -negative resting B lymphocytes. Germinal centre founder cells, CD30+ BCL6± AID± germinal centre blasts, and a population of GC cells in the apical light zone express MYC. MYC is expressed in all phases of the cell cycle in activated and mature B cells, but rarely in other lymphoid types and only partially fulfils the predictions derived from extractive and ex vivo experiments of the past 30 years.
Collapse
Affiliation(s)
- Giorgio Cattoretti
- Department of Pathology, University of Milano-Bicocca and San Gerardo Hospital, Via Pergolesi 33, Monza, Italy.
| |
Collapse
|
19
|
Corcione A, Ferretti E, Pistoia V. CX3CL1/fractalkine is a novel regulator of normal and malignant human B cell function. J Leukoc Biol 2012; 92:51-8. [PMID: 22457367 DOI: 10.1189/jlb.0112035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
CX(3)CL1, or fractalkine, the unique member of the CX(3)C chemokine family, exists as a transmembrane glycoprotein, as well as in soluble form, each mediating different biological activities, and is constitutively expressed in many hematopoietic and nonhematopoietic tissues. CX(3)CR1, the CX(3)CL1 exclusive receptor, is a classical GPCR, expressed on NK cells, CD14(+) monocytes, and some subpopulation of T cells, B cells, and mast cells. A recent paper by our group has demonstrated for the first time that highly purified human B cells from tonsil and peripheral blood expressed CX(3)CR1 at mRNA and protein levels. In particular, tonsil naïve, GC, and memory B cells expressed CX(3)CR1, but only GC centrocytes were attracted by soluble CX(3)CL1, which with its receptor, are also involved in the pathogenesis of several inflammatory disorders, as well as of cancer. Previous studies have shown that CX(3)CR1 is up-regulated in different types of B cell lymphoma, as well as in B-CLL. Recently, we have demonstrated that the CX(3)CL1/CX(3)CR1 axis is involved in the interaction of B-CLL cells with their microenvironment. Taken together, our data delineate a novel role for the CX(3)CL1/CX(3)CR1 complex in the biology of normal B cells and B-CLL cells. These topics are the subject of this review article.
Collapse
Affiliation(s)
- Anna Corcione
- Laboratory of Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico G. Gaslini, Genova, Italy.
| | | | | |
Collapse
|
20
|
Tan LHC, Tan SY, Tang T, Lim ST, Tan D, Lim LC, Kam GLS, Loh TP, Tao M, Koay ESC. Angioimmunoblastic T-cell lymphoma with hyperplastic germinal centres (pattern 1) shows superior survival to patterns 2 and 3: a meta-analysis of 56 cases. Histopathology 2012; 60:570-85. [DOI: 10.1111/j.1365-2559.2011.04097.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Kim J, Park CS, Park CH, Jeoung DI, Kim YM, Choe J. Beraprost enhances the APC function of B cells by upregulating CD86 expression levels. THE JOURNAL OF IMMUNOLOGY 2011; 186:3866-73. [PMID: 21339360 DOI: 10.4049/jimmunol.1002170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lipid mediators are emerging as important regulators of the immune system. Based on our previous result that shows strong expression of prostacyclin synthase in the germinal center, we investigated whether prostacyclin would regulate the APC function of B cells. Owing to the very short half-life of prostacyclin in experimental conditions, we used a more stable analog, beraprost. Beraprost increased the amounts of the costimulatory molecule CD86 but not CD80 on the surface of activated B cells in time- and dose-dependent manners. However, the enhancing effect of beraprost was not observed on memory B cells, centroblasts, and centrocytes. Beraprost required BCR and CD40 signals to upregulate CD86 expression levels. Other prostanoids such as PGE(2), 6-keto-PGF(1α), and PGF(2α) failed to alter CD86 expression levels, whereas other prostacyclin analogs were as potent as beraprost. Results carried out with receptor antagonists revealed that beraprost enhanced CD86 levels by binding to prostacyclin receptor IP and by increasing intracellular cAMP concentrations. Beraprost-treated B cells potently stimulated allogeneic T cells, which was significantly abolished by CD86 neutralization. Our data imply an unrecognized cellular and molecular mechanism about the germinal center reactions.
Collapse
Affiliation(s)
- Jini Kim
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Cato MH, Chintalapati SK, Yau IW, Omori SA, Rickert RC. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol Cell Biol 2011; 31:127-37. [PMID: 20956554 PMCID: PMC3019862 DOI: 10.1128/mcb.00650-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.
Collapse
Affiliation(s)
- Matthew H. Cato
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Suresh K. Chintalapati
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Irene W. Yau
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Sidne A. Omori
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert C. Rickert
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
23
|
Abstract
Abundant evidence supports the notion that human intestinal plasma cells are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists about the uptake, processing, and presentation of luminal antigens occurring in GALT to accomplish priming and sustained expansion of mucosal B cells. Also, it is unclear how the germinal center reaction so strikingly promotes class switch to IgA and expression of J chain, although the commensal microbiota appears to contribute to both diversification and memory. B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, but the cues directing homing to secretory effector sites beyond the gut require better definition. In this respect, the role of human Waldeyer's ring (including adenoids and the palatine tonsils) as a regional mucosa-associated lymphoid tissue must be better defined, although the balance of evidence suggests that it functions as nasopharynx-associated lymphoid tissue (NALT) like the characteristic NALT structures in rodents. Altogether, data suggest a remarkable compartmentalization of the mucosal immune system that must be taken into account in the development of effective local vaccines to protect specifically the airways, small and large intestines, and the female genital tract.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation, University of Oslo, Department and Institute of Pathology, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
24
|
Müller C, Siemer D, Lehnerdt G, Lang S, Küppers R. Molecular analysis of IgD-positive human germinal centres. Int Immunol 2010; 22:289-98. [PMID: 20139173 DOI: 10.1093/intimm/dxq007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is controversially discussed whether human IgM(+)IgD(+)CD27(+) B cells, which carry somatically mutated Ig variable region (IgV) genes, are derived from germinal centres (GC) B cells or originate from another developmental pathway. GC composed of IgM(+)IgD(+) B cells, which co-express the CD70 surface marker, have been described in approximately 10% of tonsils. As IgM(+)IgD(+)CD27(+) B cells might be generated in such GC, we characterized IgD(+) tonsillar GC cells. GC dominated by IgD(+) B cells were present in 10 of 67 tonsils analyzed. Three GC were additionally positive for CD70. Detailed analysis of one such GC by microdissection and single-cell DNA PCR revealed IgD(+) GC B cells undergoing somatic hypermutation during clonal expansion. However, further analysis of this GC as well as five additional microdissected GC by reverse transcription (RT)-PCR for clonally related Igmu and Igdelta transcripts indicated that the B-cell clones in five of these six IgD(+) GC belong to the IgD-only B cell subset, which has deleted the Cmu gene, and that only one GC harboured a large IgM(+)IgD(+) B-cell clone. Hence, most IgD(+) GC consist of IgD-only B cells and fully developed IgM(+)IgD(+)(CD70(+)) GC are very rare. This indicates that the rare IgM(+)IgD(+) GC B-cell clones from IgD(+) GC contribute little to the large population of IgM(+)IgD(+)CD27(+) B cells. Finally, an RT-PCR analysis with clone-specific primers for two IgD(+) GC B-cell clones showed an absence of IgG or IgA class-switched clone members, indicating strict regulation of class switching and a selective production of IgD(+) B cells from such clones.
Collapse
Affiliation(s)
- Claudia Müller
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Virchowstrasse 173, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|
25
|
Corcione A, Ferretti E, Bertolotto M, Fais F, Raffaghello L, Gregorio A, Tenca C, Ottonello L, Gambini C, Furtado G, Lira S, Pistoia V. CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS One 2009; 4:e8485. [PMID: 20041188 PMCID: PMC2793522 DOI: 10.1371/journal.pone.0008485] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background Fractalkine/CX3CL1, a surface chemokine, binds to CX3CR1 expressed by different lymphocyte subsets. Since CX3CL1 has been detected in the germinal centres of secondary lymphoid tissue, in this study we have investigated CX3CR1 expression and function in human naïve, germinal centre and memory B cells isolated from tonsil or peripheral blood. Methodology/Principal Findings We demonstrate unambiguously that highly purified human B cells from tonsil and peripheral blood expressed CX3CR1 at mRNA and protein levels as assessed by quantitative PCR, flow cytometry and competition binding assays. In particular, naïve, germinal centre and memory B cells expressed CX3CR1 but only germinal centre B cells were attracted by soluble CX3CL1 in a transwell assay. CX3CL1 signalling in germinal centre B cells involved PI3K, Erk1/2, p38, and Src phosphorylation, as assessed by Western blot experiments. CX3CR1+ germinal centre B cells were devoid of centroblasts and enriched for centrocytes that migrated to soluble CX3CL1. ELISA assay showed that soluble CX3CL1 was secreted constitutively by follicular dendritic cells and T follicular helper cells, two cell populations homing in the germinal centre light zone as centrocytes. At variance with that observed in humans, soluble CX3CL1 did not attract spleen B cells from wild type mice. OVA immunized CX3CR1−/− or CX3CL1−/− mice showed significantly decreased specific IgG production compared to wild type mice. Conclusion/Significance We propose a model whereby human follicular dendritic cells and T follicular helper cells release in the light zone of germinal centre soluble CX3CL1 that attracts centrocytes. The functional implications of these results warrant further investigation.
Collapse
Affiliation(s)
- Anna Corcione
- Laboratory of Oncology, IRCCS G. Gaslini, Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Seifert M, Steimle-Grauer SA, Goossens T, Hansmann ML, Bräuninger A, Küppers R. A model for the development of human IgD-only B cells: Genotypic analyses suggest their generation in superantigen driven immune responses. Mol Immunol 2008; 46:630-9. [PMID: 18952293 DOI: 10.1016/j.molimm.2008.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/25/2022]
Abstract
Human peripheral blood (PB) B cells expressing only IgD and tonsillar IgD-secreting plasma cells carry highly mutated V(H) genes and show preferential Iglambda usage. To further characterize these peculiar cells and gain insight into their generation, we analysed rearranged V(H) and V(L) genes of single IgD-only lambda(+) PB B cells and IgD(+) plasma cells from four individuals each. We demonstrate that the high somatic hypermutation activity in these cells is not restricted to V(H) genes but also present in V(L) genes. Moreover, not only PB IgD-only B cells, as reported earlier, but also IgD-expressing plasma cells often belong to very large clones. Surprisingly, the V(H)3-30 gene segment was used in each PB donor by >30% of IgD-only cells and in 2 tonsils by >50% of IgD plasma cells, whereas it was used less frequent in other B cells. All these features fit to a model in which IgD-only cells develop in superantigen-driven germinal center reactions, in which B cells are activated by binding of antigens to constant parts of Cdelta and often lambda light chains and the V(H)3-30 segment, and are selected for deletion of Cmu. IgD-only B cells may hence represent a unique B lineage subset generated in response to particular antigens.
Collapse
Affiliation(s)
- Marc Seifert
- Institute for Cell Biology (Tumor Research), University of Duisburg-Essen, Medical School, Virchowstr. 173, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM, Klapper W, Falini B, von Heydebreck A, Metzler D, Bräuninger A, Hansmann ML, Küppers R. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. ACTA ACUST UNITED AC 2008; 205:2251-68. [PMID: 18794340 PMCID: PMC2556780 DOI: 10.1084/jem.20080809] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell–rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor κB activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Verena Brune
- Institute for Cell Biology (Tumor Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chappell CP, Dauner J, Jacob* J. ONTOGENY OF THE SECONDARY ANTIBODY RESPONSE: ORIGINS AND CLONAL DIVERSITY. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 633:27-41. [DOI: 10.1007/978-0-387-79311-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
29
|
Kikuchi A, Nakamura N, Kuze T, Sasaki Y, Abe M, Ohno H, Akasaka T, Nakamura S, Ohshima K, Ando K. Characterization of de novo diffuse large B-cell lymphoma with a translocation of c-myc and immunoglobulin genes. Leuk Res 2008; 32:1176-82. [PMID: 18460403 DOI: 10.1016/j.leukres.2007.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 08/15/2007] [Accepted: 10/08/2007] [Indexed: 01/07/2023]
Abstract
The characteristics of de novo diffuse large B-cell lymphoma (DLBCL) with translocation of c-myc and immunoglobulin (Ig) genes (c-myc/Ig DLBCL), were investigated in 13 cases of c-myc/Ig DLBCL. Immunohistochemistry revealed five cases were positive for CD10 and BCL6 expression (CD10(+)/BCL6(+)), five cases of CD10(-)/BCL6(+)/MUM1(-), one case of CD10(-)/BCL6(+)/MUM1(+) and two cases of CD10(-)/BCL6(-)/MUM1(+) expression, indicating 10 cases of germinal center B-cell DLBCL and three cases of non-germinal center B-cell DLBCL. Ongoing mutation of the Ig heavy chain gene variable region (IgH-V) was found in two cases with CD10 and BCL6 expression and one case showing CD10(-)/BCL6(+)/MUM1(-) expression. These three cases of ongoing mutation of the IgH-V gene did not express BCL2, unlike those without ongoing mutation. These results suggest a heterogeneous immunophenotype and genotype for c-myc/Ig DLBCL, with CD10(-)/BCL6(+)/MUM1(-) cases the most frequent.
Collapse
Affiliation(s)
- Ako Kikuchi
- Department of Hematology, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. THE JOURNAL OF IMMUNOLOGY 2007; 177:5236-47. [PMID: 17015709 DOI: 10.4049/jimmunol.177.8.5236] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although recent studies indicated that IL-21 is an important regulator of human B cell activation, detailed comparison of the effects of IL-21 on distinct B cell subsets have not been performed. Our studies revealed that IL-21R is expressed by naive and germinal center B cells, but not memory or plasma cells. IL-21R was increased on naive and memory B cells following in vitro activation. Investigation into the kinetics and magnitude of responses of human B cells to IL-21 revealed that IL-21 potently augmented proliferation of CD40L-stimulated neonatal, splenic naive, and memory and tonsil germinal center B cells. This response exceeded that induced by IL-4, IL-10, and IL-13, cytokines that also induce B cell proliferation. Remarkably, CD40L/IL-21-stimulated naive B cells underwent the same number of divisions as memory cells and exhibited a greater enhancement in their response compared with CD40L alone than memory B cells. Therefore, IL-21 is a powerful growth factor for naive B cells. This may result from the higher expression of IL-21R on naive, compared with memory, B cells. Stimulation of human B cells with CD40L/IL-21 also induced IL-10 production and activation of STAT3. We propose that IL-21 may have therapeutic application in conditions of immunodeficiency where it could expand naive B cells, the predominant B cell subset in such patients. Conversely, because IL-21 is increased in murine models of lupus, dysregulated IL-21 production may contribute to perturbed B cell homeostasis observed in systemic lupus erythematosus. Thus, antagonizing IL-21 may be a novel strategy for treating Ab-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Kim L Good
- Centenary Institute of Cancer Medicine and Cell Biology, New South Wales, Australia
| | | | | |
Collapse
|
31
|
Cattoretti G, Shaknovich R, Smith PM, Jäck HM, Murty VV, Alobeid B. Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance. THE JOURNAL OF IMMUNOLOGY 2007; 177:6930-9. [PMID: 17082608 DOI: 10.4049/jimmunol.177.10.6930] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transit of T cell-activated B cells through the germinal center (GC) is controlled by sequential activation and repression of key transcription factors, executing the pre- and post-GC B cell program. B cell lymphoma (BCL) 6 and IFN regulatory factor (IRF) 8 are necessary for GC formation and for its molecular activity in Pax5+PU.1+ B cells. IRF4, which is highly expressed in BCL6- GC B cells, is necessary for class switch recombination and the plasma cell differentiation at exit from the GC. In this study, we show at the single-cell level broad coexpression of IRF4 with BCL6, Pax5, IRF8, and PU.1 in pre- and post-GC B cells in human and mouse. IRF4 is down-regulated in BCL6+ human GC founder cells (IgD+CD38+), is absent in GC centroblasts, and is re-expressed in positive regulatory domain 1-positive centrocytes, which are negative for all the B cell transcription factors. Activated (CD30+) and activation-induced cytidine deaminase-positive extrafollicular blasts coexpress Pax5 and IRF4. PU.1-negative plasma cells and CD30+ blasts uniquely display the conformational epitope of IRF4 recognized by the MUM1 Ab, an epitope that is absent from any other IRF4+PU.1+ lymphoid and hemopoietic subsets. Low grade B cell lymphomas, representing the malignant counterpart of pre- and post-GC B cells, accordingly express IRF4. However, a fraction of BCL6+ diffuse large B cell lymphomas express IRF4 bearing the MUM1 epitope, indicative of a posttranscriptional modification of IRF4 not seen in the normal counterpart.
Collapse
Affiliation(s)
- Giorgio Cattoretti
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B‐Cell Intrinsic Immunoglobulin Class Switch Recombination Deficiencies. Adv Immunol 2007; 94:275-306. [PMID: 17560278 DOI: 10.1016/s0065-2776(06)94009-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.
Collapse
|
33
|
He B, Qiao X, Klasse PJ, Chiu A, Chadburn A, Knowles DM, Moore JP, Cerutti A. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. THE JOURNAL OF IMMUNOLOGY 2006; 176:3931-41. [PMID: 16547227 DOI: 10.4049/jimmunol.176.7.3931] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Switching from IgM to IgG and IgA is essential for antiviral immunity and requires engagement of CD40 on B cells by CD40L on CD4(+) T cells. HIV-1 is thought to impair CD40-dependent production of protective IgG and IgA by inducing progressive loss of CD4(+) T cells. Paradoxically, this humoral immunodeficiency is associated with B cell hyperactivation and increased production of nonprotective IgG and IgA that are either nonspecific or specific for HIV-1 envelope glycoproteins, including gp120. Nonspecific and gp120-specific IgG and IgA are sensitive to antiretroviral therapy and remain sustained in infected individuals with very few CD4(+) T cells. One interpretation is that some HIV-1 Ags elicit IgG and IgA class switch DNA recombination (CSR) in a CD40-independent fashion. We show that a subset of B cells binds gp120 through mannose C-type lectin receptors (MCLRs). In the presence of gp120, MCLR-expressing B cells up-regulate the CSR-inducing enzyme, activation-induced cytidine deaminase, and undergo CSR from IgM to IgG and IgA. CSR is further enhanced by IL-4 or IL-10, whereas Ab secretion requires a B cell-activating factor of the TNF family. This CD40L-related molecule is produced by monocytes upon CD4, CCR5, and CXCR4 engagement by gp120 and cooperates with IL-4 and IL-10 to up-regulate MCLRs on B cells. Thus, gp120 may elicit polyclonal IgG and IgA responses by linking the innate and adaptive immune systems through the B cell-activating factor of the TNF family. Chronic activation of B cells through this CD40-independent pathway could impair protective T cell-dependent Ab responses by inducing immune exhaustion.
Collapse
Affiliation(s)
- Bing He
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cutrona G, Colombo M, Matis S, Reverberi D, Dono M, Tarantino V, Chiorazzi N, Ferrarini M. B lymphocytes in humans express ZAP-70 when activated in vivo. Eur J Immunol 2006; 36:558-69. [PMID: 16482508 DOI: 10.1002/eji.200526355] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ZAP-70 is a protein tyrosine kinase initially found in T and NK cells. Recently, this important signaling element was detected in leukemic B cells from a subgroup of patients with B cell chronic lymphocytic leukemia (B-CLL). In this study, ZAP-70 was detected in normal B cells from human tonsils, but not from peripheral blood. The cDNA sequence of B cell ZAP-70 was the same as that in T cells. Germinal center B cells and plasma cells had a substantial proportion of ZAP-70+ cells, while memory and follicular mantle B cells, which contain low numbers of activated B cells, expressed relatively little ZAP-70. A cell fraction of IgD+, CD38+ B cells, which are comprised of many in vivo activated B cells, exhibited the highest levels of ZAP-70. Density gradient fractionation of tonsil B cells confirmed that ZAP-70 was not expressed by resting B cells, but was expressed by buoyant, in vivo activated B cells. In these B cells, the expression of ZAP-70 correlated with that of CD38 and not with that of CD5, a hallmark of B-CLL cells. B-CLL cells are activated cells and their ZAP-70 expression reflects a normal property of activated B cells populations rather than a neoplastic aberration.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/enzymology
- B-Lymphocytes/immunology
- CD5 Antigens/immunology
- Cells, Cultured
- Gene Expression Regulation, Enzymologic/immunology
- Germinal Center/cytology
- Germinal Center/immunology
- Humans
- Immunoglobulin D/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/immunology
- Palatine Tonsil/cytology
- Palatine Tonsil/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
- ZAP-70 Protein-Tyrosine Kinase/immunology
Collapse
Affiliation(s)
- Giovanna Cutrona
- Division of Medical Oncology C, Istituto Nazionale per la Ricerca sul Cancro, IST, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cattoretti G, Büttner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek G. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 2006; 107:3967-75. [PMID: 16439679 DOI: 10.1182/blood-2005-10-4170] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is necessary for immunoglobulin somatic hypermutation (SHM) and class switch recombination (CSR) in T-dependent immune response in germinal centers (GCs). The structural similarity of AID with RNA-editing enzymes and its largely cytoplasmic location have fueled controversial views of its mode of interaction with DNA. We show that AID, a mature B-cell-restricted cytoplasmic antigen, is relocated into the nucleus in 2.5% of CDKN1B(-), CCNB1(-) GC cells. The GC dark zone and the outer zone (OZ), but not the light zone, contain nuclear and cytoplasmic AID(+) blasts. AID(+) cells in the OZ are in contact with T cells and CD23(-) follicular dendritic cells. In addition, AID is expressed in extrafollicular large proliferating B cells, 14% of which have nuclear AID. GC and extrafollicular AID(+) cells express E47 but not the inhibiting BHLH protein Id2. Outside the GC, AID(+) B cells are in contact with T cells and show partial evidence of CD40 plus bcr stimulation-dependent signature (CCL22, JunB, cMYC, CD30) but lack early and late plasma cell markers. The distribution of nuclear AID is consistent with the topography of SHM and CSR inside the GC and in extrafollicular activated B cells.
Collapse
Affiliation(s)
- Giorgio Cattoretti
- Institute for Cancer Genetics, 1150 St Nicholas Avenue, Russ Berrie Science Pavilion, Rm 301, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Cuss AK, Avery DT, Cannons JL, Yu LJ, Nichols KE, Shaw PJ, Tangye SG. Expansion of Functionally Immature Transitional B Cells Is Associated with Human-Immunodeficient States Characterized by Impaired Humoral Immunity. THE JOURNAL OF IMMUNOLOGY 2006; 176:1506-16. [PMID: 16424179 DOI: 10.4049/jimmunol.176.3.1506] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is a severe immunodeficiency associated with a marked reduction in circulating memory B cells. Our investigation of the B cell compartment of XLP patients revealed an increase in the frequency of a population of B cells distinct from those previously defined. This population displayed increased expression of CD10, CD24, and CD38, indicating that it could consist of circulating immature/transitional B cells. Supporting this possibility, CD10+CD24highCD38high B cells displayed other immature characteristics, including unmutated Ig V genes and elevated levels of surface IgM; they also lacked expression of Bcl-2 and a panel of activation molecules. The capacity of CD24highCD38high B cells to proliferate, secrete Ig, and migrate in vitro was greatly reduced compared with mature B cell populations. Moreover, CD24highCD38high B cells were increased in the peripheral blood of neonates, patients with common variable immunodeficiency, and patients recovering from hemopoietic stem cell transplant. Thus, an expansion of functionally immature B cells may contribute to the humoral immunodeficient state that is characteristic of neonates, as well as patients with XLP or common variable immunodeficiency, and those recovering from a stem cell transplant. Further investigation of transitional B cells will improve our understanding of human B cell development and how alterations to this process may precipitate immunodeficiency or autoimmunity.
Collapse
Affiliation(s)
- Amanda K Cuss
- Centenary Institute of Cancer Medicine and Cell Biology, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Mancao C, Altmann M, Jungnickel B, Hammerschmidt W. Rescue of "crippled" germinal center B cells from apoptosis by Epstein-Barr virus. Blood 2005; 106:4339-44. [PMID: 16076866 PMCID: PMC1895254 DOI: 10.1182/blood-2005-06-2341] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 07/27/2005] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with B-cell lymphomas such as Hodgkin lymphoma, Burkitt lymphoma, and post-transplantation lymphoma, which originate from clonal germinal center (GC) B cells. During the process of somatic hypermutation, GC B cells can acquire deleterious or nonsense mutations in the heavy and light immunoglobulin genes. Such mutations abrogate the cell surface expression of the B-cell receptor (BCR), which results in the elimination of these nonfunctional B cells by immediate apoptosis. EBV encodes several latent genes, among them latent membrane protein 1 (LMP1) and LMP2A, which are regularly expressed in EBV-positive Hodgkin lymphoma and posttransplantation lymphomas. Since LMP1 and LMP2A mimic the function of 2 key receptors on B cells, CD40 and BCR, respectively, we wanted to learn whether EBV infection can rescue proapoptotic GC B cells with crippling mutations in the heavy chain immunoglobulin locus from apoptosis. We show here that BCR-negative GC B cells readily enter the cell cycle upon infection with EBV in vitro and yield clonal lymphoblastoid cell lines that are incapable of expressing a functional BCR because the rearranged and formerly functional heavy chain immunoglobulin alleles carry deleterious mutations. Our findings imply an important role for EBV in the process of lymphomagenesis in certain cases of Hodgkin lymphoma and posttransplantation lymphomas.
Collapse
Affiliation(s)
- Christoph Mancao
- GSF-National Research Center for Environment and Health, Department of Gene Vectors, Marchioninistr 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
38
|
Brandtzaeg P, Johansen FE. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 2005; 206:32-63. [PMID: 16048541 DOI: 10.1111/j.0105-2896.2005.00283.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mucosal antibody defense depends on a complex cooperation between local B cells and secretory epithelia. Mucosa-associated lymphoid tissue gives rise to B cells with striking J-chain expression that are seeded to secretory effector sites. Such preferential homing constitutes the biological basis for local production of polymeric immunoglobulin A (pIgA) and pentameric IgM with high affinity to the epithelial pIg receptor that readily can export these antibodies to the mucosal surface. This ultimate functional goal of mucosal B-cell differentiation appears to explain why the J chain is also expressed by IgG- and IgD-producing plasma cells (PCs) occurring at secretory tissue sites; these immunocytes may be considered as 'spin-offs' from early effector clones that through class switch are on their way to pIgA production. Abundant evidence supports the notion that intestinal PCs are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists concerning the relative importance of M cells, major histocompatibility complex class II-expressing epithelial cells, and professional antigen-presenting cells for the uptake, processing, and presentation of luminal antigens in GALT to accomplish the extensive and sustained priming and expansion of mucosal B cells. Likewise, it is unclear how the germinal center reaction in GALT so strikingly can promote class switch to IgA and expression of J chain. Although B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, the cues directing preferential homing to different segments of the gut require better definition. This is even more so for the molecules involved in homing of mucosal B cells to secretory effector sites beyond the gut, and in this respect, the role of Waldever's ring (including the palatine tonsils and adenoids) as a regional inductive tissue needs further characterization. Data suggest a remarkable compartmentalization of the mucosal immune system that must be taken into account in the development of effective local vaccines to protect specifically the airways, eyes, oral cavity, small and large intestines, and urogenital tract.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute and Department of Pathology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | |
Collapse
|
39
|
Bechtel D, Kurth J, Unkel C, Küppers R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 2005; 106:4345-50. [PMID: 16131568 DOI: 10.1182/blood-2005-06-2342] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In classic Hodgkin lymphoma (HL) and posttransplantation lymphoproliferative disease (PTLD), 2 malignancies frequently associated with Epstein-Barr virus (EBV), the tumor cells often appear to derive from B-cell receptor (BCR)-deficient and therefore preapoptotic germinal center (GC) B cells. To test whether EBV can rescue BCR-less GC B cells, we infected human tonsillar CD77+ GC B cells in vitro with EBV. More than 60 monoclonal lymphoblastoid cell lines (LCLs) were established. Among these, 28 cell lines did not express surface immunoglobulin (sIg). Two of the sIg-negative cell lines carry obviously destructive mutations that have been introduced into originally functional V(H) gene rearrangements during the process of somatic hypermutation. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) showed that in most other lines the sIg deficiency was not simply the result of transcriptional down-regulation, but it was rather due to posttranscriptional defects. These findings strongly support the idea that EBV plays a central role in the pathogenesis of classic HL and PTLD by rescuing BCR-deficient, preapoptotic GC B cells from apoptosis, and that EBV infection renders the cells independent from survival signals normally supplied by a BCR. The monoclonal LCLs represent valuable models for early stages of lymphoma development in classic HL and PTLD.
Collapse
Affiliation(s)
- Dörte Bechtel
- Institute for Cell Biology (Tumor Research), University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
40
|
Stone MJ, Merlini G, Pascual V. Autoantibody Activity in Waldenström's Macroglobulinemia. ACTA ACUST UNITED AC 2005; 5:225-9. [PMID: 15794853 DOI: 10.3816/clm.2005.n.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Some monoclonal proteins from patients with Waldenstrom's macroglobulinemia (WM) or immunoglobulin (Ig) M monoclonal gammopathy of undetermined significance possess antigen-binding activity directed to autogenous or foreign antigens. These monoclonal IgM autoantibodies include cold agglutinins, mixed cryoglobulins, and antineural components. Because of the antigenantibody interaction, patients with these autoimmune syndromes often present with hemolytic anemia, mixed cryoglobulinemia, or peripheral neuropathy, respectively, at an earlier stage than patients with typical WM who do not have evident antibody activity. The presence of monoclonal macroglobulin autoreactive antibodies thus influences clinical presentation and natural history. Monoclonal IgM antibodies display polyreactivity to antigens of microbial origin in addition to autogenous antigens and may arise through T-independent as well as T-dependent pathways. Waldenstrom proteins with antibody activity appear to provide a link between autoimmunity, infection, and lymphoproliferative disease. Study of the antigens reacting with monoclonal IgMs may provide further insight into the pathogenesis of WM.
Collapse
Affiliation(s)
- Marvin J Stone
- Baylor Charles A. Sammons Cancer Center, 3535 Worth Street, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
41
|
Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood 2005; 105:4390-8. [PMID: 15701725 PMCID: PMC1895038 DOI: 10.1182/blood-2004-11-4284] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Murine B-cell development begins in bone marrow and results in the generation of immature transitional B cells that transit to the spleen to complete their maturation. It remains unclear whether the same developmental pathway takes place in humans. Using markers characteristic of human bone marrow immature B cells, we have identified a population of circulating human B cells with a phenotype most similar to mouse transitional type I (T1) B cells, although these human counterparts express CD5. These cells die rapidly in culture, and B-cell activation factor member of the tumor necrosis factor (TNF) family (BAFF) does not effect their survival regardless of B-cell receptor (BCR) stimulation. In contrast, bone marrow stromal cells or interleukin-4 (IL-4) significantly enhanced their survival. In the presence of T-cell signals provided by IL-4 or CD40 ligation, BCR stimulation can induce progression into cell cycle. Interestingly, circulating B cells that phenotypically and functionally resemble murine T2 B cells are found in cord blood and adult peripheral blood, suggesting that B-cell maturation may not be restricted to the spleen. Notably, increased proportions of T1 B cells were found in blood of patients with systemic lupus erythematosus (SLE), although bone marrow production and selection appeared to be normal.
Collapse
Affiliation(s)
- Gary P Sims
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
42
|
Durandy A, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev 2005; 203:67-79. [PMID: 15661022 DOI: 10.1111/j.0105-2896.2005.00222.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyper-immunoglobulin M (IgM) syndromes are primary immunodeficiencies characterized by normal or elevated serum IgM levels with the absence of other isotypes, pinpointing to a defect in the Ig class switch recombination (CSR). The delineation of hyper-IgM syndromes made it possible to better define the mechanisms underlying the two major events of antibody maturation in humans, CSR and introduction of somatic hypermutation (SHM) in the variable region of immunoglobulins. The description of the activation-induced cytidine deaminase (AID) deficiency, characterized by a defect in both CSR and SHM, demonstrated for the first time that this molecule acts as a master player in the antigen-induced Ig gene-modification events responsible for both CSR and SHM. However, deleterious mutations located in the C-terminus lead to a CSR defect without affecting SHM, providing evidence for a role of AID in CSR distinct from the cytidine deaminase activity, likely by binding to a specific CSR cofactor. Molecular causes of two other hyper-IgM conditions have not yet been defined. However, they may be caused by either a defect in AID targeting on S regions or a CSR-specific DNA-repair defect. The mechanism of action of AID remains somewhat debated, but the observation that uracil-DNA-glycosylase deficiency leads to a severe hyper-IgM syndrome strongly argues in favor of a DNA-editing activity of AID.
Collapse
Affiliation(s)
- Anne Durandy
- INSERM U429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | |
Collapse
|
43
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
44
|
Shen Y, Iqbal J, Huang JZ, Zhou G, Chan WC. BCL2 protein expression parallels its mRNA level in normal and malignant B cells. Blood 2004; 104:2936-9. [PMID: 15242877 DOI: 10.1182/blood-2004-01-0243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The regulation of B-cell lymphoma 2 (BCL2) protein expression in germinal center (GC) B cells has been controversial. Previous reports have indicated posttranscriptional regulation plays a dominant role. However, a number of recent studies contradicted these reports. Using real-time polymerase chain reaction (PCR) and Standardized Reverse Transcriptase-PCR (StaRT-PCR), we measured the level of mRNA expression in GC, mantle zone (MNZ), and marginal zone (MGZ) cells from laser capture microdissection. Both quantitative RT-PCR measurements of microdissected GC cells from tonsils showed that GC cells had low expression of BCL2 transcripts commensurate with the low protein expression level. These results are in agreement with microarray studies on fluorescence-activated cell sorter (FACS)-sorted cells and microdissected GC cells. We also examined BCL2 mRNA and protein expression on a series of 30 cases of diffuse large B-cell lymphoma (DLBCL) and found, in general, a good correlation. The results suggested that BCL2 protein expression is regulated at the transcriptional level in normal B cells and in the neoplastic cells in most B-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Yulei Shen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, USA
| | | | | | | | | |
Collapse
|
45
|
Niller HH, Salamon D, Banati F, Schwarzmann F, Wolf H, Minarovits J. The LCR of EBV makes Burkitt's lymphoma endemic. Trends Microbiol 2004; 12:495-9. [PMID: 15488390 DOI: 10.1016/j.tim.2004.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spectacular ability of Epstein-Barr virus (EBV) to immortalize and morphologically transform human B cells in vitro to lymphoblastoid cell lines (LCLs) is central to most molecular models of viral oncogenesis. However, binding of transcription factor and oncoprotein c-Myc to the major locus control region (LCR) of the viral genome directs us to an alternative model for the origin of Burkitt's lymphoma (BL). In this model, improved nuclear maintenance of the viral genome and the continuous expression of anti-apoptotic functions in B cells exhibiting class I EBV latency contribute to the generation of BL, without any detour through EBV nuclear antigen (EBNA) 2-driven B-cell immortalization (also called class III latency).
Collapse
Affiliation(s)
- Hans H Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Research Center, Landshuter Strasse 22, D-93047 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Guay HM, Panarey L, Reed AJ, Caton AJ. Specificity-Based Negative Selection of Autoreactive B Cells during Memory Formation. THE JOURNAL OF IMMUNOLOGY 2004; 173:5485-94. [PMID: 15494496 DOI: 10.4049/jimmunol.173.9.5485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoreactive B cells are not completely purged from the primary B cell repertoire, and whether they can be prevented from maturation into memory B cells has been uncertain. We show here that a population of B cells that dominates primary immune responses of BALB/c mice to influenza virus A/PR/8/34 hemagglutinin (HA) are negatively selected in transgenic mice expressing PR8 HA as an abundant membrane-bound Ag (HACII mice). However, a separate population of B cells that contains precursors of memory B cells is activated by PR8 virus immunization and is subsequently negatively selected during the formation of the memory response. Negative selection of PR8 HA-specific B cells altered the specificity of the memory B cell response to a mutant virus containing a single amino acid substitution in a B cell epitope. Strikingly, this skewed reactivity resulted from an increase in the formation of memory B cells directed to non-self-epitopes on the mutant virus, which increased 8-fold in HACII mice relative to nontransgenic mice and precisely compensated for the absence of autoreactive PR8 HA-specific memory B cells. Negative selection of PR8 HA-specific B cells was a dominant process, since B cells from HACII mice could induce negative selection of PR8 HA-specific B cells from BALB/c mice. Lastly, HA-specific memory responses were unaffected by self-tolerance in another lineage of HA-transgenic mice (HA104 mice), indicating that the amount and/or cell type in which self-Ags are expressed can determine their ability to prevent autoreactive memory B cell formation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibody-Producing Cells/cytology
- Antibody-Producing Cells/metabolism
- Antibody-Producing Cells/virology
- Autoantibodies/biosynthesis
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/virology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/virology
- Clone Cells
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Gene Rearrangement, B-Lymphocyte
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immune Tolerance/genetics
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunologic Memory/genetics
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Mice, Transgenic
Collapse
Affiliation(s)
- Heath M Guay
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
47
|
Rosenquist R, Roos G, Erlanson M, Küppers R, Bräuninger A, Hansmann ML. Clonally related splenic marginal zone lymphoma and Hodgkin lymphoma with unmutated V gene rearrangements and a 15-yr time gap between diagnoses. Eur J Haematol 2004; 73:210-4. [PMID: 15287919 DOI: 10.1111/j.1600-0609.2004.00283.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hodgkin lymphoma (HL) can rarely occur during the course of B-cell non-Hodgkin lymphoma (B-NHL), where both the HL and NHL tumours have been reported to be clonally related in most of the few combination lymphomas so far investigated. We here investigated a case that developed HL 15 yr after being diagnosed with an indolent B-cell lymphoma, classified as a splenic marginal zone lymphoma (SMZL). Analysis of rearranged immunoglobulin genes in the SMZL clone and in single Hodgkin Reed-Sternberg cells revealed presence of identical V gene rearrangements, thus demonstrating a clonal relationship. In contrast to previously described B-NHL/HL combinations, in this case both types of tumour cells carried unmutated V gene rearrangements. We conclude that the HL evolved from an unmutated tumour precursor, either the SMZL clone itself or a common earlier precursor.
Collapse
|
48
|
Corcione A, Casazza S, Ferretti E, Giunti D, Zappia E, Pistorio A, Gambini C, Mancardi GL, Uccelli A, Pistoia V. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci U S A 2004; 101:11064-9. [PMID: 15263096 PMCID: PMC503741 DOI: 10.1073/pnas.0402455101] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clonally expanded populations of B cells carrying somatic mutations of Ig variable (V) region genes have been detected in the CNS of subjects with multiple sclerosis (MS), suggesting that a process of B cell affinity maturation with ensuing production of potentially pathogenic autoantibodies may occur inside the CNS. Here, we have characterized the B cell subsets present in the cerebrospinal fluid (CSF) of MS patients and of individuals with other inflammatory neurological disorders by flow cytometry. CD19(+)CD38(high+)CD77(+), Ki67(+), Bcl-2(-) centroblasts, i.e., a B cell subset found exclusively in secondary lymphoid organs, were detected in the CSF but not in paired peripheral blood from both patient groups. CD27(+)IgD(-) memory B cells, i.e., cells with hyper-mutated IgV genes, were significantly increased in the CSF vs. paired peripheral blood and displayed up-regulation of the CD80 and CD86 costimulatory molecules and of CC chemokine receptor (CCR) 1, CCR2, and CCR4 in both patient groups. Lymphotoxin-alpha, CXC ligand (CXCL) 12, and CXCL13, key mediators of lymphoid neogenesis, were present in the CSF from patients with MS and other inflammatory neurological disorders and were expressed in MS brain tissue, with selective localization in the outer layer of the capillary vessel wall. In conclusion, this study suggests that a compartmentalized B cell response occurs within the CNS during an ongoing inflammatory reaction, through a recapitulation of all stages of B cell differentiation observed in secondary lymphoid organs. The presence of lymphotoxin-alpha, CXCL12, and CXCL13 in the CNS may provide favorable microenvironmental conditions for these events.
Collapse
Affiliation(s)
- Anna Corcione
- Laboratory of Oncology, Scientific Direction, G. Gaslini Institute, 16148 Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Péquignot EM, Roquelaure B, Thuret I, Schiff C. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 2004; 103:2683-90. [PMID: 14645008 DOI: 10.1182/blood-2003-08-2632] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunodeficiency, centromeric region instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disease. Mutations in the DNA methyltransferase 3B (DNMT3B) gene are responsible for most ICF cases reported. We investigated the B-cell defects associated with agammaglobulinemia in this syndrome by analyzing primary B cells from 4 ICF patients. ICF peripheral blood (PB) contains only naive B cells; memory and gut plasma cells are absent. Naive ICF B cells bear potentially autoreactive long heavy chain variable regions complementarity determining region 3's (V(H)CDR3's) enriched with positively charged residues, in contrast to normal PB transitional and mature B cells, indicating that negative selection is impaired in patients. Like anergic B cells in transgenic models, newly generated and immature B cells accumulate in PB. Moreover, these cells secrete immunoglobulins and exhibit increased apoptosis following in vitro activation. However, they are able to up-regulate CD86, indicating that mechanisms other than anergy participate in silencing of ICF B cells. One patient without DNMT3B mutations shows differences in immunoglobulin E (IgE) switch induction, suggesting that immunodeficiency could vary with the genetic origin of the syndrome. In this study, we determined that negative selection breakdown and peripheral B-cell maturation blockage contribute to agammaglobulinemia in the ICF syndrome.
Collapse
|
50
|
Durandy A, Revy P, Fischer A. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv Immunol 2004; 82:295-330. [PMID: 14975260 DOI: 10.1016/s0065-2776(04)82007-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anne Durandy
- INSERM U429, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | | |
Collapse
|