1
|
Liang YB, Luo RX, Lu Z, Mao Y, Song PP, Li QW, Peng ZQ, Zhang YS. VX-765 attenuates secondary damage and β-amyloid accumulation in ipsilateral thalamus after experimental stroke in rats. Exp Neurol 2025; 385:115097. [PMID: 39647574 DOI: 10.1016/j.expneurol.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Focal cortical infarction can result both in the accumulation of Aβ in as well as further secondary damage and inflammation within the ipsilateral thalamus. VX-765 is a potent and selective small-molecule capable of inhibiting caspase-1, which has been shown to exhibit active neuroprotection properties in multiple disease. However, the neuroprotection efficacy of VX-765 as a means of attenuating secondary damage after MCAO remains uncertain. As such, we sought to determine the ability of VX-765 to alter thalamic Aβ accumulation, secondary damage, and sensory deficits in rats of focal cortical infarction. A rat model of distal branch of middle cerebral artery occlusion (dMCAO) was used to evaluate the effects of the VX-765 on the secondary damage and β-amyloid accumulation in ipsilateral thalamus after dMCAO in rats. The activation of astrocyte and microglia, loss of neuron, and damage to sensory function were detected weekly till 4 weeks after modeling. VX-765 was injected intraperitoneally delayed after 7 days injury and the status of secondary damage, inflammation and β-amyloid accumulation in ipsilateral thalamus after dMCAO were examined.Our results revealed that VX-765 markedly reduce sensory deficits in these rats, suppressing secondary damage through reductions in APP and accumulations of Aβ with an accompanying reduction in both neuronal loss, astrocyte and microglia activation. VX-765 markedly inhibited NLRP3 and caspase-1, and downregulation of ASC, GSDMD, IL-1β, and IL-18 in the ipsilateral thalamus after MCAO. Our results further suggested that VX-765 may regulate secondary damage via control inflammation and suppressing the production of pro-inflammatory factors such as iNOS, TNF-α, IL-6 and COX2 that are produced downstream NF-κB signaling. Taken together, VX-765 is well-suited to attenuate secondary damage and accumulations of Aβ, improving recovery from sensory deficits and cognitive deficits after MCAO, at least in part via suppressing pyroptosis and inflammation.
Collapse
Affiliation(s)
- Yu-Bin Liang
- Department of 2nd Bain Science Center and Stroke Center, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology and Stroke Center, The First Affiliated Hospital with Jinan University, Guangzhou, China; Geriatric Medicine Institute of Panyu District, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ri-Xin Luo
- Department of 2nd Bain Science Center and Stroke Center, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Geriatric Medicine Institute of Panyu District, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhen Lu
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
| | - Ying Mao
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519,041, China
| | - Ping-Ping Song
- Department of Neurology and Stroke Center, The First Affiliated Hospital with Jinan University, Guangzhou, China
| | - Qiao-Wei Li
- Department of 2nd Bain Science Center and Stroke Center, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Geriatric Medicine Institute of Panyu District, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Qiang Peng
- Department of 2nd Bain Science Center and Stroke Center, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Geriatric Medicine Institute of Panyu District, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China.
| | - Yu-Sheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital with Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Modi P, Shah BM, Patel S. Interleukin-1β converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem 2023; 261:115861. [PMID: 37857145 DOI: 10.1016/j.ejmech.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Caspase-1 is a critical mediator of the inflammatory process by activating various pro-inflammatory cytokines such as pro-IL-1β, IL-18 and IL-33. Uncontrolled activation of caspase-1 leads to various cytokines-mediated diseases. Thus, inhibition of Caspase-1 is considered therapeutically beneficial to halt the progression of such diseases. Currently, rilonacept, canakinumab and anakinra are in use for caspase-1-mediated autoinflammatory diseases. However, the poor pharmacokinetic profile of these peptides limits their use as therapeutic agents. Therefore, several peptidomimetic inhibitors have been developed, but only a few compounds (VX-740, VX-765) have advanced to clinical trials; because of their toxic profile. Several small molecule inhibitors have also been progressing based on the three-dimensional structure of caspase-1. However there is no successful candidate available clinically. In this perspective, we highlight the mechanism of caspase-1 activation, its therapeutic potential as a disease target and potential therapeutic strategies targeting caspase-1 with their limitations.
Collapse
Affiliation(s)
- Palmi Modi
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Bhumi M Shah
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Shivani Patel
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
3
|
She R, Liu D, Liao J, Wang G, Ge J, Mei Z. Mitochondrial dysfunctions induce PANoptosis and ferroptosis in cerebral ischemia/reperfusion injury: from pathology to therapeutic potential. Front Cell Neurosci 2023; 17:1191629. [PMID: 37293623 PMCID: PMC10244524 DOI: 10.3389/fncel.2023.1191629] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Ischemic stroke (IS) accounts for more than 80% of the total stroke, which represents the leading cause of mortality and disability worldwide. Cerebral ischemia/reperfusion injury (CI/RI) is a cascade of pathophysiological events following the restoration of blood flow and reoxygenation, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, further aggravate the damage of brain tissue. Paradoxically, there are still no effective methods to prevent CI/RI, since the detailed underlying mechanisms remain vague. Mitochondrial dysfunctions, which are characterized by mitochondrial oxidative stress, Ca2+ overload, iron dyshomeostasis, mitochondrial DNA (mtDNA) defects and mitochondrial quality control (MQC) disruption, are closely relevant to the pathological process of CI/RI. There is increasing evidence that mitochondrial dysfunctions play vital roles in the regulation of programmed cell deaths (PCDs) such as ferroptosis and PANoptosis, a newly proposed conception of cell deaths characterized by a unique form of innate immune inflammatory cell death that regulated by multifaceted PANoptosome complexes. In the present review, we highlight the mechanisms underlying mitochondrial dysfunctions and how this key event contributes to inflammatory response as well as cell death modes during CI/RI. Neuroprotective agents targeting mitochondrial dysfunctions may serve as a promising treatment strategy to alleviate serious secondary brain injuries. A comprehensive insight into mitochondrial dysfunctions-mediated PCDs can help provide more effective strategies to guide therapies of CI/RI in IS.
Collapse
Affiliation(s)
- Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
4
|
Electro-acupuncture treatment inhibits the inflammatory response by regulating γδ T and Treg cells in ischemic stroke. Exp Neurol 2023; 362:114324. [PMID: 36669751 DOI: 10.1016/j.expneurol.2023.114324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Electro-acupuncture (EA) is an effective and safe treatment for ischemic stroke. It is not only capable of reducing cerebral damage but also alleviating intestinal inflammation. However, its mechanism has not been fully elucidated. METHODS All rats were randomly divided into three experimental groups: the SHAM group, the MCAO group, and the MEA (MCAO+EA) group. Ischemic-reperfusion (I/R) injury was induced by MCAO surgery. Rats in the MEA group were treated with EA stimulation in the "Baihui" acupoint (1 mA, 2/15 Hz, 20 min for each time). The Real-time (RT)-qPCR was used to evaluate the mRNA expression of inflammation factors in the ischemic brain and the small intestine after I/R injury. In addition, our research evaluated the effects of EA on regulatory T cells (Tregs) and γδ T cells in the small intestine and brain via Flow cytometry analysis. Finally, we applied CM-Dil and CFSE injection and explored the potential connections of T cells between the ischemic hemisphere and the small intestine. RESULTS Our results suggested that EA treatment could significantly reduce the inflammation response in the ischemic brain and small intestine 3 days after I/R injury in rats. To be specific, EA increased the percentage of Tregs in the brain and the small intestine and decreased intestinal and cerebral γδ T cells. Concomitantly, after EA treatment, the percentage of cerebral CD3+TCRγδ+CFSE+ cells dropped from 12.06% to 6.52% compared with the MCAO group. CONCLUSIONS These findings revealed that EA could regulate the Tregs and γδ T cells in the ischemic brain and the small intestine, which indicated its effect on inhibiting inflammation. And, EA could inhibit the mobilization of intestinal T cells, which may contribute to the protection of EA after ischemic stroke.
Collapse
|
5
|
The NLRP3 Inflammasome in Age-Related Cerebral Small Vessel Disease Manifestations: Untying the Innate Immune Response Connection. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010216. [PMID: 36676165 PMCID: PMC9866483 DOI: 10.3390/life13010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
In this narrative review, we present the evidence on nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome activation for its putative roles in the elusive pathomechanism of aging-related cerebral small vessel disease (CSVD). Although NLRP3 inflammasome-interleukin (IL)-1β has been implicated in the pathophysiology of coronary artery disease, its roles in cerebral arteriothrombotic micro-circulation disease such as CSVD remains unexplored. Here, we elaborate on the current manifestations of CSVD and its' complex pathogenesis and relate the array of activators and aberrant activation involving NLRP3 inflammasome with this condition. These neuroinflammatory insights would expand on our current understanding of CSVD clinical (and subclinical) heterogenous manifestations whilst highlighting plausible NLRP3-linked therapeutic targets.
Collapse
|
6
|
Samartsev IN, Zhivolupov SA, Gorbatenkova OV, Ponomarev VV, Butakova JS. [Biomarkers of neuroinflammation in patients with chronic cerebral ischemia during the therapy with vinpocetine (study INFLAMARK)]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:50-58. [PMID: 38147382 DOI: 10.17116/jnevro202312312150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
OBJECTIVE To evaluate the effect of vinpocetine therapy on clinical manifestations of chronic cerebral ischemia (CCI) and the blood concentrations of neuroinflammation markers (S100B, IL-1β). MATERIAL AND METHODS The study included 30 patients (mean age 61.6 [56.9; 67.9] years) with CCI that received vinpocetine (30 mg/day) for 3 months. Brain changes according to magnetic resonance imaging data were assessed using the STRIVE protocol. We analyzed the dynamics of changes in the clinical questionnaires: Montreal Cognitive Assessment Scale (MoCA), Hospital Anxiety and Depression Scale (HADS), Asthenic State Scale (ASS), Epworth Sleepiness Scale (ESS), general impressions of treatment (Global Rating of Change Scale, GRC). RESULTS In 3 months after vinpocetine therapy there was a significant improvement in cognitive status (MoCA: 25.1±2.1 vs 26.6±1.4 p<0.05), emotional state (HADS: 8.4±1.4 vs 7.1±1.8 (p<0.05)), daytime sleep parameters (ESS 8.4±2.1 vs 6.2±2.3 p<0.05) and reduction in asthenia (ASS: 72.2±18.1 vs 52.3±9.3, p<0.05). A significantly larger proportion of patients assessed the improvement from therapy as «moderate» and «pronounced» (GRC, n=22, 73.3%). Concentrations of S100B and IL-1β decreased significantly by the time therapy was completed. The overall severity of cerebrovascular changes according to MRI was significantly associated with blood levels of S100β, but not IL-1β: β=0.504, p=0.026, 95% CI 0.149-0.901, mainly due to periventricular changes in white matter (β=0.562, p=0.035, 95% CI (-0.024-0.820). Blood levels of S100β correlated with MoCA test results (r=0.6795), and IL-1β correlated with ESS scores (r=0. 6657). CONCLUSIONS The use of vinpocetine can significantly reduce the severity of cognitive and affective disorders, asthenia, normalize the circadian rhythm of sleep, suppress the expression S100β and IL-1β in patients with CCI. One of the vinpocetine's mechanisms of action may be the inhibition of neuroinflammation.
Collapse
Affiliation(s)
- I N Samartsev
- Kirov Military medical academy, St. Petersburg, Russia
| | | | | | | | - J S Butakova
- Novodvinsk Central City Hospital, Novodvinsk, Russia
| |
Collapse
|
7
|
Zhang A, Zhang Z, Liu Y, Lenahan C, Xu H, Jiang J, Yuan L, Wang L, Xu Y, Chen S, Fang Y, Zhang J. The Role of Caspase Family in Acute Brain Injury: The Potential Therapeutic Targets in the Future. Curr Neuropharmacol 2022; 20:1194-1211. [PMID: 34766893 PMCID: PMC9886824 DOI: 10.2174/1570159x19666211111121146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
The caspase family is commonly involved in the pathophysiology of acute brain injury (ABI) through complex apoptotic, pyroptotic, and inflammatory pathways. Current translational strategies for caspase modulation in ABI primarily focus on caspase inhibitors. Because there are no caspase-inhibiting drugs approved for clinical use on the market, the development of caspase inhibitors remains an attractive challenge for researchers and clinicians. Therefore, we conducted the present review with the aim of providing a comprehensive introduction of caspases in ABI. In this review, we summarized the available evidence and potential mechanisms regarding the biological function of caspases. We also reviewed the therapeutic effects of caspase inhibitors on ABI and its subsequent complications. However, various important issues remain unclear, prompting further verification of the efficacy and safety regarding clinical application of caspase inhibitors. We believe that our work will be helpful to further understand the critical role of the caspase family and will provide novel therapeutic potential for ABI treatment.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA;
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;
| | | | | | | | - Yuanzhi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to these authors at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; E-mail:
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to these authors at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; E-mail:
| |
Collapse
|
8
|
Baranov SV, Jauhari A, Carlisle DL, Friedlander RM. Two hit mitochondrial-driven model of synapse loss in neurodegeneration. Neurobiol Dis 2021; 158:105451. [PMID: 34298088 DOI: 10.1016/j.nbd.2021.105451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 01/11/2023] Open
Abstract
In healthy neurons, a mitochondrial membrane potential gradient exists whereby membrane potential is highest in the soma and decreases with distance from the nucleus. Correspondingly, distal mitochondria have more oxidative damage and slower protein import than somal mitochondria. Due to these differences, distal mitochondria have an intrinsic first stressor that somal mitochondria do not have, resulting in synaptic mitochondrial vulnerability. A second stressor may result from mutant protein expression, situational stress, or aging, exacerbating vulnerable mitochondria activating stress responses. Under these conditions, distal mitochondria release cytochrome c and mitochondrial DNA, leading to compartmentalized sub-lethal caspase-3 activation and cytokine production. In this two-hit mitochondrial-driven synaptic loss model, synapse vulnerability during neurodegeneration is explained as a superposition of pre-existing lower synaptic mitochondrial membrane potential (hit one) with additional mitochondrial stress (hit two). This two-hit mechanism occurs in synaptic mitochondria, activating signaling pathways leading to synaptic degeneration, as a potential preamble to neuronal death.
Collapse
Affiliation(s)
- Sergei V Baranov
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Abhishek Jauhari
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
9
|
From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 2021; 19:4641-4657. [PMID: 34504660 PMCID: PMC8405902 DOI: 10.1016/j.csbj.2021.07.038] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, apoptosis and necroptosis are the most genetically well-defined programmed cell death (PCD) pathways, and they are intricately involved in both homeostasis and disease. Although the identification of key initiators, effectors and executioners in each of these three PCD pathways has historically delineated them as distinct, growing evidence has highlighted extensive crosstalk among them. These observations have led to the establishment of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. In this review, we provide a brief overview of the research history of pyroptosis, apoptosis and necroptosis. We then examine the intricate crosstalk among these PCD pathways to discuss the current evidence for PANoptosis. We also detail the molecular evidence for the assembly of the PANoptosome complex, a molecular scaffold for contemporaneous engagement of key molecules from pyroptosis, apoptosis, and/or necroptosis. PANoptosis is now known to be critically involved in many diseases, including infection, sterile inflammation and cancer, and future discovery of novel PANoptotic components will continue to broaden our understanding of the fundamental processes of cell death and inform the development of new therapeutics.
Collapse
|
10
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic Res Cardiol 2021; 116:23. [PMID: 33770265 PMCID: PMC7997823 DOI: 10.1007/s00395-021-00863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang X, Oberly P, Minnigh MB, Poloyac SM, Carlisle DL, Friedlander RM. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 2021; 130:3124-3136. [PMID: 32182222 DOI: 10.1172/jci135026] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.
Collapse
Affiliation(s)
| | | | | | - Jinho Kim
- Department of Neurological Surgery and
| | | | | | - Fang Li
- Department of Neurological Surgery and
| | | | - Patrick Oberly
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Beth Minnigh
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
13
|
Mir-155 knockout protects against ischemia/reperfusion-induced brain injury and hemorrhagic transformation. Neuroreport 2021; 31:235-239. [PMID: 31876686 DOI: 10.1097/wnr.0000000000001382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MiR-155 negatively regulates translation of mRNA targets to proteins involved in processes that modulate ischemic brain injury including neuroinflammation, blood-brain barrier (BBB) permeability, and apoptosis. However, reports of the effect of cerebral miR-155 expression changes after ischemic brain injury are equivocal and miR-155 modulates molecular pathways with opposing effects on these processes. The role of miR-155 in postischemic cerebral hemorrhagic transformation remains unknown. To understand the net effect of complete inactivation of miR-155, miR-155 knockout mice were studied in a cerebral ischemia/reperfusion (I/R) model of infarction and hemorrhagic transformation as compared with those of wild type mice. Wild type and miR-155 knockout mice underwent one hour of middle cerebral artery occlusion (MCAO) followed by up to 71 hours of reperfusion. The effects of miR-155 knockout on cerebral infarct size, incidence and extent of hemorrhagic transformation, and neurological outcome were determined. We found that miR-155 was significantly upregulated after cerebral I/R in wild type mice, and miR-155 knockout mice had comparably smaller cerebral infarct size and improved neurological deficits. Similarly, wild type mice had significant hemorrhagic burden after cerebral I/R, the incidence and volume of which was reduced in miR-155 knockout mice. Although miR-155 can have opposite effects on cerebral I/R-injury-related processes, the net effect of miR-155 knockout is neuroprotective. Thus, the increase in miR-155 expression observed after cerebral I/R may be considered deleterious and inhibition of this expression and its effects a potential therapeutic target.
Collapse
|
14
|
Liang Y, Song P, Chen W, Xie X, Luo R, Su J, Zhu Y, Xu J, Liu R, Zhu P, Zhang Y, Huang M. Inhibition of Caspase-1 Ameliorates Ischemia-Associated Blood-Brain Barrier Dysfunction and Integrity by Suppressing Pyroptosis Activation. Front Cell Neurosci 2021; 14:540669. [PMID: 33584203 PMCID: PMC7874210 DOI: 10.3389/fncel.2020.540669] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Ischemic cerebral infarction represents a significant cause of disability and death worldwide. Caspase-1 is activated by the NLRP3/ASC pathway and inflammasomes, thus triggering pyroptosis, a programmed cell death. In particular, this death is mediated by gasdermin D (GSDMD), which induces secretion of interleukin (IL)-1β and IL-18. Accordingly, inhibition of caspase-1 prevents the development and worsening of multiple neurodegenerative diseases. However, it is not clear whether inhibition of caspase-1 can preserve blood-brain barrier (BBB) integrity following cerebral infarction. This study therefore aimed at understanding the effect of caspase-1 on BBB dysfunction and its underlying mechanisms in permanent middle cerebral artery occlusion (MCAO). Our findings in rat models revealed that expression of caspase-1 was upregulated following MCAO-induced injury in rats. Consequently, pharmacologic inhibition of caspase-1 using vx-765 ameliorated ischemia-induced infarction, neurological deficits, and neuronal injury. Furthermore, inhibition of caspase-1 enhanced the encapsulation rate of pericytes at the ischemic edge, decreased leakage of both Evans Blue (EB) and matrix metalloproteinase (MMP) proteins, and upregulated the levels of tight junctions (TJs) and tissue inhibitors of metalloproteinases (TIMPs) in MCAO-injured rats. This in turn improved the permeability of the BBB. Meanwhile, vx-765 blocked the activation of ischemia-induced pyroptosis and reduced the expression level of inflammatory factors such as caspase-1, NLRP3, ASC, GSDMD, IL-1β, and IL-18. Similarly, vx-765 treatment significantly reduced the expression levels of inflammation-related receptor for advanced glycation end products (RAGE), high-mobility family box 1 (HMGB1), mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB). Evidently, inhibition of caspase-1 significantly improves ischemia-associated BBB permeability and integrity by suppressing pyroptosis activation and the RAGE/MAPK pathway.
Collapse
Affiliation(s)
- Yubin Liang
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Pingping Song
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Wei Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Xuemin Xie
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Rixin Luo
- Department of Stroke Center, GuangZhou Panyu Central Hospital, Guangzhou, China
| | - Jiehua Su
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Yunhui Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Jiamin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Rongrong Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Peizhi Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
15
|
Ge F, Shao G, Chen S, Sun Y, Xu H. Chrysoeriol promotes functional neurological recovery in a rat model of cerebral ischemia. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_329_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
17
|
Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 2020; 11:emmm.201810248. [PMID: 31015277 PMCID: PMC6554670 DOI: 10.15252/emmm.201810248] [Citation(s) in RCA: 511] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation and neurodegeneration often result from the aberrant deposition of aggregated host proteins, including amyloid‐β, α‐synuclein, and prions, that can activate inflammasomes. Inflammasomes function as intracellular sensors of both microbial pathogens and foreign as well as host‐derived danger signals. Upon activation, they induce an innate immune response by secreting the inflammatory cytokines interleukin (IL)‐1β and IL‐18, and additionally by inducing pyroptosis, a lytic cell death mode that releases additional inflammatory mediators. Microglia are the prominent innate immune cells in the brain for inflammasome activation. However, additional CNS‐resident cell types including astrocytes and neurons, as well as infiltrating myeloid cells from the periphery, express and activate inflammasomes. In this review, we will discuss current understanding of the role of inflammasomes in common degenerative diseases of the brain and highlight inflammasome‐targeted strategies that may potentially treat these diseases.
Collapse
Affiliation(s)
- Sofie Voet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahana Srinivasan
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine, Ghent University, Ghent, Belgium .,Janssen Immunosciences, World without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Chen HW, Yen CC, Kuo LL, Lo CW, Huang CS, Chen CC, Lii CK. Benzyl isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells. Toxicol Appl Pharmacol 2020; 393:114941. [PMID: 32126212 DOI: 10.1016/j.taap.2020.114941] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Incidence of nonalcoholic fatty liver disease is increasing worldwide. Activation of the NLRP3 inflammasome is central to the development of diet-induced nonalcoholic steatohepatitis (NASH). We investigated whether benzyl isothiocyanate (BITC) ameliorates diet-induced NASH and the mechanisms involved. C57BL/6 J mice fed a high-fat diet containing cholesterol and cholic acid (HFCCD) and Kupffer cells stimulated with LPS and cholesterol crystals (CC) were studied. LPS/CC increased the expression of the active form of caspase 1 (p20) and the secretion of IL-1β by Kupffer cells, and these changes were reversed by MCC950, an NLRP3 inflammasome inhibitor. LPS/CC-induced NLRP3 inflammasome activation and IL-1β production were dose-dependently attenuated by BITC. BITC decreased cathepsin B release from lysosomes and binding to NLRP3 induced by LPS/CC. Compared with a normal diet, the HFCCD increased serum levels of ALT, AST, total cholesterol, and IL-1β and hepatic contents of triglycerides and total cholesterol. BITC administration (0.1% in diet) reversed the increase in AST and hepatic triglycerides in the HFCCD group. Moreover, BITC suppressed lipid accumulation, macrophage infiltration, fibrosis, crown-like structure formation, and p20 caspase 1 and p17 IL-1β expression in liver in the HFCCD group. These results suggest that BITC ameliorates HFCCD-induced steatohepatitis by inhibiting the activation of NLRP3 inflammasome in Kupffer cells and may protect against diet-induced NASH.
Collapse
Affiliation(s)
- Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| | - Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Li-Li Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
19
|
Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, Jiang N, Huang S, Long E, Zhuo Y. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ 2020; 27:176-191. [PMID: 31127201 PMCID: PMC7206022 DOI: 10.1038/s41418-019-0351-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common pathology when the blood supply to an organ was disrupted and then restored. During the reperfusion process, inflammation and tissue injury were triggered, which were mediated by immunocytes and cytokines. However, the mechanisms initiating I/R-induced inflammation and driving immunocytes activation remained largely unknown. In this study, we identified long non-coding RNA (lncRNA)-H19 as the key onset of I/R-induced inflammation. We found that I/R increased lncRNA-H19 expression to significantly promote NLRP3/6 inflammasome imbalance and resulted in microglial pyroptosis, cytokines overproduction, and neuronal death. These damages were effectively inhibited by lncRNA-H19 knockout. Specifically, lncRNA-H19 functioned via sponging miR-21 to facilitate PDCD4 expression and formed a competing endogenous RNA network (ceRNET) in ischemic cascade. LncRNA H19/miR-21/PDCD4 ceRNET can directly regulate I/R-induced sterile inflammation and neuronal lesion in vivo. We thus propose that lncRNA-H19 is a previously unknown danger signals in the molecular and immunological pathways of I/R injury, and pharmacological approaches to inhibit H19 seem likely to become treatment modalities for patients in the near future based on these mechanistic findings.
Collapse
Affiliation(s)
- Peixing Wan
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China ,0000000086837370grid.214458.eDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann arbor, MI 48109 USA
| | - Wenru Su
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Yingying Zhang
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Zhidong Li
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Caibin Deng
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Jinmiao Li
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Nan Jiang
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Siyu Huang
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Erping Long
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Yehong Zhuo
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| |
Collapse
|
20
|
Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 2019; 137:693-714. [PMID: 30483945 PMCID: PMC6482288 DOI: 10.1007/s00401-018-1930-z] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammation is currently considered a prime target for the development of new stroke therapies. In the acute phase of ischemic stroke, microglia are activated and then circulating immune cells invade the peri-infarct and infarct core. Resident and infiltrating cells together orchestrate the post-stroke inflammatory response, communicating with each other and the ischemic neurons, through soluble and membrane-bound signaling molecules, including cytokines. Inflammation can be both detrimental and beneficial at particular stages after a stroke. While it can contribute to expansion of the infarct, it is also responsible for infarct resolution, and influences remodeling and repair. Several pre-clinical and clinical proof-of-concept studies have suggested the effectiveness of pharmacological interventions that target inflammation post-stroke. Experimental evidence shows that targeting certain inflammatory cytokines, such as tumor necrosis factor, interleukin (IL)-1, IL-6, and IL-10, holds promise. However, as these cytokines possess non-redundant protective and immunoregulatory functions, their neutralization or augmentation carries a risk of unwanted side effects, and clinical translation is, therefore, challenging. This review summarizes the cell biology of the post-stroke inflammatory response and discusses pharmacological interventions targeting inflammation in the acute phase after a stroke that may be used alone or in combination with recanalization therapies. Development of next-generation immune therapies should ideally aim at selectively neutralizing pathogenic immune signaling, enhancing tissue preservation, promoting neurological recovery and leaving normal function intact.
Collapse
Affiliation(s)
- Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark.
- Department of Clinical Research, BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5000, Odense C, Denmark.
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark.
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5000, Odense C, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5000, Odense C, Denmark
| |
Collapse
|
21
|
Li Q, Dai Z, Cao Y, Wang L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem Biophys Res Commun 2019; 513:479-485. [PMID: 30979498 DOI: 10.1016/j.bbrc.2019.03.202] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
Stroke is a life-threatening neurological disease with limited therapeutic options. Inflammation is believed to be involved in the pathogenesis of ischemic stroke and contribute to the degree of brain injury. Vx-765 is a potent, selective, small-molecule caspase-1 inhibitor. Current studies have shown the anti-inflammatory properties of vx-765 in various disease; however, the impact of vx-765 on the ischemic stroke is still unclear. In the present study, we determine the neuroprotective effect of vx-765 in mice subjected to transient middle cerebral artery occlusion (MCAO). We found that caspase-1 inhibition by administration of vx-765 ameliorated cerebral injury in mice after ischemic stroke by reducing infarct volume and ameliorating the neurological deficits. Mechanistically, we showed that the contribution of vx-765 to ischemic injuries may be associated with reducing microglial activation, and downregulating the production of associated pro inflammatory cytokines including IL-1β, TNF-α, and iNOS, as well as upregulating anti-inflammatory cytokines such as TGF-β and YM-1. Additionally, vx-765 altered the phenotype of microglia via switching the microglia polarization toward M2 phenotype, as demonstrably related to inhibition of the NF-κB activation. Our findings indicate that vx-765 protects against MCAO injury and attenuated microglia mediated neuroinflammation primarily by shifting microglia polarization from M1 phenotype toward M2 phenotype. Vx-765 might be a potential therapeutic drug for ameliorating ischemic stroke.
Collapse
Affiliation(s)
- Qian Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhenguo Dai
- Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
22
|
Gasdermin Family: a Promising Therapeutic Target for Stroke. Transl Stroke Res 2018; 9:555-563. [DOI: 10.1007/s12975-018-0666-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
|
23
|
Ma C, Liu S, Zhang S, Xu T, Yu X, Gao Y, Zhai C, Li C, Lei C, Fan S, Chen Y, Tian H, Wang Q, Cheng F, Wang X. Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review). Int J Mol Med 2018; 42:2979-2990. [PMID: 30280193 DOI: 10.3892/ijmm.2018.3911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke is one of the main causes of death and disablement globally. The NLR family pyrin domain containing 3 (NLRP3) inflammasome is established as a sensor of detecting cellular damage and modulating inflammatory responses to injury during the progress of ischemic stroke. Inhibiting or blocking the NLRP3 inflammasome at different stages, including expression, assembly, and secretion, may have great promise to improve the neurological deficits during ischemic stroke. The current review provides a comprehensive summary of the current understanding in the literature of the molecular structure, expression, and assembly of the NLRP3 inflammasome, and highlights its potential as a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Chongyang Ma
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuling Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuang Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Tian Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xue Yu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yushan Gao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Changming Zhai
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Changxiang Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chaofang Lei
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuning Fan
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yuxi Chen
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Huiling Tian
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Fafeng Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xueqian Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
24
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 750] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
25
|
Khattar NK, James RF. Heparin: The Silver Bullet of Aneurysmal Subarachnoid Hemorrhage? Front Neurol 2018; 9:97. [PMID: 29636721 PMCID: PMC5880902 DOI: 10.3389/fneur.2018.00097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/12/2018] [Indexed: 01/27/2023] Open
Abstract
Various neurological diseases have recently been associated with neuroinflammation and worsening outcomes. Subarachnoid hemorrhage has been shown to generate a potent neuroinflammatory response. Heparin is a potential effective anti-inflammatory agent to prevent initial injury as well as delayed neurological decline. Different mechanisms of action for heparin have been proposed including, but not limited to the binding and neutralization of oxyhemoglobin, decreased transcription and signal transduction of endothelin-1, inhibition of binding to vessel wall selectins and vascular leakage into the subarachnoid space as well as direct binding and neutralization of inflammatory molecules. With a reasonably safe side-effect profile, heparin has shown significant promise in small series in human studies of aneurysmal subarachnoid hemorrhage in decreasing both initial and delayed neurological injury. Further studies are needed to validate various neuroprotective features of heparin in subarachnoid hemorrhage as well as other disease states.
Collapse
Affiliation(s)
- Nicolas K Khattar
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Robert F James
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
26
|
Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 2018; 27:205-212. [PMID: 27997059 DOI: 10.1111/bpa.12476] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Inflammation plays a key role across the time course of stroke, from onset to the post-injury reparative phase days to months later. Several regulatory molecules are implicated in inflammation, but the most established inflammatory mediator of acute brain injury is the cytokine interleukin-1. Interleukin-1 is regulated by large, macromolecular complexes called inflammasomes, which play a central role in cytokine release and cell death. In this review we highlight recent advances in inflammasome research and propose key roles for inflammasome components in the progression of stroke damage.
Collapse
Affiliation(s)
- Jack Barrington
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Eloise Lemarchand
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
27
|
Slowik A, Lammerding L, Hoffmann S, Beyer C. Brain inflammasomes in stroke and depressive disorders: Regulation by oestrogen. J Neuroendocrinol 2018; 30. [PMID: 28477436 DOI: 10.1111/jne.12482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Neuroinflammation is a devastating pathophysiological process that results in brain damage and neuronal death. Pathogens, cell fragments and cellular dysfunction trigger inflammatory responses. Irrespective of the cause, inflammasomes are key intracellular multiprotein signalling platforms that sense neuropathological conditions. The activation of inflammasomes leads to the auto-proteolytic cleavage of caspase-1, resulting in the proteolysis of the pro-inflammatory cytokines interleukin (IL)1β and IL18 into their bioactive forms. It also initiates pyroptosis, a type of cell death. The two cytokines contribute to the pathogenesis in acute and chronic brain diseases and also play a central role in human aging and psychiatric disorders. Sex steroids, in particular oestrogens, are well-described neuroprotective agents in the central nervous system. Oestrogens improve the functional outcome after ischaemia and traumatic brain injury, reduce neuronal death in Parkinson's and Alzheimer's disease, as well as in amyotrophic lateral sclerosis, attenuate glutamate excitotoxicity and the formation of radical oxygen species, and lessen the spread of oedema after damage. Moreover, oestrogens alleviate menopause-related depressive symptoms and have a positive influence on depressive disorders probably by influencing growth factor production and serotonergic brain circuits. Recent evidence also suggests that inflammasome signalling affects anxiety- and depressive-like behaviour and that oestrogen ameliorates depression-like behaviour through the suppression of inflammasomes. In the present review, we highlight the most recent findings demonstrating that oestrogens selectively suppress the activation of the neuroinflammatory cascade in the brain in acute and chronic brain disease models. Furthermore, we aim to describe putative regulatory signalling pathways involved in the control of inflammasomes. Finally, we consider that psychiatric disorders such as depression also contain an inflammatory component that could be modulated by oestrogen.
Collapse
Affiliation(s)
- A Slowik
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - L Lammerding
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - S Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| | - C Beyer
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
28
|
Abstract
Neuroinflammation is a common pathological feature in almost all neurological diseases and is a response triggered as a consequence of the chronic activation of the innate immune response in the CNS against a variety of stimuli, including infection, traumatic brain injury, toxic metabolites, aggregated proteins, or autoimmunity. Crucial mediators of this neurinflammatory process are the intracellular protein complexes known as inflammasomes which can be triggered by pathogens as well as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). However, chronic inflammasome activation can eventually result in cellular death and tissue damage, leading to the release of DAMPs that can reactivate the inflammasome, thereby propagating a vicious cycle of inflammation. The primary cells involved in CNS inflammasome activation are the immunocompetent microglia and the infiltrating macrophages into the CNS. However, astrocytes and neurons also express inflammasomes, and the understanding of how they are engaged in the pathogenesis of a variety of neurological diseases is crucial to develop effective therapeutic approaches for CNS pathologies that are propagated by chronic inflammasome activation. This chapter covers the activation mechanisms of relevant inflammasomes in the brain and summarizes their roles in the pathogenesis and progression of different neurological conditions.
Collapse
Affiliation(s)
- Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Richard Gordon
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Bajnok A, Berta L, Orbán C, Veres G, Zádori D, Barta H, Méder Ü, Vécsei L, Tulassay T, Szabó M, Toldi G. Distinct cytokine patterns may regulate the severity of neonatal asphyxia-an observational study. J Neuroinflammation 2017; 14:244. [PMID: 29233180 PMCID: PMC5727967 DOI: 10.1186/s12974-017-1023-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation and a systemic inflammatory reaction are important features of perinatal asphyxia. Neuroinflammation may have dual aspects being a hindrance, but also a significant help in the recovery of the CNS. We aimed to assess intracellular cytokine levels of T-lymphocytes and plasma cytokine levels in moderate and severe asphyxia in order to identify players of the inflammatory response that may influence patient outcome. METHODS We analyzed the data of 28 term neonates requiring moderate systemic hypothermia in a single-center observational study. Blood samples were collected between 3 and 6 h of life, at 24 h, 72 h, 1 week, and 1 month of life. Neonates were divided into a moderate (n = 17) and a severe (n = 11) group based on neuroradiological and amplitude-integrated EEG characteristics. Peripheral blood mononuclear cells were assessed with flow cytometry. Cytokine plasma levels were measured using Bioplex immunoassays. Components of the kynurenine pathway were assessed by high-performance liquid chromatography. RESULTS The prevalence and extravasation of IL-1b + CD4 cells were higher in severe than in moderate asphyxia at 6 h. Based on Receiver operator curve analysis, the assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia. Intracellular levels of TNF-α in CD4 cells were increased at all time points compared to 6 h in both groups. At 1 month, intracellular levels of TNF-α were higher in the severe group. Plasma IL-6 levels were higher at 1 week in the severe group and decreased by 1 month in the moderate group. Intracellular levels of IL-6 peaked at 24 h in both groups. Intracellular TGF-β levels were increased from 24 h onwards in the moderate group. CONCLUSIONS IL-1β and IL-6 appear to play a key role in the early events of the inflammatory response, while TNF-α seems to be responsible for prolonged neuroinflammation, potentially contributing to a worse outcome. The assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia.
Collapse
Affiliation(s)
- Anna Bajnok
- First Department of Obstetrics and Gynecology, Semmelweis University, Baross str. 27, Budapest, H-1088, Hungary.,First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary
| | - László Berta
- First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary
| | - Csaba Orbán
- First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary
| | - Gábor Veres
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, Faculty of Medicine, University of Szeged, Semmelweis str. 6, 5th floor, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, Faculty of Medicine, University of Szeged, Semmelweis str. 6, 5th floor, Szeged, H-6725, Hungary
| | - Hajnalka Barta
- First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary
| | - Ünőke Méder
- First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, Faculty of Medicine, University of Szeged, Semmelweis str. 6, 5th floor, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Tivadar Tulassay
- First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Miklós Szabó
- First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Gergely Toldi
- First Department of Obstetrics and Gynecology, Semmelweis University, Baross str. 27, Budapest, H-1088, Hungary. .,First Department of Pediatrics, Semmelweis University, Bókay János str. 53-54, Budapest, H-1083, Hungary. .,Birmingham Women's and Children's Hospital, Neonatal Unit, Birmingham, UK.
| |
Collapse
|
30
|
Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 2017; 114:E7997-E8006. [PMID: 28874589 PMCID: PMC5617277 DOI: 10.1073/pnas.1705768114] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
Collapse
Affiliation(s)
- Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wei Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - Frédéric G Jean-Alphonse
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jiaoying Jia
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Xiangya Second Hospital, Central South University, Hunan Province, China 410008
| | - Nicolas K Khattar
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jiatong Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - Sergei V Baranov
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniela Leronni
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amanda C Mihalik
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanqing He
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Xiangya Second Hospital, Central South University, Hunan Province, China 410008
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, 75006 Paris, France
| | - Vanessa L Wehbi
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - JinHo Kim
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brianna E Heath
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Oxana V Baranova
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaomin Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Matthew J Gable
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Eric S Kretz
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Timothy R Lezon
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lisa M Ferrando
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Timothy M Larkin
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mara Sullivan
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Svitlana Yablonska
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jingjing Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - M Beth Minnigh
- Small Molecule Biomarker Core, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique, Universite d'Orleans, UMR CNRS 7311, 45067 Orleans, France
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Universite d'Orleans, UMR CNRS 7311, 45067 Orleans, France
| | - R Mark Richardson
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Samuel M Poloyac
- Small Molecule Biomarker Core, University of Pittsburgh, Pittsburgh, PA 15213
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, 75006 Paris, France
| | | | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jean-Pierre Vilardaga
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261;
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
31
|
Glushakova OY, Glushakov AA, Wijesinghe DS, Valadka AB, Hayes RL, Glushakov AV. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ 2017; 3:87-108. [PMID: 30276309 PMCID: PMC6126261 DOI: 10.4103/bc.bc_27_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI), are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Andriy A Glushakov
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, Laboratory of Pharmacometabolomics and Companion Diagnostics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
- Banyan Biomarkers, Inc., Alachua, 32615, USA
| | | |
Collapse
|
32
|
Amadatsu T, Morinaga J, Kawano T, Terada K, Kadomatsu T, Miyata K, Endo M, Kasamo D, Kuratsu JI, Oike Y. Macrophage-Derived Angiopoietin-Like Protein 2 Exacerbates Brain Damage by Accelerating Acute Inflammation after Ischemia-Reperfusion. PLoS One 2016; 11:e0166285. [PMID: 27861531 PMCID: PMC5115716 DOI: 10.1371/journal.pone.0166285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Several reports suggest that acute inflammation after ischemia-reperfusion exacerbates brain damage; however, molecular mechanisms underlying this effect remain unclear. Here, we report that MAC-3-positive immune cells, including infiltrating bone marrow-derived macrophages and activated microglia, express abundant angiopoietin-like protein (ANGPTL) 2 in ischemic mouse brain in a transient middle cerebral artery occlusion (MCAO) model. Both neurological deficits and infarct volume decreased in transient MCAO model mice established in Angptl2 knockout (KO) relative to wild-type mice. Acute brain inflammation after ischemia-reperfusion, as estimated by expression levels of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor alpha (TNF)-α, was significantly suppressed in Angptl2 KO compared to control mice. Moreover, analysis employing bone marrow chimeric models using Angptl2 KO and wild-type mice revealed that infiltrated bone marrow-derived macrophages secreting ANGPTL2 significantly contribute to acute brain injury seen after ischemia-reperfusion. These studies demonstrate that infiltrating bone marrow-derived macrophages promote inflammation and injury in affected brain areas after ischemia-reperfusion, likely via ANGPTL2 secretion in the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Toshihiro Amadatsu
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Takayuki Kawano
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Daiki Kasamo
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Jun-ichi Kuratsu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860–8556, Japan
- * E-mail:
| |
Collapse
|
33
|
NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17 β-Estradiol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8309031. [PMID: 27843532 PMCID: PMC5097821 DOI: 10.1155/2016/8309031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective factor in the brain. Recently, our lab demonstrated that the neuroprotective and cognitive effects of E2 require mediation by the estrogen receptor (ER) coregulator protein and proline-, glutamic acid-, and leucine-rich protein 1 (PELP1). In the current study, we examined whether E2, acting via PELP1, can exert anti-inflammatory effects in the ovariectomized rat and mouse hippocampus to regulate NLRP3 inflammasome activation after global cerebral ischemia (GCI). Activation of the NLRP3 inflammasome pathway and expression of its downstream products, cleaved caspase-1 and IL-1β, were robustly increased in the hippocampus after GCI, with peak levels observed at 6-7 days. Expression of P2X7 receptor, an upstream regulator of NLRP3, was also increased after GCI. E2 markedly inhibited NLRP3 inflammasome pathway activation, caspase-1, and proinflammatory cytokine production, as well as P2X7 receptor expression after GCI (at both the mRNA and protein level). Intriguingly, the ability of E2 to exert these anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling. Collectively, our study demonstrates that NLRP3 inflammasome activation and proinflammatory cytokine production are markedly increased in the hippocampus after GCI, and that E2 signaling via PELP1 can profoundly inhibit these proinflammatory effects.
Collapse
|
34
|
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol 2016; 37:31-42. [PMID: 26778152 PMCID: PMC4915971 DOI: 10.1016/j.intimp.2015.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system.
Collapse
Affiliation(s)
- Lisa A Riesberg
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephanie A Weed
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Thomas L McDonald
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Joan M Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
35
|
Abstract
The cytokine interleukin-1 (IL-1) has been implicated in many forms of neurodegeneration. Expression of IL-1 is increased in the brain (mainly by microglia) of animals and humans in response to acute insults (e.g., stroke and brain injury) and in chronic neurodegenerative conditions. Although IL-1 does not kill otherwise healthy neurons, small quantities of the cytokine dramatically enhance ischemic, traumatic, or excitotoxic damage in animals. Inhibition of the synthesis, release, or action of IL-1 (e.g., by administration of IL-1 receptor antagonist) markedly reduces all of these forms of experimental neurodegeneration, indicating that approaches to block or inhibit IL-1 activity may be of benefit in clinical neurodegenerative disease. NEURO SCIENTIST 4:195-201, 1998
Collapse
Affiliation(s)
- Nancy J. Rothwell
- School of Biological Sciences University of Manchester
Manchester, United Kmgdom
| |
Collapse
|
36
|
Qian L, Zhang CW, Mao Y, Li L, Gao N, Lim KL, Xu QH, Yao SQ. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models. Sci Rep 2016; 6:26385. [PMID: 27210613 PMCID: PMC4876444 DOI: 10.1038/srep26385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes.
Collapse
Affiliation(s)
- Linghui Qian
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics &Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China.,National Neuroscience Institute, 308433, Singapore
| | - Yanli Mao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Lin Li
- Key Laboratory of Flexible Electronics &Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Nengyue Gao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | | | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| |
Collapse
|
37
|
Du R, Zhou J, Lorenzano S, Liu W, Charoenvimolphan N, Qian B, Xu J, Wang J, Zhang X, Wang X, Berndt A, Devan WJ, Valant VJ, Wang J, Furie KL, Rosand J, Rost N, Friedlander RM, Paigen B, Weiss ST. Integrative Mouse and Human Studies Implicate ANGPT1 and ZBTB7C as Susceptibility Genes to Ischemic Injury. Stroke 2015; 46:3514-22. [PMID: 26542693 DOI: 10.1161/strokeaha.115.010767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE The extent of ischemic injury in response to cerebral ischemia is known to be affected by native vasculature. However, the nonvascular and dynamic vascular responses and their genetic basis are not well understood. METHODS We performed a genome-wide association study in 235 mice from 33 inbred strains using the middle cerebral artery occlusion model. Population structure and genetic relatedness were accounted for using the efficient mixed-model association method. Human orthologs to the genes associated with the significant and suggestive single-nucleotide polymorphisms from the mouse strain survey were examined in patients with M1 occlusions admitted with signs and symptoms of acute ischemic stroke. RESULTS We identified 4 genome-wide significant and suggestive single-nucleotide polymorphisms to be associated with infarct volume in mice (rs3694965, P=2.17×10(-7); rs31924033, P=5.61×10(-6); rs32249495, P=2.08×10(-7); and rs3677406, P=9.56×10(-6)). rs32249495, which corresponds to angiopoietin-1 (ANGPT1), was also significant in the recessive model in humans, whereas rs1944577, which corresponds to ZBTB7C, was nominally significant in both the additive and dominant genetic models in humans. ZBTB7C was shown to be upregulated in endothelial cells using both in vitro and in vivo models of ischemia. CONCLUSIONS Genetic variations of ANGPT1 and ZBTB7C are associated with increased infarct size in both mice and humans. ZBTB7C may modulate the ischemic response via neuronal apoptosis and dynamic collateralization and, in addition to ANGPT1, may serve as potential novel targets for treatments of cerebral ischemia.
Collapse
Affiliation(s)
- Rose Du
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.).
| | - Jing Zhou
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Svetlana Lorenzano
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Wenming Liu
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Nareerat Charoenvimolphan
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Baogang Qian
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jun Xu
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jian Wang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Xinmu Zhang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Xin Wang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Annerose Berndt
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - William J Devan
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Valerie J Valant
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jinyi Wang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Karen L Furie
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jonathan Rosand
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Natalia Rost
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Robert M Friedlander
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Beverly Paigen
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Scott T Weiss
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| |
Collapse
|
38
|
Wang Q, Yang L, Wang Y. Enhanced differentiation of neural stem cells to neurons and promotion of neurite outgrowth by oxygen-glucose deprivation. Int J Dev Neurosci 2015; 43:50-7. [PMID: 25912159 DOI: 10.1016/j.ijdevneu.2015.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022] Open
Abstract
Stroke has become the leading cause of mortality worldwide. Hypoxic or ischemic insults are crucial factors mediating the neural damage in the brain tissue of stroke patients. Neural stem cells (NSCs) have been recognized as a promising tool for the treatment of ischemic stroke and other neurodegenerative diseases due to their inducible pluripotency. In this study, we aim to mimick the cerebral hypoxic-ischemic injury in vitro using oxygen-glucose deprivation (OGD) strategy, and evaluate the effects of OGD on the NSC's neural differentiation, as well as the differentiated neurite outgrowth. Our data showed that NSCs under the short-term 2h OGD treatment are able to maintain cell viability and the capability to form neurospheres. Importantly, this moderate OGD treatment promotes NSC differentiation to neurons and enhances the performance of the mature neuronal networks, accompanying increased neurite outgrowth of differentiated neurons. However, long-term 6h and 8h OGD exposures in NSCs lead to decreased cell survival, reduced differentiation and diminished NSC-derived neurite outgrowth. The expressions of neuron-specific microtubule-associated protein 2 (MAP-2) and growth associated protein 43 (GAP-43) are increased by short-term OGD treatments but suppressed by long-term OGD. Overall, our results demonstrate that short-term OGD exposure in vitro induces differentiation of NSCs while maintaining their proliferation and survival, providing valuable insights of adopting NSC-based therapy for ischemic stroke and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Qin Wang
- Department of Otorhinolarynology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lin Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
39
|
Gong Z, Yang L, Tang H, Pan R, Xie S, Guo L, Wang J, Deng Q, Xiong G, Xing Y, Dong J. Protective effects of curcumin against human immunodeficiency virus 1 gp120 V3 loop-induced neuronal injury in rats. Neural Regen Res 2015; 7:171-5. [PMID: 25767494 PMCID: PMC4353109 DOI: 10.3969/j.issn.1673-5374.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022] Open
Abstract
Curcumin improves the learning and memory deficits in rats induced by the gp120 V3 loop. The present study cultured rat hippocampal neurons with 1 nM gp120 V3 loop and 1 μM curcumin for 24 hours. The results showed that curcumin inhibited the gp120 V3 loop-induced mitochondrial membrane potential decrease, reduced the mRNA expression of the pro-apoptotic gene caspase-3, and attenuated hippocampal neuronal injury.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Lijuan Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Hongmei Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Rui Pan
- Department of Orthopedics, First Affiliated Hospital, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Sai Xie
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Luyan Guo
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Junbin Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Qinyin Deng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Guoyin Xiong
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Yanyan Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Institute of Brain Research, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Joint Laboratory for Brain Function and Health of Jinan University and the University of Hongkong, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
40
|
Stoecklein VM, Osuka A, Ishikawa S, Lederer MR, Wanke-Jellinek L, Lederer JA. Radiation exposure induces inflammasome pathway activation in immune cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1178-89. [PMID: 25539818 PMCID: PMC4326002 DOI: 10.4049/jimmunol.1303051] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation.
Collapse
Affiliation(s)
- Veit M Stoecklein
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Akinori Osuka
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Shizu Ishikawa
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Madeline R Lederer
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Lorenz Wanke-Jellinek
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
41
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci 2015; 6:48-67. [PMID: 25546652 PMCID: PMC4304489 DOI: 10.1021/cn500256e] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
Implantable biosensors are valuable
scientific tools for basic
neuroscience research and clinical applications. Neurotechnologies
provide direct readouts of neurological signal and neurochemical processes.
These tools are generally most valuable when performance capacities
extend over months and years to facilitate the study of memory, plasticity,
and behavior or to monitor patients’ conditions. These needs
have generated a variety of device designs from microelectrodes for
fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis
probes for sampling and detecting various neurochemicals. Regardless
of the technology used, the breaching of the blood–brain barrier
(BBB) to insert devices triggers a cascade of biochemical pathways
resulting in complex molecular and cellular responses to implanted
devices. Molecular and cellular changes in the microenvironment surrounding
an implant include the introduction of mechanical strain, activation
of glial cells, loss of perfusion, secondary metabolic injury, and
neuronal degeneration. Changes to the tissue microenvironment surrounding
the device can dramatically impact electrochemical and electrophysiological
signal sensitivity and stability over time. This review summarizes
the magnitude, variability, and time course of the dynamic molecular
and cellular level neural tissue responses induced by state-of-the-art
implantable devices. Studies show that insertion injuries and foreign
body response can impact signal quality across all implanted central
nervous system (CNS) sensors to varying degrees over both acute (seconds
to minutes) and chronic periods (weeks to months). Understanding the
underlying biological processes behind the brain tissue response to
the devices at the cellular and molecular level leads to a variety
of intervention strategies for improving signal sensitivity and longevity.
Collapse
Affiliation(s)
- Takashi D. Y. Kozai
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea S. Jaquins-Gerstl
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alberto L. Vazquez
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - X. Tracy Cui
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
42
|
Lossi L, Castagna C, Merighi A. Neuronal cell death: an overview of its different forms in central and peripheral neurons. Methods Mol Biol 2015; 1254:1-18. [PMID: 25431053 DOI: 10.1007/978-1-4939-2152-2_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The discovery of neuronal cell death dates back to the nineteenth century. Nowadays, after a very long period of conceptual difficulties, the notion that cell death is a phenomenon occurring during the entire life course of the nervous system, from neurogenesis to adulthood and senescence, is fully established. The dichotomy between apoptosis, as the prototype of programmed cell death (PCD ), and necrosis, as the prototype of death caused by an external insult, must be carefully reconsidered, as different types of PCD: apoptosis, autophagy, pyroptosis, and oncosis have all been demonstrated in neurons (and glia ). These modes of PCD may be triggered by different stimuli, but share some intracellular pathways such that different types of cell death may affect the same population of neurons according to several intrinsic and extrinsic factors. Therefore, a mixed morphology is often observed also depending on degrees of differentiation, activity, and injury. The main histological and ultrastructural features of the different types of cell death in neurons are described and related to the cellular pathways that are specifically activated in any of these types of PCD.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences, University of Torino, Via Leonardo da Vinci 44, 10095, Grugliasco, Torino, Italy
| | | | | |
Collapse
|
43
|
Ozeki N, Yamaguchi H, Hiyama T, Kawai R, Nakata K, Mogi M, Nakamura H. IL-1β-induced matrix metalloproteinase-3 regulates cell proliferation in rat dental pulp cells. Oral Dis 2015; 21:97-105. [PMID: 24330147 DOI: 10.1111/odi.12219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/12/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We previously reported that matrix metalloproteinase-3(MMP-3) accelerates wound healing following dental pulp injury. In this study, we tested the hypothesis that induction of MMP-3 activity by interleukin-1β would promote proliferation and apoptosis of dental pulp cells. MATERIALS AND METHODS Dental pulp cells were isolated from rat incisors and subjected to interleukin-1β. Matrix metalloproteinase-3 mRNA and protein expression were assessed using reverse transcription-polymerase chain reaction and Western blotting, respectively. Matrix metalloproteinase-3 activity was measured using fluorescence. Dental pulp cell proliferation and apoptosis were determined using enzyme-linked immunosorbent assays (ELISA) for BrdU and DNA fragmentation, respectively. siRNA was used to reduce MMP-3 transcripts in these cells. RESULTS Treatment with interleukin-1β increased MMP-3 mRNA and protein levels as well as its activity in dental pulp cells. Cell proliferation was also markedly increased, with no changes in apoptosis observed. Treatment with siRNA against MMP-3 potently suppressed this interleukin-1β-induced increase in MMP-3 expression and activity, and also suppressed cell proliferation but unexpectedly increased apoptosis in these cells (P < 0.05). This siRNA-mediated increase in apoptosis could be reversed with exogenous MMP-3 stimulation (P < 0.05). CONCLUSIONS Interleukin-1β induces MMP-3-regulated cell proliferation and suppresses apoptosis in dental pulp cells.
Collapse
Affiliation(s)
- N Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 2014; 37:25-39. [PMID: 25453935 DOI: 10.1016/j.biomaterials.2014.10.040] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.
Collapse
|
45
|
Kozai TDY, Li X, Bodily LM, Caparosa EM, Zenonos GA, Carlisle DL, Friedlander RM, Cui XT. Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials 2014; 35:9620-34. [PMID: 25176060 DOI: 10.1016/j.biomaterials.2014.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
Chronic implantation of microelectrodes into the cortex has been shown to lead to inflammatory gliosis and neuronal loss in the microenvironment immediately surrounding the probe, a hypothesized cause of neural recording failure. Caspase-1 (aka Interleukin 1β converting enzyme) is known to play a key role in both inflammation and programmed cell death, particularly in stroke and neurodegenerative diseases. Caspase-1 knockout (KO) mice are resistant to apoptosis and these mice have preserved neurologic function by reducing ischemia-induced brain injury in stroke models. Local ischemic injury can occur following neural probe insertion and thus in this study we investigated the hypothesis that caspase-1 KO mice would have less ischemic injury surrounding the neural probe. In this study, caspase-1 KO mice were implanted with chronic single shank 3 mm Michigan probes into V1m cortex. Electrophysiology recording showed significantly improved single-unit recording performance (yield and signal to noise ratio) of caspase-1 KO mice compared to wild type C57B6 (WT) mice over the course of up to 6 months for the majority of the depth. The higher yield is supported by the improved neuronal survival in the caspase-1 KO mice. Impedance fluctuates over time but appears to be steadier in the caspase-1 KO especially at longer time points, suggesting milder glia scarring. These findings show that caspase-1 is a promising target for pharmacologic interventions.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| | - Xia Li
- Bioengineering, University of Pittsburgh, USA
| | - Lance M Bodily
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Ellen M Caparosa
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Georgios A Zenonos
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
46
|
Ozeki N, Kawai R, Yamaguchi H, Hiyama T, Kinoshita K, Hase N, Nakata K, Kondo A, Mogi M, Nakamura H. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells. Exp Cell Res 2014; 323:165-177. [PMID: 24613731 DOI: 10.1016/j.yexcr.2014.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 11/30/2022]
Abstract
We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7(+)hSMSC)-derived osteoblast-like (α7(+)hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7(+)hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7(+)hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7(+)hSMSC-OB cells are regulated by ADAM-28.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Rie Kawai
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Hideyuki Yamaguchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Taiki Hiyama
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Katsue Kinoshita
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Naoko Hase
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Ayami Kondo
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| |
Collapse
|
47
|
Abstract
Microglia and macrophages in the CNS contain multimolecular complexes termed inflammasomes. Inflammasomes function as intracellular sensors for infectious agents as well as for host-derived danger signals that are associated with neurological diseases, including meningitis, stroke and Alzheimer's disease. Assembly of an inflammasome activates caspase 1 and, subsequently, the proteolysis and release of the cytokines interleukin-1β and interleukin-18, as well as pyroptotic cell death. Since the discovery of inflammasomes in 2002, there has been burgeoning recognition of their complexities and functions. Here, we review the current understanding of the functions of different inflammasomes in the CNS and their roles in neurological diseases.
Collapse
Affiliation(s)
- John G Walsh
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Daniel A Muruve
- Department of Medicine (Nephrology), University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
48
|
Hiyama T, Ozeki N, Mogi M, Yamaguchi H, Kawai R, Nakata K, Kondo A, Nakamura H. Matrix metalloproteinase-3 in odontoblastic cells derived from ips cells: unique proliferation response as odontoblastic cells derived from ES cells. PLoS One 2013; 8:e83563. [PMID: 24358294 PMCID: PMC3865184 DOI: 10.1371/journal.pone.0083563] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
We previously reported that matrix metalloproteinase (MMP)-3 accelerates wound healing following dental pulp injury. In addition, we reported that a proinflammatory cytokine mixture (tumor necrosis factor-α, interleukin (IL)-1β and interferon-γ) induced MMP-3 activity in odontoblast-like cells derived from mouse embryonic stem (ES) cells, suggesting that MMP-3 plays a potential unique physiological role in wound healing and regeneration of dental pulp in odontoblast-like cells. In this study, we tested the hypothesis that upregulation of MMP-3 activity by IL-1β promotes proliferation and apoptosis of purified odontoblast-like cells derived from induced pluripotent stem (iPS) and ES cells. Each odontoblast-like cell was isolated and incubated with different concentrations of IL-1β. MMP-3 mRNA and protein expression were assessed using RT-PCR and western blotting, respectively. MMP-3 activity was measured using immunoprecipitation and a fluorescence substrate. Cell proliferation and apoptosis were determined using ELISA for BrdU and DNA fragmentation, respectively. siRNA was used to reduce MMP-3 transcripts in these cells. Treatment with IL-1β increased MMP-3 mRNA and protein levels, and MMP-3 activity in odontoblast-like cells. Cell proliferation was found to markedly increase with no changes in apoptosis. Endogenous tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 were constitutively expressed during all experiments. The exocytosis inhibitor, Exo1, potently suppressed the appearance of MMP-3 in the conditioned medium. Treatment with siRNA against MMP-3 suppressed an IL-1β-induced increase in MMP-3 expression and activity, and also suppressed cell proliferation, but unexpectedly increased apoptosis in these cells (P<0.05). Exogenous MMP-3 was found to induce cell proliferation in odontoblast-like cells derived from iPS cells and ES cells. This siRNA-mediated increase in apoptosis could be reversed with exogenous MMP-3 stimulation (P<0.05). Taken together, IL-1β induced MMP-3-regulated cell proliferation and suppressed apoptosis in odontoblast-like cells derived from iPS and ES cells.
Collapse
Affiliation(s)
- Taiki Hiyama
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
- * E-mail:
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Hideyuki Yamaguchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Rie Kawai
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Ayami Kondo
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
49
|
Innate Immunity in the CNS: Redefining the Relationship between the CNS and Its Environment. Neuron 2013; 78:214-32. [DOI: 10.1016/j.neuron.2013.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
|
50
|
Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2013; 55:26-35. [PMID: 23537713 DOI: 10.1016/j.nbd.2013.03.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 11/24/2022] Open
Abstract
Caspase-mediated cell death contributes to the pathogenesis of motor neuron degeneration in the mutant SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS), along with other factors such as inflammation and oxidative damage. By screening a drug library, we found that melatonin, a pineal hormone, inhibited cytochrome c release in purified mitochondria and prevented cell death in cultured neurons. In this study, we evaluated whether melatonin would slow disease progression in SOD1(G93A) mice. We demonstrate that melatonin significantly delayed disease onset, neurological deterioration and mortality in ALS mice. ALS-associated ventral horn atrophy and motor neuron death were also inhibited by melatonin treatment. Melatonin inhibited Rip2/caspase-1 pathway activation, blocked the release of mitochondrial cytochrome c, and reduced the overexpression and activation of caspase-3. Moreover, for the first time, we determined that disease progression was associated with the loss of both melatonin and the melatonin receptor 1A (MT1) in the spinal cord of ALS mice. These results demonstrate that melatonin is neuroprotective in transgenic ALS mice, and this protective effect is mediated through its effects on the caspase-mediated cell death pathway. Furthermore, our data suggest that melatonin and MT1 receptor loss may play a role in the pathological phenotype observed in ALS. The above observations indicate that melatonin and modulation of Rip2/caspase-1/cytochrome c or MT1 pathways may be promising therapeutic approaches for ALS.
Collapse
|