1
|
Wen YH, Lin YX, Zhou L, Lin C, Zhang L. The immune landscape in apical periodontitis: From mechanism to therapy. Int Endod J 2024; 57:1526-1545. [PMID: 39087849 DOI: 10.1111/iej.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Apical periodontitis (AP) is featured by a persistent inflammatory response and alveolar bone resorption initiated by microorganisms, posing risks to both dental and systemic health. Nonsurgical endodontic treatment is the recommended treatment plan for AP with a high success rate, but in some cases, periapical lesions may persist despite standard endodontic treatment. Better comprehension of the AP inflammatory microenvironment can help develop adjunct therapies to improve the outcome of endodontic treatment. This review presents an overview of the immune landscape in AP, elucidating how microbial invasion triggers host immune activation and shapes the inflammatory microenvironment, ultimately impacting bone homeostasis. The destructive effect of excessive immune activation on periapical tissues is emphasized. This review aimed to systematically discuss the immunological basis of AP, the inflammatory bone resorption and the immune cell network in AP, thereby providing insights into potential immunotherapeutic strategies such as targeted therapy, antioxidant therapy, adoptive cell therapy and cytokine therapy to mitigate AP-associated tissue destruction.
Collapse
Affiliation(s)
- Yuan-Hao Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Xiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Yu C, Xu H, Jiang S, Sun L. IL-18 signaling is regulated by caspase 6/8 and IL-18BP in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 278:135015. [PMID: 39181350 DOI: 10.1016/j.ijbiomac.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Interleukin (IL)-18 is synthesized as a precursor that requires intracellular processing to become functionally active. In human, IL-18 is processed by caspase 1 (CASP1). In teleost, the maturation and signal transduction mechanisms of IL-18 are unknown. We identified two IL-18 variants, IL-18a and IL-18b, in turbot. IL-18a, but not IL-18b, was processed by CASP6/8 cleavage. Mature IL-18a bound specifically to IL-18 receptor (IL-18R) α-expressing cells and induced IL-18Rα-IL-18Rβ association. Bacterial infection promoted IL-18a maturation in a manner that required CASP6 activation and correlated with gasdermin E activation. The mature IL-18a induced proinflammatory cytokine expression and enhanced bacterial clearance. IL-18a-mediated immune response was suppressed by IL-18 binding protein (IL-18BP), which functioned as a decoy receptor for IL-18a. IL-18BP also functioned as a pathogen pattern recognition receptor and directly inhibited pathogen infection. Our findings revealed unique mechanism of IL-18 maturation and conserved mechanism of IL-18 signaling and regulation in turbot, and provided new insights into the regulation and function of IL-18 related immune signaling.
Collapse
Affiliation(s)
- Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Xie J, Wan X, Yang M, Yu H, Hao J, Xu K, Wang J, Xu P. Circulating cytokines levels and osteoarthritis: A Mendelian randomization study. Cytokine 2024; 179:156625. [PMID: 38677184 DOI: 10.1016/j.cyto.2024.156625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Previous traditional observational studies have suggested the contribution of several cytokines and growth factors to the development of osteoarthritis (OA). This study aimed to determine the association of circulating cytokine and growth factor levels with OA. METHODS We used two-sample Mendelian randomization (MR) to explore the causality between circulating cytokine and growth factor levels and OA [including knee or hip OA (K/HOA), knee OA (KOA), and hip OA (HOA)]. Summary level data for circulating cytokine and growth factor levels were sourced from a genome-wide association study (GWAS) involving 8,293 participants of Finnish ancestry. Single-nucleotide polymorphisms related to K/HOA (39,427 cases and 378,169 controls), KOA (24,955 cases and 378,169 controls), and HOA (15,704 cases and 378,169 controls) were obtained from a previous GWAS. The inverse variance weighted (IVW) method was primarily used for our MR analysis. For exposures to only one relevant SNP as IV, we used the Wald ratio as the major method to assess causal effects. We also conducted a series of sensitivity analyses to improve the robustness of the results. RESULTS Circulating vascular endothelial growth factor levels were suggestively associated with an increased risk of K/HOA (odds ratio (OR) = 1.034; 95 % confidence interval (CI) = 1.013-1.055; P = 0.001), KOA (OR = 1.034; 95 % CI = 1.014-1.065; P = 0.002), and HOA (OR = 1.039; 95 % CI = 1.003-1.067; P = 0.034). Circulating interleukin (IL)-12p70 levels was suggestively associated with K/HOA (OR = 1.047; 95 % CI = 1.018-1.077; P = 0.001), KOA (OR = 1.058; 95 % CI = 1.022-1.095; P = 0.001), and HOA (OR = 1.044; 95 % CI = 1.000-1.091; P = 0.048). Circulating IL-18 levels were suggestively associated with HOA (OR = 1.068; 95 % CI = 1.014-1.125; P = 0.012). However, limited evidence exists to support causal genetic relationships between other circulating cytokines, growth factor levels and K/HOA, KOA, and HOA. CONCLUSIONS Our MR analysis provides suggestive evidence of causal relationships between circulating cytokines and growth factors levels and OA, providing new insights into the etiology of OA.
Collapse
Affiliation(s)
- Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Hui Yu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Jinrong Hao
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China.
| |
Collapse
|
5
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
6
|
Tiemi Enokida Mori M, Name Colado Simão A, Danelli T, Rangel Oliveira S, Luis Candido de Souza Cassela P, Lerner Trigo G, Morais Cardoso K, Mestre Tejo A, Naomi Tano Z, Regina Delicato de Almeida E, Maria Vissoci Reiche E, Maes M, Alysson Batisti Lozovoy M. Protective effects of IL18-105G > A and IL18-137C > Ggenetic variants on severity of COVID-19. Cytokine 2024; 174:156476. [PMID: 38128426 DOI: 10.1016/j.cyto.2023.156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE AND DESIGN A cross-sectional study evaluated the IL18-105G > A (rs360717) and IL18-137C > G (rs187238) variants on Coronavírus Disease 2019 (COVID-19) severity. SUBJECTS AND METHODS 528 patients with COVID-19 classifed with mild (n = 157), moderate (n = 63) and critical (n = 308) disease were genotpyed for the IL18-105G > A and IL18-137C > G variants. RESULTS We observed associations between severe + critical COVID-19 groups (reference group was mild COVID-19) and the IL18-105G > A (p = 0.008) and IL18-137C > G (p = 0.01) variants, which remained significant after adjusting for sex, ethnicity and age. Consequently, we have examined the associations between moderate + critical COVID-19 and the genotypes of both variants using different genetic models. The IL18-105G > A was associated with severe disease (moderate + critical), with effects of the GA genotype in the codominant [Odds ratio (OR), (95 % confidence interval) 0.55, 0.34-0.89, p = 0.015], overdominant (0.56, 0.35-0.89, p = 0.014) and dominant (0.60, 0.38-0.96, p = 0.031) models. IL18-105 GA coupled with age, chest computed tomograhy scan anormalities, body mass index, heart diseases, type 2 diabetes mellitus, hypertension, and inflammation may be used to predict the patients who develop severe disease with an accuracy of 84.3 % (sensitivity: 83.3 % and specificity: 86.5 %). Therefore, the presence of the IL18-105 A allele in homozygosis or heterozygosis conferred about 44.0 % of protection in the development of moderate and severe COVID-19. The IL18-137C > G variant was also associated with protective effects in the codominant (0.55, 0.34-0.89, p = 0.015), overdominant (0.57, 0.36-0.91, p = 0.018), and dominant models (0.59, 0.37-0.93, p = 0.025). Therefore, the IL18-137 G allele showed a protective effect against COVID-19 severity. CONCLUSION The IL18-105G > A and IL18-137C > Gvariants may contribute with protective effects for COVID-19 severity and the effects of IL18-137C > G may be modulating IL-18 production and Th1-mediated immune responses.
Collapse
Affiliation(s)
| | - Andréa Name Colado Simão
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil.
| | - Tiago Danelli
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Sayonara Rangel Oliveira
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | | | - Guilherme Lerner Trigo
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Kauê Morais Cardoso
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil.
| | | | - Zuleica Naomi Tano
- Depertment of Medical Clinic, University of Londrina, Londrina, PR, Brazil.
| | - Elaine Regina Delicato de Almeida
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Edna Maria Vissoci Reiche
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, Londrina State University, Lodrina, Paraná, Brazil; Pontifical Catholic University of Paraná, School of Medicine, Campus Londrina, Lonidrna, Paraná, Brazil.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
7
|
Dong L, Zhao Y, Sun C, Ou Yang Z, Chen F, Hu W, Zhang H, Wang Y, Zhu R, Cheng Y, Chen Y, Li S, Wang K, Ding C, Zhou R, Hu W. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18. Int Immunopharmacol 2023; 124:110878. [PMID: 37660594 DOI: 10.1016/j.intimp.2023.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Identification of a role for, and the mechanism of action of, the acid-sensing ion channel 1a (ASIC1a) in M1 macrophage polarization, which results in osteoarthritis (OA)-associated chondrocyte senescence. METHOD ASIC1a expression in synovial M1 macrophages of OA patients was assessed by immunofluorescence. A role for ASIC1a in M1 macrophage and chondrocyte senescence was assessed in a mouse OA model. RESULTS ASIC1a expression was found to be upregulated in synovial M1 macrophages of OA patients. Extracellular acidification (pH 6.0) promoted M1 polarization of bone marrow derived macrophages (BMDMs), which was reversed by PcTx-1 or ASIC1a-siRNA. RNA-seq transcriptome results demonstrated a downregulation of M1 macrophage-associated genes in BMDMs after PcTx-1 treatment. Mechanistically, a role for the ASIC1a-cytidine/uridine monophosphate kinase 2 (CMPK2) axis in M1 macrophage polarization was demonstrated. The concentration of IL-18 was elevated in synovial fluid and supernatants of acid-activated BMDMs. In vitro, IL-18 stimulation or co-culture with acid-activated macrophages promoted chondrocyte senescence. In vivo, intra-articular administration of PcTx-1 reduced articular cartilage destruction and chondrocytes senescence in OA mice, which related to reduced numbers of M1 macrophages and IL-18 in affected joints. CONCLUSION These results demonstrate a novel pathogenic process that results in OA cartilage damage, in which M1 macrophage derived IL-18 induces articular chondrocytes senescence. Further, the ASIC1a-CMPK2 axis was shown to positively regulate M1 macrophage polarization. Hence, ASIC1a is a promising treatment target for M1 macrophage-mediated diseases, such as OA.
Collapse
Affiliation(s)
- Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ou Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Weirong Hu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hailin Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Rendi Zhu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023; 14:1222129. [PMID: 37475866 PMCID: PMC10355373 DOI: 10.3389/fimmu.2023.1222129] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
The complicated connections and cross talk between the skeletal system and the immune system are attracting more attention, which is developing into the field of Osteoimmunology. In this field, cytokines that are among osteoblasts and osteoclasts play a critical role in bone remodeling, which is a pathological process in the pathogenesis and development of osteoporosis. Those cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL) family, interferon (IFN), chemokines, and so on, most of which influence the bone microenvironment, osteoblasts, and osteoclasts. This review summarizes the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis, aiming to providing the latest reference to the role of immunology in osteoporosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linxin Yu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Deng
- Hubei Provincial Hospital of Traditional Chinese Medicine (TCM), Wuhan, China
| |
Collapse
|
9
|
Little-Letsinger SE, Hamilton SE. Leveraging mice with diverse microbial exposures for advances in osteoimmunology. Front Endocrinol (Lausanne) 2023; 14:1168552. [PMID: 37251680 PMCID: PMC10210590 DOI: 10.3389/fendo.2023.1168552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
The skeletal and immune systems are intricately intertwined within the bone marrow microenvironment, a field of study termed osteoimmunology. Osteoimmune interactions are key players in bone homeostasis and remodeling. Despite the critical role of the immune system in bone health, virtually all animal research in osteoimmunology, and more broadly bone biology, relies on organisms with naïve immune systems. Drawing on insights from osteoimmunology, evolutionary anthropology, and immunology, this perspective proposes the use of a novel translational model: the dirty mouse. Dirty mice, characterized by diverse exposures to commensal and pathogenic microbes, have mature immune systems comparable to adult humans, while the naïve immune system of specific-pathogen free mice is akin to a neonate. Investigation into the dirty mouse model will likely yield important insights in our understanding of bone diseases and disorders. A high benefit of this model is expected for diseases known to have a connection between overactivation of the immune system and negative bone outcomes, including aging and osteoporosis, rheumatoid arthritis, HIV/AIDS, obesity and diabetes, bone marrow metastases, and bone cancers.
Collapse
Affiliation(s)
| | - Sara E. Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Abstract
Bone and immune systems mutually influence each other by sharing a variety of regulatory molecules and the tissue microenvironment. The interdisciplinary research field "osteoimmunology" has illuminated the complex and dynamic interactions between the two systems in the maintenance of tissue homeostasis as well as in the development of immune and skeletal disorders. T cells play a central role in the immune response by secreting various immune factors and stimulating other immune cells and structural cells such as fibroblasts and epithelial cells, thereby contributing to pathogen elimination and pathogenesis of immune diseases. The finding on regulation of osteoclastic bone resorption by activated CD4+ T cells in rheumatoid arthritis was one of the driving forces for the development of osteoimmunology. With advances in research on helper T cell subsets and rare lymphoid cells such as γδ T cells in the immunology field, it is becoming clear that various types of T cells exert multiple effects on bone metabolism depending on immune context. Understanding the diverse effects of T cells on bone is essential for deciphering the osteoimmune regulatory network in various biological settings.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Tseng HW, Samuel SG, Schroder K, Lévesque JP, Alexander KA. Inflammasomes and the IL-1 Family in Bone Homeostasis and Disease. Curr Osteoporos Rep 2022; 20:170-185. [PMID: 35567665 PMCID: PMC9209354 DOI: 10.1007/s11914-022-00729-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Inflammasomes are multimeric protein structures with crucial roles in host responses against infections and injuries. The importance of inflammasome activation goes beyond host defense as a dysregulated inflammasome and subsequent secretion of IL-1 family members is believed to be involved in the pathogenesis of various diseases, some of which also produce skeletal manifestations. The purpose of this review is to summarize recent developments in the understanding of inflammasome regulation and IL-1 family members in bone physiology and pathology and current therapeutics will be discussed. RECENT FINDINGS Small animal models have been vital to help understand how the inflammasome regulates bone dynamics. Animal models with gain or loss of function in various inflammasome components or IL-1 family signaling have illustrated how these systems can impact numerous bone pathologies and have been utilized to test new inflammasome therapeutics. It is increasingly clear that a tightly regulated inflammasome is required not only for host defense but for skeletal homeostasis, as a dysregulated inflammasome is linked to diseases of pathological bone accrual and loss. Given the complexities of inflammasome activation and redundancies in IL-1 activation and secretion, targeting these pathways is at times challenging. Ongoing research into inflammasome-mediated mechanisms will allow the development of new therapeutics for inflammasome/IL-1 diseases.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Selwin Gabriel Samuel
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
12
|
Harel M, Fauteux-Daniel S, Girard-Guyonvarc'h C, Gabay C. Balance between Interleukin-18 and Interleukin-18 binding protein in auto-inflammatory diseases. Cytokine 2022; 150:155781. [DOI: 10.1016/j.cyto.2021.155781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
|
13
|
Regulation of TNF-Induced Osteoclast Differentiation. Cells 2021; 11:cells11010132. [PMID: 35011694 PMCID: PMC8750957 DOI: 10.3390/cells11010132] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increased osteoclast (OC) differentiation and activity is the critical event that results in bone loss and joint destruction in common pathological bone conditions, such as osteoporosis and rheumatoid arthritis (RA). RANKL and its decoy receptor, osteoprotegerin (OPG), control OC differentiation and activity. However, there is a specific concern of a rebound effect of denosumab discontinuation in treating osteoporosis. TNFα can induce OC differentiation that is independent of the RANKL/RANK system. In this review, we discuss the factors that negatively and positively regulate TNFα induction of OC formation, and the mechanisms involved to inform the design of new anti-resorptive agents for the treatment of bone conditions with enhanced OC formation. Similar to, and being independent of, RANKL, TNFα recruits TNF receptor-associated factors (TRAFs) to sequentially activate transcriptional factors NF-κB p50 and p52, followed by c-Fos, and then NFATc1 to induce OC differentiation. However, induction of OC formation by TNFα alone is very limited, since it also induces many inhibitory proteins, such as TRAF3, p100, IRF8, and RBP-j. TNFα induction of OC differentiation is, however, versatile, and Interleukin-1 or TGFβ1 can enhance TNFα-induced OC formation through a mechanism which is independent of RANKL, TRAF6, and/or NF-κB. However, TNFα polarized macrophages also produce anabolic factors, including insulin such as 6 peptide and Jagged1, to slow down bone loss in the pathological conditions. Thus, the development of novel approaches targeting TNFα signaling should focus on its downstream molecules that do not affect its anabolic effect.
Collapse
|
14
|
IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J Immunol Res 2021; 2021:8214656. [PMID: 34840991 PMCID: PMC8626198 DOI: 10.1155/2021/8214656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1β, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.
Collapse
|
15
|
Cheng X, Wang Z. Immune Modulation of Metastatic Niche Formation in the Bone. Front Immunol 2021; 12:765994. [PMID: 34745140 PMCID: PMC8564379 DOI: 10.3389/fimmu.2021.765994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis is commonly seen in patients with breast cancer, prostate cancer and lung cancer. Tumor-intrinsic factors and the tumor microenvironment cooperate to affect the formation of bone metastatic niche. Within the bone microenvironment, immune cells have been regarded as a major contributor to metastatic progression. In this review, we describe the dynamic roles of immune cells in regulating metastatic homing, seeding, dormancy, and outgrowth in the bone. We also summarize the diverse functions of immune molecules including chemokines, cytokines, and exosomes in remodeling the bone metastatic niche. Furthermore, we discuss the therapeutic and prognostic potential of these cellular and molecular players in bone metastasis.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Wu YR, Hsing CH, Chiu CJ, Huang HY, Hsu YH. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2021; 74:143-156. [PMID: 34668305 DOI: 10.1002/iub.2568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology that can affect nearly every organ system in the body. Besides genetic and environmental factors, unbalanced pro-inflammatory and anti-inflammatory cytokines contribute to immune dysregulation, trigger an inflammatory response, and induce tissue and organ damage. Inflammatory responses in SLE can be promoted and/or maintained by the availability of cytokines that are overproduced systemically and/or in local tissues. Several key cytokines have been considered potential targets for the reduction of chronic inflammation in SLE. Recent studies indicated that dysregulated production of several cytokines, including those of the IL-1 family and IL-10 family, orchestrate immune activation and self-tolerance, play critical roles in the pathogenesis of SLE. Among IL-1 family cytokines, IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38 had been the most thoroughly investigated in SLE. Additionally, IL-10 family cytokines, IL-10, IL-20, IL-22, IL-26, IL-28, and IL-29 are dysregulated in SLE. Therefore, a better understanding of the initiation and progression of SLE may provide suitable novel targets for therapeutic intervention. In this review, we discuss the involvement of inflammation in the pathogenesis of SLE, with a focus on IL-1 family and IL-10 family cytokines, and highlight pathophysiological approaches and therapeutic potential for treating SLE.
Collapse
Affiliation(s)
- Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Hirooka Y, Nozaki Y. Interleukin-18 in Inflammatory Kidney Disease. Front Med (Lausanne) 2021; 8:639103. [PMID: 33732720 PMCID: PMC7956987 DOI: 10.3389/fmed.2021.639103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-18, a member of the IL-1 superfamily, is a pro-inflammatory cytokine that is structurally similar to IL-1β. IL-18 promotes the production of interferon gamma (IFN-γ) and strongly induces a Th1 response. IL-18 drives the same myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway as IL-1β. In physiological conditions, IL-18 is regulated by the endogenous inhibitor IL-18 binding protein (IL-18BP), and the activity of IL-18 is balanced. It is reported that in several inflammatory diseases, the IL-18 activity is unbalanced, and IL-18 neutralization by IL-18BP is insufficient. IL-18 acts synergistically with IL-12 to induce the production of IFN-γ as a Th1 cytokine, and IL-18 acts alone to induce the production of Th2 cytokines such as IL-4 and IL-13. In addition, IL-18 alone enhances natural killer (NK) cell activity and FAS ligand expression. The biological and pathological roles of IL-18 have been studied in many diseases. Here we review the knowledge regarding IL-18 signaling and the role of IL-18 in inflammatory kidney diseases. Findings on renal injury in coronavirus disease 2019 (COVID-19) and its association with IL-18 will also be presented.
Collapse
Affiliation(s)
- Yasuaki Hirooka
- Department of Rheumatology, Kindai University Nara Hospital, Nara, Japan
| | - Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Osteoclasts and Microgravity. Life (Basel) 2020; 10:life10090207. [PMID: 32947946 PMCID: PMC7555718 DOI: 10.3390/life10090207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Astronauts are at risk of losing 1.0% to 1.5% of their bone mass for every month they spend in space despite their adherence to diets and exercise regimens designed to protect their musculoskeletal systems. This loss is the result of microgravity-related impairment of osteocyte and osteoblast function and the consequent upregulation of osteoclast-mediated bone resorption. This review describes the ontogeny of osteoclast hematopoietic stem cells and the contributions macrophage colony stimulating factor, receptor activator of the nuclear factor-kappa B ligand, and the calcineurin pathways make in osteoclast differentiation and provides details of bone formation, the osteoclast cytoskeleton, the immune regulation of osteoclasts, and osteoclast mechanotransduction on Earth, in space, and under conditions of simulated microgravity. The article discusses the need to better understand how osteoclasts are able to function in zero gravity and reviews current and prospective therapies that may be used to treat osteoclast-mediated bone disease.
Collapse
|
19
|
Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int J Mol Sci 2020; 21:ijms21145169. [PMID: 32708317 PMCID: PMC7404053 DOI: 10.3390/ijms21145169] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
The process of bone remodeling is the result of the regulated balance between bone cell populations, namely bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte, the mechanosensory cell type. Osteoclasts derived from the hematopoietic stem cell lineage are the principal cells involved in bone resorption. In osteolytic diseases such as rheumatoid arthritis, periodontitis, and osteoporosis, the balance is lost and changes in favor of bone resorption. Therefore, it is vital to elucidate the mechanisms of osteoclast formation and bone resorption. It has been reported that osteocytes express Receptor activator of nuclear factor κΒ ligand (RANKL), an essential factor for osteoclast formation. RANKL secreted by osteocytes is the most important factor for physiologically supported osteoclast formation in the developing skeleton and in pathological bone resorption such as experimental periodontal bone loss. TNF-α directly enhances RANKL expression in osteocytes and promotes osteoclast formation. Moreover, TNF-α enhances sclerostin expression in osteocytes, which also increases osteoclast formation. These findings suggest that osteocyte-related cytokines act directly to enhance osteoclast formation and bone resorption. In this review, we outline the most recent knowledge concerning bone resorption-related cytokines and discuss the osteocyte as the master regulator of bone resorption and effector in osteoclast formation.
Collapse
|
20
|
Bao J, Chen Z, Xu L, Wu L, Xiong Y. Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis. Aging (Albany NY) 2020; 12:5152-5167. [PMID: 32182210 PMCID: PMC7138594 DOI: 10.18632/aging.102937] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Interleukin 18 (IL-18) promotes inflammation and apoptosis in chondrocytes, thereby contributing to the development and progression of osteoarthritis (OA). Here, we investigated the effects of IL-18 treatment and inhibition in rat chondrocytes in vitro and in vivo. We used RT-PCR and Western blotting to measure the mRNA and protein levels of the chondrocyte-specific genes Collagen II and Aggrecan as well as the protein levels of apoptosis-related (Bax, Bcl2, Caspase3/9), autophagy-related (Atg5, Atg7, Beclin1, LC3), and mTOR pathway-related genes (PI3K, Akt, mTOR). We observed a decrease in Collagen II and Aggrecan mRNA and protein levels, upregulation of chondrocyte apoptosis, downregulation of chondrocyte autophagy, and activation of the PI3K/Akt/mTOR pathway upon IL-18 treatment. PI3K/Akt/mTOR pathway activation and inhibition tests using rat 740Y-P (PI3K activator), SC79 (AKT activator), 3BDO (mTOR activator), or LY294002 (PI3K inhibitor) revealed that activation of the PI3K/Akt/mTOR pathway enhances chondrocyte-specific gene degradation induced by IL-18, while its inhibition has protective effects on chondrocytes. We also found that treatment with rapamycin (a selective mTOR inhibitor) also exerts chondro-protective effects that ameliorate OA by promoting autophagy. These results suggest that inhibition of the mTOR pathway could be exploited for therapeutic benefits in the treatment of OA.
Collapse
Affiliation(s)
- Jiapeng Bao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Yan Xiong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
21
|
Mambelli-Lisboa NC, Frare EO, da Costa-Neves A, Prieto da Silva ÁRB, Kerkis I. Murine osteoclastogenesis suppression using conditioned media produced by melanoma or activated and non-activated Jurkat-E6 cells. Cell Biol Int 2020; 44:1184-1192. [PMID: 32027080 DOI: 10.1002/cbin.11317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/02/2020] [Indexed: 01/13/2023]
Abstract
Conditioned medium (CM) (cell secretome) is a cocktail of growth factors, cytokines, and other soluble mediators secreted by cells into a culture medium. These growth factors are fundamental in many cellular processes such as cell growth, differentiation, and others and the composition of these factors is individual for each cell type. Osteoclasts are large multinucleated cells that are responsible for bone resorption. Immune and cancer cells are known to produce different growth factors, which are able to induce or inhibit osteoclast differentiation. Herein, we evaluated the effect of CM obtained from the supernatant of activated and non-activated Jukart-E6 cells, as well as from one murine (B16-F10) and one human melanoma cell line (SK-MEL-28). To induce osteoclast differentiation, murine bone marrow mononuclear cells were cultured in the presence and absence of differentiation factors (DF), such as macrophage colony-stimulating factor, prostaglandin E2, receptor activator of nuclear factor-κB ligand, and CM. We measured the concentration of interleukin 6, tumor necrosis factor-α and interferon γ (IFN-γ) in CM that can inhibit or induce osteoclastogenesis. Our study demonstrated that CM obtained from each cell line suppresses or inhibits osteoclasts formation at early and intermediate stages of differentiation in the absence or presence of DF. CM obtained from activated Jurkat-E6 cells demonstrates a stronger effect when compared with CM from naïve Jurkat-E6 cells or human and murine melanoma cells. Moreover, CM obtained from activated Jurkat-E6 cells shows higher secretion of IFN-γ, which is an inhibitor of osteoclastogenesis, in comparison with CM obtained from the three other cell lines. On the other hand, CM derived from B16-F10 cells showed a smaller inhibitory effect when compared with CM derived from the other cells.
Collapse
Affiliation(s)
- Nicole C Mambelli-Lisboa
- Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.,Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - Eduardo O Frare
- Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.,Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - Adriana da Costa-Neves
- Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.,Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - Álvaro R B Prieto da Silva
- Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.,Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.,Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
22
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
23
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
24
|
Imai M, Ayukawa Y, Yasunami N, Furuhashi A, Takemura Y, Adachi N, Hu J, Zhou X, Moriyama Y, Atsuta I, Kurata K, Koyano K. Effect of a Single Injection of Benidipine-Impregnated Biodegradable Microcarriers on Bone and Gingival Healing at the Tooth Extraction Socket. Adv Wound Care (New Rochelle) 2019; 8:108-117. [PMID: 30911442 DOI: 10.1089/wound.2018.0834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 11/12/2022] Open
Abstract
Objective: A dihydropyridine-type calcium channel blocker, benidipine (BD), is extensively used in hypertension therapy. In vitro study reported BD promoting bone metabolism. We evaluated the effect of sustained release of BD-loaded poly(lactic-co-glycolic acid) (PLGA) microcarriers on the promotion of bone and gingival healing at an extraction socket in vivo. In addition, the effect of BD on osteoblasts, osteocytes, fibroblasts, and epithelial cells was evaluated in vitro. Approach: The maxillary first molar of rats was extracted. Next, PLGA microcarriers containing BD were directly injected into the gingivobuccal fold as a single dose. After injection, bone and soft-tissue healing was histologically evaluated. Effect of BD on proliferation, migration, and gene expression of gingival and bone cell was also examined in vitro. Results: After tooth extraction, BD significantly augmented bone volume and density, and also epithelial wound healing. During in vitro studies, BD promoted significant proliferation and migration of fibroblasts and epithelial cells. Real-time RT-PCR revealed that BD upregulated messenger RNA expression of Ahsg (alpha 2-HS glycoprotein) and Csf2 (colony-stimulating factor 2) in osteoblasts. Innovation: The prevention of bone and soft-tissue reduction associated with tooth extraction has been eagerly anticipated in the field of dentistry. This study first reported the effect of BD on extraction socket healing. Conclusion: A single dose of topically administered BD-loaded PLGA microcarriers promoted bone and soft-tissue healing at the extraction site of tooth.
Collapse
Affiliation(s)
- Mikio Imai
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriyuki Yasunami
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoko Takemura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naomi Adachi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xudiyang Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuko Moriyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kosaku Kurata
- Department of Mechanical Engineering, Faculty of Engineering Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18. Pflugers Arch 2019; 471:889-899. [PMID: 30706178 PMCID: PMC6533237 DOI: 10.1007/s00424-019-02256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/13/2019] [Indexed: 01/18/2023]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key regulator of osteo-/chondrogenic transdifferentiation and subsequent calcification of vascular smooth muscle cells (VSMCs). The phenotypical transdifferentiation of VSMCs is associated with increased interleukin-18 (IL-18) levels and generalized inflammation. Therefore, the present study investigated the possible involvement of SGK1 in IL-18-induced vascular calcification. Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with recombinant human IL-18 protein in control or high phosphate conditions and following SGK1 knockdown by siRNA or pharmacological inhibition of SGK1, PI3K, and PDK1. As a result, IL-18 treatment increased SGK1 mRNA and protein expression in HAoSMCs. IL-18 upregulated SGK1 mRNA expression in a dose-dependent manner. This effect was paralleled by upregulation of the mRNA expression of MSX2 and CBFA1, osteogenic transcription factors, and of tissue-nonspecific alkaline phosphatase (ALPL), an osteogenic enzyme, as markers of increased osteo-/chondrogenic transdifferentiation. Phosphate treatment increased SGK1 and osteogenic markers mRNA expression as well as ALPL activity and induced calcification of HAoSMCs, all effects significantly augmented by additional treatment with IL-18. Conversely, silencing of SGK1 or cotreatment with the SGK1 inhibitor EMD638683 blunted the effects of IL-18 on osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. The procalcific effects of IL-18 were similarly suppressed in the presence of PI3K or PDK1 inhibitors. In conclusion, SGK1 expression is upregulated by IL-18 in VSMCs and SGK1 participates in the intracellular signaling of IL-18-induced osteo-/chondrogenic transdifferentiation of VSMCs. Thus, SGK1 may serve as therapeutic target to limit the progression of medial vascular calcification during vascular inflammation.
Collapse
|
26
|
Sartoretto S, Gemini-Piperni S, da Silva RA, Calasans MD, Rucci N, Pires Dos Santos TM, Lima IBC, Rossi AM, Alves G, Granjeiro JM, Teti A, Zambuzzi WF. Apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) contributes to osteoblast differentiation and osteogenesis. J Cell Physiol 2018; 234:4140-4153. [PMID: 30171612 DOI: 10.1002/jcp.27226] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/16/2018] [Indexed: 11/11/2022]
Abstract
The role of apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) in bone healing remains to be understood. To address this issue, we investigated the requirement of inflammasome-related genes in response to bone morphogenetic protein 7 (BMP7)-induced osteoblast differentiation in vitro. To validate the importance of ASC on osteogenesis, we subjected wild-type (WT) and ASC knockout C57BL/6 mice (ASC KO) to tibia defect to evaluate the bone healing process (up to 28 days). Our in vitro data showed that there is an involvement of ASC during BMP7-induced osteoblast differentiation, concomitant to osteogenic biomarker expression. Indeed, primary osteogenic cells from ASC KO presented a lower osteogenic profile than those obtained from WT mice. To validate this hypothesis, we evaluated the bone healing process of tibia defects on both WT and ASC KO mice genotypes and the ASC KO mice were not able to fully heal tibia defects up to 28 days, whereas WT tibia defects presented a higher bone de novo volume at this stage, evidencing ASC as an important molecule during osteogenic phenotype. In addition, we have shown a higher involvement of runt-related transcription factor 2 in WT sections during bone repair, as well as circulating bone alkaline phosphatase isoform when both were compared with ASC KO mice behavior. Altogether, our results showed for the first time the involvement of inflammasome during osteoblast differentiation and osteogenesis, which opens new avenues to understand the pathways involved in bone healing.
Collapse
Affiliation(s)
- Suelen Sartoretto
- Oral Surgery Department, Fluminense Federal University, Niteroi, Brazil
| | - Sara Gemini-Piperni
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Division of Life Sciences Applied Metrology (Dimav), Xerém, RJ, Brazil
| | - Rodrigo A da Silva
- Laboratório de Bioensaios e Dinâmica Celular, Department of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista, UNESP, campus Botucatu, Rubião Junior, Botucatu, Sao Paulo, Brazil
| | - Monica D Calasans
- Oral Surgery Department, Fluminense Federal University, Niteroi, Brazil
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio-Coppito, L'Aquila, Italy
| | - Thais M Pires Dos Santos
- Nuclear Instrumentation Department, Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Inayá B C Lima
- Nuclear Instrumentation Department, Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre M Rossi
- Department of Applied Physics, Brazilian Center for Physics Research, Rua Dr. Xavier Sigaud, Urca, Rio de Janiero, Brazil
| | - Gutemberg Alves
- Antônio Pedro Hospital, Division of Clinical Research, Fluminense Federal University, Av. Marquês do Paranã, 303- Centro, Niterói-RJ, Brazil
| | - José M Granjeiro
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Division of Life Sciences Applied Metrology (Dimav), Xerém, RJ, Brazil.,Antônio Pedro Hospital, Division of Clinical Research, Fluminense Federal University, Av. Marquês do Paranã, 303- Centro, Niterói-RJ, Brazil
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio-Coppito, L'Aquila, Italy
| | - Willian F Zambuzzi
- Laboratório de Bioensaios e Dinâmica Celular, Department of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista, UNESP, campus Botucatu, Rubião Junior, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
27
|
Wang Z, Gao ZM, Huang HB, Sun LS, Sun AQ, Li K. Association of IL-8 gene promoter -251 A/T and IL-18 gene promoter -137 G/C polymorphisms with head and neck cancer risk: a comprehensive meta-analysis. Cancer Manag Res 2018; 10:2589-2604. [PMID: 30127645 PMCID: PMC6089118 DOI: 10.2147/cmar.s165631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose No consensus exists on the impact of polymorphisms in cytokines (such as interleukin IL-8 and IL-18) on cancer risk; moreover, there is very little evidence regarding head and neck cancer (HNC). Methods Thus, a meta-analysis including 22 studies with 4731 cases and 8736 controls was conducted to evaluate this association. The summary odds ratio (OR) and corresponding 95% confidence intervals (CIs) for C-X-C motif chemokine ligand 8 (CXCL8, which encodes IL-8) and IL-18 polymorphisms and HNC risk were estimated. Results The results showed a significantly increased risk of HNC susceptibility for IL18 −137 G/C in five genetic models, but, interestingly, no significant association was found for the CXCL8 −251 A/T polymorphism. When stratified by cancer type, an increased risk of nasopharyngeal cancer was found for both −137 G/C and −251A/T. When the studies were stratified by ethnicity and genotyping method, there were significant associations between Asian populations and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) studies for −137 G/C, and African populations for −251 A/T in some genetic models. A positive association was also found between the population-based groups in some models for −137 G/C; conversely, significantly decreased risk was found among the −251 A/T hospital-based group. Meta-regression was also conducted. The publication year, control source, and cancer type contributed to CXCL8 −251 A/T heterogeneity; however, no factors were found that contributed to IL-18 −137 G/C heterogeneity. Marginal significance was found in the recessive model for IL-18 −137 G/C by Egger’s test, whereas no publication bias was detected for CXCL8 −251 A/T. Conclusions The results indicate that the IL-18 −137 G/C polymorphism is associated with HNC risk, especially nasopharyngeal cancer, in Asian populations and, when using PCR-RFLP, CXCL8 −251 A/T polymorphisms play a complex role in HNC development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zi-Ming Gao
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Hai-Bo Huang
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Li-Sha Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - An-Qi Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Kai Li
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
28
|
Merendino RA, Gangemi S, Ruello A, Bene A, Losi E, Lonbardo G, Purello-Dambrosio F. Serum Levels of Interleukin-18 and sICAM-1 in Patients Affected by Breast Cancer: Preliminary Considerations. Int J Biol Markers 2018; 16:126-9. [PMID: 11471895 DOI: 10.1177/172460080101600207] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interleukin-18 (IL-18), a cytokine that plays an important role in the T-cell-helper type 1 response, acts as an angiogenesis and tumor suppressor. Intercellular adhesion molecule-1 (ICAM-1) has a potential role in immunoregulation by mediating immune cell infiltration into the tissue. The aim of this study was to evaluate IL-18 and soluble (s) ICAM-1 serum levels in breast cancer (BCa) patients with liver (BCaM1h) or bone (BCaM1b) metastases compared to BCa patients without metastases (BCaM0) and healthy donors (HDs). Furthermore, since IL-18 enhances ICAM-1 expression, we investigated whether there was a direct correlation between sICAM-1 and IL-18 serum levels. Serum IL-18 and sICAM-1 levels were assayed by immunoenzymatic methods. The serum sICAM-1 levels in the three groups of cancer patients were significantly higher (p<0.05) than those of HDs. Serum IL-18 levels were significantly higher (p<0.05) in BCaM1h and BCaM1b patients compared to BCaM0 patients and HDs. sICAM-1 proved to be closely correlated with serum IL-18 levels in HDs, whereas a weaker correlation was found in BCaM1h, BCaM1b and BCaM0 patients. The defective correlation between sICAM-1 and IL-18 found in cancer patients may contribute to our understanding of the immunity upset occurring in cancer. Our data suggest that IL-18, irrespective of its biological activity, could represent a marker for metastatic breast cancer.
Collapse
Affiliation(s)
- R A Merendino
- University of Messina Medical School, University Hospital G. Martino, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Martínez-Barquero V, Marco GD, Martínez-Hervas S, Adam-Felici V, Pérez-Soriano C, Gonzalez-Albert V, Rojo G, Ascaso JF, Real JT, Garcia-Garcia AB, Martín-Escudero JC, Cortes R, Chaves FJ. Are IL18RAP gene polymorphisms associated with body mass regulation? A cross-sectional study. BMJ Open 2017; 7:e017875. [PMID: 29146643 PMCID: PMC5695454 DOI: 10.1136/bmjopen-2017-017875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To investigate the association between IL18RAP and body mass index (BMI) and obesity and to verify the effect of a polymorphism in the microRNA136 (MIR136) IL18RAP binding region. DESIGN We analysed samples from two Spanish cross-sectional studies, VALCAR (Spanish Mediterranean coast) and Hortega (Spanish centre). These studies aimed at analysing cardiovascular risk and development of cardiovascular disease in the general population. Both populations correspond to regions with different characteristics. SETTING Five IL18RAP single nucleotide polymorphisms were selected using the SYSNPs web tool and analysed by oligonucleotide ligation assay (SNPlex). For the MIR136 functional study, cells were transfected with plasmids containing different rs7559479 polymorphism alleles and analysed by luciferase reporter assays. PARTICIPANTS 1970 individuals (Caucasian, both genders): VALCAR (468) and Hortega (1502). RESULTS rs2293225, rs2272127 and rs7559479 showed the following associations: rs7559479 G allele correlated with a higher obesity risk (P=0.01; OR=1.82; 95% CI 1.15 to 2.87 for the VALCAR group; P=0.033; OR=1.35; 95% CI 1.03 to 1.79 for the Hortega population) and higher body mass index (BMI) values (P=0.0045; P=0.1 for VALCAR and Hortega, respectively); a significant association with obesity (P=0.0024, OR=1.44, 95% CI 1.14 to 1.82) and increased BMI values (P=0.008) was found when considering both populations together. rs2293225 T allele was associated with lower obesity risk (P=0.036; OR=0.60; 95% CI 0.35 to 0.96) and lower BMI values (P=0.0038; OR=1.41) while the rs2272127 G allele was associated with lower obesity risk (P=0.028; OR=0.66; 95% CI 0.44 to 0.97) only in the VALCAR population. A reporter assay showed that the presence of the A allele in rs7559479 was associated with increased MIR136 binding to IL18RAP. CONCLUSIONS Our results suggest that polymorphisms in IL18RAP influence susceptibility to obesity. We demonstrated that the A allele in rs7559479 increases MIR136 binding, which regulates IL-18 system activity.
Collapse
Affiliation(s)
- Vanesa Martínez-Barquero
- Department of Medicine, University of Valencia, Valencia, Spain
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Griselda de Marco
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sergio Martínez-Hervas
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition Service, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Victoria Adam-Felici
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Cristina Pérez-Soriano
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Verónica Gonzalez-Albert
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Gemma Rojo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition Service, Hospital Regional Universitario, Instituto de Biomedicina de Málaga (IBIMA), Malaga, Spain
| | - Juan Francisco Ascaso
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition Service, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José Tomás Real
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition Service, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ana Barbara Garcia-Garcia
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | | | - Raquel Cortes
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Felipe Javier Chaves
- Department of Genomic and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
30
|
Mahajani MJ, Jadhao VA, Wankhade PS, Samson E, Acharya VD, Tekale PD. Effect of Periodontal Therapy on Crevicular Fluid Interleukin-18 Level in Periodontal Health and Disease in Central Maharashtra (India) Population. J Contemp Dent Pract 2017; 18:1085-1089. [PMID: 29109326 DOI: 10.5005/jp-journals-10024-2180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM The incidence and progression of the periodontal disease depend on periodontal microflora and the multifaceted response of the host, and these interactions are mediated by cytokines and chemokines. Interleukin-18 (IL-18) is a proinflammatory cytokine of the IL-1 superfamily. The aim of the present study was the assessment of the periodontal therapy in IL-18 level in periodontal disease and health. MATERIALS AND METHODS Based on clinical attachment loss (CAL), probing pocket depth (PPD), gingival index (GI), and plaque index (PI) patients were divided into three groups: Group I with healthy patients, group II with chronic periodontitis, and group III with posttreatment patients having periodontitis. RESULTS Mean PI, PPD, CAL, and gingival crevicular fluid (GCF) volume were significantly higher in groups II and III compared with group I. However, there were no significant differences between GI in groups I, II, and III. The total amount of IL-18 in GCF was significantly higher in group II when compared with groups I and III (p < 0.05). CONCLUSION The present study confirmed that the IL-18 level in GCF was lower in healthy patients, higher in periodontally involved patients, and reduced at baseline, 3 and 6 weeks after nonsurgical periodontal therapy. CLINICAL SIGNIFICANCE The IL-18 might be hypothetically beneficial in distinguishing health from disease and monitoring periodontal disease activity.
Collapse
Affiliation(s)
- Monica J Mahajani
- Department of Periodontics, Dr. Hedgewar Smruti Rugna Seva Mandal Dental College & Hospital, Hingoli, Maharashtra, India
| | - Varsha A Jadhao
- Department of Dentistry, Government Medical College & Hospital, Akola Maharashtra, India
| | - Pooja S Wankhade
- Department of Oral Medicine and Radiology, VYWS, Amravati's Dental College & Hospital, Amravati Maharashtra, India
| | - Emmanuel Samson
- Department of Conservative and Endodontics, Dr. Hedgewar Smruti Rugna Seva Mandal Dental College & Hospital, Hingoli Maharashtra, India
| | - Vishwas D Acharya
- Department of Oral Medicine and Radiology, Dr. Hedgewar Smruti Rugna Seva Mandal Dental College & Hospital, Hingoli Maharashtra, India
| | - Pawankumar D Tekale
- Department of Orthodontics, Dr. Rajesh Ramdasji Kambe Dental College & Hospital, Akola, Maharashtra, India, Phone: +919970879100 e-mail:
| |
Collapse
|
31
|
How Inflammasomes Inform Adaptive Immunity. J Mol Biol 2017; 430:217-237. [PMID: 28987733 DOI: 10.1016/j.jmb.2017.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
An immune response consists of a finely orchestrated interplay between initial recognition of potential microbial threats by the innate immune system and subsequent licensed adaptive immune neutralization. The initial recognition integrates environmental cues derived from pathogen-associated molecular patterns and cell-intrinsic damage-associated molecular patterns to contextualize the insult and inform a tailored adaptive response via T and B lymphocytes. While there are much data to support the role of transcriptional responses downstream of pattern recognition receptors in informing the adaptive immune response, markedly less attention has been paid to the role of post-translational responses to pathogen-associated molecular pattern and damage-associated molecular pattern recognition by the innate immune system, and how this may influence adaptive immunity. A well-characterized post-translational consequence of pattern recognition receptor signaling is the assembly of a multimeric signaling platform, termed the inflammasome, by members of the nucleotide-binding oligomerization domain (Nod), leucine-rich repeat-containing receptors (NLRs), and pyrin and HIN domain (PYHIN) families. Inflammasomes assemble in response to cytosolic perturbations, such as mitochondrial dysfunction and aberrant ion fluxes in the case of the canonical NLRP3 inflammasome or the presence of bacterial lipopolysaccharides in the case of the non-canonical inflammasome. Assembly of the inflammasome allows for the cleavage and activation of inflammatory caspases. These activated inflammatory caspases in turn cleave pro-form inflammatory cytokines into their mature bioactive species and lead to unconventional protein secretion and lytic cell death. In this review, we discuss evidence for inflammasome-mediated instruction and contextualization of infectious and sterile agents to the adaptive immune system.
Collapse
|
32
|
Bao J, Ma C, Ran J, Xiong Y, Yan S, Wu L. Wnt/β-catenin and Hedgehog pathways are involved in the inflammatory effect of Interleukin 18 on rat chondrocytes. Oncotarget 2017; 8:109962-109972. [PMID: 29299122 PMCID: PMC5746357 DOI: 10.18632/oncotarget.20584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/08/2017] [Indexed: 01/30/2023] Open
Abstract
To investigate the inflammatory effect of Interleukin 18 (IL-18) on rat chondrocytes and the involvement of Wnt/β-catenin and Hedgehog pathways, the mRNA and protein level of matix-degrading enzymes (MMP-2, 3, 9,13 and aggrecanses) and chondrocyte-specific proteins (Collagen II and aggrecan) were evaluated by qRT-PCR and Western blot, and key protein level of Wnt/β-catenin and Hedgehog pathways including β-catenin, GSK-3β, DKK-1, IHH, SHH, and Gli-2 were evaluated by Western blot. Dickkopf-1 (DKK-1) and Cyclopamine were used as antagonist of Wnt/β-catenin and Hedgehog pathways to perform pathway inhibition tests. In addition, location and expression of β-catenin, GSK-3β, Gli-2 and Smo were assessed by Immunofluorescence microscopy. The results showed up-regulation of matix-degrading enzymes (MMP-2, 3, 9,13 and aggrecanses) and down-regulation of chondrocyte-specific proteins (Collagen II and aggrecan) at both mRNA and protein level and activation of Wnt/β-catenin and Hedgehog pathways in the inflammatory reaction on rat chondrocytes caused by IL-18 treatment was observed. As conclusion, Wnt/β-catenin and Hedgehog pathways are involved in the inflammatory effect of IL-18 in vitro.
Collapse
Affiliation(s)
- Jiapeng Bao
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Chiyuan Ma
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Jisheng Ran
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Yan Xiong
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Shigui Yan
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Lidong Wu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| |
Collapse
|
33
|
Salmassi A, Fattahi A, Nouri M, Hedderich J, Schmutzler AG. Expression of mRNA and protein of IL-18 and its receptor in human follicular granulosa cells. J Endocrinol Invest 2017; 40:447-454. [PMID: 27914037 DOI: 10.1007/s40618-016-0590-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE There is no information available about the IL-18 receptor in ovarian follicles, so the present study attempts to demonstrate the expression of IL-18 and its receptor in human granulosa cells (GCs). METHODS To evaluate the concentration of IL-18 in serum and follicular fluid (FF), we collected serum and FF from 102 women undergoing oocyte retrieval. Also, to detect expression of IL-18 and its receptor by luteinized GCs, these cells were pooled six times from a total of twenty individual patients with 5-16 follicles each. The IL-18 concentration was determined by ELISA and the expression of IL-18 and its receptor by immunocytochemistry and reverse transcription polymerase chain reaction. RESULTS Our results showed that the median IL-18 concentration in serum, 159.27 pg/ml (IQR 121.41-210.1), was significantly higher than in FF, 142.1 pg/ml (IQR 95.7-176.5), p < 0.001. Moreover, we found that IL-18 and its receptor are expressed by GCs. CONCLUSION The presence of IL-18 in FF and the expression of IL-18 and its receptor by GCs suggest an important role for this cytokine in ovarian function.
Collapse
Affiliation(s)
- A Salmassi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Gynaecology and Obstetrics, Center for Reproductive Medicine, Women's Hospital, University Hospitals Schleswig-Holstein, Christian-Albrechts-University, Campus Kiel, Arnold-Heller Str. 3, House 24, 24105, Kiel, Germany.
| | - A Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Hedderich
- Institute of Medical Informatics and Statistics, University of Kiel, Kiel, Germany
| | - A G Schmutzler
- Department of Gynaecology and Obstetrics, Center for Reproductive Medicine, Women's Hospital, University Hospitals Schleswig-Holstein, Christian-Albrechts-University, Campus Kiel, Arnold-Heller Str. 3, House 24, 24105, Kiel, Germany
| |
Collapse
|
34
|
IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation. Sci Rep 2016; 6:33680. [PMID: 27649785 PMCID: PMC5030484 DOI: 10.1038/srep33680] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis.
Collapse
|
35
|
Elsherbiny NM, Al-Gayyar MMH. The role of IL-18 in type 1 diabetic nephropathy: The problem and future treatment. Cytokine 2016; 81:15-22. [PMID: 26836949 DOI: 10.1016/j.cyto.2016.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
Diabetic vascular complication is a leading cause of diabetic nephropathy, a progressive increase in urinary albumin excretion coupled with elevated blood pressure leading to declined glomerular filtration and eventually end stage renal failure. There is growing evidence that activated inflammation is contributing factor to the pathogenesis of diabetic nephropathy. Meanwhile, IL-18, a member of the IL-1 family of inflammatory cytokines, is involved in the development and progression of diabetic nephropathy. However, the benefits derived from the current therapeutics for diabetic nephropathy strategies still provide imperfect protection against renal progression. This imperfection points to the need for newer therapeutic agents that have potential to affect primary mechanisms contributing to the pathogenesis of diabetic nephropathy. Therefore, the recognition of IL-18 as significant pathogenic mediators in diabetic nephropathy leaves open the possibility of new potential therapeutic targets.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
36
|
Okragly AJ, Hamang MJ, Pena EA, Baker HE, Bullock HA, Lucchesi J, Martin AP, Ma YL, Benschop RJ. Elevated levels of Interleukin (IL)-33 induce bone pathology but absence of IL-33 does not negatively impact normal bone homeostasis. Cytokine 2016; 79:66-73. [PMID: 26771472 DOI: 10.1016/j.cyto.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Interleukin (IL)-33 is a member of the IL-1 family. IL-33 effects are mediated through its receptor, ST2 and IL-1RAcP, and its signaling induces the production of a number of pro-inflammatory mediators, including TNFα, IL-1β, IL-6, and IFN-γ. There are conflicting reports on the role of IL-33 in bone homeostasis, with some demonstrating a bone protective role for IL-33 whilst others show that IL-33 induces inflammatory arthritis with concurrent bone destruction. To better clarify the role IL-33 plays in bone biology in vivo, we studied IL-33 KO mice as well as mice in which the cytokine form of IL-33 was overexpressed. Mid-femur cortical bone mineral density (BMD) and bone strength were similar in the IL-33 KO mice compared to WT animals during the first 8months of life. However, in the absence of IL-33, we observed higher BMD in lumbar vertebrae and distal femur in female mice. In contrast, overexpression of IL-33 resulted in a marked and rapid reduction of bone volume, mineral density and strength. Moreover, this was associated with a robust increase in inflammatory cytokines (including IL-6 and IFN-γ), suggesting the bone pathology could be a direct effect of IL-33 or an indirect effect due to the induction of other mediators. Furthermore, the detrimental bone effects were accompanied by increases in osteoclast number and the bone resorption marker of C-terminal telopeptide collagen-I (CTX-I). Together, these results demonstrate that absence of IL-33 has no negative consequences in normal bone homeostasis while high levels of circulating IL-33 contributes to pathological bone loss.
Collapse
Affiliation(s)
- Angela J Okragly
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthew J Hamang
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Emily A Pena
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Hana E Baker
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Heather A Bullock
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan Lucchesi
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Andrea P Martin
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Y Linda Ma
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Benschop
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Takahashi Y, Tanaka H, Nakai K, Kitami S, Murakami F, Morita T, Tanabe N, Kawato T, Maeno M. RANKL Induces IL-18 Binding Protein Expression in RAW264.7 Cells. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Satoshi Kitami
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | | | - Toyoko Morita
- Department of Oral Health Sciences, Nihon University School of Dentistry
- The Lion Foundation for Dental Health
| | - Natsuko Tanabe
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
- Department of Biochemistry, Nihon University School of Dentistry
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
38
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
39
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
40
|
Wang Y, Xu D, Long L, Deng X, Tao R, Huang G. Correlation between plasma, synovial fluid and articular cartilage Interleukin-18 with radiographic severity in 33 patients with osteoarthritis of the knee. Clin Exp Med 2015; 14:297-304. [PMID: 23958877 DOI: 10.1007/s10238-013-0251-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration, secondary synovial membrane inflammation and subchondral bone changes. In recent years, many studies have confirmed that interleukin-18 (IL-18) is involved in the inflammatory process of inflammatory joint diseases. In the present study, we investigated IL-18 levels in plasma, synovial fluid and articular cartilage of patients with primary knee OA (n = 33) to analyze their relationship with radiographic severity. Compared to healthy controls (n = 15), OA patients had higher plasma and synovial fluid IL-18 concentrations(45.8 ± 22.1 vs. 23.7 ± 13.6 pg/ml, P<0.001 and 75.2 ± 40.1 vs. 28.3 ± 11.6 pg/ml, P<0.001) as measured by enzyme-linked immunosorbent assay. Also,the percentage of immunofluorescent IL-18 positive cells in articular cartilage was significantly increased in OA compared to controls (46.5 ± 10.3 vs. 2.9 ± 1.7, P<0.001). Moreover, plasma, synovial fluid and articular cartilage IL-18 significantly positively correlated with radiographic severity, respectively (r = 0.663, P<0.001, r = 0.56, P = 0.001 and r = 0.884, P<0.001). Subsequent analysis revealed that plasma, synovial fluid and articular cartilage IL-18 levels positively correlated with each other (r = 0.632, P<0.001, r = 0.489, P = 0.004 and r = 0.620, P<0.001). These data suggested that plasma, synovial fluid and articular cartilage IL-18 levels were significantly increased in OA patients, and these elevated levels were positively correlated with radiographic severity. Accordingly, our study supports the role of IL-18 in the pathophysiology of OA.
Collapse
|
41
|
Chitrapriya MN, Rao SR, Lavu V. Interleukin-17 and interleukin-18 levels in different stages of inflammatory periodontal disease. J Indian Soc Periodontol 2015; 19:14-7. [PMID: 25810587 PMCID: PMC4365148 DOI: 10.4103/0972-124x.145798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/27/2014] [Indexed: 11/11/2022] Open
Abstract
Context: Chronic periodontitis is an inflammatory condition of the tooth supporting structures. There is increasing evidence that the cytokines interleukin-17 (IL-17) and interleukin-18 (IL-18) play a role in progression of chronic periodontitis. Aim: The objective of this study was to compare the levels of the cytokines IL-17 and IL-18 in gingival tissue extracts from individuals with healthy gingiva, chronic gingivitis, and mild chronic periodontitis. Settings and Design: The study was performed in a hospital-based population with an experimental design. Materials and Methods: A total of 69 individuals (n = 23 per group) were recruited for the study. Group 1 included 23 individuals with healthy gingiva and Group 2 included 23 chronic gingivitis patients and Group 3 included 23 patients with mild chronic periodontitis. Gingival tissues were collected during surgical procedures and levels of IL-17 and IL-18 were determined using enzyme-linked immunosorbent assay. Statistical Analysis: Intergroup comparison was done by posthoc Tukey's test. Results: The gingival tissue concentration of IL-17 was found to be highest in Group 2 (415.19 ± 76.84 pg/mg) followed by Group 3 (193.77 ± 37.32 pg/mg) and Group 1 (20.49 ± 6.05 pg/mg). Concentrations of IL-18 were significantly higher (P < 0.01) in Group 2 (1479.42 ± 330.33 pg/mg) when compared with Group 1 (385.18 ± 71.26 pg/mg) and Group 3 (330.24 ± 48.56 pg/mg). Conclusion: There appears to be considerable variation of IL-17 and IL-18 levels in gingival tissue during periodontal health and disease.
Collapse
Affiliation(s)
| | - Suresh Ranga Rao
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - Vamsi Lavu
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| |
Collapse
|
42
|
Caballé-Serrano J, Cvikl B, Bosshardt D, Buser D, Lussi A, Gruber R. Saliva Suppresses Osteoclastogenesis in Murine Bone Marrow Cultures. J Dent Res 2014; 94:192-200. [DOI: 10.1177/0022034514553977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86—all costimulatory molecules of phagocytic cells—were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.
Collapse
Affiliation(s)
- J. Caballé-Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - B. Cvikl
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Switzerland
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
- Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Austria
| | - D.D. Bosshardt
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Switzerland
| | - D. Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
| | - A. Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
| | - R. Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Switzerland
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
| |
Collapse
|
43
|
Greenhill CJ, Jones GW, Nowell MA, Newton Z, Harvey AK, Moideen AN, Collins FL, Bloom AC, Coll RC, Robertson AAB, Cooper MA, Rosas M, Taylor PR, O'Neill LA, Humphreys IR, Williams AS, Jones SA. Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Res Ther 2014; 16:419. [PMID: 25175678 PMCID: PMC4292830 DOI: 10.1186/s13075-014-0419-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
Introduction Activation of the inflammasome has been implicated in the pathology of various autoinflammatory and autoimmune diseases. While the NLRP3 inflammasome has been linked to arthritis progression, little is known about its synovial regulation or contribution to joint histopathology. Regulators of inflammation activation, such as interleukin (IL)-10, may have the potential to limit the inflammasome-driven arthritic disease course and associated structural damage. Hence, we used IL-10-deficient (IL-10KO) mice to assess NLRP3 inflammasome-driven arthritic pathology. Methods Antigen-induced arthritis (AIA) was established in IL-10KO mice and wild-type controls. Using histological and radiographic approaches together with quantitative real-time PCR of synovial mRNA studies, we explored the regulation of inflammasome components. These were combined with selective blocking agents and ex vivo investigative studies in osteoclast differentiation assays. Results In AIA, IL-10KO mice display severe disease with increased histological and radiographic joint scores. Here, focal bone erosions were associated with increased tartrate-resistant acid phosphatase (TRAP)-positive cells and a localized expression of IL-1β. When compared to controls, IL-10KO synovium showed increased expression of Il1b, Il33 and NLRP3 inflammasome components. Synovial Nlrp3 and Casp1 expression further correlated with Acp5 (encoding TRAP), while neutralization of IL-10 receptor signaling in control mice caused increased expression of Nlrp3 and Casp1. In ex vivo osteoclast differentiation assays, addition of exogenous IL-10 or selective blockade of the NLRP3 inflammasome inhibited osteoclastogenesis. Conclusions These data provide a link between IL-10, synovial regulation of the NLRP3 inflammasome and the degree of bone erosions observed in inflammatory arthritis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0419-y) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Banerjee M, Saxena M. Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus. World J Diabetes 2014; 5:493-504. [PMID: 25126395 PMCID: PMC4127584 DOI: 10.4239/wjd.v5.i4.493] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/11/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a combined metabolic disorder which includes hyperglycemia, dyslipidemia, stroke and several other complications. Various groups all over the world are relentlessly working out the possible role of a vast number of genes associated with type 2 diabetes (T2DM). Inflammation is an important outcome of any kind of imbalance in the body and is therefore an indicator of several diseases, including T2DM. Various ethnic populations around the world show different levels of variations in single nucleotide polymorphisms (SNPs). The present review was undertaken to explore the association of cytokine gene polymorphisms with T2DM in populations of different ethnicities. This will lead to the understanding of the role of cytokine genes in T2DM risk and development. Association studies of genotypes of SNPs present in cytokine genes will help to identify risk haplotype(s) for disease susceptibility by developing prognostic markers and alter treatment strategies for T2DM and related complications. This will enable individuals at risk to take prior precautionary measures and avoid or delay the onset of the disease. Future challenges will be to understand the genotypic interactions between SNPs in one cytokine gene or several genes at different loci and study their association with T2DM.
Collapse
|
45
|
The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014:561459. [PMID: 24876674 PMCID: PMC4021678 DOI: 10.1155/2014/561459] [Citation(s) in RCA: 1087] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
Collapse
|
46
|
Endothelin-1 induces interleukin-18 expression in human osteoblasts. Arch Oral Biol 2014; 59:289-96. [DOI: 10.1016/j.archoralbio.2013.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/27/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022]
|
47
|
Takenaka SI, Kawayama T, Imaoka H, Sakazaki Y, Oda H, Kaku Y, Matsuoka M, Okamoto M, Kato S, Yamada K, Hoshino T. The progression of comorbidity in IL-18 transgenic chronic obstructive pulmonary disease mice model. Biochem Biophys Res Commun 2014; 445:597-601. [DOI: 10.1016/j.bbrc.2014.02.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 01/30/2023]
|
48
|
Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. ScientificWorldJournal 2014; 2014:617032. [PMID: 24574904 PMCID: PMC3916098 DOI: 10.1155/2014/617032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/20/2013] [Indexed: 01/10/2023] Open
Abstract
Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.
Collapse
|
49
|
Sedimbi SK, Hägglöf T, Karlsson MCI. IL-18 in inflammatory and autoimmune disease. Cell Mol Life Sci 2013; 70:4795-808. [PMID: 23892891 PMCID: PMC11113411 DOI: 10.1007/s00018-013-1425-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
Abstract
Inflammation serves as the first line of defense in response to tissue injury, guiding the immune system to ensure preservation of the host. The inflammatory response can be divided into a quick initial phase mediated mainly by innate immune cells including neutrophils and macrophages, followed by a late phase that is dominated by lymphocytes. Early in the new millennium, a key component of the inflammatory reaction was discovered with the identification of a number of cytosolic sensor proteins (Nod-like receptors) that assembled into a common structure, the 'inflammasome'. This structure includes an enzyme, caspase-1, which upon activation cleaves pro-forms of cytokines leading to subsequent release of active IL-1 and IL-18. This review focuses on the role of IL-18 in inflammatory responses with emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Saikiran K. Sedimbi
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Thomas Hägglöf
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| |
Collapse
|
50
|
|