1
|
Ryan N, Lamenza F, Shrestha S, Upadhaya P, Springer A, Jordanides P, Pracha H, Roth P, Kumar R, Wang Y, Vilgelm AE, Satoskar A, Oghumu S. Host derived macrophage migration inhibitory factor expression attenuates anti-tumoral immune cell accumulation and promotes immunosuppression in the tumor microenvironment of head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167345. [PMID: 38992847 PMCID: PMC11954649 DOI: 10.1016/j.bbadis.2024.167345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear. Using a murine orthotopic oral cancer model in Mif+/+ or Mif-/- mice, we determined the function of host derived MIF in HNSCC tumor development, metastasis as well as localized and systemic tumor immune responses. We observed that Mif-/- mice have decreased tumor growth and tumor burden compared to their wild-type counterparts. Flow cytometric analysis of immune populations within the primary tumor site revealed increased Th1 and cytotoxic T cell recruitment to the HNSCC tumor microenvironment. Within the tumors of Mif-/- mice, MIF deletion also enhanced the effector function of anti-tumoral effector CD8+ T cells as well as Th1 cells and decreased the accumulation of granulocytic myeloid derived suppressor cells (g-MDSCs) in the tumor microenvironment. Furthermore, MDSCs isolated from tumor bearing mice chemotactically respond to MIF in a dose dependent manner. Taken together, our results demonstrate a chemotactic and immunomodulatory role for host derived MIF in promoting HNSCC and suggest that MIF targeted immunomodulation is a promising approach for HNSCC treatment.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Pete Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rathan Kumar
- Department of Hematology, The Ohio State University Wexner Medial Center, Columbus, OH 43210, USA
| | - Yinchong Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Abhay Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Rivera LA, Hernández PE, Vannan DT, Reyes JL, Rodríguez T, Sánchez-Barrera Á, González MI, Bustos J, Ramos OA, Juárez I, Rodriguez-Sosa M, Vázquez A. Macrophage Migration Inhibitory Factor (MIF) is a Key Player in Dry Eye Disease. Ocul Immunol Inflamm 2024; 32:1707-1721. [PMID: 38127798 DOI: 10.1080/09273948.2023.2290624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To explore the role of the proinflammatory cytokine, macrophage migration inhibitory factor (MIF), in a murine model of dry eye disease (DED). METHODS The role of MIF on DED was determined using genetically MIF deficient mice and pharmacological inhibition of MIF. DED was induced with 0.5 mg of scopolamine via subcutaneous injection in wild type (WT) and mice lacking MIF (Mif-/-), three times a day for 21 days. DED signs, tear volume, ferning pattern and cytology impression were evaluated. Also, eye tissues were collected to determine transcripts of key inflammatory mediators and histopathological damage. In a second set of experiments, we neutralized MIF with ISO-1, an isozaxiline-derivative MIF tautomerase activity-inhibiting small molecule in WT mice, following an acute DED model for 10 days. ISO-1 was given starting on day 3 after DED induction and signs were evaluated, including a recovery phase in both experimental approaches. RESULTS When compared to WT, Mif-/- mice showed attenuated signs of DED like preserved mucin pattern and increased tear volume. Also, Mif-/- mice maintained conjunctival epithelial cells and less corneal damage, associated with lower levels of TNFα and IL-1β. At recovery phase, Mif-/- mice presented improved signs. Interestingly, in cornea and conjunctiva the absence of MIF selectively downregulated the transcription of inflammatory enzymes like inos and nox4 whereas displayed enhanced transcripts of il-4, il-13, tgfβ and cox2. Finally, pharmacological inhibition of MIF using ISO-1, replicated the above findings in the mouse model. CONCLUSION MIF is a central positive mediator of the inflammatory process in experimental DED, thus, targeting MIF could be used as a novel therapy in ocular surface inflammatory pathologies.
Collapse
Affiliation(s)
- Luis A Rivera
- Laboratorio de Enfermedades Inflamatorias Oculares, Carrera de Optometría, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Pablo E Hernández
- Laboratorio de Enfermedades Inflamatorias Oculares, Carrera de Optometría, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Danielle T Vannan
- Boston Scientific, 300 Boston Scientific Way, Marlborough, Massachusetts, USA
| | - José L Reyes
- Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-Intestinal, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Tonathiu Rodríguez
- Laboratorio de Enfermedades Inflamatorias Oculares, Carrera de Optometría, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Ángel Sánchez-Barrera
- Laboratorio de Inmunoparasitología, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Marisol I González
- Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-Intestinal, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - José Bustos
- Laboratorio de Biología Molecular e Inmunología de Arbovirus, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, Estado de México
| | - Oscar A Ramos
- Laboratorio de Enfermedades Inflamatorias Oculares, Carrera de Optometría, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Imelda Juárez
- Laboratorio de Inmunidad Innata, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Miriam Rodriguez-Sosa
- Laboratorio de Inmunidad Innata, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| | - Alicia Vázquez
- Laboratorio de Enfermedades Inflamatorias Oculares, Carrera de Optometría, FES Iztacala, UNAM, Tlalnepantla de Baz, México
| |
Collapse
|
3
|
Ortiz-Sánchez BJ, Juárez-Avelar I, Andrade-Meza A, Mendoza-Rodríguez MG, Chirino YI, Monroy-Pérez E, Paniagua-Contreras GL, Rodriguez-Sosa M. Periodontitis exacerbation during pregnancy in mice: Role of macrophage migration inhibitory factor as a key inductor. J Periodontal Res 2024; 59:267-279. [PMID: 37990413 DOI: 10.1111/jre.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE The present study was designed to investigate the role of macrophage migration inhibitory factor (MIF) in the exacerbation of pregestational periodontal disease (PGPD). BACKGROUND Periodontitis (PT) is a severe stage of periodontal disease characterized by inflammation of the supporting tissues of the teeth, which usually worsens during pregnancy. MIF is a proinflammatory cytokine that is significantly elevated in periodontitis, both at the beginning and at the end of pregnancy. Although periodontitis usually presents with greater severity during pregnancy, the participation of MIF in the evolution of periodontitis has not been established. METHODS To analyze the relevance of MIF in the exacerbation of PGPD, we employed a model of PGPD in WT and Mif-/- mice, both with a BALB/c genetic background. PT was induced with nylon suture ligatures placed supramarginally around the second upper right molar. For PGPD, PT was induced 2 weeks before mating. We evaluated histological changes and performed histometric analysis of the clinical attachment loss, relative expression of MMP-2 and MMP-13 by immunofluorescence, and relative expression of the cytokines mif, tnf-α, ifn-γ, and il-17 by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our data revealed that periodontal tissue from PGPD WT mice produced a twofold increase in MIF compared with PT WT mice. Moreover, the evolution of periodontitis in Mif-/- mice was less severe than in PGDP WT mice. Periodontal tissue from Mif-/- mice with PGPD produced 80% less TNF-α and no IFN-γ, as well as 50% lower expression of matrix metalloproteinase (MMP)-2 and 25% less MMP-13 compared to WT PGDP mice. CONCLUSIONS Our study suggests that MIF plays an important role in the exacerbation of periodontitis during pregnancy and that MIF is partially responsible for the inflammation associated with the severity of periodontitis during pregnancy.
Collapse
Affiliation(s)
- Betsaida J Ortiz-Sánchez
- Carrera de Cirujano Dentista, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Imelda Juárez-Avelar
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Laboratorio de Inmunidad Innata. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Antonio Andrade-Meza
- Laboratorio de Inmunidad Innata. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Mónica Gabriela Mendoza-Rodríguez
- Laboratorio de Inmunoparasitología. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | | | - Miriam Rodriguez-Sosa
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
4
|
Fang T, Liu L, Song D, Huang D. The role of MIF in periodontitis: A potential pathogenic driver, biomarker, and therapeutic target. Oral Dis 2024; 30:921-937. [PMID: 36883414 DOI: 10.1111/odi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease that involves an imbalance in the oral microbiota, activation of inflammatory and immune responses, and alveolar bone destruction. Macrophage migration inhibitory factor (MIF) is a versatile cytokine involved in several pathological reactions, including inflammatory processes and bone destruction, both of which are characteristics of periodontitis. While the roles of MIF in cancer and other immune diseases have been extensively characterized, its role in periodontitis remains inconclusive. RESULTS In this review, we describe a comprehensive analysis of the potential roles of MIF in periodontitis from the perspective of immune response and bone regulation at the cellular and molecular levels. Moreover, we discuss its potential reliability as a novel diagnostic and therapeutic target for periodontitis. CONCLUSION This review can aid dental researchers and clinicians in understanding the current state of MIF-related pathogenesis, diagnosis, and treatment of periodontitis.
Collapse
Affiliation(s)
- Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Breidung D, Megas IF, Freytag DL, Bernhagen J, Grieb G. The Role of Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (D-DT/MIF-2) in Infections: A Clinical Perspective. Biomedicines 2023; 12:2. [PMID: 38275363 PMCID: PMC10813530 DOI: 10.3390/biomedicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homolog, D-dopachrome tautomerase (D-DT), are cytokines that play critical roles in the immune response to various infectious diseases. This review provides an overview of the complex involvement of MIF and D-DT in bacterial, viral, fungal, and parasitic infections. The role of MIF in different types of infections is controversial, as it has either a protective function or a host damage-enhancing function depending on the pathogen. Depending on the specific role of MIF, different therapeutic options for MIF-targeting drugs arise. Human MIF-neutralizing antibodies, anti-parasite MIF antibodies, small molecule MIF inhibitors or MIF-blocking peptides, as well as the administration of exogenous MIF or MIF activity-augmenting small molecules have potential therapeutic applications and need to be further explored in the future. In addition, MIF has been shown to be a potential biomarker and therapeutic target in sepsis. Further research is needed to unravel the complexity of MIF and D-DT in infectious diseases and to develop personalized therapeutic approaches targeting these cytokines. Overall, a comprehensive understanding of the role of MIF and D-DT in infections could lead to new strategies for the diagnosis, treatment, and management of infectious diseases.
Collapse
Affiliation(s)
- David Breidung
- Department of Plastic, Reconstructive and Hand Surgery, Burn Center for Severe Burn Injuries, Klinikum Nuremberg Hospital, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Ioannis-Fivos Megas
- Department of Orthopaedic and Trauma Surgery, Center of Plastic Surgery, Hand Surgery and Microsurgery, Evangelisches Waldkrankenhaus Spandau, Stadtrandstr. 555, 13589 Berlin, Germany;
| | - David Lysander Freytag
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Feodor-Lynenstraße 17, 81377 Munich, Germany;
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynenstraße 17, 81377 Munich, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
6
|
Ghosh S, Humera Khathun AH, Athulya GS, Vignesh P, Mathan L, Mudaraddi N, Narendran S, Lalitha P, Venkatesh Prajna N. Host cell-type and pathogen-specific immunomodulatory functions of macrophage migration inhibitory factor (MIF) in infectious keratitis. Exp Eye Res 2023; 236:109669. [PMID: 37774962 DOI: 10.1016/j.exer.2023.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Therapeutic management of inflammation in infectious keratitis (IK) requires new strategy and targets for selective immunomodulation. Targeting host cell-type specific inflammatory responses might be a viable strategy to curtail unnecessary inflammation and reduce tissue damage without affecting pathogen clearance. This study explores the possibility of pathogen and host cell-type dependent differences in the inflammatory pathways relevant in the pathogenesis of IK. Human corneal epithelial cell line (HCEC) and phorbol 12-myristate-13 acetate (PMA) differentiated THP-1 macrophage line were infected with either Aspergillus flavus conidia or Acanthamoeba castellanii trophozoites and the elicited inflammatory responses were studied in terms of gene expression and secretion of proinflammatory factors interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) and an upstream inflammatory regulator and mediator protein-the Macrophage Migration Inhibitory Factor (MIF). Given the pleotropic mode of MIF function in diverse cell types relevant in many human diseases, we tested if MIF driven responses to infection is different in HCECs and THP-1 macrophages by studying its expression, secretion and involvement in inflammation by siRNA mediated knockdown. We also examined IK patient tear samples for MIF levels. Infection with A. flavus or A. castellanii induced IL-8 and TNF-α responses in HCECs and THP-1 macrophages but to different levels. Our preliminary human data showed that the level of secreted MIF protein was elevated in IK patient tear, however, MIF secretion by the two cell types were strikingly different in-vitro, under both normal and infected conditions. We found that HCECs released MIF constitutively, which was significantly inhibited with infection, whereas THP-1 macrophages were stimulated to release MIF during infection. MIF gene expression remained largely unaffected by infection in both the cell lines. Although MIF in HCECs appeared to be intracellularly captured during infection, MIF knockdown in HCECs associated with a partial reduction of the IL-8 and TNF-α expression produced by either of the pathogens, suggesting a pro-inflammatory role for MIF in HCECs, independent of its canonical cytokine like function. In contrast, MIF knockdown in THP-1 macrophages accompanied a dramatic increase in IL-8 and TNF-α expression during A. castellanii infection, while the responses to A. flavus infection remained unchanged. These data imply a host cell-type and pathogen specific distinction in the MIF- related inflammatory signaling and MIF as a potential selective immunomodulatory target in infectious keratitis.
Collapse
Affiliation(s)
- Swagata Ghosh
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India.
| | - A H Humera Khathun
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India
| | - G S Athulya
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India
| | - P Vignesh
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India
| | - L Mathan
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, India
| | - Ninad Mudaraddi
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| | - Siddharth Narendran
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India; Aravind Eye Hospital, Coimbatore, India
| | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| |
Collapse
|
7
|
Vázquez A, González MI, Reyes JL. Targeting macrophage migration inhibitory factor (MIF): a promising therapy for inflammatory ocular diseases. J Ophthalmic Inflamm Infect 2023; 13:37. [PMID: 37626184 PMCID: PMC10457254 DOI: 10.1186/s12348-023-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory ocular diseases are characterized by the presence of a persistent inflammatory response which cause tissue injury, decrease visual acuity and in severe cases, blindness. Several cytokines represent a therapeutic opportunity since they are key amplifiers of these pathologies, and thus neutralizing agents against them have been developed. Amongst others, macrophage migration inhibitory factor (MIF), an early produced inflammatory cytokine, has consistently been found elevated in patients with distinct ocular diseases (inflammatory and autoimmune). Here, we present and discuss evidence showing that preclinical trials using diverse strategies to neutralize MIF resulted in significant attenuation of disease signs and therefore MIF blockage might be a promising therapy for ocular diseases.
Collapse
Affiliation(s)
- Alicia Vázquez
- Laboratorio de Inmunología Ocular, Carrera de Optometría, FES Iztacala, UNAM, Tlalnepantla de Baz, Estado de México, 54090, México.
| | - Marisol I González
- Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-Intestinal, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, Estado de México, 54090, México
| | - José L Reyes
- Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-Intestinal, UBIMED, FES Iztacala, UNAM, Tlalnepantla de Baz, Estado de México, 54090, México.
| |
Collapse
|
8
|
Chen J, Guo W, Du P, Cui T, Yang Y, Wang Y, Kang P, Zhang Z, Wang Q, Ye Z, Liu L, Jian Z, Gao T, Bian H, Li S, Li C. MIF inhibition alleviates vitiligo progression by suppressing CD8 + T cell activation and proliferation. J Pathol 2023; 260:84-96. [PMID: 36852981 DOI: 10.1002/path.6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
In vitiligo, autoreactive CD8+ T cells have been established as the main culprit considering its pathogenic role in mediating epidermal melanocyte-specific destruction. Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule that plays a central role in various immune processes including the activation and proliferation of T cells; but whether MIF is intertwined in vitiligo development and progression and its involvement in aberrantly activated CD8+ T cells remains ill-defined. In this study, we found that MIF was overabundant in vitiligo patients and a mouse model for human vitiligo. Additionally, inhibiting MIF ameliorated the disease progression in vitiligo mice, which manifested as less infiltration of CD8+ T cells and more retention of epidermal melanocytes in the tail skin. More importantly, in vitro experiments indicated that MIF-inhibition suppressed the activation and proliferation of CD8+ T cells from the lymph nodes of vitiligo mice, and the effect extended to CD8+ T cells in peripheral blood mononuclear cells of vitiligo patients. Finally, CD8+ T cells derived from MIF-inhibited vitiligo mice also exhibited an impaired capacity for activation and proliferation. Taken together, our results show that MIF might be clinically targetable in vitiligo treatment, and its inhibition might ameliorate vitiligo progression by suppressing autoreactive CD8+ T cell activation and proliferation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Pengran Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhe Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhubiao Ye
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, PR China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
9
|
Ferreira PTM, Oliveira-Scussel ACM, Sousa RAP, Gomes BQ, Félix JE, Silva RJ, Millian IB, Assunção TSF, Teixeira SC, Gomes MDLM, Silva MV, Barbosa BF, Rodrigues Junior V, Mineo JR, Oliveira CJF, Ferro EAV, Gomes AO. Macrophage Migration Inhibitory Factor contributes to drive phenotypic and functional macrophages activation in response to Toxoplasma gondii infection. Immunobiology 2023; 228:152357. [PMID: 36857907 DOI: 10.1016/j.imbio.2023.152357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Cytokines are small molecules secreted by numerous cells. Macrophage Migration Inhibitory Factor (MIF) is a cytokine initially described due to its function of inhibiting random macrophage migration. Currently, new functions have been described for MIF, such as stimulating inflammatory functions in response to infections by microorganisms including, Toxoplasma gondii. However, the primordial MIF function related to macrophages has been little addressed. The main purpose of the study was to recapitulate MIF function on macrophages in response to T. gondii infection. To achieve this goal, peritoneal macrophages were collected from C57BL/6WT and Mif1-/- mice after recruitment with thioglycolate. Macrophages were cultured, treated with 4-Iodo-6-phenylpyrimidine (4-IPP), and infected or not by T. gondii for 24 h. Following this, the culture supernatant was collected for cytokine, urea and nitrite analysis. In addition, macrophages were evaluated for phagocytic activity and T. gondii proliferation rates. Results demonstrated that T. gondii infection triggered an increase in MIF production in the WT group as well as an increase in the secretion of IL-10, TNF, IFN-γ, IL-6 and IL-17 in the WT and Mif1-/- macrophages. Regarding the comparison between groups, it was detected that Mif1-/- macrophages secreted more IL-10 compared to WT. On the other hand, the WT macrophages produced greater amounts of TNF, IFN-γ, IL-6 and IL-17. Urea production was more pronounced in Mif1-/- macrophages while nitrite production was higher in WT macrophages. T. gondii showed a greater ability to proliferate in Mif1-/- macrophages and these cells also presented enhanced phagocytic activity. In conclusion, T. gondii infection induces macrophage activation inciting cytokine production. In presence of MIF, T. gondii infected macrophages produce pro-inflammatory cytokines compatible with the M1 activation profile. MIF absence caused a dramatic reduction in pro-inflammatory cytokines that are balanced by increased levels of urea and anti-inflammatory cytokines. These macrophages presented increased phagocytic capacity and shared features activation with the M2 profile.
Collapse
Affiliation(s)
- Paula Tatiane Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Beatriz Quaresemin Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Jhennifer Estevão Félix
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Iliana Balga Millian
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Thais Soares Farnesi Assunção
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
11
|
Thiele M, Donnelly SC, Mitchell RA. OxMIF: a druggable isoform of macrophage migration inhibitory factor in cancer and inflammatory diseases. J Immunother Cancer 2022; 10:e005475. [PMID: 36180072 PMCID: PMC9528626 DOI: 10.1136/jitc-2022-005475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with a pleiotropic spectrum of biological functions implicated in the pathogenesis of cancer and inflammatory diseases. MIF is constitutively present in several cell types and non-lymphoid tissues and is secreted after acute stress or inflammation. MIF triggers the release of proinflammatory cytokines, overrides the anti-inflammatory effects of glucocorticoids, and exerts chemokine function, resulting in increased migration and recruitment of leukocytes into inflamed tissue. Despite this, MIF is a challenging target for therapeutic intervention because of its ubiquitous nature and presence in the circulation and tissue of healthy individuals. Oxidized MIF (oxMIF) is an immunologically distinct disease-related structural isoform found in the plasma and tissues of patients with inflammatory diseases and in solid tumor tissues. MIF converts to oxMIF in an oxidizing, inflammatory environment. This review discusses the biology and activity of MIF and the potential for autoimmune disease and cancer modification by targeting oxMIF. Anti-oxMIF antibodies reduce cancer cell invasion/migration, angiogenesis, proinflammatory cytokine production, and ERK and AKT activation. Anti-oxMIF antibodies also elicit apoptosis and alter immune cell function and/or migration. When co-administered with a glucocorticoid, anti-oxMIF antibodies produced a synergistic response in inflammatory models. Anti-oxMIF antibodies therefore counterregulate biological activities attributed to MIF. oxMIF expression has been observed in inflammatory diseases (eg, sepsis, psoriasis, asthma, inflammatory bowel disease, and systemic lupus erythematosus) and oxMIF has been detected in ovarian, colorectal, lung, and pancreatic cancers. In contrast to MIF, oxMIF is specifically detected in plasma and/or tissues of diseased patients, but not in healthy individuals. Therefore, as a druggable isoform of MIF, oxMIF represents a potential new therapeutic target in inflammatory diseases and cancer. Fully human, monoclonal anti-oxMIF antibodies have been shown to selectively bind oxMIF in preclinical and phase I studies; however, additional clinical assessments are necessary to validate their use as either a monotherapy or in combination with standard-of-care regimens (ie, immunomodulatory agents/checkpoint inhibitors, anti-angiogenic drugs, chemotherapeutics, and glucocorticoids).
Collapse
Affiliation(s)
- Michael Thiele
- Biology Research, OncoOne Research & Development GmbH, Vienna, Austria
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Robert A Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Department of Surgery, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Salazar-Castañón VH, Juárez-Avelar I, Legorreta-Herrera M, Rodriguez-Sosa M. Macrophage migration inhibitory factor contributes to immunopathogenesis during Plasmodium yoelii 17XL infection. Front Cell Infect Microbiol 2022; 12:968422. [PMID: 36093199 PMCID: PMC9449124 DOI: 10.3389/fcimb.2022.968422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine recognized regulator of the inflammatory immune response associated with several immune cells that produce inflammatory cytokines such as IL-1β, IL-6, IL-12, IL-18, and TNF-α. This study aimed to understand the effect of MIF on the immune response and pathogenesis during Plasmodium infection. Wild-type (Wt) and MIF knockout (Mif -/-) mice were intravenously infected with 1×103 Plasmodium yoelii (Py) 17XL-parasitized red blood cells. Our data showed that Py17XL-infected Wt mice died 11 days postinfection, while Mif -/- mice showed reduced parasitemia and an increase in their survival at day 11 up to 58%, importantly they succumb up to day 21 postinfection. The increased survival rate in Mif -/- mice was associated with less severe cachexia and anemia as a result of a mixed Th1/Th2 cytokine profile, high levels of IL-12, IL-17/IL-4, and IL-10 in serum; and high levels of IL-4 and IL-10, and low levels of IFN-γ in spleen cells compared to Py17XL infected Wt mice. Moreover, macrophages (Mφs) from Mif -/- mice exhibited higher concentrations of IL-10 and IL-12 and reduced levels of TNF-α and nitric oxide (NO) compared to Py17XL-infected Wt mice. These results demonstrate that MIF has an important role in regulating the immune response associated with host pathogenesis and lethality, which is relevant to consider in preventing/reducing complications in Plasmodium infections.
Collapse
Affiliation(s)
- Víctor H. Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Imelda Juárez-Avelar
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Estado de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico,*Correspondence: Miriam Rodriguez-Sosa, ; Martha Legorreta-Herrera,
| | - Miriam Rodriguez-Sosa
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Estado de México, Mexico,*Correspondence: Miriam Rodriguez-Sosa, ; Martha Legorreta-Herrera,
| |
Collapse
|
13
|
Varyani F, Löser S, Filbey KJ, Harcus Y, Drurey C, Poveda MC, Rasid O, White MPJ, Smyth DJ, Gerbe F, Jay P, Maizels RM. The IL-25-dependent tuft cell circuit driven by intestinal helminths requires macrophage migration inhibitory factor (MIF). Mucosal Immunol 2022; 15:1243-1256. [PMID: 35288645 PMCID: PMC9705247 DOI: 10.1038/s41385-022-00496-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key innate immune mediator with chemokine- and cytokine-like properties in the inflammatory pathway. While its actions on macrophages are well-studied, its effects on other cell types are less understood. Here we report that MIF is required for expansion of intestinal tuft cells during infection with the helminth Nippostrongylus brasiliensis. MIF-deficient mice show defective innate responses following infection, lacking intestinal epithelial tuft cell hyperplasia or upregulation of goblet cell RELMβ, and fail to expand eosinophil, type 2 innate lymphoid cell (ILC2) and macrophage (M2) populations. Similar effects were observed in MIF-sufficient wild-type mice given the MIF inhibitor 4-IPP. MIF had no direct effect on epithelial cells in organoid cultures, and MIF-deficient intestinal stem cells could generate tuft cells in vitro in the presence of type 2 cytokines. In vivo the lack of MIF could be fully compensated by administration of IL-25, restoring tuft cell differentiation and goblet cell expression of RELM-β, demonstrating its requirement upstream of the ILC2-tuft cell circuit. Both ILC2s and macrophages expressed the MIF receptor CXCR4, indicating that MIF may act as an essential co-factor on both cell types to activate responses to IL-25 in helminth infection.
Collapse
Affiliation(s)
- Fumi Varyani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Stephan Löser
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kara J Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marta Campillo Poveda
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Orhan Rasid
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - François Gerbe
- IGF, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- IGF, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Park H, Kam TI, Peng H, Chou SC, Mehrabani-Tabari AA, Song JJ, Yin X, Karuppagounder SS, Umanah GK, Rao AVS, Choi Y, Aggarwal A, Chang S, Kim H, Byun J, Liu JO, Dawson TM, Dawson VL. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson's disease. Cell 2022; 185:1943-1959.e21. [PMID: 35545089 DOI: 10.1016/j.cell.2022.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Hanjing Peng
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jae-Jin Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - A V Subba Rao
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - YuRee Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akanksha Aggarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sohyun Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyunhee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiyoung Byun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Vornewald PM, Oudhoff MJ. Helminths get MIFfed by the tuft cell – ILC2 circuit. Immunol Cell Biol 2022; 100:301-303. [DOI: 10.1111/imcb.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Pia M Vornewald
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
16
|
Patel NM, Yamada N, Oliveira FRMB, Stiehler L, Zechendorf E, Hinkelmann D, Kraemer S, Stoppe C, Collino M, Collotta D, Alves GF, Ramos HP, Sordi R, Marzi I, Relja B, Marx G, Martin L, Thiemermann C. Inhibition of Macrophage Migration Inhibitory Factor Activity Attenuates Haemorrhagic Shock-Induced Multiple Organ Dysfunction in Rats. Front Immunol 2022; 13:886421. [PMID: 35464452 PMCID: PMC9019168 DOI: 10.3389/fimmu.2022.886421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The aim of this study was to investigate (a) macrophage migration inhibitory factor (MIF) levels in polytrauma patients and rats after haemorrhagic shock (HS), (b) the potential of the MIF inhibitor ISO-1 to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) HS rat models and (c) whether treatment with ISO-1 attenuates NF-κB and NLRP3 activation in HS. Background The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. MIF is a pleiotropic cytokine which can modulate the inflammatory response, however, its role in trauma is unknown. Methods The MIF levels in plasma of polytrauma patients and serum of rats with HS were measured by ELISA. Acute HS rat models were performed to determine the influence of ISO-1 on MODS. The activation of NF-κB and NLRP3 pathways were analysed by western blot in the kidney and liver. Results We demonstrated that (a) MIF levels are increased in polytrauma patients on arrival to the emergency room and in rats after HS, (b) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (c) treatment of HS-rats with ISO-1 attenuated the organ injury and dysfunction in acute HS models and (d) reduced the activation of NF-κB and NLRP3 pathways in the kidney and liver. Conclusion Our results point to a role of MIF in the pathophysiology of trauma-induced organ injury and dysfunction and indicate that MIF inhibitors may be used as a potential therapeutic approach for MODS after trauma and/or haemorrhage.
Collapse
Affiliation(s)
- Nikita M Patel
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Noriaki Yamada
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Gifu University Graduate School of Medicine, Department of Emergency and Disaster Medicine Gifu University Hospital Advanced Critical Care Center, Gifu, Japan
| | - Filipe R M B Oliveira
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lara Stiehler
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Hinkelmann
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kraemer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Stoppe
- Department of Anesthesiology & Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Debora Collotta
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | | | - Hanna Pillmann Ramos
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Regina Sordi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Lukas Martin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
18
|
Panstruga R, Donnelly SC, Bernhagen J. A Cross-Kingdom View on the Immunomodulatory Role of MIF/D-DT Proteins in Mammalian and Plant Pseudomonas Infections. Immunology 2022; 166:287-298. [PMID: 35416298 DOI: 10.1111/imm.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gram-negative Pseudomonas bacteria are largely harmless saprotrophs, but some species can be potent pathogens of both plants and mammals. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT, also referred to as MIF-2) are multifunctional proteins that in addition to their intracellular functions also serve as extracellular signaling molecules (cytokines) in orchestrating mammalian immune responses. It recently emerged that plants also possess MIF-like proteins, termed MIF/D-DT-like (MDL) proteins. We here provide a comparative cross-kingdom view on the immunomodulatory role of MIF and MDL proteins during Pseudomonas infections in mammals and plants. Although in both kingdoms the lack of MIF/MDL proteins is associated with a reduction in bacterial load and disease symptoms, the underlying molecular principles seem to be different. We provide a perspective for future research activities to unravel additional commonalities and differences in the MIF/MDL-mediated adjustment of antibacterial immune activities.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilian-University (LMU) Munich, Munich, Germany
| |
Collapse
|
19
|
Pronier E, Imanci A, Selimoglu-Buet D, Badaoui B, Itzykson R, Roger T, Jego C, Naimo A, Francillette M, Breckler M, Wagner-Ballon O, Figueroa ME, Aglave M, Gautheret D, Porteu F, Bernard OA, Vainchenker W, Delhommeau F, Solary E, Droin NM. Macrophage migration inhibitory factor is overproduced through EGR1 in TET2 low resting monocytes. Commun Biol 2022; 5:110. [PMID: 35115654 PMCID: PMC8814058 DOI: 10.1038/s42003-022-03057-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Somatic mutation in TET2 gene is one of the most common clonal genetic events detected in age-related clonal hematopoiesis as well as in chronic myelomonocytic leukemia (CMML). In addition to being a pre-malignant state, TET2 mutated clones are associated with an increased risk of death from cardiovascular disease, which could involve cytokine/chemokine overproduction by monocytic cells. Here, we show in mice and in human cells that, in the absence of any inflammatory challenge, TET2 downregulation promotes the production of MIF (macrophage migration inhibitory factor), a pivotal mediator of atherosclerotic lesion formation. In healthy monocytes, TET2 is recruited to MIF promoter and interacts with the transcription factor EGR1 and histone deacetylases. Disruption of these interactions as a consequence of TET2-decreased expression favors EGR1-driven transcription of MIF gene and its secretion. MIF favors monocytic differentiation of myeloid progenitors. These results designate MIF as a chronically overproduced chemokine and a potential therapeutic target in patients with clonal TET2 downregulation in myeloid cells. To improve our understanding of the pathological role of TET2 mutations, Pronier, Imanci et al. use mice and human cells to show that TET2 downregulation promotes the production of macrophage migration inhibitory factor (MIF). In addition they show that whilst TET2 is recruited to the MIF promoter in healthy monocytes, decreased TET2 expression results in chronic overproduction of MIF - suggesting that MIF signaling could therefore constitute a potential therapeutic target for conditions associated with TET2 mutations.
Collapse
Affiliation(s)
- Elodie Pronier
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Owkin Lab, Owkin, Inc., New York, NY, 10003, USA
| | - Aygun Imanci
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Dorothée Selimoglu-Buet
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Bouchra Badaoui
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Département d'Hématologie et Immunologie Biologiques, 94000, Créteil, France
| | - Raphael Itzykson
- AP-HP, Service Hématologie Adultes, Hôpital Saint-Louis, 75010, Paris, France
| | - Thierry Roger
- Infectious Disease Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland
| | - Chloé Jego
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Audrey Naimo
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Maëla Francillette
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Marie Breckler
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Orianne Wagner-Ballon
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Département d'Hématologie et Immunologie Biologiques, 94000, Créteil, France.,Université Paris Est Créteil, INSERM, IMRB, Equipe 9, 94010, Créteil, France
| | - Maria E Figueroa
- Human Genetics, University of Miami Miller School of Medicine, 33136, Miami, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 33136, Miami, USA
| | - Marine Aglave
- INSERM US23, CNRS UMS 3655, AMMICa, Bioinformatic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Daniel Gautheret
- INSERM US23, CNRS UMS 3655, AMMICa, Bioinformatic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Olivier A Bernard
- Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.,INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - François Delhommeau
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France.,AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service d'Hématologie et Immunologie Biologique, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.,Hematology department, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Nathalie M Droin
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France. .,INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| |
Collapse
|
20
|
Baris E, Efe H, Gumustekin M, Arici MA, Tosun M. Varenicline Prevents LPS-Induced Inflammatory Response via Nicotinic Acetylcholine Receptors in RAW 264.7 Macrophages. Front Mol Biosci 2021; 8:721533. [PMID: 34712695 PMCID: PMC8546203 DOI: 10.3389/fmolb.2021.721533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The cholinergic anti-inflammatory pathway plays an important role in controlling inflammation. This study investigated the effects of varenicline, an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, on inflammatory cytokine levels, cell proliferation, and migration rates in a lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 murine macrophage cell lines. The cells were treated with increasing concentrations of varenicline, followed by LPS incubation for 24 h. Prior to receptor-mediated events, anti-inflammatory effects of varenicline on different cytokines and chemokines were investigated using a cytokine array. Nicotinic AChR-mediated effects of varenicline were investigated by using a non-selective nAChR antagonist mecamylamine hydrochloride and a selective α7nAChR antagonist methyllycaconitine citrate. TNFα, IL-1β, and IL-6 levels were determined by the ELISA test in cell media 24 h after LPS administration and compared with those of dexamethasone. The rates of cellular proliferation and migration were monitored for 24 h after drug treatment using a real-time cell analysis system. Varenicline decreased LPS-induced cytokines and chemokines including TNFα, IL-6, and IL-1β via α7nAChRs to a similar level that observed with dexamethasone. Varenicline treatment decreased LPS-induced cell proliferation, without any nAChR involvement. On the other hand, the LPS-induced cell migration rate decreased with varenicline via α7nAChR. Our data suggest that varenicline inhibits LPS-induced inflammatory response by activating α7nAChRs within the cholinergic anti-inflammatory pathway, reducing the cytokine levels and cell migration.
Collapse
Affiliation(s)
- Elif Baris
- Department of Pharmacology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Pharmacology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Hande Efe
- Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Mukaddes Gumustekin
- Department of Medical Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mualla Aylin Arici
- Department of Medical Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Metiner Tosun
- Department of Pharmacology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
21
|
Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther 2021; 233:108024. [PMID: 34673115 DOI: 10.1016/j.pharmthera.2021.108024] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine encoded within a functionally polymorphic genetic locus. MIF was initially recognized as a cytokine generated by activated T cells, but in recent days it has been identified as a multipotent key cytokine secreted by many other cell types involved in immune response and physiological processes. MIF is a highly conserved 12.5 kDa secretory protein that is involved in numerous biological processes. The expression and secretion profile of MIF suggests that MIF to be ubiquitously and constitutively expressed in almost all mammalian cells and is vital for numerous physiological processes. MIF is a critical upstream mediator of host innate and adaptive immunity and survival pathways resulting in the clearance of pathogens thus playing a protective role during infectious diseases. On the other hand, MIF being an immune modulator accelerates detrimental inflammation, promotes cancer metastasis and progression, thus worsening disease conditions. Several reports demonstrated that genetic and physiological factors, including MIF gene polymorphisms, posttranslational regulations, and receptor binding control the functional activities of MIF. Taking into consideration the multi-faceted role of MIF both in physiology and pathology, we thought it is timely to review and summarize the expressional and functional regulation of MIF, its functional mechanisms associated with its beneficial and pathological roles, and MIF-targeting therapies. Thus, our review will provide an overview on how MIF is regulated, its response, and the potency of the therapies that target MIF.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA..
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey PA-17033, USA.
| |
Collapse
|
22
|
Gene knockout or inhibition of macrophage migration inhibitory factor alleviates lipopolysaccharide-induced liver injury via inhibiting inflammatory response. Hepatobiliary Pancreat Dis Int 2021; 20:469-477. [PMID: 34348873 DOI: 10.1016/j.hbpd.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver injury is one of the most common complications during sepsis. Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine. This study explored the role of MIF in the lipopolysaccharide (LPS)-induced liver injury through genetically manipulated mouse strains. METHODS The model of LPS-induced liver injury was established in wild-type and Mif-knockout C57/BL6 mice. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBil) were detected, and the expressions of MIF, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured. Liver histopathology was conducted to assess liver injury. Moreover, the inhibitions of MIF with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) and 4-iodo-6-phenylpyrimidine (4-IPP) were used to evaluate their therapeutic potential of liver injury. RESULTS Compared with wild-type mice, the liver function indices and inflammation factors presented no significant difference in the Mif-/- mice. After 72 h of the LPS-induced liver injury, serum levels of ALT, AST, and TBil as well as TNF-α and IL-1β were significantly increased, but the knockout of Mif attenuated liver injury and inflammatory response. In liver tissue, mRNA levels of TNF-α, IL-1β and NF-κB p65 were remarkably elevated in LPS-induced liver injury, while the knockout of Mif reduced these levels. Moreover, in LPS-induced liver injury, the inhibitions of MIF with ISO-1 and 4-IPP alleviated liver injury and slightly attenuated inflammatory response. Importantly, compared to mice with LPS-induced liver injury, Mif knockout or MIF inhibitions significantly prolonged the survival of the mice. CONCLUSIONS In LPS-induced liver injury, the knockout of Mif or MIF inhibitions alleviated liver injury and slightly attenuated inflammatory response, thereby prolonged the survival of the mice. Targeting MIF may be an important strategy to protect the liver from injury during sepsis.
Collapse
|
23
|
Yang L, Guo D, Fan C. Identification and Structure-Activity Relationships of Dietary Flavonoids as Human Macrophage Migration Inhibitory Factor (MIF) Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10138-10150. [PMID: 34459191 DOI: 10.1021/acs.jafc.1c03367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary flavonoids are known to have anti-inflammatory and anticancer effects, but their influences on human macrophage migration inhibitory factor (MIF), a vital proinflammatory cytokine recognized as a therapeutic target for infectious diseases and cancers, have been rarely reported. Here, we identified 24 dietary flavonoids that could inhibit the tautomerase activity of MIF, five of which exerted IC50 values lower than the positive control ISO-1 in the micromolar range: morin (IC50 = 11.01 ± 0.45 μM) and amentoflavone (IC50 = 13.32 ± 0.64 μM) exhibited the most potent efficacy followed by apigenin (IC50 = 42.74 ± 4.20 μM), naringin (IC50 = 51.38 ± 2.12 μM), and fisetin (IC50 = 51.99 ± 0.63 μM). X-ray crystallography, molecular docking, and cellular experiments were utilized to illustrate the molecular binding details and structure-activity relationships. Scaffold modifications of flavonoids significantly influenced the potency. What stands out for morin is the unique 2'-OH substitution. In addition, amentoflavone situated at the MIF trimer pore may impact MIF-CD74 signaling. The results also showed that flavonoids could suppress cell chemotaxis and nitric oxide production in RAW264.7 cells. Our results elucidate the molecular mechanism of flavonoids acting on MIF and shed light on developing lead compounds against MIF-involved diseases.
Collapse
Affiliation(s)
- Liu Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
- Center for Infection & Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
24
|
Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med 2021; 32:525-533. [PMID: 34492295 DOI: 10.1016/j.tcm.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Mounting scientific evidence over decades has established that atherosclerosis is a chronic inflammatory disorder. Among the potentially critical sources of vascular inflammation during atherosclerosis are the components of pathogenic bacteria, especially lipopolysaccharide (LPS). Toll-like receptor (TLR)-4, expressed on different inflammatory cells involved with the recognition of bacterial LPS, has been recognized to have mutations that are prevalent in a number of ethnic groups. Such mutations have been associated with a decreased risk of atherosclerosis. In addition, epidemiological investigations have proposed that LPS confers a risk factor for the development of atherosclerosis. Gram-negative bacteria are the major source of LPS in an individual's serum, which may be generated during subclinical infections. The major cell receptors on inflammatory cells involved in the pathogenesis of atherosclerosis, like macrophages, monocytes, and dendritic cells (DCs), are CD14, MD-2, and LPS binding protein (LBP). These receptors have been blamed for the development of atherosclerosis through dysregulated activation following LPS recognition. Lipoproteins may also play a role in modulating the LPS-induced inflammatory events during atherosclerosis development. In this review article, we attempt to clarify the role of LPS in the initiation and progression of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Role of macrophages in fetal development and perinatal disorders. Pediatr Res 2021; 90:513-523. [PMID: 33070164 DOI: 10.1038/s41390-020-01209-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
In the fetus and the neonate, altered macrophage function has been implicated not only in inflammatory disorders but also in developmental abnormalities marked by altered onset, interruption, or imbalance of key structural changes. The developmental role of macrophages were first noted nearly a century ago, at about the same time when these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since that time, we have made considerable progress in understanding the diverse roles that these cells play in both physiology and disease. Here, we review the role of fetal and neonatal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the possibility of therapeutic manipulation of the relative abundance and activation status of macrophage subsets in various diseases. This article combines peer-reviewed evidence from our own studies with results of an extensive literature search in the databases PubMed, EMBASE, and Scopus. IMPACT: We have reviewed the structure, differentiation, and classification of macrophages in the neonatal period. Neonatal macrophages are derived from embryonic, hepatic, and bone marrow precursors. Macrophages play major roles in tissue homeostasis, innate immunity, inflammation, tissue repair, angiogenesis, and apoptosis of various cellular lineages in various infectious and inflammatory disorders. Macrophages and related inflammatory mediators could be important therapeutic targets in several neonatal diseases.
Collapse
|
26
|
Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 2021; 131:137557. [PMID: 34623330 DOI: 10.1172/jci137557] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart forms early in development and delivers oxygenated blood to the rest of the embryo. After birth, the heart requires kilograms of ATP each day to support contractility for the circulation. Cardiac metabolism is omnivorous, utilizing multiple substrates and metabolic pathways to produce this energy. Cardiac development, metabolic tuning, and the response to ischemia are all regulated in part by the hypoxia-inducible factors (HIFs), central components of essential signaling pathways that respond to hypoxia. Here we review the actions of HIF1, HIF2, and HIF3 in the heart, from their roles in development and metabolism to their activity in regeneration and preconditioning strategies. We also discuss recent work on the role of HIFs in atherosclerosis, the precipitating cause of myocardial ischemia and the leading cause of death in the developed world.
Collapse
|
27
|
Ives A, Le Roy D, Théroude C, Bernhagen J, Roger T, Calandra T. Macrophage migration inhibitory factor promotes the migration of dendritic cells through CD74 and the activation of the Src/PI3K/myosin II pathway. FASEB J 2021; 35:e21418. [PMID: 33774873 DOI: 10.1096/fj.202001605r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.
Collapse
Affiliation(s)
- Annette Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-Alvarado JB, Reyes-Leyva J, Aguilar-Alonso P, Rodriguez-Sosa M, Maycotte P. Autophagy inhibition in breast cancer cells induces ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal 2021; 86:110075. [PMID: 34229086 DOI: 10.1016/j.cellsig.2021.110075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Oscar Nieto-Yañez
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Guadalupe Rojas-Sanchez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José Benito Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
29
|
Li L, Xu M, Rowan SC, Howell K, Russell-Hallinan A, Donnelly SC, McLoughlin P, Baugh JA. The effects of genetic deletion of Macrophage migration inhibitory factor on the chronically hypoxic pulmonary circulation. Pulm Circ 2021; 10:2045894020941352. [PMID: 33447370 PMCID: PMC7780187 DOI: 10.1177/2045894020941352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
While it is well established that the haemodynamic cause of hypoxic pulmonary hypertension is increased pulmonary vascular resistance, the molecular pathogenesis of the increased resistance remains incompletely understood. Macrophage migration inhibitory factor is a pleiotropic cytokine with endogenous tautomerase enzymatic activity as well as both intracellular and extracellular signalling functions. In several diseases, macrophage migration inhibitory factor has pro-inflammatory roles that are dependent upon signalling through the cell surface receptors CD74, CXCR2 and CXCR4. Macrophage migration inhibitory factor expression is increased in animal models of hypoxic pulmonary hypertension and macrophage migration inhibitory factor tautomerase inhibitors, which block some of the functions of macrophage migration inhibitory factor, and have been shown to attenuate hypoxic pulmonary hypertension in mice and monocrotaline-induced pulmonary hypertension in rats. However, because of the multiple pathways through which it acts, the integrated actions of macrophage migration inhibitory factor during the development of hypoxic pulmonary hypertension were unclear. We report here that isolated lungs from adult macrophage migration inhibitory factor knockout (MIF-/- ) mice maintained in normoxic conditions showed greater acute hypoxic vasoconstriction than the lungs of wild type mice (MIF+/+ ). Following exposure to hypoxia for three weeks, isolated lungs from MIF-/- mice had significantly higher pulmonary vascular resistance than those from MIF+/+ mice. The major mechanism underlying the greater increase in pulmonary vascular resistance in the hypoxic MIF-/- mice was reduction of the pulmonary vascular bed due to an impairment of the normal hypoxia-induced expansion of the alveolar capillary network. Taken together, these results demonstrate that macrophage migration inhibitory factor plays a central role in the development of the pulmonary vascular responses to chronic alveolar hypoxia.
Collapse
Affiliation(s)
- Lili Li
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maojia Xu
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Simon C Rowan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Katherine Howell
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Adam Russell-Hallinan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Jovanović Krivokuća M, Stefanoska I, Vilotić A, Ćujić D, Vrzić Petronijević S, Vićovac L. Macrophage migration inhibitory factor modulates cytokine expression in the trophoblast cell line HTR-8/SVneo. Reprod Fertil Dev 2020; 32:RD20138. [PMID: 33323165 DOI: 10.1071/rd20138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/26/2020] [Indexed: 02/24/2024] Open
Abstract
Extravillous trophoblasts are specific placental cells that invade the uterine stroma and spiral arteries modifying and adjusting them to pregnancy. Many pregnancy pathologies are associated with impairment of this process, including preeclampsia and intrauterine growth restriction, among others. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that is abundant at the fetomaternal interface. Previous results from our group showed that MIF participates in trophoblast invasion and modulates the expression of molecules known to mediate stromal and endovascular trophoblast invasion. In this study we investigated the possibility that MIF could act as a regulator of cytokines known to modulate trophoblast invasion using the normal extravillous trophoblast-derived cell line HTR-8/SVneo. Expression of trophoblast MIF was attenuated by MIF mRNA-specific small interfering RNAs. Cytokine expression was assessed at the mRNA and protein levels using real-time quantitative polymerase chain reaction and flow cytometry respectively. Knockdown of MIF led to a significant decrease in mRNA for IL-1β (IL1B) and IL-8 (CXCL8) and interleukin (IL)-8 protein. The addition of recombinant human MIF to cell culture medium increased IL-6 after 24h treatment and IL-6 and IL-8 after 72h treatment. Cell viability was not affected by MIF silencing or rhMIF treatment. The results of this study imply that at least some of the effects of MIF on trophoblast invasion could be mediated through autocrine or paracrine modulation of trophoblast cytokine production.
Collapse
|
31
|
Doroudian M, O'Neill A, O'Reilly C, Tynan A, Mawhinney L, McElroy A, Webster SS, MacLoughlin R, Volkov Y, E Armstrong M, A O'Toole G, Prina-Mello A, C Donnelly S. Aerosolized drug-loaded nanoparticles targeting migration inhibitory factors inhibit Pseudomonas aeruginosa-induced inflammation and biofilm formation. Nanomedicine (Lond) 2020; 15:2933-2953. [PMID: 33241979 DOI: 10.2217/nnm-2020-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine, which has been shown to promote disease severity in cystic fibrosis. Methods: In this study, aerosolized drug-loaded nanoparticles containing SCD-19, an inhibitor of MIF's tautomerase enzymatic activity, were developed and characterized. Results: The aerosolized nanoparticles had an optimal droplet size distribution for deep lung deposition, with a high degree of biocompatibility and significant cellular uptake. Conclusion: For the first time, we have developed an aerosolized nano-formulation against MIF's enzymatic activity that achieved a significant reduction in the inflammatory response of macrophages, and inhibited Pseudomonas aeruginosa biofilm formation on airway epithelial cells. This represents a potential novel adjunctive therapy for the treatment of P. aeruginosa infection in cystic fibrosis.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew O'Neill
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aisling Tynan
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife McElroy
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Shanice S Webster
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,Department of Histology, Cytology & Embryology, First Moscow State Sechenov Medical University, Russian Federation
| | - Michelle E Armstrong
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - George A O'Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,CRANN Institute & AMBER Centre, Trinity College Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland
| |
Collapse
|
32
|
Abstract
Initially identified as a T lymphocyte-elicited inhibitor of macrophage motility, macrophage migration inhibitory factor (MIF) has since been found to be expressed by nearly every immune cell type examined and overexpressed in most solid and hematogenous malignant cancers. It is localized to both extracellular and intracellular compartments and physically interacts with more than a dozen different cell surface and intracellular proteins. Although classically associated with and characterized as a mediator of pro-inflammatory innate immune responses, more recent studies demonstrate that, in malignant disease settings, MIF contributes to anti-inflammatory, immune evasive, and immune tolerant phenotypes in both innate and adaptive immune cell types. This review will summarize the studies describing MIF in tumor-specific innate and adaptive immune responses and attempt to reconcile these various pleiotropic functions in normal physiology.
Collapse
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
33
|
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.
Collapse
|
34
|
Illescas O, Pacheco-Fernández T, Laclette JP, Rodriguez T, Rodriguez-Sosa M. Immune modulation by the macrophage migration inhibitory factor (MIF) family: D-dopachrome tautomerase (DDT) is not (always) a backup system. Cytokine 2020; 133:155121. [PMID: 32417648 DOI: 10.1016/j.cyto.2020.155121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.
Collapse
Affiliation(s)
- Oscar Illescas
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Thalia Pacheco-Fernández
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Juan P Laclette
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 04510, Mexico
| | - Tonathiu Rodriguez
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Miriam Rodriguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico.
| |
Collapse
|
35
|
Nasiri E, Sankowski R, Dietrich H, Oikonomidi A, Huerta PT, Popp J, Al-Abed Y, Bacher M. Key role of MIF-related neuroinflammation in neurodegeneration and cognitive impairment in Alzheimer's disease. Mol Med 2020; 26:34. [PMID: 32303185 PMCID: PMC7164357 DOI: 10.1186/s10020-020-00163-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage Migration Inhibitory Factor (MIF) is a potent proinflammatory cytokine that promotes the production of other immune mediators. MIF is produced by most cell types in the brain including microglia, astrocytes and neurons. Enhanced expression of MIF might contribute to the persistent activation of glial, chronic neuroinflammation and neurodegeneration. Here, we investigated the effect of MIF on inflammatory markers and spatial learning in a mouse model of sporadic AD and on tau pathology in AD patients. Methods We examined the effects of MIF deficiency and pharmacological MIF inhibition in vitro and in vivo. In vitro, quantitative PCR and ELISA were used to assess cytokine production of STZ-treated glial cells. In vivo, C57BL/6 mice were subjected to intracerebroventricular streptozotocin injection (3 mg/kg, ICV-STZ). Neuroinflammation and contextual learning performance were assessed using quantitative PCR and fear conditioning, respectively. Pharmacological MIF inhibition was achieved with intraperitoneal injections of ISO-1 (daily, IP, 20 mg/kg in 5% DMSO in 0.9% NaCl) for 4 weeks following ICV-STZ injection. The findings from ISO-1 treated mice were confirmed in MIF knockout C57BL/6. To assess the role of MIF in human AD, cerebrospinal fluid levels of MIF and hyperphosphorylated tau were measured using ELISA. Results Administration ICV-STZ resulted in hippocampal dependent cognitive impairment. MIF inhibition with ISO-1 significantly improved the STZ-induced impairment in contextual memory performance, indicating MIF-related inflammation as a major contributor to ICV-STZ-induced memory deficits. Furthermore, inhibition of the MIF resulted in reduced cytokine production in vitro and in vivo. In human subjects with AD at early clinical stages, cerebrospinal fluid levels of MIF were increased in comparison with age-matched controls, and correlated with biomarkers of tau hyper-phosphorylation and neuronal injury hinting at MIF levels as a potential biomarker for early-stage AD. Conclusions The present study indicates the key role of MIF in controlling the chronic cytokine release in neuroinflammation related to tau hyperphosphorylation, neurodegeneration, and clinical manifestations of AD, suggesting the potential of MIF inhibition as therapeutic strategy to slow down neurodegeneration and clinical disease progression.
Collapse
Affiliation(s)
- Elham Nasiri
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Roman Sankowski
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, NY, USA. .,Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA. .,Current address: Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Current address: Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Aikaterini Oikonomidi
- Old Age Psychiatry, Department of Psychiatry, University hospital of Lausanne, Lausanne, Switzerland
| | - Patricio T Huerta
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Laboratory of Immune & Neural Networks, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, University hospital of Lausanne, Lausanne, Switzerland.,Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Bacher
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
36
|
Florez-Sampedro L, Soto-Gamez A, Poelarends GJ, Melgert BN. The role of MIF in chronic lung diseases: looking beyond inflammation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1183-L1197. [PMID: 32208924 DOI: 10.1152/ajplung.00521.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with many diseases. Most studies found in literature describe MIF as a proinflammatory cytokine involved in chronic inflammatory conditions, but evidence from last years suggests that many of its key effects are not directly related to inflammation. In fact, MIF is constitutively expressed in most human tissues and in some cases in high levels, which does not reflect the pattern of expression of a classic proinflammatory cytokine. Moreover, MIF is highly expressed during embryonic development and decreases during adulthood, which point toward a more likely role as growth factor. Accordingly, MIF knockout mice develop age-related spontaneous emphysema, suggesting that MIF presence (e.g., in younger individuals and wild-type animals) is part of a healthy lung. In view of this new line of evidence, we aimed to review data on the role of MIF in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,European Institute for the Biology of Aging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
38
|
Zhu C, Liu Y, Song Y, Wang Q, Liu Y, Yang S, Li D, Zhang Y, Cheng B. Deletion of macrophage migration inhibitory factor ameliorates inflammation in mice model severe acute pancreatitis. Biomed Pharmacother 2020; 125:109919. [PMID: 32062385 DOI: 10.1016/j.biopha.2020.109919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine implicated in sepsis, rheumatoid arthritis and other diseases. However, the role of MIF in acute pancreatitis (AP) remains unclear. This study aims to explore the role of MIF in the pathogenesis of AP using MIF-/- mice (referred to as KO) and the biological effects of pharmacological inhibition of MIF in l-arginine induced AP. METHODS AP was induced in C57BL/6 wild-type (referred to as WT) and KO mice by administration of l-arginine. The severity of AP was assessed by serum analysis of amylase and lipase, and of these pro-inflammatory cytokines TNF-α and IL-1β. Histological hematoxylin and eosin (H&E) and immunohistochemical staining of pancreatic tissues were examined for inflammation and expression of pro-inflammatory mediators. We also investigated the biological effects of pharmacological inhibition of MIF activity using ISO-1((S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester). RESULTS At 72 h after the induction of AP with l-arginine, significantly lower levels of serum amylase, lipase, TNF-α, and IL-1β were observed in KO mice when compared with WT controls. Histological examination further showed protective effects against pancreatic tissue damage and inflammation, with pancreatic expression of TNF-α, IL-1β and NF-κB p65 markedly reduced. Pharmacological inhibition of MIF activity with ISO-1 markedly mirrored the protective effect seen in the KO AP model providing further evidence that MIF is involved in the pathogenesis of AP. CONCLUSION Our data provided strong evidence for the participation of MIF in the pathogenesis of AP and subsequent inflammatory response. The genetic ablation of MIF or its inhibition with pharmacological agents significantly ameliorated the severity of AP.
Collapse
Affiliation(s)
- Changju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China.
| | - Yanna Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Yaodong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Qiaofang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Yanyan Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Shujun Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Dejian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Yan Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Bo Cheng
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| |
Collapse
|
39
|
Filbey KJ, Varyani F, Harcus Y, Hewitson JP, Smyth DJ, McSorley HJ, Ivens A, Nylén S, Rottenberg M, Löser S, Maizels RM. Macrophage Migration Inhibitory Factor (MIF) Is Essential for Type 2 Effector Cell Immunity to an Intestinal Helminth Parasite. Front Immunol 2019; 10:2375. [PMID: 31708913 PMCID: PMC6821780 DOI: 10.3389/fimmu.2019.02375] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Immunity to intestinal helminths is known to require both innate and adaptive components of the immune system activated along the Type 2 IL-4R/STAT6-dependent pathway. We have found that macrophage migration inhibitory factor (MIF) is essential for the development of effective immunity to the intestinal helminth Heligmosomoides polygyrus, even following vaccination which induces sterile immunity in wild-type mice. A chemical inhibitor of MIF, 4-IPP, was similarly found to compromise anti-parasite immunity. Cellular analyses found that the adaptive arm of the immune response, including IgG1 antibody responses and Th2-derived cytokines, was intact and that Foxp3+ T regulatory cell responses were unaltered in the absence of MIF. However, MIF was found to be an essential cytokine for innate cells, with ablated eosinophilia and ILC2 responses, and delayed recruitment and activation of macrophages to the M2 phenotype (expressing Arginase 1, Chil3, and RELM-α) upon infection of MIF-deficient mice; a macrophage deficit was also seen in wild-type BALB/c mice exposed to 4-IPP. Gene expression analysis of intestinal and lymph node tissues from MIF-deficient and -sufficient infected mice indicated significantly reduced levels of Arl2bp, encoding a factor involved in nuclear localization of STAT3. We further found that STAT3-deficient macrophages expressed less Arginase-1, and that mice lacking STAT3 in the myeloid compartment (LysMCrexSTAT3fl/fl) were unable to reject a secondary infection with H. polygyrus. We thus conclude that in the context of a Type 2 infection, MIF plays a critical role in polarizing macrophages into the protective alternatively-activated phenotype, and that STAT3 signaling may make a previously unrecognized contribution to immunity to helminths.
Collapse
Affiliation(s)
- Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Fumi Varyani
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - James P. Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle J. Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Henry J. McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Martin Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Stephan Löser
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Herbst A, Hoang AN, Woo W, McKenzie D, Aiken JM, Miller RA, Allison DB, Liu N, Wanagat J. Mitochondrial DNA alterations in aged macrophage migration inhibitory factor-knockout mice. Mech Ageing Dev 2019; 182:111126. [PMID: 31381889 PMCID: PMC6718337 DOI: 10.1016/j.mad.2019.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/06/2023]
Abstract
The age-induced, exponential accumulation of mitochondrial DNA (mtDNA) deletion mutations contributes to muscle fiber loss. The causes of these mutations are not known. Systemic inflammation is associated with decreased muscle mass in older adults and is implicated in the formation of sporadic mtDNA deletions. Macrophage migration inhibitory factor knockout (MIF-KO) mice are long-lived with decreased inflammation. We hypothesized that aged MIF-KO mice would have lower mtDNA deletion frequencies and fewer electron transport chain (ETC) deficient fibers. We measured mtDNA copy number and mutation frequency as well as the number and length of ETC deficient fibers in 22-month old MIF-KO and F2 hybrid control mice. We also measured mtDNA copy number and deletion frequency in female UM-HET3 mice, a strain whose lifespan matches the MIF-KO mice. We did not observe a significant effect of MIF ablation on muscle mtDNA deletion frequency. There was a significantly lower mtDNA copy number in the MIF-KO mice and the lifespan-matched UM-HET3 mice compared to the F2 hybrids, suggesting the importance of genetic background in mtDNA copy number control. Our data do not support a definitive role for MIF in age-induced mtDNA deletions.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Wendy Woo
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Bilsborrow JB, Doherty E, Tilstam PV, Bucala R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets 2019; 23:733-744. [PMID: 31414920 DOI: 10.1080/14728222.2019.1656718] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction. Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity and is implicated in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Several classes of MIF inhibitors such as small molecule inhibitors and peptide inhibitors are in clinical development. Areas covered. The role of MIF in the pathogenesis of RA and SLE is examined; the authors review the structure, physiology and signaling characteristics of MIF and the related cytokine D-DT/MIF-2. The preclinical and clinical trial data for MIF inhibitors are also reviewed; information was retrieved from PubMed and ClinicalTrials.gov using the keywords MIF, D-DT/MIF-2, CD74, CD44, CXCR2, CXCR4, Jab-1, rheumatoid arthritis, systemic lupus erythematosus, MIF inhibitor, small molecule, anti-MIF, anti-CD74, and peptide inhibitor. Expert opinion. Studies in mice and in humans demonstrate the therapeutic potential of MIF inhibition for RA and SLE. MIF- directed approaches could be particularly efficacious in patients with high expression MIF genetic polymorphisms. In patients with RA and SLE and high expression MIF alleles, targeted MIF inhibition could be a precision medicine approach to treatment. Anti-MIF pharmacotherapies could also be steroid-sparing in patients with chronic glucocorticoid dependence or refractory autoimmune disease.
Collapse
Affiliation(s)
- Joshua B Bilsborrow
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Edward Doherty
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Pathricia V Tilstam
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
42
|
Li R, Li L, Liu Y, Tang Y, Zhang R. VE-cadherin regulates migration inhibitory factor synthesis and release. Inflamm Res 2019; 68:877-887. [PMID: 31342095 DOI: 10.1007/s00011-019-01270-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Vascular endothelial (VE)-cadherin-mediated adherens junction is critical to maintain endothelial integrity. Besides its role of homophilic intercellular adhesion, VE-cadherin also has a role of outside-in signaling with functional consequences for vascular physiology. However, the nature of these signals remains not completely understood. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were used in cell culture experiments. Confluent HUVECs were treated with VE-cadherin function-blocking antibodies BV9 (50 μg/ml) or IgG control. Antibody array was used to screen for cytokine/chemokine in supernatant. For VE-cadherin knockdown, siRNA transfection was used. ELISA, Western blot, and qRT-PCR were used to confirm the expression of screened cytokine/chemokine. To explore the possible mechanisms, Scr phosphorylation was detected and Scr inhibitor PP2 (1 μM) was used. To investigate in vivo relevance of the findings, BV9 and the indicated neutralizing antibodies were injected into mice and then lung vascular leak and inflammation were examined by Evans blue assay and lung tissue H&E, respectively. RESULTS Using a non-biased, high-throughout human cytokine/chemokine antibody array, we first found that disruption of VE-cadherin-mediated adhesion by function-blocking antibody BV9 triggered the release of migration inhibitory factor (MIF). This VE-cadherin-mediated release of MIF further confirmed by ELISA with both VE-cadherin blocking antibody and siRNA technique was due to enhanced expression of MIF mRNA, which was mediated by Src kinase activation. In addition, in vivo lung vascular leak induced by VE-cadherin function-blocking antibody was partly alleviated by neutralizing MIF. CONCLUSIONS VE-cadherin regulates MIF synthesis and release via Src kinase. Our data provide additional evidence to the concept that VE-cadherin transfers intracellular signals to coordinate the state of cell-cell adhesion with gene expression.
Collapse
Affiliation(s)
- Ranran Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiyun Liu
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaoqing Tang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruyuan Zhang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
43
|
Macrophage Migration Inhibitory Factor Promotes the Interaction between the Tumor, Macrophages, and T Cells to Regulate the Progression of Chemically Induced Colitis-Associated Colorectal Cancer. Mediators Inflamm 2019; 2019:2056085. [PMID: 31360118 PMCID: PMC6652048 DOI: 10.1155/2019/2056085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Colitis-associated colorectal cancer (CRC) development has been shown to be related to chronically enhanced inflammation. Macrophage migration inhibitory factor (MIF) is an inflammatory mediator that favors inflammatory cytokine production and has chemotactic properties for the recruitment of macrophages (Møs) and T cells. Here, we investigated the role of MIF in the inflammatory response and recruitment of immune cells in a murine model of chemical carcinogenesis to establish the impact of MIF on CRC genesis and malignancy. We used BALB/c MIF-knockout (MIF-/-) and wild-type (WT) mice to develop CRC by administering intraperitoneal (i.p.) azoxymethane and dextran sodium sulfate in drinking water. Greater tumor burdens were observed in MIF-/- mice than in WT mice. Tumors from MIF-/- mice were histologically identified to be more aggressive than tumors from WT mice. The localization of MIF suggests that it is also involved in cell differentiation. The relative gene expression of il-17, measured by real-time PCR, was higher in MIF-/- CRC mice, compared to the WT CRC and healthy MIF-/- mice. Importantly, compared to the WT intestinal epithelium, lower percentages of tumor-associated Møs were found in the MIF-/- intestinal epithelium. These results suggest that MIF plays a role in controlling the initial development of CRC by attracting Møs to the tumor, which is a condition that favors the initial antitumor responses.
Collapse
|
44
|
de Souza GF, Muraro SP, Santos LD, Monteiro APT, da Silva AG, de Souza APD, Stein RT, Bozza PT, Porto BN. Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm Res 2019; 68:481-491. [PMID: 30944975 DOI: 10.1007/s00011-019-01233-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE AND DESIGN Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.
Collapse
Affiliation(s)
- Gabriela F de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stéfanie P Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo D Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula T Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Amanda G da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula D de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato T Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
45
|
Xu F, Shi YH, Chen J. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:947-955. [PMID: 30586634 DOI: 10.1016/j.fsi.2018.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine playing critical roles in inflammatory and immune responses. However, its functions have not been well studied in fish. In this study, we identified a MIF molecule from Japanese sea bass (Lateolabrax japonicus; LjMIF). Multiple sequence alignment showed that LjMIF has the typical structural features of MIFs. Phylogenetic tree analysis revealed that LjMIF is most closely related to the yellowfin tuna (Thunnus albacares), large yellow croaker (Larimichthys crocea), and red drum (Sciaenops ocellatus) homologs. Constitutive mRNA expression of LjMIF was detected in all tested tissues, with the highest level in the liver. Upon Vibro harveyi infection, LjMIF transcripts were altered in the tested tissues, including the liver, spleen, and head kidney. Subsequently, we prepared recombinant LjMIF (rLjMIF) and the corresponding antibody (anti-LjMIF). The in vitro study showed that rLjMIF inhibited the trafficking of Japanese sea bass monocytes/macrophages (MO/MΦ) and lymphocytes, but not of neutrophils, while anti-LjMIF had the opposite effect. rLjMIF also enhanced phagocytosis and intracellular killing of V. harveyi by MO/MΦ, while anti-LjMIF only inhibited phagocytosis by MO/MΦ. The in vivo study showed that rLjMIF aggravated the course of V. harveyi infection in Japanese sea bass, but anti-LjMIF increased the survival rate of the fish and decreased the bacterial burden. In conclusion, our observation revealed that LjMIF is closely involved in the immune responses of Japanese sea bass for combating V. harveyi infection.
Collapse
Affiliation(s)
- Feng Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
46
|
Kim HK, Garcia AB, Siu E, Tilstam P, Das R, Roberts S, Leng L, Bucala R. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression. FASEB J 2019; 33:6919-6932. [PMID: 30817226 DOI: 10.1096/fj.201802433r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T cells expressing invariant γδ antigen receptors (γδ T cells) bridge innate and adaptive immunity and facilitate barrier responses to pathogens. Macrophage migration inhibitory factor (MIF) is an upstream mediator of host defense that up-regulates the expression of pattern recognition receptors and sustains inflammatory responses by inhibiting activation-induced apoptosis in monocytes and macrophages. Surprisingly, Mif-/- γδ T cells, when compared with wild type, were observed to produce >10-fold higher levels of the proinflammatory cytokine IL-17 after stimulation with gram-positive exotoxins. High-IL-17 expression was associated with the characteristic features of IL-17-producing γδ T (γδ17) cells, including expression of IL-23R, IL-1R1, and the transcription factors RORγt and Sox13. In the gram-positive model of shock mediated by toxic shock syndrome toxin (TSST-1), Mif-/- mice succumbed to death more quickly with increased pulmonary neutrophil accumulation and higher production of cytokines, including IL-1β and IL-23. Mif-/- γδ T cells also produced high levels of IL-17 in response to Mycobacterium lipomannan, and depletion of γδ T cells improved survival from acutely lethal Mycobacterium infection or TSST-1 administration. These data indicate that MIF deficiency is associated with a compensatory amplification of γδ17 cell responses, with implications for innate immunity and IL-17-mediated pathology in situations such as gram-positive toxic shock or Mycobacterium infection.-Kim, H. K., Garcia, A. B., Siu, E., Tilstam, P., Das, R., Roberts, S., Leng, L., Bucala, R. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Alvaro Baeza Garcia
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Edwin Siu
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Pathricia Tilstam
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Rita Das
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott Roberts
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Lin Leng
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Richard Bucala
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
47
|
Howait M, Albassam A, Yamada C, Sasaki H, Bahammam L, Azuma MM, Cintra LTA, Satoskar AR, Yamada S, White R, Kawai T, Movila A. Elevated Expression of Macrophage Migration Inhibitory Factor Promotes Inflammatory Bone Resorption Induced in a Mouse Model of Periradicular Periodontitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2035-2043. [PMID: 30737274 DOI: 10.4049/jimmunol.1801161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
Abstract
Locally produced osteoclastogenic factor RANKL plays a critical role in the development of bone resorption in periradicular periodontitis. However, because RANKL is also required for healthy bone remodeling, it is plausible that a costimulatory molecule that upregulates RANKL production in inflammatory periradicular periodontitis may be involved in the pathogenic bone loss processes. We hypothesized that macrophage migration inhibitory factor (MIF) would play a role in upregulating the RANKL-mediated osteoclastogenesis in the periradicular lesion. In response to pulp exposure, the bone loss and level of MIF mRNA increased in the periradicular periodontitis, which peaked at 14 d, in conjunction with the upregulated expressions of mRNAs for RANKL, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), chemokines (MCP-1 and SDF-1), and MIF's cognate receptors CXCR4 and CD74. Furthermore, expressions of those mRNAs were found significantly higher in wild-type mice compared with that of MIF-/- mice. In contrast, bacterial LPS elicited the production of MIF from ligament fibroblasts in vitro, which, in turn, enhanced their productions of RANKL and TNF-α. rMIF significantly upregulated the number of TRAP+ osteoclasts in vitro. Finally, periapical bone loss induced in wild-type mice were significantly diminished in MIF-/- mice. Altogether, the current study demonstrated that MIF appeared to function as a key costimulatory molecule to upregulate RANKL-mediated osteoclastogenesis, leading to the pathogenically augmented bone resorption in periradicular lesions. These data also suggest that the approach to neutralize MIF activity may lead to the development of a therapeutic regimen for the prevention of pathogenic bone loss in periradicular periodontitis.
Collapse
Affiliation(s)
- Mohammed Howait
- School of Dental Medicine, Harvard University, Boston, MA 02115.,Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,The Forsyth Institute, Cambridge, MA 02142
| | - Abdullah Albassam
- School of Dental Medicine, Harvard University, Boston, MA 02115.,Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,The Forsyth Institute, Cambridge, MA 02142
| | - Chiaki Yamada
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33324
| | - Hajime Sasaki
- School of Dental Medicine, Harvard University, Boston, MA 02115.,The Forsyth Institute, Cambridge, MA 02142.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Laila Bahammam
- Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mariane Maffei Azuma
- The Forsyth Institute, Cambridge, MA 02142.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210; and
| | - Satoru Yamada
- Graduate School of Dentistry, Tohoku University, Tohoku, Sendai 980-8575, Japan
| | - Robert White
- School of Dental Medicine, Harvard University, Boston, MA 02115
| | - Toshihisa Kawai
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33324
| | - Alexandru Movila
- School of Dental Medicine, Harvard University, Boston, MA 02115; .,The Forsyth Institute, Cambridge, MA 02142.,College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33324
| |
Collapse
|
48
|
Pellowe AS, Sauler M, Hou Y, Merola J, Liu R, Calderon B, Lauridsen HM, Harris MR, Leng L, Zhang Y, Tilstam PV, Pober JS, Bucala R, Lee PJ, Gonzalez AL. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation. FASEB J 2019; 33:2171-2186. [PMID: 30252532 PMCID: PMC6338650 DOI: 10.1096/fj.201800480r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Dysregulated neutrophil extravasation contributes to the pathogenesis of many inflammatory disorders. Pericytes (PCs) have been implicated in the regulation of neutrophil transmigration, and previous work demonstrates that endothelial cell (EC)-derived signals reduce PC barrier function; however, the signaling mechanisms are unknown. Here, we demonstrate a novel role for EC-derived macrophage migration inhibitory factor (MIF) in inhibiting PC contractility and facilitating neutrophil transmigration. With the use of micro-ELISAs, RNA sequencing, quantitative PCR, and flow cytometry, we found that ECs secrete MIF, and PCs upregulate CD74 in response to TNF-α. We demonstrate that EC-derived MIF decreases PC contractility on 2-dimensional silicone substrates via reduction of phosphorylated myosin light chain. With the use of an in vitro microvascular model of the human EC-PC barrier, we demonstrate that MIF decreases the PC barrier to human neutrophil transmigration by increasing intercellular PC gap formation. For the first time, an EC-specific MIF knockout mouse was used to investigate the effects of selective deletion of EC MIF. In a model of acute lung injury, selective deletion of EC MIF decreases neutrophil infiltration to the bronchoalveolar lavage and tissue and simultaneously decreases PC relaxation by increasing myosin light-chain phosphorylation. We conclude that paracrine signals from EC via MIF decrease PC contraction and enhance PC-regulated neutrophil transmigration.-Pellowe, A. S., Sauler, M., Hou, Y., Merola, J., Liu, R., Calderon, B., Lauridsen, H. M., Harris, M. R., Leng, L., Zhang, Y., Tilstam, P. V., Pober, J. S., Bucala, R., Lee, P. J., Gonzalez, A. L. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation.
Collapse
Affiliation(s)
- Amanda S. Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Maor Sauler
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yue Hou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Jonathan Merola
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rebecca Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brenda Calderon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Holly M. Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Mariah R. Harris
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yi Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pathricia V. Tilstam
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patty J. Lee
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
49
|
Lee KW, Choi SH, Yoon YH, Kim JY, Cho YD, Cho HJ, Park SJ. Significance of Biomarkers as a Predictive Factor for Post-Traumatic Sepsis. JOURNAL OF TRAUMA AND INJURY 2018. [DOI: 10.20408/jti.2018.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kyung-Wuk Lee
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sung-Hyuk Choi
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Young-Hoon Yoon
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Jung-Youn Kim
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Young-Duck Cho
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Han-Jin Cho
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sung-Jun Park
- Department of Emergency Medicine, Korean Armed Forces Capital Hospital, Seongnam, Korea
| |
Collapse
|
50
|
Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today 2018; 24:428-439. [PMID: 30439447 DOI: 10.1016/j.drudis.2018.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/04/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a protein that acts as a cytokine-, enzyme-, endocrine- and chaperon-like molecule. It binds to the cell-surface receptor CD74 in association with CD44, which activates the downstream signal transduction pathway. In addition, MIF acts also as a noncognate ligand for C-X-C chemokine receptor type 2 (CXCR2), type 4 (CXCR4), and type 7 (CXCR7). Recently, D-dopachrome tautomerase (D-DT), a second member of the MIF superfamily, was identified. From a pharmacological and clinical point of view, the nonredundant biological properties of MIF and D-DT anticipate potential synergisms from their simultaneous inhibition. Here, we focus on the role of MIF and D-DT in human immune-inflammatory, autoimmune, and chronic respiratory diseases, providing an update on the progress made in the identification of specific small-molecule inhibitors of these proteins.
Collapse
|