1
|
Shih WC, Jang IH, Kruglov V, Dickey D, Cholensky S, Bernlohr DA, Camell CD. Role for BLT1 in regulating inflammation within adipose tissue immune cells of aged mice. Immun Ageing 2024; 21:57. [PMID: 39187841 PMCID: PMC11346001 DOI: 10.1186/s12979-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Aging is a complex biological process characterized by obesity and immunosenescence throughout the organism. Immunosenescence involves a decline in immune function and the increase in chronic-low grade inflammation, called inflammaging. Adipose tissue expansion, particularly that of visceral adipose tissue (VAT), is associated with an increase in pro-inflammatory macrophages that play an important role in modulating immune responses and producing inflammatory cytokines. The leukotriene B4 receptor 1 (BLT1) is a regulator of obesity-induced inflammation. Its ligand, LTB4, acts as a chemoattractant for immune cells and induces inflammation. Studies have shown that BLT1 is crucial for cytokine production during lipopolysaccharide (LPS) endotoxemia challenge in younger organisms. However, the expression patterns and function of BLT1 in older organisms remains unknown. RESULTS In this study, we investigated BLT1 expression in immune cell subsets within the VAT of aged male and female mice. Moreover, we examined how antagonizing BLT1 signaling could alter the inflammatory response to LPS in aged mice. Our results demonstrate that aged mice exhibit increased adiposity and inflammation, characterized by elevated frequencies of B and T cells, along with pro-inflammatory macrophages in VAT. BLT1 expression is the highest in VAT macrophages. LPS and LTB4 treatment result in increased BLT1 in young and aged bone marrow-derived macrophages (BMDMs). However, LTB4 treatment resulted in amplified Il6 from aged, but not young BMDMs. Treatment of aged mice with the BLT1 antagonist, U75302, followed by LPS-induced endotoxemia resulted in an increase in anti-inflammatory macrophages, reduced phosphorylated NFκB and reduced Il6. CONCLUSIONS This study provides valuable insights into the age- and sex- specific changes in BLT1 expression on immune cell subsets within VAT. This study offers support for the potential of BLT1 in modulating inflammation in aging.
Collapse
Affiliation(s)
- Wei-Ching Shih
- Department of Pharmacology, Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Victor Kruglov
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Deborah Dickey
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Stephanie Cholensky
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D Camell
- Department of Pharmacology, Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Soares CLR, Wilairatana P, Silva LR, Moreira PS, Vilar Barbosa NMM, da Silva PR, Coutinho HDM, de Menezes IRA, Felipe CFB. Biochemical aspects of the inflammatory process: A narrative review. Biomed Pharmacother 2023; 168:115764. [PMID: 37897973 DOI: 10.1016/j.biopha.2023.115764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Inflammation is a protective response of the body potentially caused by microbial, viral, or fungal infections, tissue damage, or even autoimmune reactions. The cardinal signs of inflammation are consequences of immunological, biochemical, and physiological changes that trigger the release of pro-inflammatory chemical mediators at the local of the injured site thus, increasing blood flow, vascular permeability, and leukocyte recruitment. The aim of this study is to give an overview of the inflammatory process, focusing on chemical mediators. The literature review was based on a search of journals published between the years 2009 and 2023, regarding the role of major chemical mediators in the inflammatory process and current studies in pathogenesis, diagnosis, and therapy. Some of the recent contributions in the study of inflammatory pathologies and their mediators, including cytokines and chemokines, the kinin system, free radicals, nitric oxide, histamine, cell adhesion molecules, leukotrienes, prostaglandins and the complement system and their role in human health and chronic diseases.
Collapse
Affiliation(s)
- Caroline Leal Rodrigues Soares
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Larissa Rodrigues Silva
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Polyanna Silva Moreira
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Nayana Maria Medeiros Vilar Barbosa
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Pablo Rayff da Silva
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratório de Microbiologia e Biologia Molecular - LMBM. Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Oimenta, CEP 63105-000 Crato, Brazil.
| | - Irwin Rose Alencar de Menezes
- Laboratório de Farmacologia e Química Molecular - LFQM. Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Pimenta, CEP 63105-000 Crato, Brazil
| | - Cícero Francisco Bezerra Felipe
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil.
| |
Collapse
|
3
|
Kadalayil L, Alam MZ, White CH, Ghantous A, Walton E, Gruzieva O, Merid SK, Kumar A, Roy RP, Solomon O, Huen K, Eskenazi B, Rzehak P, Grote V, Langhendries JP, Verduci E, Ferre N, Gruszfeld D, Gao L, Guan W, Zeng X, Schisterman EF, Dou JF, Bakulski KM, Feinberg JI, Soomro MH, Pesce G, Baiz N, Isaevska E, Plusquin M, Vafeiadi M, Roumeliotaki T, Langie SAS, Standaert A, Allard C, Perron P, Bouchard L, van Meel ER, Felix JF, Jaddoe VWV, Yousefi PD, Ramlau-Hansen CH, Relton CL, Tobi EW, Starling AP, Yang IV, Llambrich M, Santorelli G, Lepeule J, Salas LA, Bustamante M, Ewart SL, Zhang H, Karmaus W, Röder S, Zenclussen AC, Jin J, Nystad W, Page CM, Magnus M, Jima DD, Hoyo C, Maguire RL, Kvist T, Czamara D, Räikkönen K, Gong T, Ullemar V, Rifas-Shiman SL, Oken E, Almqvist C, Karlsson R, Lahti J, Murphy SK, Håberg SE, London S, Herberth G, Arshad H, Sunyer J, Grazuleviciene R, Dabelea D, Steegers-Theunissen RPM, Nohr EA, Sørensen TIA, Duijts L, Hivert MF, Nelen V, Popovic M, Kogevinas M, Nawrot TS, Herceg Z, Annesi-Maesano I, Fallin MD, Yeung E, Breton CV, Koletzko B, Holland N, Wiemels JL, Melén E, Sharp GC, Silver MJ, Rezwan FI, Holloway JW. Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude. Clin Epigenetics 2023; 15:148. [PMID: 37697338 PMCID: PMC10496224 DOI: 10.1186/s13148-023-01542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.
Collapse
Affiliation(s)
- Latha Kadalayil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Md Zahangir Alam
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Cory Haley White
- Merck Exploratory Science Center in Cambridge MA, Merck Research Laboratories, Cambridge, MA, 02141, USA
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Simon Kebede Merid
- Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Ashish Kumar
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ritu P Roy
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, CA, 94143, USA
- Computational Biology and Informatics Core, University of California, San Francisco, CA, 94143, USA
| | - Olivia Solomon
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children Hospital, University of Milan, Milan, Italy
| | - Natalia Ferre
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Darek Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | | | - Enrique F Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Munawar Hussain Soomro
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris Cedex 12, France
- Department of Community Medicine and Public Health, SMBB Medical University, Larkana, Pakistan
| | - Giancarlo Pesce
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris Cedex 12, France
| | - Nour Baiz
- Institut Desbrest de Santé Publique (IDESP), INSERM and Montpellier University, Montpellier, France
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, CPO Piemonte, Italy
| | - Michelle Plusquin
- Center for Environmental Sciences, University of Hasselt, 3590, Diepenbeek, Belgium
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Sabine A S Langie
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Limburg, The Netherlands
| | - Arnout Standaert
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier de l'Universite de Sherbrooke, Sherbrooke, Canada
| | - Patrice Perron
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Chicoutimi, Canada
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elmar W Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anne P Starling
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Maria Llambrich
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Johanna Lepeule
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM, CNRS, Grenoble, France
| | - Lucas A Salas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Center for Molecular Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon, NH, USA
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Susan L Ewart
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jianping Jin
- 2530 Meridian Pkwy, Suite 200, Durham, NC 27713, USA
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Statistics and Data Science, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Maria Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynaecology, Duke University Medical Center, Durham, NC, USA
| | - Tuomas Kvist
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Susan K Murphy
- Department of Obstetrics and Gynaecology, Duke University Medical Center, Durham, NC, USA
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC, 27709, USA
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Dana Dabelea
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Régine P M Steegers-Theunissen
- Periconceptional Epidemiology, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ellen A Nohr
- Department of Clinical Research, Odense Universitetshospital, Odense, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, CPO Piemonte, Italy
| | | | - Tim S Nawrot
- Center for Environmental Sciences, University of Hasselt, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Louvain, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Isabella Annesi-Maesano
- Institut Desbrest de Santé Publique (IDESP), INSERM and Montpellier University, Montpellier, France
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, USA
| | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Nina Holland
- Children's Environmental Health Laboratory, CERCH, Berkeley Public Health, University of California, 2121 Berkeley Way #5216, Berkeley, CA, 94720, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychology, University of Exeter, Exeter, UK
| | - Matt J Silver
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
4
|
Yokomizo T, Shimizu T. The leukotriene B 4 receptors BLT1 and BLT2 as potential therapeutic targets. Immunol Rev 2023; 317:30-41. [PMID: 36908237 DOI: 10.1111/imr.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takao Shimizu
- Institute of Microbial Chemistry, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Sinha S, Aizawa S, Nakano Y, Rialdi A, Choi HY, Shrestha R, Pan SQ, Chen Y, Li M, Kapelanski-Lamoureux A, Yochum G, Sher L, Monga SP, Lazaris A, Machida K, Karin M, Guccione E, Tsukamoto H. Hepatic stellate cell stearoyl co-A desaturase activates leukotriene B4 receptor 2 - β-catenin cascade to promote liver tumorigenesis. Nat Commun 2023; 14:2651. [PMID: 37156770 PMCID: PMC10167314 DOI: 10.1038/s41467-023-38406-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 3rd most deadly malignancy. Activated hepatic stellate cells (aHSC) give rise to cancer-associated fibroblasts in HCC and are considered a potential therapeutic target. Here we report that selective ablation of stearoyl CoA desaturase-2 (Scd2) in aHSC globally suppresses nuclear CTNNB1 and YAP1 in tumors and tumor microenvironment and prevents liver tumorigenesis in male mice. Tumor suppression is associated with reduced leukotriene B4 receptor 2 (LTB4R2) and its high affinity oxylipin ligand, 12-hydroxyheptadecatrienoic acid (12-HHTrE). Genetic or pharmacological inhibition of LTB4R2 recapitulates CTNNB1 and YAP1 inactivation and tumor suppression in culture and in vivo. Single cell RNA sequencing identifies a subset of tumor-associated aHSC expressing Cyp1b1 but no other 12-HHTrE biosynthetic genes. aHSC release 12-HHTrE in a manner dependent on SCD and CYP1B1 and their conditioned medium reproduces the LTB4R2-mediated tumor-promoting effects of 12-HHTrE in HCC cells. CYP1B1-expressing aHSC are detected in proximity of LTB4R2-positive HCC cells and the growth of patient HCC organoids is blunted by LTB4R2 antagonism or knockdown. Collectively, our findings suggest aHSC-initiated 12-HHTrE-LTB4R2-CTNNB1-YAP1 pathway as a potential HCC therapeutic target.
Collapse
Affiliation(s)
- Sonal Sinha
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Satoka Aizawa
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Yasuhiro Nakano
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0022, Japan
| | - Alexander Rialdi
- Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine, New York, NY, 10029, USA
| | - Hye Yeon Choi
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Rajan Shrestha
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Stephanie Q Pan
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Yibu Chen
- USC Libraries Bioinformatics Services of the University of Southern California, Los Angeles, CA, 90089, USA
| | - Meng Li
- USC Libraries Bioinformatics Services of the University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Gregory Yochum
- Department of Surgery, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Linda Sher
- Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Satdarshan Paul Monga
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburg, PA, 15213, USA
| | - Anthoula Lazaris
- Research Institute of the McGill University Health Centre, Montreal, QC, H3A 0G4, Canada
| | - Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ernesto Guccione
- Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine, New York, NY, 10029, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
6
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
7
|
张 晓, 张 晓, 刘 鹏, 刘 阔, 李 文, 陈 倩, 马 万. [Prognostic implications and functional enrichment analysis of LTB4R in patients with acute myeloid leukemia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:309-320. [PMID: 35426793 PMCID: PMC9010981 DOI: 10.12122/j.issn.1673-4254.2022.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the expression patterns, prognostic implications, and biological role of leukotriene B4 receptor (LTB4R) in patients with acute myeloid leukemia (AML). METHODS We collected the data of mRNA expression levels and clinical information of patients with AML from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database for mRNA expression analyses, survival analyses, Cox regression analyses and correlation analyses using R studio to assess the expression patterns and prognostic value of LTB4R. The correlation of LTB4R expression levels with clinical characteristics of the patients were analyzed using UALCAN. The co-expressed genes LTB4R were screened from Linkedomics and subjected to functional enrichment analysis. A protein-protein interaction network was constructed using STRING. GSEA analyses of the differentially expressed genes (DEGs) were performed based on datasets from TCGA-LAML stratified by LTB4R expression level. We also collected peripheral blood mononuclear cells (PBMCs) from AML patients and healthy donors for examination of the mRNA expression levels of LTB4R and immune checkpoint genes using qRT-PCR. We also examined serum LTB4R protein levels in the patients using ELISA. RESULTS The mRNA expression level of LTB4R was significantly increased in AML patients (4.898±1.220 vs 2.252±0.215, P < 0.001), and an elevated LTB4R expression level was correlated with a poor overall survival (OS) of the patients (P=0.004, HR=1.74). LTB4R was identified as an independent prognostic factor for OS (P=0.019, HR=1.66) and was associated with FAB subtypes, cytogenetic risk, karyotype abnormalities and NPM1 mutations. The co- expressed genes of LTB4R were enriched in the functional pathways closely associated with AML leukemogenesis, including neutrophil inflammation, lymphocyte activation, signal transduction, and metabolism. The DEGs were enriched in differentiation, activation of immune cells, and cytokine signaling. Examination of the clinical serum samples also demonstrated significantly increased expressions of LTB4R mRNA (P=0.044) and protein (P=0.008) in AML patients, and LTB4R mRNA expression was positively correlated with the expression of the immune checkpoint HAVCR2 (r= 0.466, P=0.040). CONCLUSION LTB4R can serve as a novel biomarker and independent prognostic indicator of AML and its expression patterns provide insights into the crosstalk of leukemogenesis signaling pathways involving tumor immunity and metabolism.
Collapse
Affiliation(s)
- 晓宁 张
- 山东第一医科大学第一附属医院(山东省千佛山医院)检验医学//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 晓瑜 张
- 济南市第五人民医院肾内科,山东 济南 250022Department of Nephrology, Fifth People's Hospital of Jinan, Jinan 250022, China
| | - 鹏 刘
- 山东第一医科大学第一附属医院(山东省千佛山医院)检验医学//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 阔 刘
- 山东第一医科大学第一附属医院(山东省千佛山医院)检验医学//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 文文 李
- 山东第一医科大学第一附属医院(山东省千佛山医院)检验医学//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 倩倩 陈
- 山东第一医科大学第一附属医院(山东省千佛山医院)检验医学//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 万山 马
- 山东第一医科大学第一附属医院(山东省千佛山医院)检验医学//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| |
Collapse
|
8
|
LTB4 Promotes Acute Lung Injury via Upregulating the PLCε-1/TLR4/NF-κB Pathway in One-Lung Ventilation. DISEASE MARKERS 2022; 2022:1839341. [PMID: 35059042 PMCID: PMC8766192 DOI: 10.1155/2022/1839341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
Background Mechanical ventilation (MV) can provoke acute lung injury (ALI) by increasing inflammation activation and disrupting the barrier in lung tissues even causing death. However, the inflammation-related molecules and pathways in MV-induced ALI remain largely unknown. Hence, the purposes of this study are to examine the role and mechanism of a novel inflammation-related molecule, leukotriene B4 (LTB4), in ALI. Methods The functions of LTB4 in one-lung ventilation (OLV) model were detected by the loss-of-function experiments. H&E staining was used to examine the pathologic changes of lung tissues. Functionally, PLCε-1 knockdown and Toll-like receptor 4 (TLR4)/NF-κB pathway inhibitor were used to detect the regulatory effects of LTB4 on the phospholipase Cε (PLCε-1)/TLR4/nuclear factor-kappa B (NF-κB) pathway. The levels of genes and proteins were determined by RT-qPCR and western blotting assay. The levels of inflammation cytokines and chemokines were measured by ELISA. Results Here, we found LTA4H, leukotriene B (4) receptor 1 (BLT1), LTB4, and PLCε-1 upregulated in OLV rats and associated with inflammatory activation and lung permeability changes of lung tissues. Inhibition of LTB4 alleviated the OLV-induced ALI by inhibiting inflammatory activation and lung permeability changes of lung tissues. For mechanism analyses, LTB4 promoted OLV-induced ALI by activating the PLCε-1/TLR4/NF-κB pathway. Conclusion LTB4 induced ALI in OLV rats by activating the PLCε-1/TLR4/NF-κB pathway. Our findings might supply a new potential therapeutic for OLV-induced ALI.
Collapse
|
9
|
Koga T, Sasaki F, Saeki K, Tsuchiya S, Okuno T, Ohba M, Ichiki T, Iwamoto S, Uzawa H, Kitajima K, Meno C, Nakamura E, Tada N, Fukui Y, Kikuta J, Ishii M, Sugimoto Y, Nakao M, Yokomizo T. Expression of leukotriene B 4 receptor 1 defines functionally distinct DCs that control allergic skin inflammation. Cell Mol Immunol 2021; 18:1437-1449. [PMID: 33037399 PMCID: PMC8167169 DOI: 10.1038/s41423-020-00559-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Leukotriene B4 (LTB4) receptor 1 (BLT1) is a chemotactic G protein-coupled receptor expressed by leukocytes, such as granulocytes, macrophages, and activated T cells. Although there is growing evidence that BLT1 plays crucial roles in immune responses, its role in dendritic cells remains largely unknown. Here, we identified novel DC subsets defined by the expression of BLT1, namely, BLT1hi and BLT1lo DCs. We also found that BLT1hi and BLT1lo DCs differentially migrated toward LTB4 and CCL21, a lymph node-homing chemoattractant, respectively. By generating LTB4-producing enzyme LTA4H knockout mice and CD11c promoter-driven Cre recombinase-expressing BLT1 conditional knockout (BLT1 cKO) mice, we showed that the migration of BLT1hi DCs exacerbated allergic contact dermatitis. Comprehensive transcriptome analysis revealed that BLT1hi DCs preferentially induced Th1 differentiation by upregulating IL-12p35 expression, whereas BLT1lo DCs accelerated T cell proliferation by producing IL-2. Collectively, the data reveal an unexpected role for BLT1 as a novel DC subset marker and provide novel insights into the role of the LTB4-BLT1 axis in the spatiotemporal regulation of distinct DC subsets.
Collapse
Affiliation(s)
- Tomoaki Koga
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takako Ichiki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Satoshi Iwamoto
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hirotsugu Uzawa
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Keiko Kitajima
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
10
|
Okuno T, Yokomizo T. Metabolism and biological functions of 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid. Prostaglandins Other Lipid Mediat 2021; 152:106502. [PMID: 33075476 DOI: 10.1016/j.prostaglandins.2020.106502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is a 17-carbon hydroxy fatty acid that is biosynthesized either by enzymatic pathways, like thromboxane synthase (TXAS) and cytochrome P450 or a non-enzymatic pathway. TXAS catalyzes the isomerization reaction from PGH2 to 12-HHT, malondialdehyde, and TXA2 at a ratio of 1:1:1. Furthermore, 12-HHT has been considered as a mere byproduct of TXA2 biosynthesis, and its biological function has long been uncertain. BLT2 was initially identified as a low-affinity leukotriene B4 (LTB4) receptor, which is also activated by various hydroxy-eicosatetraenoic acids (HETEs), suggesting that BLT2 may be activated by other endogenous ligands apart from LTB4 and HETEs. By unbiased ligand screening using crude lipids from rat organs, 12-HHT has been identified as an endogenous agonist for BLT2. The 12-HHT-BLT2 axis induces mast cell migration and contributes to allergic inflammation. BLT2 is also expressed in epithelial cells of the small intestine and skin in mice and contributes to in vivo epithelial barrier functions.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Sasaki F, Yokomizo T. The leukotriene receptors as therapeutic targets of inflammatory diseases. Int Immunol 2020; 31:607-615. [PMID: 31135881 DOI: 10.1093/intimm/dxz044] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Leukotrienes (LTs) are inflammatory mediators derived from arachidonic acid. LTs include the di-hydroxy acid LT (LTB4) and the cysteinyl LTs (CysLTs; LTC4, LTD4 and LTE4), all of which are involved in both acute and chronic inflammation. We and other groups identified a high-affinity LTB4 receptor, BLT1; the LTC4 and LTD4 receptors, CysLT1 and CysLT2; and the LTE4 receptor, GPR99. Pharmacological studies have shown that BLT1 signaling stimulates degranulation, chemotaxis and phagocytosis of neutrophils, whereas CysLT1 and CysLT2 signaling induces airway inflammation by increasing vascular permeability and the contraction of bronchial smooth muscle. Recently, we and other groups suggested that the LTB4-BLT1 axis and the cysteinyl LTs-CysLT1/2 axis are involved in chronic inflammatory diseases including asthma, atopic dermatitis, psoriasis, atherosclerosis, arthritis, obesity, cancer and age-related macular degeneration using animal models for disease and gene knockout mice. This review describes the classical and novel functions of LTs and their receptors in several inflammatory diseases and discusses the potential clinical applications of antagonists for LT receptors and inhibitors of LT biosynthesis.
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Inhibition of LTA4H by bestatin in human and mouse colorectal cancer. EBioMedicine 2019; 44:361-374. [PMID: 31085102 PMCID: PMC6604047 DOI: 10.1016/j.ebiom.2019.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Our preclinical data showed that the leukotriene A4 hydrolase (LTA4H) pathway plays a role in colorectal cancer (CRC). High expression of LTA4H and leukotriene B4 receptor type 1 (BLT1) were also associated with CRC survival probability. Clinical samples were evaluated to determine whether LTA4H could serve as a therapeutic target and whether leukotriene B4 (LTB4) could be used as a biomarker for evaluating the efficacy of bestatin in CRC. Methods Patients with Stage I-III CRC did or did not receive bestatin prior to surgery. Evaluable pairwise CRC patient blood samples were collected to evaluate LTB4 concentration. Tissues were processed by immunohistochemistry to detect the LTA4H pathway and Ki-67 expression. We also determined whether LTA4H or BLT1 was associated with CRC survival probability and explored the mechanism of bestatin action in CRC. Findings Samples from 13 CRC patients showed a significant decrease in LTB4, the LTA4H signaling pathway, and Ki-67 in the bestatin-treated group compared with the untreated group. LTA4H and BLT1 are overexpressed in CRC and associated with CRC survival probability. Bestatin effectively inhibited LTB4 and tumorigenesis in the ApcMin/+ and CRC patient-derived xenograft mouse model. Interpretation These results demonstrate that LTB4 could serve as a biomarker for evaluating bestatin efficacy in CRC and the antitumor effects of bestatin through its targeting of LTA4H and support further studies focusing on LTA4H inhibition in CRC.
Collapse
|
13
|
Saeki K, Yokomizo T. Identification, signaling, and functions of LTB 4 receptors. Semin Immunol 2018; 33:30-36. [PMID: 29042026 DOI: 10.1016/j.smim.2017.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/02/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
Leukotriene B4 (LTB4), a lipid mediator produced from arachidonic acid, is a chemoattractant for inflammatory leukocytes. We identified two receptors for LTB4, the high-affinity receptor BLT1 and the low-affinity receptor BLT2. BLT1 is expressed in various subsets of leukocytes, and analyses of BLT1-deficient mice revealed that the LTB4/BLT1 axis enhances leukocyte recruitment to infected sites, and is involved in the elimination of pathogens. Hyperactivation of the LTB4/BLT1 axis induces acute and chronic inflammation, resulting in various inflammatory diseases. BLT2 was originally identified as a low-affinity receptor for LTB4, and we later identified 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) as a high-affinity ligand for BLT2. BLT2 is highly expressed in epithelial cells in various tissues including intestine and skin. Large quantities of 12-HHT are produced by activated platelets during skin injury, and activation of BLT2 on epidermal keratinocytes accelerates skin wound healing by enhancing cell migration. BLT2 signaling also enhances cell-cell junctions, protectes against transepidermal water loss, and preventes entry of environmental substances into the body.
Collapse
Affiliation(s)
- Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Yokomizo T, Nakamura M, Shimizu T. Leukotriene receptors as potential therapeutic targets. J Clin Invest 2018; 128:2691-2701. [PMID: 29757196 DOI: 10.1172/jci97946] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leukotrienes, a class of arachidonic acid-derived bioactive molecules, are known as mediators of allergic and inflammatory reactions and considered to be important drug targets. Although an inhibitor of leukotriene biosynthesis and antagonists of the cysteinyl leukotriene receptor are clinically used for bronchial asthma and allergic rhinitis, these medications were developed before the molecular identification of leukotriene receptors. Numerous studies using cloned leukotriene receptors and genetically engineered mice have unveiled new pathophysiological roles for leukotrienes. This Review covers the recent findings on leukotriene receptors to revisit them as new drug targets.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Motonao Nakamura
- Department of Life Science, Graduate School of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- Department of Lipidomics, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Differential Contribution of BLT1 and BLT2 to Leukotriene B4-Induced Human NK Cell Cytotoxicity and Migration. Mediators Inflamm 2015; 2015:389849. [PMID: 26696753 PMCID: PMC4678237 DOI: 10.1155/2015/389849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that leukotriene B4 (LTB4) via its receptors BLT1 and/or BLT2 (BLTRs) could have an important role in regulating infection, tumour progression, inflammation, and autoimmune diseases. In the present study, we showed that LTB4 not only augments cytotoxicity by NK cells but also induces their migration. We found that approximately 30% of fresh NK cells express BLT1, 36% express BLT2, and 15% coexpress both receptors. The use of selective BLTR antagonists indicated that BLT1 was involved in both LTB4-induced migration and cytotoxicity, whereas BLT2 was involved exclusively in NK cell migration, but only in response to higher concentrations of LTB4. BLT1 and BLT2 expression increased after activation of NK cells with IL-2 and IL-15. These changes of BLTR expression by cytokines were reflected in enhanced NK cell responses to LTB4. Our findings suggest that BLT1 and BLT2 play differential roles in LTB4-induced modulation of NK cell activity.
Collapse
|
16
|
Abstract
Leukotriene B4 (LTB4) is a potent inflammatory mediator derived from arachidonic acid. Two G protein-coupled receptors for LTB4 have been identified: a high-affinity receptor, BLT1, and a low-affinity receptor, BLT2. Both receptors mainly couple to pertussis toxin-sensitive Gi-like G proteins and induce cell migration. 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) was identified to bind BLT2 with higher affinity than LTB4. Expression of BLT1 was confirmed in type 1 helper T cells, type 2 helper T cells, type 17 helper T cells, effector CD8(+) T cells, dendritic cells and osteoclasts in addition to granulocytes, eosinophils and macrophages, and BLT1-deficient mice showed greatly reduced phenotypes in models of various inflammatory diseases, such as peritonitis, bronchial asthma, rheumatoid arthritis, atherosclerosis and osteoporosis. In mice, BLT2 expression is restricted to intestinal epithelial cells and epidermal keratinocytes. BLT2-deficient mice showed enhanced colitis after administration of dextran sulfate, possibly due to reduced intestinal barrier function. An aspirin-dependent reduction in 12-HHT production was responsible for delayed skin wound healing, showing that the 12-HHT/BLT2 axis also plays an important role in skin biology. BLT1 and BLT2 are therefore potential targets for the development of novel drugs.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D. Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 2014; 57:13-39. [PMID: 25435097 PMCID: PMC7112624 DOI: 10.1016/j.plipres.2014.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022]
Abstract
Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling.
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany; Department of Chemistry and Biochemistry, University of California - Santa Cruz, 1156 High Street, 95064 Santa Cruz, USA
| | - Susan Adel
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Ralf Schumann
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Saubashya Sur
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aparoy Polamarasetty
- School of Life Sciences, University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Pallu Redanna
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India; National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telangana, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
18
|
Winterberg T, Vieten G, Meier T, Yu Y, Busse M, Hennig C, Hansen G, Jacobs R, Ure BM, Kuebler JF. Distinct phenotypic features of neonatal murine macrophages. Eur J Immunol 2014; 45:214-24. [DOI: 10.1002/eji.201444468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/29/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Thomas Winterberg
- Department of Pediatric Surgery; Hannover Medical School; Hannover Germany
| | - Gertrud Vieten
- Department of Pediatric Surgery; Hannover Medical School; Hannover Germany
| | - Tatiana Meier
- Department of Pediatric Surgery; Hannover Medical School; Hannover Germany
| | - Yi Yu
- Department of Pediatric Surgery; Hannover Medical School; Hannover Germany
| | - Mandy Busse
- Department of Pediatric Pneumology; Hannover Medical School; Hannover Germany
| | - Christian Hennig
- Department of Pediatric Pneumology; Hannover Medical School; Hannover Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology; Hannover Medical School; Hannover Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology; Hannover Medical School; Hannover Germany
| | - Benno M. Ure
- Department of Pediatric Surgery; Hannover Medical School; Hannover Germany
| | - Joachim F. Kuebler
- Department of Pediatric Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
19
|
Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 2014; 24:225-35. [DOI: 10.3109/14397595.2013.854056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Wilson GA, Butcher LM, Foster HR, Feber A, Roos C, Walter L, Woszczek G, Beck S, Bell CG. Human-specific epigenetic variation in the immunological Leukotriene B4 Receptor (LTB4R/BLT1) implicated in common inflammatory diseases. Genome Med 2014; 6:19. [PMID: 24598577 PMCID: PMC4062055 DOI: 10.1186/gm536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/24/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Common human diseases are caused by the complex interplay of genetic susceptibility as well as environmental factors. Due to the environment's influence on the epigenome, and therefore genome function, as well as conversely the genome's facilitative effect on the epigenome, analysis of this level of regulation may increase our knowledge of disease pathogenesis. METHODS In order to identify human-specific epigenetic influences, we have performed a novel genome-wide DNA methylation analysis comparing human, chimpanzee and rhesus macaque. RESULTS We have identified that the immunological Leukotriene B4 receptor (LTB4R, BLT1 receptor) is the most epigenetically divergent human gene in peripheral blood in comparison with other primates. This difference is due to the co-ordinated active state of human-specific hypomethylation in the promoter and human-specific increased gene body methylation. This gene is significant in innate immunity and the LTB4/LTB4R pathway is involved in the pathogenesis of the spectrum of human inflammatory diseases. This finding was confirmed by additional neutrophil-only DNA methylome and lymphoblastoid H3K4me3 chromatin comparative data. Additionally we show through functional analysis that this receptor has increased expression and a higher response to the LTB4 ligand in human versus rhesus macaque peripheral blood mononuclear cells. Genome-wide we also find human species-specific differentially methylated regions (human s-DMRs) are more prevalent in CpG island shores than within the islands themselves, and within the latter are associated with the CTCF motif. CONCLUSIONS This result further emphasises the exclusive nature of the human immunological system, its divergent adaptation even from very closely related primates, and the power of comparative epigenomics to identify and understand human uniqueness.
Collapse
Affiliation(s)
- Gareth A Wilson
- Medical Genomics, UCL Cancer Institute, University College London, London, UK ; Current address: Translational Cancer Therapeutics, CR-UK London Research Institute, Lincoln's Inn Fields, London, UK
| | - Lee M Butcher
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Holly R Foster
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Andrew Feber
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Christian Roos
- Genebank of Primates and Primate Genetics Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Genebank of Primates and Primate Genetics Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Grzegorz Woszczek
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Christopher G Bell
- Medical Genomics, UCL Cancer Institute, University College London, London, UK ; Current address: Department of Twin Research & Genetic Epidemiology, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
21
|
Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 2013. [PMID: 23529572 DOI: 10.1007/s10165-013-0861-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder of joints for which there is no strict cure. However, conventional medications can reduce inflammation, relieve pain, and slow joint damage. Leukotrienes are a family of paracrine agents derived from oxidative metabolism of arachidonic acid. Synthesis of lipid mediators and subsequent induction of receptor activity are tightly regulated under normal physiological conditions, so that enzyme and/or receptor dysfunction can lead to a variety of clinical signs and symptoms of disease, such as local pain and tissue edema. In these tissues, immunocompetent cells accumulate at the site of injury, contributing to tissue damage and perpetuation of the disease process. Leukotrienes (often leukotriene B4) as potent chemotactic agents can provoke most signs and symptoms in rheumatoid arthritis by initiating, coordinating, sustaining, and amplifying the inflammatory response, through recruitment of leukocytes. A number of studies have reported that pharmacological modulation in this field can significantly attenuate clinical manifestations associated with different inflammatory pathologies.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Box: 6446, 14155, Tehran, Iran
| | | | | | | | | |
Collapse
|
22
|
Tulah AS, Beghé B, Barton SJ, Holloway JW, Sayers I. Leukotriene B4 receptor locus gene characterisation and association studies in asthma. BMC MEDICAL GENETICS 2012; 13:110. [PMID: 23167751 PMCID: PMC3607986 DOI: 10.1186/1471-2350-13-110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/14/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Polymorphisms spanning genes involved in the production of leukotriene B4 (LTB4) e.g. ALOX5AP and LTA4H are associated with asthma susceptibility, suggesting a role for LTB4 in disease. The contribution of LTB4receptor polymorphism is currently unknown. The aim of this study was to characterise the genes for the two pivotal LTB4 receptors, LTB4R1 and LTB4R2 in lung tissue and determine if polymorphisms spanning these genes are associated with asthma and disease severity. METHODS Rapid amplification of cDNA ends (RACE) was used to characterise the LTB4R1 and LTB4R2 gene structure in lung. The LTB4R1/2 locus on chromosome 14q11.2 was screened for polymorphic variation. Six LTB4R single nucleotide polymorphisms (SNPs) were genotyped in 370 Caucasian asthma families and 299 Adult Asthma Individuals (n=1877 total) and were evaluated for association with asthma and severity (BTS) outcome measures using Family Based Association Test, linear regression and chi square. RESULTS LTB4R1 has complex mRNA arrangement including multiple 5'-untranslated exons, suggesting additional levels of regulation. Three potential promoter regions across the LTB4R1/2 locus were identified with some airway cell specificity. 22 SNPs (MAF>0.01) were validated across the LTB4R locus in the Caucasian population. LTB4R1 and LTB4R2 SNPs were not associated with asthma susceptibility, FEV1 or severity. CONCLUSIONS LTB4R1 and LTB4R2 shows splice variation in the 5'-untranslated region and multiple promoter regions. The functional significance of this is yet to be determined. Both receptor genes were shown to be polymorphic. LTB4R polymorphisms do not appear to be susceptibility markers for the development of asthma in Caucasian subjects.
Collapse
Affiliation(s)
- Asif S Tulah
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
24
|
Bertin J, Barat C, Bélanger D, Tremblay MJ. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells. J Neuroinflammation 2012; 9:55. [PMID: 22424294 PMCID: PMC3334677 DOI: 10.1186/1742-2094-9-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/16/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B4 (LTB4) and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells. METHODS To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR). RESULTS We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. CONCLUSIONS These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.
Collapse
Affiliation(s)
- Jonathan Bertin
- Centre de Recherche en Infectiologie, RC709, Centre Hospitalier Universitaire de Québec-CHUL, 2705 Boul, Laurier, Québec, QC G1V 4G2, Canada
| | | | | | | |
Collapse
|
25
|
Simiele F, Recchiuti A, Mattoscio D, De Luca A, Cianci E, Franchi S, Gatta V, Parolari A, Werba JP, Camera M, Favaloro B, Romano M. Transcriptional regulation of the human FPR2/ALX gene: evidence of a heritable genetic variant that impairs promoter activity. FASEB J 2011; 26:1323-33. [PMID: 22131270 DOI: 10.1096/fj.11-198069] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipoxin (LX) A(4,) a main endogenous stop-signal of inflammation, activates the G-protein-coupled receptor FPR2/ALX, which triggers potent anti-inflammatory signaling in vivo. Thus, the regulation of FPR2/ALX expression may have pathophysiological and therapeutic relevance. Here, we mapped a nucleotide sequence with strong FPR2/ALX promoter activity. Chromatin immunoprecipitation revealed specificity protein 1 (Sp1) binding to the core promoter. Site-directed mutagenesis of the Sp1 cis-acting element and Sp1 overexpression established that this transcription factor is key for maximal promoter activity, which is instead suppressed by DNA methylation. LXA(4) enhanced FPR2/ALX promoter activity (+74%) and mRNA expression (+87.5%) in MDA-MB231 cells. A single nucleotide mutation (A/G) was detected in the core promoter of one subject with history of cardiovascular disease and of his two daughters. This mutation reduced by ∼35-90% the promoter activity in vitro. Moreover, neutrophils from individuals carrying the A/G variant displayed ∼10- and 3-fold reduction in FPR2/ALX mRNA and protein, respectively, compared with cells from their relatives or healthy volunteers expressing the wild-type allele. These results uncover FPR2/ALX transcriptional regulation and provide the first evidence of mutations that affect FPR2/ALX transcription, thus opening new opportunities for the understanding of the LXA(4)-FPR2/ALX axis in human disease.
Collapse
Affiliation(s)
- Felice Simiele
- Department of Biomedical Sciences, Center of Excellence on Aging, Ce.S.I., G. d'Annunzio University Foundation, Via Colle dell'Ara, 66013 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
27
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol Rev 2011; 63:539-84. [DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
29
|
Iizuka Y, Okuno T, Saeki K, Uozaki H, Okada S, Misaka T, Sato T, Toh H, Fukayama M, Takeda N, Kita Y, Shimizu T, Nakamura M, Yokonizo T. Protective role of the leukotriene B 4receptor BLT2 in murine inflammatory colitis. FASEB J 2010. [DOI: 10.1096/fj.10.165050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yoshiko Iizuka
- Department of Biochemistry and Molecular BiologyGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Toshiaki Okuno
- Department of Medical BiochemistryGraduate School of Medical Sciences, and “Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Kazuko Saeki
- Department of Medical BiochemistryGraduate School of Medical Sciences, and “Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Hiroshi Uozaki
- Department of Pathology, Faculty of MedicineGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Shinji Okada
- Department of Applied Biological ChemistryGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Takumi Misaka
- Department of Applied Biological ChemistryGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Tetsuya Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Kawaguchi Japan
| | - Hiroyuki Toh
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Kawaguchi Japan
| | - Masashi Fukayama
- Department of Pathology, Faculty of MedicineGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Naoki Takeda
- Center for Animal Resources and DevelopmentKumamoto University Kumamoto Japan
| | - Yoshihiro Kita
- Department of Biochemistry and Molecular BiologyGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular BiologyGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Motonao Nakamura
- Department of Biochemistry and Molecular BiologyGraduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| | - Takehiko Yokonizo
- Center for Animal Resources and DevelopmentKumamoto University Kumamoto Japan
| |
Collapse
|
30
|
Yokomizo T. Leukotriene B4 receptors: novel roles in immunological regulations. ACTA ACUST UNITED AC 2010; 51:59-64. [PMID: 21035496 DOI: 10.1016/j.advenzreg.2010.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 08/24/2010] [Indexed: 02/07/2023]
Abstract
Mammals have at least two receptors for LTB4; high-affinity BLT1 and low-affinity BLT2, both of which are GPCRs. 12-HHT serves as a more potent and abundant ligand for BLT2 than LTB4. BLT1 is expressed in a variety of inflammatory and immune cells including granulocytes, eosinophils, macrophages, differentiated Th1, Th2 and Th17 cells, effecter CD8+ T cells, dendritic cells and osteoclasts. BLT1 antagonists will be beneficial for the treatment of various diseases such as bronchial asthma, multiple sclerosis, contact dermatitis, and postmenopausal osteoporosis. BLT2 plays different roles from BLT1, and one important role of BLT2 is the maintenance of mucosal integrity in the colon.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
31
|
Iizuka Y, Okuno T, Saeki K, Uozaki H, Okada S, Misaka T, Sato T, Toh H, Fukayama M, Takeda N, Kita Y, Shimizu T, Nakamura M, Yokomizo T. Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J 2010; 24:4678-90. [PMID: 20667973 DOI: 10.1096/fj.10-165050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BLT2 is a low-affinity leukotriene B(4) (LTB(4)) receptor that is activated by 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) and LTB(4). Despite the well-defined proinflammatory roles of BLT1, the in vivo functions of BLT2 remain elusive. To clarify the role of BLT receptors in intestinal inflammation, we assessed susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice lacking either BLT1 or BLT2. BLT2(-/-) mice exhibited increased sensitivity to DSS as compared to wild-type and BLT1(-/-) mice, with more severe body weight loss and inflammation. Expression of inflammatory cytokines such as interferon (IFN)-γ, interleukin (IL)-1β, and IL-6, chemokines such as CXC chemokine ligand 9 (CXCL9) and C-C motif chemokine 19 (CCL19), and metalloproteinases was highly up-regulated in the colons of DSS-treated BLT2(-/-) mice, and there was an enhanced accumulation of activated macrophages. Phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was also markedly accelerated in the crypts of DSS-treated BLT2(-/-) mice. Madin-Darby canine kidney II (MDCKII) cells transfected with BLT2 exhibited enhanced barrier function as measured by transepithelial electrical resistance (TER) and FITC-dextran leakage through MDCK monolayers. Thus, BLT2 is expressed in colon cryptic cells and appears to protect against DSS-induced colitis, possibly by enhancing barrier function in epithelial cells of the colon. These novel results suggest a direct anti-inflammatory role of BLT2 that is distinct from the proinflammatory roles of BLT1.
Collapse
Affiliation(s)
- Yoshiko Iizuka
- Department of Medical Biochemistry, Graduate School of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhai B, Yang H, Mancini A, He Q, Antoniou J, Di Battista JA. Leukotriene B(4) BLT receptor signaling regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of Ras/Raf/ERK/p42 AUF1 pathway. J Biol Chem 2010; 285:23568-80. [PMID: 20489206 DOI: 10.1074/jbc.m110.107623] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies suggest that active resolution of the inflammatory response in animal models of arthritis may involve leukotriene B(4) (LTB(4))-dependent stimulation of "intermediate" prostaglandin production, which in turn favors the synthesis of "downstream" anti-inflammatory and pro-resolving lipoxins, resolvins, and protectins. We explored a putative mechanism involving LTB(4)-dependent control of cyclooxygenase-2 (COX-2) expression, the rate-limiting step in inflammatory prostaglandin biosynthesis. Indeed, LTB(4) potently up-regulated/stabilized interleukin-1beta-induced COX-2 mRNA and protein expression under conditions of COX-2 inhibitor-dependent blockade of PGE(2) release in human synovial fibroblasts (EC(50) = 16.5 + or - 1.7 nm for mRNA; 19 + or - 2.4 nm for protein, n = 4). The latter response was pertussis toxin-sensitive, and semi-quantitative reverse transcription-PCR confirmed the quantitative predominance of the BLT2 receptor. Transfection experiments, using human COX-2 promoter plasmids and chimeric luciferase-COX-2 mRNA 3'-untranslated region (3'-UTR) reporter constructs, revealed that LTB(4) exerted its stabilizing effect at the post-transcriptional level through a 116-bp adenylate/uridylate-rich sequence in the proximal region of the COX-2 3'-UTR. Using luciferase-COX-2 mRNA 3'-UTR reporter constructs and Ras/c-Raf expression and mutant constructs, we showed that the Ras/c-Raf/MEK1/2/ERK1/2 signaling pathway mediated LTB(4)-dependent COX-2 mRNA stabilization. Knockdown experiments with specific short hairpin RNAs confirmed that LTB(4) stabilization of COX-2 mRNA was apparently mediated through the RNA-binding protein, p42 AUF1. The nuclear export of p42 AUF1 was driven by c-Raf/MEK1/2/ERK1/2 signaling and sensitive to leptomycin B treatment, suggesting a CRM1-dependent mechanism. We conclude that LTB(4) may support the resolution phase of the inflammatory response by stabilizing COX-2, ensuring a reservoir of ambient pro-resolution lipid mediators.
Collapse
Affiliation(s)
- Beibei Zhai
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1
| | | | | | | | | | | |
Collapse
|
33
|
Hashidate T, Murakami N, Nakagawa M, Ichikawa M, Kurokawa M, Shimizu T, Nakamura M. AML1 enhances the expression of leukotriene B
4
type‐1 receptor in leukocytes. FASEB J 2010; 24:3500-10. [DOI: 10.1096/fj.10-156844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tomomi Hashidate
- Department of Biochemistry and Molecular BiologyUniversity of Tokyo Tokyo Japan
| | - Naoka Murakami
- Department of Biochemistry and Molecular BiologyUniversity of Tokyo Tokyo Japan
| | - Masahiro Nakagawa
- Department of Hematology and OncologyFaculty of MedicineUniversity of Tokyo Tokyo Japan
| | - Motoshi Ichikawa
- Department of Hematology and OncologyFaculty of MedicineUniversity of Tokyo Tokyo Japan
| | - Mineo Kurokawa
- Department of Hematology and OncologyFaculty of MedicineUniversity of Tokyo Tokyo Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular BiologyUniversity of Tokyo Tokyo Japan
- Center for NanoBio IntegrationUniversity of Tokyo Tokyo Japan
| | - Motonao Nakamura
- Department of Biochemistry and Molecular BiologyUniversity of Tokyo Tokyo Japan
- Center for NanoBio IntegrationUniversity of Tokyo Tokyo Japan
| |
Collapse
|
34
|
Schokker D, Hoekman AJW, Smits MA, Rebel JMJ. Gene expression patterns associated with chicken jejunal development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1156-1164. [PMID: 19527747 DOI: 10.1016/j.dci.2009.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 05/27/2023]
Abstract
Jejunal development occurs in a spatio-temporal pattern and is characterized by morphological and functional changes. To investigate jejunal development at the transcriptomic level, we performed microarray studies in 1-21-day-old chickens. Nine gene clusters were identified, each with a specific gene expression pattern. Subsequently, groups of genes with similar functions could be identified. Genes involved in morphological and functional development were highly expressed immediately after hatch with declining expression patterns afterwards. Immunological development can be roughly divided based on expression patterns into three processes over time; first innate response and immigration of immune cells, secondly differentiation and specialization, and thirdly maturation and immune regulation. We conclude that specific gene expression patterns coincide with the immunological, morphological, and functional development as measured by other methods. Our data show that transcriptomic approaches provide more detailed information on the biological processes underlying jejunal development.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Animal Breeding and Genomics Centre, Wageningen UR, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Abstract
Leukotrienes (LT) are biologically active lipid mediators known to be involved in allergic inflammation. Leukotrienes have been shown to mediate diverse features of allergic conditions including inflammatory cell chemotaxis/activation and smooth muscle contraction. Cysteinyl leukotrienes (LTC(4), LTD(4) and, LTE(4)) and the dihydroxy leukotriene LTB(4) are generated by a series of enzymes/proteins constituting the LT synthetic pathway or 5-lipoxygenase (5-LO) pathway. Their function is mediated by interacting with multiple receptors. Leukotriene receptor antagonists (LTRA) and LT synthesis inhibitors (LTSI) have shown clinical efficacy in asthma and more recently in allergic rhinitis. Despite growing knowledge of leukotriene biology, the molecular regulation of these inflammatory mediators remains to be fully understood. Genes encoding enzymes of the 5-LO pathway (i.e. ALOX5, LTC4S and LTA4H) and encoding for LT receptors (CYSLTR1/2 and LTB4R1/2) provide excellent candidates for disease susceptibility and severity; however, their role remains unclear. Preliminary data also suggest that 5-LO pathway/receptor gene polymorphism can predict patient responses to LTSI and LTRA; however, the exact mechanisms require elucidation. The aim of this review was to summarize the recent advances in the knowledge of these important mediators, focusing on genetic and pharmacogenetic aspects in the context of allergic phenotypes.
Collapse
Affiliation(s)
- N P Duroudier
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
36
|
Miyahara N, Ohnishi H, Miyahara S, Takeda K, Matsubara S, Matsuda H, Okamoto M, Loader JE, Joetham A, Tanimoto M, Dakhama A, Gelfand EW. Leukotriene B4 release from mast cells in IgE-mediated airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol 2008; 40:672-82. [PMID: 19029019 DOI: 10.1165/rcmb.2008-0095oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that leukotriene B4 (LTB4), a proinflammatory lipid mediator, is linked to the development of airway hyperresponsiveness through the accumulation of IL-13-producing CD8+ T cells, which express a high affinity receptor for LTB4, BLT1 (Miyahara et al., Am J Respir Crit Care Med 2005;172:161-167; J Immunol 2005;174:4979-4984). By using leukotriene A4 hydrolase-deficient (LTA4H-/-) mice, which fail to synthesize LTB4, we determined the role of this lipid mediator in allergen-induced airway responses. Two approaches were used. In the first, LTA4H-/- mice and wild-type (LTA4H+/+) mice were systemically sensitized and challenged via the airways to ovalbumin. In the second, mice were passively sensitized with anti-ovalbumin IgE and exposed to ovalbumin via the airways. Mast cells were generated from bone marrow of LTA4H+/+ mice or LTA4H-/- mice. After active sensitization and challenge, LTA4H-/- mice showed significantly lower airway hyperresponsiveness compared with LTA4H+/+ mice, and eosinophil numbers and IL-13 levels in the bronchoalveoloar lavage of LTA4H-/- mice were also significantly lower. LTA4H-/- mice also showed decreased airway reactivity after passive sensitization and challenge. After LTA4H+/+ mast cell transfer, LTA4H-/- mice showed increased airway reactivity after passive sensitization and challenge, but not after systemic sensitization and challenge. These data confirm the important role for LTB4 in the development of altered airway responses and suggest that LTB4 secretion from mast cells is critical to eliciting increased airway reactivity after passive sensitization with allergen-specific IgE.
Collapse
Affiliation(s)
- Nobuaki Miyahara
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohnishi H, Miyahara N, Dakhama A, Takeda K, Mathis S, Haribabu B, Gelfand EW. Corticosteroids enhance CD8+ T cell-mediated airway hyperresponsiveness and allergic inflammation by upregulating leukotriene B4 receptor 1. J Allergy Clin Immunol 2008; 121:864-71.e4. [PMID: 18395551 DOI: 10.1016/j.jaci.2008.01.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND Leukotriene B4 (LTB4) is a potent inflammatory lipid mediator that binds to LTB4 receptor 1 (BLT1). Ligation of BLT1 by LTB4 plays an important role in the recruitment of effector memory CD8+ T cells into the airways of sensitized and challenged mice. OBJECTIVES The effects of the corticosteroid dexamethasone (DEX) on BLT1-expressing effector memory CD8+ T cells and effector memory CD8+ T cell-mediated airway hyperresponsiveness (AHR) and allergic inflammation were determined. METHODS Effector memory CD8+ T cells were generated from ovalbumin(257-264)-primed mononuclear cells from OT-1 mice in the presence of IL-2. In some cultures DEX was added. The effects of DEX on BLT1 expression, LTB4-induced Ca2+ influx, phosphorylation of extracellular signal-regulated kinase 1/2, chemotaxis, and effector memory CD8+ T cell-mediated AHR were examined. RESULTS DEX-treated effector memory CD8+ T cells showed significant increases in surface expression of BLT1, LTB4-induced intracellular Ca2+ influx, phosphorylation of extracellular signal-regulated kinase 1/2, and chemotaxis. Upregulation of BLT1 by DEX was accompanied by increased IL-2 receptor expression. Adoptive transfer of DEX-treated effector memory CD8+ T cells into ovalbumin-sensitized and ovalbumin-challenged CD8-/- mice resulted in significant increases in AHR, allergic inflammation, goblet cell metaplasia, and numbers of both CD8+ and CD4+ T cells in the bronchoalveolar lavage fluid and lungs. CONCLUSIONS Corticosteroids upregulate BLT1 on effector memory CD8+ T cells and related signaling pathways and potentiate allergic airway inflammation and AHR induced by these cells.
Collapse
Affiliation(s)
- Hiroshi Ohnishi
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Yokomizo T. [Leukotriene B4 receptors: identification and roles in inflammatory diseases]. Nihon Yakurigaku Zasshi 2007; 130:29-33. [PMID: 17634677 DOI: 10.1254/fpj.130.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
39
|
Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 2007; 32:332-41. [PMID: 17576065 DOI: 10.1016/j.tibs.2007.06.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/01/2007] [Accepted: 06/04/2007] [Indexed: 11/16/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the first two steps in the biosynthesis of leukotrienes, a group of pro-inflammatory lipid mediators derived from arachidonic acid. Leukotriene antagonists are used in the treatment of asthma, and the potential role of leukotrienes in atherosclerosis, another chronic inflammatory disease, has recently received considerable attention. In addition, some possible effects of 5-LO metabolites in tumorigenesis have emerged. Thus, knowledge of the biochemistry of this enzyme has potential implications for the treatment of various diseases. Recent advances have expanded our understanding of the regulatory mechanisms underlying the expression and control of 5-LO activity. With regard to the control of enzyme activity, many of these findings focus on the N-terminal domain of 5-LO.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
40
|
Shao WH, Del Prete A, Bock CB, Haribabu B. Targeted Disruption of Leukotriene B4 Receptors BLT1 and BLT2: A Critical Role for BLT1 in Collagen-Induced Arthritis in Mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:6254-61. [PMID: 16670336 DOI: 10.4049/jimmunol.176.10.6254] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leukotriene B(4) mediates diverse inflammatory diseases through the G protein-coupled receptors BLT1 and BLT2. In this study, we developed mice deficient in BLT1 and BLT2 by simultaneous targeted disruption of these genes. The BLT1/BLT2 double-deficient mice developed normally and peritoneal exudate cells showed no detectable responses to leukotriene B(4) confirming the deletion of the BLT1/BLT2 locus. In a model of collagen-induced arthritis on the C57BL/6 background, the BLT1/BLT2(-/-) as well as the previously described BLT1(-/-) animals showed complete protection from disease development. The disease severity correlated well with histopathology, including loss of joint architecture, inflammatory cell infiltration, fibrosis, pannus formation, and bone erosion in joints of BLT1/BLT2(+/+) animals and a total absence of disease pathology in leukotriene receptor-deficient mice. Despite these differences, all immunized BLT1(-/-) and BLT1/BLT2(-/-) animals had similar serum levels of anti-collagen Abs relative to BLT1/BLT2(+/+) animals. Thus, BLT1 may be a useful target for therapies directed at treating inflammation associated with arthritis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Cell Line
- Gene Expression Regulation/immunology
- Leukotriene B4/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Leukotriene B4/deficiency
- Receptors, Leukotriene B4/genetics
- Receptors, Leukotriene B4/physiology
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
Collapse
Affiliation(s)
- Wen-Hai Shao
- James Graham Brown Cancer Center, and Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
41
|
Taube C, Miyahara N, Ott V, Swanson B, Takeda K, Loader J, Shultz LD, Tager AM, Luster AD, Dakhama A, Gelfand EW. The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. THE JOURNAL OF IMMUNOLOGY 2006; 176:3157-64. [PMID: 16493075 DOI: 10.4049/jimmunol.176.5.3157] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Studies in both humans and rodents have suggested that CD8+ T cells contribute to the development of airway hyperresponsiveness (AHR) and that leukotriene B4 (LTB4) is involved in the chemotaxis of effector CD8+ T cells (T(EFF)) to the lung by virtue of their expression of BLT1, the receptor for LTB4. In the present study, we used a mast cell-CD8-dependent model of AHR to further define the role of BLT1 in CD8+ T cell-mediated AHR. C57BL/6+/+ and CD8-deficient (CD8-/-) mice were passively sensitized with anti-OVA IgE and exposed to OVA via the airways. Following passive sensitization and allergen exposure, C57BL/6+/+ mice developed altered airway function, whereas passively sensitized and allergen-exposed CD8-/- mice failed to do so. CD8-/- mice reconstituted with CD8+ T(EFF) developed AHR in response to challenge. In contrast, CD8-/- mice reconstituted with BLT1-deficient effector CD8+ T cells did not develop AHR. The induction of increased airway responsiveness following transfer of CD8+ T(EFF) or in wild-type mice could be blocked by administration of an LTB4 receptor antagonist confirming the role of BLT1 in CD8+ T cell-mediated AHR. Together, these data define the important role for mast cells and the LTB4-BLT1 pathway in the development of CD8+ T cell-mediated allergic responses in the lung.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Female
- Interleukin-13/physiology
- Leukotriene B4/metabolism
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/genetics
- Receptors, IgE/biosynthesis
- Receptors, IgE/deficiency
- Receptors, IgE/genetics
- Receptors, Leukotriene B4/deficiency
- Receptors, Leukotriene B4/genetics
- Receptors, Leukotriene B4/physiology
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
Collapse
Affiliation(s)
- Christian Taube
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qiu H, Johansson AS, Sjöström M, Wan M, Schröder O, Palmblad J, Haeggström JZ. Differential induction of BLT receptor expression on human endothelial cells by lipopolysaccharide, cytokines, and leukotriene B4. Proc Natl Acad Sci U S A 2006; 103:6913-8. [PMID: 16624877 PMCID: PMC1440767 DOI: 10.1073/pnas.0602208103] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukotriene (LT) B4 is a powerful chemotactic and immune modulating agent that signals via two receptors denoted BLT1 and BLT2. Here we report that BLT1 and BLT2 are expressed at low levels in an apparently silent state in human umbilical vein endothelial cells (HUVEC). However, treatment with LPS leads to a >10 fold increase in the levels of BLT1 mRNA without any significant effects on BLT2 mRNA. In parallel, LPS also increases the amounts of BLT1 protein. Tumor necrosis factor-alpha (TNF-alpha) increases the expression of BLT2 mRNA approximately 6 times above basal levels with only a modest increase in BLT1 mRNA. Interleukin-1beta causes variable and parallel increases of both BLT1 and BLT2 mRNA. The natural ligand LTB4 also increases BLT1, but not BLT2, mRNA and protein expression. Along with the induction of BLT1 and/or BLT2, HUVEC acquire the capacity to respond to LTB4 with increased levels of intracellular calcium and these signals can be blocked by isotype selective BLT antagonists, CP-105696 and LY-255283. In addition, treatment of HUVEC with LTB4 causes increased release of both nitrite, presumably reflecting nitric oxide (NO), and monocyte chemoattractant protein-1. Our data indicate that expression of functional BLT receptors may occur at the surface of endothelial cells in response to LPS, cytokines, and ligand, which in turn may have functional consequences during the early vascular responses to inflammation. Moreover, the results point to BLT receptors as potential targets for pharmacological intervention in LT-dependent inflammatory diseases such as asthma, rheumatoid arthritis, and arteriosclerosis.
Collapse
Affiliation(s)
- Hong Qiu
- *Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | | | - Mattias Sjöström
- *Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Min Wan
- *Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Oliver Schröder
- *Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Jan Palmblad
- Center for Inflammation and Hematology Research
- Department of Medicine, Huddinge University Hospital, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Jesper Z. Haeggström
- *Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Da L, Li D, Yokoyama K, Li T, Zhao M. Dual promoters control the cell-specific expression of the human cell death-inducing DFF45-like effector B gene. Biochem J 2006; 393:779-88. [PMID: 16248853 PMCID: PMC1360731 DOI: 10.1042/bj20051027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CIDE-B [cell death-inducing DFF45 (DNA fragmentation factor 45)-like effector B] is a member of the CIDE family of apoptosis-inducing factors. The highly restricted pattern of expression of CIDE-B in the liver and spleen suggests that a mechanism exists for the tissue- and cell-specific regulation of transcription of this gene. We have analysed the promoters of the human CIDE-B gene, particularly the mechanism of cell-specific transcription. Expression of CIDE-B is driven by two promoters which are responsible for the synthesis of two types of transcript, and Sp1 and Sp3 are key regulators of basal transcription from both the upstream and the internal promoter, as indicated by EMSAs (electrophoretic mobility-shift assays) and site-directed mutagenesis. Bisulphite sequencing analysis demonstrated that the upstream promoter was hypermethylated in cells that did not express the long transcript of CIDE-B, but was hypomethylated in cells that expressed this transcript. Furthermore, methylation of this region in vitro reduced the promoter activity to approximately 5% of the control. Thus methylation at CpG sites in the upstream promoter region appeared to be important for cell-specific synthesis of the long transcript. By contrast, HNF4alpha (hepatocyte nuclear factor-4alpha) bound to the internal promoter and enhanced its activity. Moreover, the short transcript of CIDE-B gene was expressed in cells which do not normally express this transcript upon introduction of exogenous HNF4alpha, demonstrating the involvement of HNF4alpha in the cell-specific synthesis of the short transcript. Thus our analysis revealed a novel mechanism for the cell-specific transcription of the human CIDE-B gene, which involves epigenetic and genetic control at separate respective promoters.
Collapse
Affiliation(s)
- Liang Da
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Li
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Tsaiping Li
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mujun Zhao
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Abstract
Leukotriene-forming enzymes are expressed within atherosclerotic lesions and locally produced leukotrienes exert pro-inflammatory actions within the vascular wall by means of cell surface receptors of the BLT and CysLT receptor subtypes. The migration and accumulation of inflammatory cells that follow leukotriene receptor activation have been implicated in atherosclerosis initiation and progression. Leukotriene receptors are in addition expressed on endothelial and vascular smooth muscle cells, associated with intimal hyperplasia in early atherosclerosis and restenotic lesions after angioplasty. Taken together, recent evidence suggests that leukotriene receptors may be a potential target in the treatment of atherosclerosis and in the prevention of restenosis after coronary interventions.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
45
|
Sabirsh A, Bristulf J, Karlsson U, Owman C, Haeggström JZ. Non-specific effects of leukotriene synthesis inhibitors on HeLa cell physiology. Prostaglandins Leukot Essent Fatty Acids 2005; 73:431-40. [PMID: 16171988 DOI: 10.1016/j.plefa.2005.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
We examined the effects of various leukotriene synthesis inhibitors on calcium signalling in HeLa cells, before and after transfection with BLT(1). All of the inhibitors studied were found to reduce increases in intracellular calcium concentration induced by BLT(1), but also by an ionophore or activation of various G-protein coupled receptors, regardless of BLT(1) expression. In order to explore the mechanism of these apparently general effects we examined HeLa cell expression of leukotriene receptors and biosynthetic enzymes and found that the genes for key leukotriene synthesis enzymes and all of the leukotriene receptors were not expressed. Leukotrienes are involved in the pathology of a variety of cancers, and for HeLa cells leukotrienes have been reported to be important for aspects of the carcinogenic phenotype. We find that leukotriene synthesis inhibitors have non-specific effects, so careful controls are necessary to avoid interpreting non-specific effects as evidence for leukotriene involvement.
Collapse
Affiliation(s)
- Alan Sabirsh
- Division of Physiological Chemistry II, Department of Medical Biochemistry, Biophysics, Karolinska Institute, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Bäck M, Bu DX, Bränström R, Sheikine Y, Yan ZQ, Hansson GK. Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci U S A 2005; 102:17501-6. [PMID: 16293697 PMCID: PMC1297663 DOI: 10.1073/pnas.0505845102] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Leukotriene B(4) (LTB(4)), a potent leukocyte chemoattractant derived from the 5-lipoxygenase metabolism of arachidonic acid, exerts its action by means of specific cell surface receptors, denoted BLT(1) and BLT(2). In this study, BLT(1) receptor proteins were detected in human carotid artery atherosclerotic plaques, colocalizing with markers for macrophages, endothelial cells, and vascular smooth muscle cells (SMC). Challenge of human coronary artery SMC with either LTB(4) or U75302, a partial agonist that is selective for the BLT(1) receptor, induced an approximately 4-fold increase of whole-cell currents by using the patch-clamp technique, indicating that these cells express functional BLT(1) receptors. LTB(4) induced migration and proliferation of SMC in vitro, and treatment with the BLT receptor antagonist BIIL 284 (10 mg/kg, once daily) for 14 days after carotid artery balloon injury in vivo inhibited intimal hyperplasia in rats. In the latter model, SMC derived from the intima exhibited increased levels of BLT(1) receptor mRNA compared with medial SMC. BLT receptor up-regulation in the intima in vivo, as well as that induced by IL-1beta in vitro, were prevented by transfection with a dominant-negative form of Ikappa kinase beta carried by adenovirus, indicating that BLT(1) receptor expression depends on NF-kappaBeta. These results show that LTB(4) activates functional BLT(1) receptors on vascular SMC, inducing chemotaxis and proliferation, and that BLT(1) receptors were up-regulated through an Ikappa kinase beta/NF-kappaB-dependent pathway. Inhibition of LTB(4)/BLT(1) signaling during the response to vascular injury reduced intimal hyperplasia, suggesting this pathway as a possible target for therapy.
Collapse
MESH Headings
- Amidines/pharmacology
- Analysis of Variance
- Animals
- Atherosclerosis/metabolism
- Blotting, Western
- Carbamates/pharmacology
- Carotid Artery Injuries/metabolism
- Cell Movement/drug effects
- Electrophysiology
- Fatty Alcohols/pharmacology
- Glycols/pharmacology
- Humans
- Hyperplasia/metabolism
- Leukotriene B4/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
- Patch-Clamp Techniques
- Polymerase Chain Reaction
- Purinergic P2 Receptor Agonists
- Purinergic P2 Receptor Antagonists
- Rats
- Rats, Sprague-Dawley
- Receptors, Leukotriene B4/agonists
- Receptors, Leukotriene B4/antagonists & inhibitors
- Receptors, Leukotriene B4/metabolism
- Receptors, Purinergic P2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tunica Intima/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Okuno T, Yokomizo T, Hori T, Miyano M, Shimizu T. Leukotriene B4 receptor and the function of its helix 8. J Biol Chem 2005; 280:32049-52. [PMID: 16046389 DOI: 10.1074/jbc.r500007200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
More than 30 lipid ligands, which express their biological activities through cognate G-protein-coupled receptors (GPCRs), have been reported. Among them, leukotriene B(4) (LTB(4)) is a potent lipid mediator involved in host defense, inflammation, and the immune responses. Two GPCRs for LTB(4) (BLT1 and BLT2) have been cloned and analyzed. Recent studies using genetically engineered mice suggest that BLT1 plays an important role in several inflammatory diseases including ischemic reperfusion tissue injury, atherosclerosis, and bronchial asthma. BLT1 is also a good tool to study the molecular mechanism of GPCR activation and inactivation in vitro. In this brief review, we focus on the biological and biochemical properties of BLT1 with special attention to the putative helix 8 of the receptor.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry and Molecular Biology and Metabolome, Faculty of Medicine, The University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
48
|
Iizuka Y, Yokomizo T, Terawaki K, Komine M, Tamaki K, Shimizu T. Characterization of a Mouse Second Leukotriene B4 Receptor, mBLT2. J Biol Chem 2005; 280:24816-23. [PMID: 15866883 DOI: 10.1074/jbc.m413257200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant and activator for granulocytes and macrophages and is considered to be an inflammatory mediator. Two G-protein-coupled receptors for LTB4, BLT1 and BLT2, have been cloned from human and shown to be high and low affinity LTB4 receptors, respectively. To reveal the biological roles of BLT2 using mouse disease models, we cloned and characterized mouse BLT2. Chinese hamster ovary cells stably expressing mouse BLT2 exhibited specific binding to LTB4, LTB4-induced calcium mobilization, inhibition of adenylyl cyclase, and phosphorylation of extracellular signal-regulated kinase. We found that Compound A (4'-{[pentanoyl (phenyl) amino] methyl}-1, 1'-biphenyl-2-carboxylic acid) was a BLT2-selective agonist and induced Ca(2+) mobilization and phosphorylation of extracellular signal-regulated kinase through BLT2, whereas it had no effect on BLT1. 12-epi LTB4 exhibited a partial agonistic activity against mBLT1 and mBLT2, whereas 6-trans-12-epi LTB4 did not. Northern blot analysis showed that mouse BLT2 is expressed highly in small intestine and skin in contrast to the ubiquitous expression of human BLT2. By in situ hybridization and the reverse transcriptase polymerase chain reaction, we demonstrated that mouse BLT2 is expressed in follicular and interfollicular keratinocytes. Compound A, LTB4, and 12-epi LTB4 all induced phosphorylation of extracellular signal-regulated kinase in primary mouse keratinocytes. Furthermore, Compound A and LTB4 induced chemotaxis in primary mouse keratinocytes. These data suggest the presence of functional BLT2 in primary keratinocytes.
Collapse
Affiliation(s)
- Yoshiko Iizuka
- Departments of Biochemistry and Molecular Biology and Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Subrata LS, Lowes KN, Olynyk JK, Yeoh GCT, Quail EA, Abraham LJ. Hepatic expression of the tumor necrosis factor family member lymphotoxin-beta is regulated by interleukin (IL)-6 and IL-1beta: transcriptional control mechanisms in oval cells and hepatoma cell lines. Liver Int 2005; 25:633-46. [PMID: 15910501 DOI: 10.1111/j.1478-3231.2005.01080.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lymphotoxin-beta (LT-beta) plays an important role in inflammation and its promoter contains a functional nuclear factor-kappaB (NF-kappaB) element, rendering it a likely target of pro-inflammatory cytokines. Inflammatory cytokines play a central role in liver regeneration resulting from acute or chronic liver injury, with interleukin (IL)-6 signaling essential for liver regeneration induced by partial hepatectomy. In hepatic oval cells observed following chronic liver injury, LT-beta levels are upregulated, suggesting a link between LT-beta and liver regeneration. RESULTS The expression of LT-beta in hepatic oval cell and hepatocellular carcinoma cell lines was further investigated, along with its responsiveness to IL-6 and IL-1beta. Key regulatory cis-acting elements of the LT-beta promoter that mediate IL-6 responsiveness (Sp/BKLF, Ets, NF-kappaB and Egr-1/Sp1) and IL-1beta responsiveness (NF-kappaB and Ets) of hepatic LT-beta expression were identified. The novel binding of basic Kruppel-like factor (BKLF) proteins to an apparent composite Sp/BKLF site of the LT-beta promoter was shown to mediate IL-6 responsiveness. Binding of NF-kappaB p65/p50 heterodimers and Ets-related transcription factors to their respective sites mediates responsiveness to IL-1beta. CONCLUSION The identification of IL-6 and IL-1beta as activators of LT-beta supports their involvement in LT-beta signaling in liver regeneration associated with chronic liver damage.
Collapse
Affiliation(s)
- Lily S Subrata
- Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Miyahara N, Takeda K, Miyahara S, Taube C, Joetham A, Koya T, Matsubara S, Dakhama A, Tager AM, Luster AD, Gelfand EW. Leukotriene B4 receptor-1 is essential for allergen-mediated recruitment of CD8+ T cells and airway hyperresponsiveness. THE JOURNAL OF IMMUNOLOGY 2005; 174:4979-84. [PMID: 15814727 DOI: 10.4049/jimmunol.174.8.4979] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent studies in both human and rodents have indicated that in addition to CD4+ T cells, CD8+ T cells play an important role in allergic inflammation. We previously demonstrated that allergen-sensitized and -challenged CD8-deficient (CD8-/-) mice develop significantly lower airway hyperresponsiveness (AHR), eosinophilic inflammation, and IL-13 levels in bronchoalveolar lavage fluid compared with wild-type mice, and that all these responses were restored by adoptive transfer of in vivo-primed CD8+ T cells or in vitro-generated effector CD8+ T cells (T(EFF)). Recently, leukotriene B4 and its high affinity receptor, BLT1, have been shown to mediate in vitro-generated T(EFF) recruitment into inflamed tissues. In this study we investigated whether BLT1 is essential for the development of CD8+ T cell-mediated allergic AHR and inflammation. Adoptive transfer of in vivo-primed BLT1+/+, but not BLT1-/-, CD8+ T cells into sensitized and challenged CD8-/- mice restored AHR, eosinophilic inflammation, and IL-13 levels. Moreover, when adoptively transferred into sensitized CD8-/- mice, in vitro-generated BLT1+/+, but not BLT1-/-, T(EFF) accumulated in the lung and mediated these altered airway responses to allergen challenge. These data are the first to show both a functional and an essential role for BLT1 in allergen-mediated CD8+ T(EFF) recruitment into the lung and development of AHR and airway inflammation.
Collapse
Affiliation(s)
- Nobuaki Miyahara
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|