1
|
Stec-Martyna E, Wojtczak K, Nowak D, Stawski R. Battle of the Biomarkers of Systemic Inflammation. BIOLOGY 2025; 14:438. [PMID: 40282303 PMCID: PMC12024891 DOI: 10.3390/biology14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Systemic inflammation is monitored with various biomarkers; of these, C-reactive protein (CRP) is widely used due to its cost effectiveness and widespread implementation. However, its lack of specificity and delayed kinetics have directed interest in cell-free DNA (cfDNA), which offers rapid responses to cellular damage. Our review compares the use of CRP and cfDNA in myocardial infarction, sepsis, and physical exercise, focusing on their origins, kinetics, and clinical utility. cfDNA release from apoptotic or damaged cells increases within minutes to hours, providing an early marker of cellular stress. In myocardial infarction, cfDNA peaks early, indicating acute injury, while CRP rises later, reflecting prolonged inflammation. In sepsis, cfDNA correlates strongly with disease severity and prognosis, outperforming CRP in early diagnosis. During physical exercise, cfDNA offers an immediate picture of cellular stress, whereas CRP's delayed response limits its utility in this context. The interaction between CRP and cfDNA suggests their combined application could improve diagnostic accuracy and prognostic assessments. As cfDNA testing becomes more widely available, researchers will need to develop standardized protocols and determine how it can best complement CRP measurements in clinical practice. This approach offers promise for improving the management of systemic inflammation across diverse medical conditions.
Collapse
Affiliation(s)
- Emilia Stec-Martyna
- Research Laboratory CoreLab, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland;
| | - Karolina Wojtczak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (K.W.); (D.N.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (K.W.); (D.N.)
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (K.W.); (D.N.)
| |
Collapse
|
2
|
Tang ZM, Yuan P, Gao N, Lei JG, Ahmed M, Hua YX, Yang ZR, Li QY, Li HY. C-reactive protein attenuates CCl 4-induced acute liver injury by regulating complement system activation. Mol Immunol 2025; 180:44-54. [PMID: 40010008 DOI: 10.1016/j.molimm.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Acute liver injury is liver dysfunction caused by multiple factors without any pre-existing liver disease. C-reactive protein (CRP) is an acute-phase protein produced by hepatocytes, serving as a marker of inflammation and tissue damage. However, its role in CCl4-induced acute liver injury has not been elucidated. Here, we report that CRP protects against CCl4-induced acute liver injury by regulating complement activation. CRP knockout exacerbates CCl4-induced acute liver injury in mice and rats, markedly enhances tissue damage, and reduces survival. Administration of exogenous CRP to CRP-knockout mice rescues the CCl4-induced liver injury phenotype. The protective effect of CRP is independent of its cellular receptor FcγR2b and early metabolic pathways. Instead, CRP suppresses the late-phase amplification of inflammation by inhibiting terminal complement pathway overactivation in injured hepatocytes via factor H recruitment. In complement C3 knockout (C3-/-) mice, the protective effect of CRP against CCl4-induced acute liver injury is lost. These results suggest that CRP can alleviate CCl4-induced acute liver injury by regulating the complement pathway, providing a theoretical basis for CRP's potential involvement and regulation of disease severity.
Collapse
Affiliation(s)
- Zhao-Ming Tang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ning Gao
- Department of Infectious Disease, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia-Geng Lei
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mustafa Ahmed
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu-Xin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ze-Rui Yang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiu-Yu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Hai-Yun Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China..
| |
Collapse
|
3
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
4
|
Becker K, Ding Z, Bouvain P, Koshy J, Massold T, Kleimann P, Flögel U, Temme S. Inflammatory stimuli impact on cellular uptake and biodistribution of perfluorocarbon nanoemulsions. J Leukoc Biol 2025; 117:qiae199. [PMID: 39283955 DOI: 10.1093/jleuko/qiae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 03/06/2025] Open
Abstract
Intravenously administered perfluorocarbon nanoemulsions (PFCs) are taken up by phagocytic immune cells, which enables the noninvasive visualization of inflammatory hot spots by combined 1H/19F magnetic resonance imaging. However, little is known about the influence of inflammatory stimuli on cellular uptake and biodistribution of PFCs. Here, we systematically investigated the impact of inflammation induced by subcutaneous implantation of Matrigel/lipopolysaccharide or myocardial infarction (50 min ischemia reperfusion) on PFC uptake and biodistribution in C57BL/6J mice. We detected strong 19F signals in Matrigel/lipopolysaccharide plugs and infarcted hearts, which were completely absent in controls. Cellular uptake of PFCs was increased in neutrophils isolated from the blood and Matrigel/lipopolysaccharide plugs, whereas uptake by monocytes was only slightly elevated. In contrast, myocardial infarction caused only a moderate early increase of PFC uptake in monocytes and neutrophils. Interestingly, the inflammatory model did also affect the biodistribution of the PFCs. The blood half-life of PFCs was slightly increased after Matrigel/lipopolysaccharide implantation, whereas it was reduced after myocardial infarction. Compared to controls, the 19F signal of the liver was significantly stronger in Matrigel/lipopolysaccharide but not in myocardial infarction animals. Interestingly, stimulation of primary immune cells and RAW264.7 macrophages with lipopolysaccharide had no effect on PFC uptake, whereas C-reactive protein incubation elevated internalization of PFCs at least in RAW264.7 cells. In conclusion, we show that the cellular PFC uptake can differ between individual inflammatory conditions. This is an important aspect that has to be considered for the proper interpretation of 1H/19F magnetic resonance imaging data obtained from inflammatory hot spots.
Collapse
Affiliation(s)
- Katrin Becker
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Institute for Cardiovascular Sciences, Medical Faculty and University Hospital Bonn, University Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Zhaoping Ding
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Pascal Bouvain
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jeny Koshy
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Timo Massold
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Patricia Kleimann
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ulrich Flögel
- Institute for Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Ghosh S, Chorghade R, Diehl RC, Dodge GJ, Bae S, Dugan AE, Halim M, Wuo MG, Bartlett H, Herndon L, Kiessling LL, Imperiali B. Glycan analysis probes inspired by human lectins for investigating host-microbe crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630132. [PMID: 39763805 PMCID: PMC11703188 DOI: 10.1101/2024.12.24.630132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and pathogen binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can be used to distinguish microbial from mammalian glycans, which is crucial for understanding the cross-target interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajeev Chorghade
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger C Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Greg J Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sunhee Bae
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie Halim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liam Herndon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Wojciuk B, Frulenko I, Brodkiewicz A, Kita D, Baluta M, Jędrzejczyk F, Budkowska M, Turkiewicz K, Proia P, Ciechanowicz A, Kostrzewa-Nowak D, Nowak R. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. Int J Mol Sci 2024; 25:11608. [PMID: 39519159 PMCID: PMC11545998 DOI: 10.3390/ijms252111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The precise molecular processes underlying the complement's activation, which follows exposure to physical stress still remain to be fully elucidated. However, some possible mechanisms could play a role in initiating changes in the complement's activity, which are observed post-exposure to physical stress stimuli. These are mainly based on metabolic shifts that occur in the microenvironment of muscle tissue while performing its function with increased intensity, as well as the adipose tissue's role in sterile inflammation and adipokine secretion. This review aims to discuss the current opinions on the possible link between the complement activation and diet, age, sex, and health disorders with a particular emphasis on endocrinopathies and, furthermore, the type of physical activity and overall physical fitness. It has been indicated that regular physical activity incorporated into therapeutic strategies potentially improves the management of particular diseases, such as, e.g., autoimmune conditions. Moreover, it represents a favorable influence on immunoaging processes. A better understanding of the complement system's interaction with physical activity will support established clinical therapies targeting complement components.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Ignacy Frulenko
- Pomeranian Medical University in Szczecin, 1 Rybacka St., 70-204 Szczecin, Poland;
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Dagmara Kita
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Monica Baluta
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Filip Jędrzejczyk
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Karolina Turkiewicz
- Department of Laboratory Diagnostics, University Clinical Hospital No. 2, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdańsk, Poland
| | - Robert Nowak
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
| |
Collapse
|
7
|
An S, Eo W, Kim DH, Lee S. Prognostic Value of the Noble and Underwood Score in Patients with Non-Small Cell Lung Cancer Undergoing Surgical Resection. J Cancer 2024; 15:6185-6195. [PMID: 39513125 PMCID: PMC11540506 DOI: 10.7150/jca.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Background: This retrospective study aimed to evaluate the clinical utility of the Noble and Underwood (NUn) score as a prognostic marker for overall survival (OS) in patients with stage I to IIIA non-small cell lung cancer (NSCLC). The NUn score is a novel composite marker that integrates C-reactive protein (CRP), serum albumin (ALB) levels, and white blood cell (WBC) count to provide a comprehensive assessment of systemic inflammation and nutritional status. Methods: We included patients with stage I to IIIA NSCLC and assessed the NUn score, calculated using CRP, ALB levels, and WBC count. Hazard ratios for OS were determined using Cox regression analysis. The predictive performance of the models was evaluated through metrics such as area under the curve (AUC), concordance index (C-index), integrated AUC (iAUC), integrated discrimination improvement (IDI), continuous net reclassification index (cNRI), and decision curve analysis (DCA). Results: The median age of the patients was 69 years, and 63.1% of patients were men. The cohort included 152 (63.1%) patients with stage I disease, 54 (22.4%) with stage II disease, and 35 (14.5%) with stage IIIA disease. In the multivariate Cox regression analysis, the NUn score, age, American Society of Anesthesiologists Physical Status, tumor-node-metastasis (TNM) stage, and pleural invasion emerged as independent prognostic factors for OS, forming the NUn model. The C-index and iAUC of the NUn model (0.832 and 0.802, respectively) outperformed those of the baseline model based solely on TNM stage. The NUn model also demonstrated superior discriminative capacity compared with the baseline model using metrics such as AUC, IDI, cNRI, and DCA at 3 and 5 years after surgery. Calibration of the nomogram based on the NUn model showed good accuracy. Conclusions: These findings underscore the prognostic significance of the NUn score in predicting OS among patients with stage I to IIIA NSCLC by integrating markers of inflammation and nutritional status. The NUn model, which integrates the NUn score with other clinical variables, exhibited superior discriminative ability compared with TNM stage alone. These findings highlight the potential of the NUn score as a valuable tool in personalized care for patients with NSCLC. Further external validation with independent cohorts is necessary to confirm the model's applicability to other populations.
Collapse
Affiliation(s)
- Soomin An
- Department of Nursing, Dongyang University, Gyeongbuk, Republic of Korea
| | - Wankyu Eo
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Department of Thoracic Surgery, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Sookyung Lee
- Department of Clinical Oncology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Noone DP, Isendoorn MME, Hamers SMWR, Keizer ME, Wulffelé J, van der Velden TT, Dijkstra DJ, Trouw LA, Filippov DV, Sharp TH. Structural basis for surface activation of the classical complement cascade by the short pentraxin C-reactive protein. Proc Natl Acad Sci U S A 2024; 121:e2404542121. [PMID: 39240968 PMCID: PMC11406272 DOI: 10.1073/pnas.2404542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/04/2024] [Indexed: 09/08/2024] Open
Abstract
Human C-reactive protein (CRP) is a pentameric complex involved in immune defense and regulation of autoimmunity. CRP is also a therapeutic target, with both administration and depletion of serum CRP being pursued as a possible treatment for autoimmune and cardiovascular diseases, among others. CRP binds to phosphocholine (PC) moieties on membranes to activate the complement system via the C1 complex, but it is unknown how CRP, or any pentraxin, binds to C1. Here, we present a cryoelectron tomography (cryoET)-derived structure of CRP bound to PC ligands and the C1 complex. To gain control of CRP binding, a synthetic mimotope of PC was synthesized and used to decorate cell-mimetic liposome surfaces. Structure-guided mutagenesis of CRP yielded a fully active complex able to bind PC-coated liposomes that was ideal for cryoET and subtomogram averaging. In contrast to antibodies, which form Fc-mediated hexameric platforms to bind and activate the C1 complex, CRP formed rectangular platforms assembled from four laterally associated CRP pentamers that bind only four of the six available globular C1 head groups. Potential residues mediating lateral association of CRP were identified from interactions between unit cells in existing crystal structures, which rationalized previously unexplained mutagenesis data regarding CRP-mediated complement activation. The structure also enabled interpretation of existing biochemical data regarding interactions mediating C1 binding and identified additional residues for further mutagenesis studies. These structural data therefore provide a possible mechanism for regulation of complement by CRP, which limits complement progression and has consequences for how the innate immune system influences autoimmunity.
Collapse
Affiliation(s)
- Dylan P. Noone
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Marjolein M. E. Isendoorn
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, 2333 CCLeiden, The Netherlands
| | - Sebastiaan M. W. R. Hamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Mariska E. Keizer
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Jip Wulffelé
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Tijn T. van der Velden
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Douwe J. Dijkstra
- Department of Immunology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Leendert A. Trouw
- Department of Immunology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, 2333 CCLeiden, The Netherlands
| | - Thomas H. Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
- School of Biochemistry, University of Bristol, BristolBS8 1TD, United Kingdom
| |
Collapse
|
9
|
Abendstein L, Noteborn WEM, Veenman LS, Dijkstra DJ, van de Bovenkamp FS, Trouw LA, Sharp TH. DNA Nanostructure-Templated Antibody Complexes Provide Insights into the Geometric Requirements of Human Complement Cascade Activation. J Am Chem Soc 2024; 146:13455-13466. [PMID: 38703132 PMCID: PMC11099972 DOI: 10.1021/jacs.4c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen-antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system.
Collapse
Affiliation(s)
- Leoni Abendstein
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Leiden 2300 RC, The Netherlands
| | - Willem E. M. Noteborn
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Leiden 2300 RC, The Netherlands
| | - Luc S. Veenman
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Leiden 2300 RC, The Netherlands
| | - Douwe J. Dijkstra
- Department
of Immunology, Leiden University Medical
Center, Leiden 2333 ZA, The Netherlands
| | | | - Leendert A. Trouw
- Department
of Immunology, Leiden University Medical
Center, Leiden 2333 ZA, The Netherlands
| | - Thomas H. Sharp
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Leiden 2300 RC, The Netherlands
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.
| |
Collapse
|
10
|
Nescolarde L, Yanguas J, Hernández-Hermoso JA. Localized hamstring bioimpedance in marathon runners is related to muscle high-energy enzyme serum levels and predicts race time. Front Physiol 2024; 15:1337119. [PMID: 38505706 PMCID: PMC10948513 DOI: 10.3389/fphys.2024.1337119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction: The aim was to analyze the response of serum levels of inflammatory, high-energy muscle biomarkers and hamstring localized bioimpedance (L-BIA) measurements to marathon running and to ascertain whether they correlate with each other or with race time. Methods: Blood samples and hamstrings tetra-polar L-BIA measurements from 14 Caucasian male recreational athletes at the Barcelona Marathon 2019 were collected at base line, immediately after and 48 h post-race. Serum C reactive protein (sCRP), creatinine kinase (sCK) and lactate dehydrogenase (sLDH) were determined using an AU-5800 chemistry analyzer. L-BIA was obtained at 50 kHz with a Quantum V Segmental phase-sensitive bioimpedance analyzer. Results: Median sCRP increased (4-fold) after 48 h post-race. Median sCK and sLDH levels increased immediately post-race (3-fold, 2-fold) and 48h post-race (5-fold, 1-fold). Left, right and combined hamstring reactance (Xc) and phase angle (PhA) increased immediately post-race. Xc combined hamstring pre- and immediately post-race correlated with race-time and with sCK and sLDH median levels pre-race. Xc combined hamstring pre- and immediately post-race > 15.6 Ω and 15.8 Ω, respectively, predicted the race time of 3:00:00 h. Conclusion: L-BIA reactance (Xc) is an objective direct, real time, easy, noninvasive bioelectrical parameter that may predict muscle and marathon athlete performance.
Collapse
Affiliation(s)
- Lexa Nescolarde
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Javier Yanguas
- FIFA Medical Center of Excellence, Ciutat Esportiva Futbol Club Barcelona, Medical Department, Futbol Club Barcelona, Barcelona, Spain
| | - José A. Hernández-Hermoso
- Department of Orthopedic Surgery and Traumatology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Surgery, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Zhong J, Zha H, Cong H, Zhang H, Zhao L, Yu S, Zhu Q, Liu Y. Recombinant expression and immune function analysis of C-reactive protein (CRP) from Hexagrammos otakii. Gene 2024; 897:148048. [PMID: 38042212 DOI: 10.1016/j.gene.2023.148048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
C-reactive protein (CRP) belongs to the short-chain pentraxin family and functions as a soluble pattern recognition molecule (PRM) aiding in host defense against pathogens. In the present study, a CRP gene, designated HoCRP, was cloned from Hexagrammos otakii for the first time. The full length of the HoCRP cDNA sequence is 821 bp, which contains an open reading frame (ORF) of 675 bp encoding a 224 amino acid protein. The deduced protein is predicted to have a theoretical isoelectric point (pI) of 5.30 and a molecular weight of 25.4 kDa. The recombinant HoCRP protein (rHoCRP) was expressed in E. coli to further characterize the functions of HoCRP. Saccharide binding experiments demonstrated that rHoCRP exhibited a high affinity for various pathogen-associated molecular patterns (PAMPs). Furthermore, bacterial binding and agglutination assays indicated that rHoCRP had the capability to recognize a wide spectrum of microorganisms. These findings suggest that HoCRP functions not only as a PRM for binding PAMPs but also as an immune effector molecule. Considering the role CRP plays in the classical complement pathway, the interaction between rHoCRP and rHoC1q was assessed and proven by a Pull-down and Elisa assay, which implied that rHoCRP may be able to activate complement. In addition, phagocytosis enhancement by rHoCRP in the presence or absence of complement components was analysed by flow cytometry. The results showed that rHoCRP could synergistically enhance the phagocytosis of RAW264.7 cells with complement, providing further evidence of complement activation by rHoCRP through the opsonization of specific complement components. In summary, our findings suggest that rHoCRP may play a crucial role in host antibacterial defense by recognizing pathogens, activating the complement system, and enhancing macrophage function.
Collapse
Affiliation(s)
- Jinmiao Zhong
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haidong Zha
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong 264200, China
| | - Haoyue Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Qian Zhu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yingying Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
12
|
Wang Y, Chen W, Ding S, Wang W, Wang C. Pentraxins in invertebrates and vertebrates: From structure, function and evolution to clinical applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105064. [PMID: 37734429 DOI: 10.1016/j.dci.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The immune system is divided into two broad categories, consisting of innate and adaptive immunity. As recognition and effector factors of innate immunity and regulators of adaptive immune responses, lectins are considered to be important defense chemicals against microbial pathogens, cell trafficking, immune regulation, and prevention of autoimmunity. Pentraxins, important members of animal lectins, play a significant role in protecting the body from pathogen infection and regulating inflammatory reactions. They can recognize and bind to a variety of ligands, including carbohydrates, lipids, proteins, nucleic acids and their complexes, and protect the host from pathogen invasion by activating the complement cascade and Fcγ receptor pathways. Based on the primary structure of the subunit, pentraxins are divided into short and long pentraxins. The short pentraxins are comprised of C-reactive protein (CRP) and serum amyloid P (SAP), and the most important member of the long pentraxins is pentraxin 3 (PTX3). The CRP and SAP exist in both vertebrates and invertebrates, while the PTX3 may be present only in vertebrates. The major ligands and functions of CRP, SAP and PTX3 and three activation pathways involved in the complement system are summarized in this review. Their different characteristics in various animals including humans, and their evolutionary trees are analyzed. The clinical applications of CRP, SAP and PTX3 in human are reviewed. Some questions that remain to be understood are also highlighted.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
13
|
Al Hussan M, Qiao S, Abuheit EMI, Abdun MA, Al Mahamid M, Guo H, Zheng F, Nobah AMAM. The Role of C-reactive Protein and Procalcitonin in Predicting the Occurrence of Pancreatic Fistula in Patients who Underwent Laparoscopic Pancreaticoduodenectomy: a Retrospective Study. Zentralbl Chir 2023; 148:508-515. [PMID: 37798903 DOI: 10.1055/a-2157-7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The occurrence of postoperative pancreatic fistula following laparoscopic pancreaticoduodenectomy (LPD) is a significant concern, yet there is currently a lack of consensus on reliable predictive methods for this complication. Therefore, the aim of this study was to assess the clinical significance of C-reactive protein (CRP) and procalcitonin (PCT) values and their reliability in early predicting the development of clinically relevant pancreatic fistula (CRPF) following LPD.A retrospective analysis was conducted using data from 120 patients who had LPD between September 2019 and December 2021. Preoperative assessment data, standard patients' demographic and clinicopathological characteristics, intra- and postoperative evaluation, as well as postoperative laboratory values on postoperative days (PODs) 1, 3, and 7, including white blood cells (WBCs), CRP, and PCT, were prospectively recorded on a dedicated database. Two clinicians separately collected and cross-checked all of the data.Among 120 patients [77 men (64%), 43 women (36%], CRPF occurred in 15 patients (11 grade B and 4 grade C fistulas). The incidence rate of CRPF was 12.3%. A comparison of the median values of WBCs, PCT, and CRP across the two groups revealed that the CRPF group had higher values on most PODs than the non-CRPF group. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and cutoff values. It was discovered that POD 3 has the most accurate and significant values for WBCs, CRP, and PCT. According to the ROC plots, the AUC for WBCs was 0.842, whereas the AUC for PCT was 0.909. As for CRP, the AUC was 0.941 (95% CI 0.899-0.983, p < 0.01) with a cutoff value of 203.45, indicating a sensitivity of 93.3% and specificity of 91.4%.Both CRP and PCT can be used to predict the early onset of CRPF following LPD, with CRP being slightly superior on POD 3.
Collapse
Affiliation(s)
- Maher Al Hussan
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Shishi Qiao
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Ezaldin M I Abuheit
- Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mohammed Awadh Abdun
- Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohamad Al Mahamid
- Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Huahu Guo
- Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Fengyu Zheng
- Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Ali Mansour Ali Mi Nobah
- Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Vahidi A, Bahari Z, Behzadnia MJ. Correlation of the COVID-19 Infection and Outcomes with Workload among Emergency Healthcare Workers in an Iranian Referral Hospital. ARCHIVES OF RAZI INSTITUTE 2023; 78:1804-1810. [PMID: 38828179 PMCID: PMC11139390 DOI: 10.32592/ari.2023.78.6.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/02/2023] [Indexed: 06/05/2024]
Abstract
The immediate spread of COVID-19 posed a great deal of strain on healthcare personnel, particularly emergency personnel. Considering the critical role of frontline health care personnel (HCPs) during the pandemic and the life-threatening effects of COVID-19 on them, the present study aimed to evaluate the hospital database among frontline emergency personnel, and to assess the factors affecting the health status of the emergency HCPs. In the current study, we collected data on coronavirus clinical features from 58 HCPs with confirmed COVID-19 who worked in the emergency ward of Baqiyatallah Hospital, Tehran, one of the most referral hospitals in Iran. We also assessed the factors affecting the health status of the emergency HCPs from February 2020 to November 2020. All of the 58 HCPs infected with COVID-19 were the personnel of the emergency ward with an age range of 20-59 years old. The median (interquartile range) of hospital length of stay (LOS) among all patients was 8 days. Length of stay is a critical factor in predicting hospital resource needs. Twelve (21.8%) patients had ground-glass opacity (GGO) alone, and 20 (35.7%) patients had patchy GGO. In our multivariable analysis, high levels of patient liver enzymes (P=0.04) and lymphopenia (P=0.01) were significantly associated with the LOS. In our study, there was an association between high levels of patient's ESR and CRP and longer LOS. We also found that age and gender had no effect on LOS. Nurses contributed to the highest number of COVID-19 infection. It was also found that HCPs who had more working shifts were more infected, and the intensive care unit of the emergency ward was the most infected area of the Emergency Room.
Collapse
Affiliation(s)
- A Vahidi
- Student research committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Z Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - M J Behzadnia
- Trauma research center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Yuan M, Tan Y, Zhao MH. The Role of Anti-mCRP Autoantibodies in Lupus Nephritis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:317-325. [PMID: 37901707 PMCID: PMC10601961 DOI: 10.1159/000530928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 10/31/2023]
Abstract
Background Lupus nephritis is characterized by multiple autoantibodies production. However, there are few autoantibodies associated with disease activity and prognosis. CRP exists in at least two conformationally distinct forms: native pentameric C-reactive protein (pCRP) and modified/monomeric CRP (mCRP). Autoantibodies against mCRP are prevalent in sera of patients with lupus nephritis and are reported to be pathogenic. Summary The levels of serum anti-mCRP autoantibodies are associated with clinical disease activity, tubulointerstitial lesions, treatment response, and prognosis in patients with lupus nephritis. The key epitope of mCRP was amino acid 35-47. Furthermore, emerging evidence indicated that anti-mCRP autoantibodies could participate in the pathogenesis of lupus nephritis by forming in situ immune complexes or interfering with the biological functions of mCRP, such as binding to complement C1q and factor H. Key Messages Here, we review the recent advances in the prevalence, clinical-pathological associations, and potential pathogenesis of anti-mCRP autoantibodies in lupus nephritis, which may provide a promising novel therapeutic strategy for lupus nephritis.
Collapse
Affiliation(s)
- Mo Yuan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Yunnan University, Kunming, China
- Department of Pathology, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Tao Q, Zhang C, Mercier G, Lunetta K, Ang TFA, Akhter‐Khan S, Zhang Z, Taylor A, Killiany RJ, Alosco M, Mez J, Au R, Zhang X, Farrer LA, Qiu WWQ, for the Alzheimer's Disease Neuroimaging Initiative. Identification of an APOE ε4-specific blood-based molecular pathway for Alzheimer's disease risk. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12490. [PMID: 37854772 PMCID: PMC10579631 DOI: 10.1002/dad2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION The precise apolipoprotein E (APOE) ε4-specific molecular pathway(s) for Alzheimer's disease (AD) risk are unclear. METHODS Plasma protein modules/cascades were analyzed using weighted gene co-expression network analysis (WGCNA) in the Alzheimer's Disease Neuroimaging Initiative study. Multivariable regression analyses were used to examine the associations among protein modules, AD diagnoses, cerebrospinal fluid (CSF) phosphorylated tau (p-tau), and brain glucose metabolism, stratified by APOE genotype. RESULTS The Green Module was associated with AD diagnosis in APOE ε4 homozygotes. Three proteins from this module, C-reactive protein (CRP), complement C3, and complement factor H (CFH), had dose-dependent associations with CSF p-tau and cognitive impairment only in APOE ε4 homozygotes. The link among these three proteins and glucose hypometabolism was observed in brain regions of the default mode network (DMN) in APOE ε4 homozygotes. A Framingham Heart Study validation study supported the findings for AD. DISCUSSION The study identifies the APOE ε4-specific CRP-C3-CFH inflammation pathway for AD, suggesting potential drug targets for the disease.Highlights: Identification of an APOE ε4 specific molecular pathway involving blood CRP, C3, and CFH for the risk of AD.CRP, C3, and CFH had dose-dependent associations with CSF p-Tau and brain glucose hypometabolism as well as with cognitive impairment only in APOE ε4 homozygotes.Targeting CRP, C3, and CFH may be protective and therapeutic for AD onset in APOE ε4 carriers.
Collapse
Affiliation(s)
- Qiushan Tao
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
| | - Chao Zhang
- Section of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Gustavo Mercier
- Section of Molecular Imaging and Nuclear MedicineDepartment of RadiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Lunetta
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Ting Fang Alvin Ang
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Samia Akhter‐Khan
- Department of Health Service & Population ResearchKing's College London, LondonDavid Goldberg CentreLondonUK
| | - Zhengrong Zhang
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew Taylor
- Department of OphthalmologyBoston University School of MedicineBostonMassachusettsUSA
| | - Ronald J. Killiany
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Michael Alosco
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
| | - Rhoda Au
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Xiaoling Zhang
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Wendy Wei Qiao Qiu
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | | |
Collapse
|
17
|
Hopkins FR, Nordgren J, Fernandez-Botran R, Enocsson H, Govender M, Svanberg C, Svensson L, Hagbom M, Nilsdotter-Augustinsson Å, Nyström S, Sjöwall C, Sjöwall J, Larsson M. Pentameric C-reactive protein is a better prognostic biomarker and remains elevated for longer than monomeric CRP in hospitalized patients with COVID-19. Front Immunol 2023; 14:1259005. [PMID: 37724104 PMCID: PMC10505432 DOI: 10.3389/fimmu.2023.1259005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
The differing roles of the pentameric (p) and monomeric (m) C-reactive protein (CRP) isoforms in viral diseases are not fully understood, which was apparent during the COVID-19 pandemic regarding the clinical course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Herein, we investigated the predictive value of the pCRP and mCRP isoforms for COVID-19 severity in hospitalized patients and evaluated how the levels of the protein isoforms changed over time during and after acute illness. This study utilized samples from a well-characterized cohort of Swedish patients with SARS-CoV-2 infection, the majority of whom had known risk factors for severe COVID-19 and required hospitalization. The levels of pCRP were significantly raised in patients with severe COVID-19 and in contrast to mCRP the levels were significantly associated with disease severity. Additionally, the pCRP levels remained elevated for at least six weeks post inclusion, which was longer compared to the two weeks for mCRP. Our data indicates a low level of inflammation lasting for at least six weeks following COVID-19, which might indicate that the disease has an adverse effect on the immune system even after the viral infection is resolved. It is also clear that the current standard method of testing pCRP levels upon hospitalization is a useful marker for predicting disease severity and mCRP testing would not add any clinical relevance for patients with COVID-19.
Collapse
Affiliation(s)
- Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Helena Enocsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Vrinnevi Hospital, Norrköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Vrinnevi Hospital, Norrköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Sheriff A, Kunze R, Brunner P, Vogt B. Being Eaten Alive: How Energy-Deprived Cells Are Disposed of, Mediated by C-Reactive Protein-Including a Treatment Option. Biomedicines 2023; 11:2279. [PMID: 37626775 PMCID: PMC10452736 DOI: 10.3390/biomedicines11082279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In medicine, C-reactive protein (CRP) has become established primarily as a biomarker, predicting patient prognosis in many indications. Recently, however, there has been mounting evidence that it causes inflammatory injury. As early as 1999, CRP was shown to induce cell death after acute myocardial infarction (AMI) in rats and this was found to be dependent on complement. The pathological effect of CRP was subsequently confirmed in further animal species such as rabbit, mouse and pig. A conceptual gap was recently closed when it was demonstrated that ischemia in AMI or ischemia/hypoxia in the severe course of COVID-19 causes a drastic lack of energy in involved cells, resulting in an apoptotic presentation because these cells cannot repair/flip-flop altered lipids. The deprivation of energy leads to extensive expression on the cell membranes of the CRP ligand lysophosphatidylcholine. Upon attachment of CRP to this ligand, the classical complement pathway is triggered leading to the swift elimination of viable cells with the appearance of an apoptotic cell by phagocytes. They are being eaten alive. This, consequently, results in substantial fibrotic remodeling within the involved tissue. Inhibiting this pathomechanism via CRP-targeting therapy has been shown to be beneficial in different indications.
Collapse
Affiliation(s)
- Ahmed Sheriff
- Department of Gastroenterology, Infectiology, Rheumatology, Charité University Medicine Berlin, 10117 Berlin, Germany
- Pentracor GmbH, 16761 Hennigsdorf, Germany (P.B.); (B.V.)
| | - Rudolf Kunze
- Pentracor GmbH, 16761 Hennigsdorf, Germany (P.B.); (B.V.)
| | | | - Birgit Vogt
- Pentracor GmbH, 16761 Hennigsdorf, Germany (P.B.); (B.V.)
| |
Collapse
|
19
|
Rizo-Téllez SA, Sekheri M, Filep JG. C-reactive protein: a target for therapy to reduce inflammation. Front Immunol 2023; 14:1237729. [PMID: 37564640 PMCID: PMC10410079 DOI: 10.3389/fimmu.2023.1237729] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
C-reactive protein (CRP) is well-recognized as a sensitive biomarker of inflammation. Association of elevations in plasma/serum CRP level with disease state has received considerable attention, even though CRP is not a specific indicator of a single disease state. Circulating CRP levels have been monitored with a varying degree of success to gauge disease severity or to predict disease progression and outcome. Elevations in CRP level have been implicated as a useful marker to identify patients at risk for cardiovascular disease and certain cancers, and to guide therapy in a context-dependent manner. Since even strong associations do not establish causality, the pathogenic role of CRP has often been over-interpreted. CRP functions as an important modulator of host defense against bacterial infection, tissue injury and autoimmunity. CRP exists in conformationally distinct forms, which exhibit distinct functional properties and help explaining the diverse, often contradictory effects attributed to CRP. In particular, dissociation of native pentameric CRP into its subunits, monomeric CRP, unmasks "hidden" pro-inflammatory activities in pentameric CRP. Here, we review recent advances in CRP targeting strategies, therapeutic lowering of circulating CRP level and development of CRP antagonists, and a conformation change inhibitor in particular. We will also discuss their therapeutic potential in mitigating the deleterious actions attributed to CRP under various pathologies, including cardiovascular, pulmonary and autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Salma A. Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
20
|
Chernyaeva L, Ratti G, Teirilä L, Fudo S, Rankka U, Pelkonen A, Korhonen P, Leskinen K, Keskitalo S, Salokas K, Gkolfinopoulou C, Crompton KE, Javanainen M, Happonen L, Varjosalo M, Malm T, Leinonen V, Chroni A, Saavalainen P, Meri S, Kajander T, Wollman AJ, Nissilä E, Haapasalo K. Reduced binding of apoE4 to complement factor H promotes amyloid-β oligomerization and neuroinflammation. EMBO Rep 2023:e56467. [PMID: 37155564 DOI: 10.15252/embr.202256467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aβ1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aβ1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aβ1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aβ1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aβ plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.
Collapse
Affiliation(s)
- Larisa Chernyaeva
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Laura Teirilä
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satoshi Fudo
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Uni Rankka
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anssi Pelkonen
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Matti Javanainen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Humanitas University, Milano, Italy
| | - Tommi Kajander
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Adam Jm Wollman
- Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Eija Nissilä
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Dudli S, Heggli I, Laux CJ, Spirig JM, Wanivenhaus F, Betz M, Germann C, Farshad-Amacker NA, Herger N, Mengis T, Brunner F, Farshad M, Distler O. Role of C-reactive protein in the bone marrow of Modic type 1 changes. J Orthop Res 2023; 41:1115-1122. [PMID: 36062874 PMCID: PMC9985669 DOI: 10.1002/jor.25437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 02/04/2023]
Abstract
Modic type 1 changes (MC1) are vertebral bone marrow lesions and associate with low back pain. Increased serum C-reactive protein (CRP) has inconsistently been associated with MC1. We aimed to provide evidence for the role of CRP in the tissue pathophysiology of MC1 bone marrow. From 13 MC1 patients undergoing spinal fusion at MC1 levels, vertebral bone marrow aspirates from MC1 and intrapatient control bone marrow were taken. Bone marrow CRP, interleukin (IL)-1, and IL-6 were measured with enzyme-linked immunosorbent assays; lactate dehydrogenase (LDH) was measured with a colorimetric assay. CRP, IL-1, and IL-6 were compared between MC1 and control bone marrow. Bone marrow CRP was correlated with blood CRP and with bone marrow IL-1, IL-6, and LDH. CRP expression by marrow cells was measured with a polymerase chain reaction. Increased CRP in MC1 bone marrow (mean difference: +0.22 mg CRP/g, 95% confidence interval [CI] [-0.04, 0.47], p = 0.088) correlated with blood CRP (r = 0.69, p = 0.018), with bone marrow IL-1β (ρ = 0.52, p = 0.029) and IL-6 (ρ = 0.51, p = 0.031). Marrow cells did not express CRP. Increased LDH in MC1 bone marrow (143.1%, 95% CI [110.7%, 175.4%], p = 0.014) indicated necrosis. A blood CRP threshold of 3.2 mg/L detected with 100% accuracy increased CRP in MC1 bone marrow. In conclusion, the association of CRP with inflammatory and necrotic changes in MC1 bone marrow provides evidence for a pathophysiological role of CRP in MC1 bone marrow.
Collapse
Affiliation(s)
- Stefan Dudli
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Irina Heggli
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christoph J. Laux
- Department of Orthopeadics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - José M. Spirig
- Department of Orthopeadics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Florian Wanivenhaus
- Department of Orthopeadics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michael Betz
- Department of Orthopeadics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christoph Germann
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nadja A. Farshad-Amacker
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nick Herger
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Tamara Mengis
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Florian Brunner
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopeadics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Svanberg C, Enocsson H, Govender M, Martinsson K, Potempa LA, Rajab IM, Fernandez-Botran R, Wetterö J, Larsson M, Sjöwall C. Conformational state of C-reactive protein is critical for reducing immune complex-triggered type I interferon response: Implications for pathogenic mechanisms in autoimmune diseases imprinted by type I interferon gene dysregulation. J Autoimmun 2023; 135:102998. [PMID: 36706536 DOI: 10.1016/j.jaut.2023.102998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Presence of autoantibodies targeting nuclear constituents, i.e., double-stranded DNA and small nuclear ribonucleoproteins (snRNPs), remain a cornerstone in systemic lupus erythematosus (SLE). Fcγ receptor IIa (FcγRIIa) dependent uptake of nucleic acid containing immune complexes (ICs) by plasmacytoid dendritic cells (PDCs) can activate toll-like receptors (TLRs) such as TLR7 and TLR9 resulting in type I interferon (IFN) production. Previously, the classical liver-derived acute-phase reactant C-reactive protein (CRP) has been suggested to reduce IC-induced type I IFN production, whereas monomeric (mCRP) vs. pentameric (pCRP) mediated effects have not yet been unraveled. Herein, peripheral blood mononuclear cells (PBMCs) or enriched blood DCs from healthy volunteers were stimulated with SLE sera, snRNP-IgG (ICs), or TLR ligands with or without pCRP, mCRP, or anti-FcγRIIa antibody. Type I IFNs and cytokine responses were investigated using quantitative PCR, ELISA, and flow cytometry. pCRP inhibited IFN gene expression in PBMCs and enriched DCs after incubation with ICs, compared to ICs alone, whereas mCRP had significantly less inhibitory effect. The effect was independent on the order in which IC or CRP was added to the cells. In addition, pCRP inhibited IFN induced by other TLR stimulators, implicating broader inhibitory effects induced by pCRP. We demonstrate pronounced immunoregulatory functions of CRP whereas the inhibitory properties were evidently dependent on CRP's intact conformational state. The inhibition of type I IFNs was not due to competition of FcγRs, or binding of CRP to the ICs. Our findings have implications for autoimmune IC-mediated conditions imprinted by type I IFN gene dysregulation.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Helena Enocsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Klara Martinsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden
| | - Lawrence A Potempa
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, IL, United States
| | - Ibraheem M Rajab
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, IL, United States
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Jonas Wetterö
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden.
| |
Collapse
|
23
|
Mulas A, Cienfuegos S, Ezpeleta M, Lin S, Pavlou V, Varady KA. Effect of intermittent fasting on circulating inflammatory markers in obesity: A review of human trials. Front Nutr 2023; 10:1146924. [PMID: 37139450 PMCID: PMC10149732 DOI: 10.3389/fnut.2023.1146924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Obesity is associated with low-grade inflammation. Weight loss, by means of dietary restriction, has been shown to reduce systemic inflammation. Intermittent fasting has recently gained popularity as a weight loss diet, but its effects on inflammatory markers in individuals with obesity have yet to be summarized. Accordingly, this review examined how the two main forms of intermittent fasting, i.e., time restricted eating (TRE) and alternate day fasting (ADF), impact body weight and key circulating inflammatory markers (i.e., C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6)), in adults with obesity. Results from this review reveal that TRE with various eating window durations (4-10 h per day) has no effect on circulating levels of CRP, TNF-alpha or IL-6, with 1-5% weight loss. As for ADF, reductions in CRP concentrations were noted when >6% weight loss was achieved. However, ADF had no effect on TNF-alpha or IL-6 concentrations, with this degree of weight loss. Thus, intermittent fasting has little or no effect on key inflammatory markers, but more research is warranted to confirm these preliminary findings.
Collapse
|
24
|
Chen J, He ZX, Wang FK. RETRACTED ARTICLE: Evaluation of ferritin level in COVID-19 patients and its inflammatory response. APPLIED NANOSCIENCE 2023; 13:3121. [PMID: 35136706 PMCID: PMC8812356 DOI: 10.1007/s13204-021-02115-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Chen
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, 050082 China
| | - Zheng-Xin He
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, 050082 China
| | - Fun-Kun Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, 050082 China
| |
Collapse
|
25
|
Lucientes-Continente L, Márquez-Tirado B, Goicoechea de Jorge E. The Factor H protein family: The switchers of the complement alternative pathway. Immunol Rev 2023; 313:25-45. [PMID: 36382387 PMCID: PMC10099856 DOI: 10.1111/imr.13166] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.
Collapse
Affiliation(s)
- Laura Lucientes-Continente
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Bárbara Márquez-Tirado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
26
|
Charpentier E, Redheuil A, Bourron O, Boussouar S, Lucidarme O, Zarai M, Kachenoura N, Bouazizi K, Salem JE, Hekimian G, Kerneis M, Amoura Z, Allenbach Y, Hatem S, Jeannin AC, Andreelli F, Phan F, COVID-19 APHP. SU Group TilmontRomainChenuRomainMeyfroitLouisePasiNicolettaLarbi-MessaoudSchahrazedLarocheSuzanneCianguraCécilePopelierMarcJacqueminetSophieHalbronMarineHartemannAgnès. Cardiac adipose tissue volume assessed by computed tomography is a specific and independent predictor of early mortality and critical illness in COVID-19 in type 2-diabetic patients. Cardiovasc Diabetol 2022; 21:294. [PMID: 36587209 PMCID: PMC9805370 DOI: 10.1186/s12933-022-01722-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Patients with type 2-diabetes mellitus (T2D), are characterized by visceral and ectopic adipose tissue expansion, leading to systemic chronic low-grade inflammation. As visceral adiposity is associated with severe COVID-19 irrespective of obesity, we aimed to evaluate and compare the predictive value for early intensive care or death of three fat depots (cardiac, visceral and subcutaneous) using computed tomography (CT) at admission for COVID-19 in consecutive patients with and without T2D. METHODS Two hundred and two patients admitted for COVID-19 were retrospectively included between February and June 2020 and distributed in two groups: T2D or non-diabetic controls. Chest CT with cardiac (CATi), visceral (VATi) and subcutaneous adipose tissue (SATi) volume measurements were performed at admission. The primary endpoint was a composite outcome criteria including death or ICU admission at day 21 after admission. Threshold values of adipose tissue components predicting adverse outcome were determined. RESULTS One hundred and eight controls [median age: 76(IQR:59-83), 61% male, median BMI: 24(22-27)] and ninety-four T2D patients [median age: 70(IQR:61-77), 70% male, median BMI: 27(24-31)], were enrolled in this study. At day 21 after admission, 42 patients (21%) had died from COVID-19, 48 (24%) required intensive care and 112 (55%) were admitted to a conventional care unit (CMU). In T2D, CATi was associated with early death or ICU independently from age, sex, BMI, dyslipidemia, CRP and coronary calcium (CAC). (p = 0.005). Concerning T2D patients, the cut-point for CATi was > 100 mL/m2 with a sensitivity of 0.83 and a specificity of 0.50 (AUC = 0.67, p = 0.004) and an OR of 4.71 for early ICU admission or mortality (p = 0.002) in the fully adjusted model. Other adipose tissues SATi or VATi were not significantly associated with early adverse outcomes. In control patients, age and male sex (OR = 1.03, p = 0.04) were the only predictors of ICU or death. CONCLUSIONS Cardiac adipose tissue volume measured in CT at admission was independently predictive of early intensive care or death in T2D patients with COVID-19 but not in non-diabetics. Such automated CT measurement could be used in routine in diabetic patients presenting with moderate to severe COVID-19 illness to optimize individual management and prevent critical evolution.
Collapse
Affiliation(s)
- Etienne Charpentier
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Unité d’imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Alban Redheuil
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Unité d’imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Olivier Bourron
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France ,grid.417925.cCentre de Recherche Des Cordeliers, INSERM, UMR_S 1138, Paris, France
| | - Samia Boussouar
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Unité d’imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Olivier Lucidarme
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France ,grid.462844.80000 0001 2308 1657Service d’imagerie specialisee et d’urgence SISU, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Mohamed Zarai
- grid.477396.80000 0004 3982 4357Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Nadjia Kachenoura
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Khaoula Bouazizi
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Joe-Elie Salem
- grid.462844.80000 0001 2308 1657Department of Pharmacology, CIC-1901, INSERM, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Guillaume Hekimian
- grid.462844.80000 0001 2308 1657Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital La Pitié-Salpêtrière, Service de Médecine Intensive Réanimation, Sorbonne Université, Paris, France
| | - Matthieu Kerneis
- grid.462844.80000 0001 2308 1657AP-HP, Hôpital La Pitié-Salpêtrière, ACTION Study Group, Département de Cardiologie, Sorbonne Université, Paris, France
| | - Zahir Amoura
- grid.462844.80000 0001 2308 1657Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Institut e3M, Hôpital de La Pitié-Salpêtrière, AP-HP, Sorbonne Université, 75013 Paris, France
| | - Yves Allenbach
- grid.462844.80000 0001 2308 1657AP-HP, Département de Médecine Interne Et Immunologie Clinique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Stephane Hatem
- grid.477396.80000 0004 3982 4357Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Anne-Caroline Jeannin
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Fabrizio Andreelli
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France ,grid.462844.80000 0001 2308 1657Nutrition and ObesitiesSystemic Approaches (NutriOmics) Research Unit, INSERM, UMRS U1269, Sorbonne Université, Paris, France
| | - Franck Phan
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France ,grid.417925.cCentre de Recherche Des Cordeliers, INSERM, UMR_S 1138, Paris, France
| | | |
Collapse
|
27
|
Zeller J, Cheung Tung Shing KS, Nero TL, McFadyen JD, Krippner G, Bogner B, Kreuzaler S, Kiefer J, Horner VK, Braig D, Danish H, Baratchi S, Fricke M, Wang X, Kather MG, Kammerer B, Woollard KJ, Sharma P, Morton CJ, Pietersz G, Parker MW, Peter K, Eisenhardt SU. A novel phosphocholine-mimetic inhibits a pro-inflammatory conformational change in C-reactive protein. EMBO Mol Med 2022; 15:e16236. [PMID: 36468184 PMCID: PMC9832874 DOI: 10.15252/emmm.202216236] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 12/09/2022] Open
Abstract
C-reactive protein (CRP) is an early-stage acute phase protein and highly upregulated in response to inflammatory reactions. We recently identified a novel mechanism that leads to a conformational change from the native, functionally relatively inert, pentameric CRP (pCRP) structure to a pentameric CRP intermediate (pCRP*) and ultimately to the monomeric CRP (mCRP) form, both exhibiting highly pro-inflammatory effects. This transition in the inflammatory profile of CRP is mediated by binding of pCRP to activated/damaged cell membranes via exposed phosphocholine lipid head groups. We designed a tool compound as a low molecular weight CRP inhibitor using the structure of phosphocholine as a template. X-ray crystallography revealed specific binding to the phosphocholine binding pockets of pCRP. We provide in vitro and in vivo proof-of-concept data demonstrating that the low molecular weight tool compound inhibits CRP-driven exacerbation of local inflammatory responses, while potentially preserving pathogen-defense functions of CRP. The inhibition of the conformational change generating pro-inflammatory CRP isoforms via phosphocholine-mimicking compounds represents a promising, potentially broadly applicable anti-inflammatory therapy.
Collapse
Affiliation(s)
- Johannes Zeller
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany,Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Karen S Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia,ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - James D McFadyen
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Guy Krippner
- Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Jurij Kiefer
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Verena K Horner
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - David Braig
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Habiba Danish
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,School of Health and Biomedical SciencesRMIT UniversityMelbourneVic.Australia
| | - Sara Baratchi
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVic.Australia
| | - Mark Fricke
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Xiaowei Wang
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Michel G Kather
- Centre for Integrative Signalling Analysis CISAUniversity of FreiburgFreiburgGermany
| | - Bernd Kammerer
- Centre for Integrative Signalling Analysis CISAUniversity of FreiburgFreiburgGermany
| | | | - Prerna Sharma
- Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Geoffrey Pietersz
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia,ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| |
Collapse
|
28
|
Yednock T, Fong DS, Lad EM. C1q and the classical complement cascade in geographic atrophy secondary to age-related macular degeneration. Int J Retina Vitreous 2022; 8:79. [PMID: 36348407 PMCID: PMC9641935 DOI: 10.1186/s40942-022-00431-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a retinal neurodegenerative disorder. Human genetic data support the complement system as a key component of pathogenesis in AMD, which has been further supported by pre-clinical and recent clinical studies. However, the involvement of the different complement pathways (classical, lectin, alternative), and thus the optimal complement inhibition target, has yet to be fully defined. There is evidence that C1q, the initiating molecule of the classical pathway, is a key driver of complement activity in AMD. C1q is expressed locally by infiltrating phagocytic cells and C1q-activating ligands are present at disease onset and continue to accumulate with disease progression. The accumulation of C1q on photoreceptor synapses with age and disease is consistent with its role in synapse elimination and neurodegeneration that has been observed in other neurodegenerative disorders. Furthermore, genetic deletion of C1q, local pharmacologic inhibition within the eye, or genetic deletion of downstream C4 prevents photoreceptor cell damage in mouse models. Hence, targeting the classical pathway in GA could provide a more specific therapeutic approach with potential for favorable efficacy and safety.
Collapse
Affiliation(s)
- Ted Yednock
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA
| | - Donald S Fong
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Rd, Durham, NC, 27705, USA
| |
Collapse
|
29
|
Alic L, Binder CJ, Papac-Milicevic N. The OSE complotype and its clinical potential. Front Immunol 2022; 13:1010893. [PMID: 36248824 PMCID: PMC9561429 DOI: 10.3389/fimmu.2022.1010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular death, aging, and tissue damage trigger inflammation that leads to enzymatic and non-enzymatic lipid peroxidation of polyunsaturated fatty acids present on cellular membranes and lipoproteins. This results in the generation of highly reactive degradation products, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), that covalently modify free amino groups of proteins and lipids in their vicinity. These newly generated neoepitopes represent a unique set of damage-associated molecular patterns (DAMPs) associated with oxidative stress termed oxidation-specific epitopes (OSEs). OSEs are enriched on oxidized lipoproteins, microvesicles, and dying cells, and can trigger sterile inflammation. Therefore, prompt recognition and removal of OSEs is required to maintain the homeostatic balance. This is partially achieved by various humoral components of the innate immune system, such as natural IgM antibodies, pentraxins and complement components that not only bind OSEs but in some cases modulate their pro-inflammatory potential. Natural IgM antibodies are potent complement activators, and 30% of them recognize OSEs such as oxidized phosphocholine (OxPC-), 4-HNE-, and MDA-epitopes. Furthermore, OxPC-epitopes can bind the complement-activating pentraxin C-reactive protein, while MDA-epitopes are bound by C1q, C3a, complement factor H (CFH), and complement factor H-related proteins 1, 3, 5 (FHR-1, FHR-3, FHR-5). In addition, CFH and FHR-3 are recruited to 2-(ω-carboxyethyl)pyrrole (CEP), and full-length CFH also possesses the ability to attenuate 4-HNE-induced oxidative stress. Consequently, alterations in the innate humoral defense against OSEs predispose to the development of diseases associated with oxidative stress, as shown for the prototypical OSE, MDA-epitopes. In this mini-review, we focus on the mechanisms of the accumulation of OSEs, the pathophysiological consequences, and the interactions between different OSEs and complement components. Additionally, we will discuss the clinical potential of genetic variants in OSE-recognizing complement proteins – the OSE complotype - in the risk estimation of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nikolina Papac-Milicevic,
| |
Collapse
|
30
|
Liu R, Long Y, Liu R, Song G, Li Q, Yan H, Cui Z. Understanding the Function and Mechanism of Zebrafish Tmem39b in Regulating Cold Resistance. Int J Mol Sci 2022; 23:ijms231911442. [PMID: 36232766 PMCID: PMC9569763 DOI: 10.3390/ijms231911442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022] Open
Abstract
Autophagy and endoplasmic reticulum (ER) stress response are among the key pathways regulating cold resistance of fish through eliminating damaged cellular components and facilitating the restoration of cell homeostasis upon exposure to acute cold stress. The transmembrane protein 39A (TMEM39A) was reported to regulate both autophagy and ER stress response, but its vertebrate-specific paralog, the transmembrane protein 39B (TMEM39B), has not been characterized. In the current study, we generate tmem39b-knockout zebrafish lines and characterize their survival ability under acute cold stress. We observed that the dysfunction of Tmem39b remarkably decreased the cold resilience of both the larval and adult zebrafish. Gene transcription in the larvae exposed to cold stress and rewarming were characterized by RNA sequencing (RNA-seq) to explore the mechanisms underlying functions of Tmem39b in regulating cold resistance. The results indicate that the deficiency of Tmem39b attenuates the up-regulation of both cold- and rewarming-induced genes. The cold-induced transcription factor genes bif1.2, fosab, and egr1, and the rewarming-activated immune genes c3a.3, il11a, and sting1 are the representatives influenced by Tmem39b dysfunction. However, the loss of tmem39b has little effect on the transcription of the ER stress response- and autophagy-related genes. The measurements of the phosphorylated H2A histone family member X (at Ser 139, abbreviated as γH2AX) demonstrate that zebrafish Tmem39b protects the cells against DNA damage caused by exposure to the cold-warming stress and facilitates tissue damage repair during the recovery phase. The gene modules underlying the functions of Tmem39b in zebrafish are highly enriched in biological processes associated with immune response. The dysfunction of Tmem39b also attenuates the up-regulation of tissue C-reactive protein (CRP) content upon rewarming. Together, our data shed new light on the function and mechanism of Tmem39b in regulating the cold resistance of fish.
Collapse
Affiliation(s)
- Renyan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| | - Ran Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huawei Yan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| |
Collapse
|
31
|
Okoye GO, Saheeb BD, Egbor EP, Edetanlen EB. A Clinicobiochemical Study of C - reactive protein among Patients with Odontogenic Infections in a Nigerian Tertiary Hospital. Niger Med J 2022; 63:356-363. [PMID: 38867747 PMCID: PMC11165330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Background It appears that studies on the association between CRP levels and odontogenic infections are limited. The aim of this study is to determine the difference in CPR levels between the different types of odontogenic infections. Methodology All consecutive patients that were diagnosed and treated for dentoalveolar and fascial space infections of odontogenic origin that met the inclusion criteria were studied. The data collected were age, gender, tobacco use, alcohol intake, and drug abuse. Other collected data were pain, trismus, dysphagia, antibiotics abuse, pre-existing medical condition, pulse rate, blood pressure, respiratory rate, body temperature, white blood cell, type of odontogenic infection, type of treatment, length of hospital stay and C-reactive protein. All analysis were done using IBM SPSS version 21.0 (IBM Corp, New York, USA). P- Value less than 5% was considered statistically significant. Results A total of 44 patients with a mean age of 45.3±1.39 years ranging from 10 to 60 years were enrolled in this study. The C-reactive protein was significantly higher among patients with positive history of pain compared to those without pain (P = 0.01). The patients with fascial space infection had C-reactive protein levels higher than those with dentoalveolar infection and the difference in their means was statistically significant (P = 0.02). Likewise, the C-reactive protein was 17.5mg/dl significantly higher in the patients that stayed more than 5days in the hospital compared to those that stayed less than the same days(P = 0.03). Conclusions The total mean of C-reactive protein of 75.4±3.53 mg/dl was greater than the critical level while the 9.62 X 109/L of WBC counts was lower than that of the reference value. Patients that had pain, fascial space infection and stayed more than five days in the hospital had higher levels of C-reactive protein following odontogenic infections.
Collapse
Affiliation(s)
- Godfrey Okhalosomi Okoye
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin-City, Nigeria
| | - Birch Dauda Saheeb
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin-City, Nigeria
| | - Esezobor Peter Egbor
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin-City, Nigeria
| | | |
Collapse
|
32
|
PTX3 structure determination using a hybrid cryoelectron microscopy and AlphaFold approach offers insights into ligand binding and complement activation. Proc Natl Acad Sci U S A 2022; 119:e2208144119. [PMID: 35939690 PMCID: PMC9388099 DOI: 10.1073/pnas.2208144119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-Å map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated α-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.
Collapse
|
33
|
Erdöl MA, Eser FC, Aslan AN, Erdoğan M, Aypak AA, Beşler MS, Kalem AK, Ertem AG, Güner HR. The predictive value of epicardial fat volume for clinical severity of COVID-19. Rev Port Cardiol 2022; 41:729-737. [PMID: 35505820 PMCID: PMC9050585 DOI: 10.1016/j.repc.2021.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
|
34
|
Torzewski M. C-Reactive Protein: Friend or Foe? Phylogeny From Heavy Metals to Modified Lipoproteins and SARS-CoV-2. Front Cardiovasc Med 2022; 9:797116. [PMID: 35402541 PMCID: PMC8987351 DOI: 10.3389/fcvm.2022.797116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Animal C-reactive protein (CRP) has a widespread existence throughout phylogeny implying that these proteins have essential functions mandatory to be preserved. About 500 million years of evolution teach us that there is a continuous interplay between emerging antigens and components of innate immunity. The most archaic physiological roles of CRP seem to be detoxication of heavy metals and other chemicals followed or accompanied by an acute phase response and host defense against bacterial, viral as well as parasitic infection. On the other hand, unusual antigens have emerged questioning the black-and-white perception of CRP as being invariably beneficial. Such antigens came along either as autoantigens like excessive tissue-stranded modified lipoprotein due to misdirected food intake linking CRP with atherosclerosis with an as yet open net effect, or as foreign antigens like SARS-CoV-2 inducing an uncontrolled CRP-mediated autoimmune response. The latter two examples impressingly demonstrate that a component of ancient immunity like CRP should not be considered under identical “beneficial” auspices throughout phylogeny but might effect quite the reverse as well.
Collapse
|
35
|
Natural antibodies and CRP drive anaphylatoxin production by urate crystals. Sci Rep 2022; 12:4483. [PMID: 35296708 PMCID: PMC8924570 DOI: 10.1038/s41598-022-08311-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
In gout, crystallization of uric acid in the form of monosodium urate (MSU) leads to a painful inflammatory response. MSU crystals induce inflammation by activating the complement system and various immune cell types, and by inducing necrotic cell death. We previously found that the soluble pattern recognition molecule C-reactive protein (CRP) recognizes MSU crystals, while enhancing complement activation. In the absence of CRP, MSU crystals still induced complement activation, suggesting additional CRP-independent mechanisms of complement activation. In the present study, we searched for additional MSU crystal-binding complement activators. We found that all healthy individuals, even unborn children, have MSU crystal-specific immunoglobulin M (IgM) in their blood. This indicates that innate IgM, also known as natural IgM, recognizes these crystals. In serum lacking IgM and CRP, MSU crystals showed negligible complement activation as assessed by the production of the anaphylatoxins C4a, C3a, and C5a (listed in order of production via the classical complement pathway). We show that IgM and CRP both activate the classical complement pathway on MSU crystals. CRP was more efficient at fixating active C1 on the crystals and inducing release of the most inflammatory anaphylatoxin C5a, indicating non-redundant functions of CRP. Notably, while CRP recognizes MSU crystals but not the related calcium pyrophosphate dihydrate (CPPD) crystals, natural IgM bound to both, suggesting common and distinct mechanisms of recognition of individual crystal types by complement activators.
Collapse
|
36
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Ramos AP, Sebinelli HG, Ciancaglini P, Rosato N, Mebarek S, Buchet R, Millán JL, Bottini M. The functional role of soluble proteins acquired by extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e34. [PMID: 38938684 PMCID: PMC11080634 DOI: 10.1002/jex2.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.
Collapse
Affiliation(s)
- Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Heitor Gobbi Sebinelli
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Nicola Rosato
- Dipartimento di Medicina SperimentaleUniversita’ di Roma “Tor Vergata”RomeItaly
| | - Saida Mebarek
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | - Rene Buchet
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | | | - Massimo Bottini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
- Sanford Burnham PrebysLa JollaCaliforniaUSA
| |
Collapse
|
38
|
Daryna Krenytska DK, Taras Shevchenko national University of Kyiv, Rachkovska A, Savchuk O, Karbovskiy V, Taras Shevchenko national University of Kyiv, Taras Shevchenko national University of Kyiv, LLC BIOPHARMA PLASMA, Bila Tserkva. CHARACTERISTICS OF IRON-DEPENDENT PARAMETERS OF DONORS UNDER THE PRESENCE OF ANTI-SARS-CoV-2 IgG IN THE BLOOD. BULLETIN OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV. SERIES: BIOLOGY 2022. [DOI: 10.17721/1728.2748.2022.91.10-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COVID-19 differs from other respiratory diseases in that it can cause an acute inflammatory reaction following widespread systemic complications in organisms. First, the inflammatory process causes an increase in the concentration of C-reactive protein (CRP), which could be a prognostic biomarker in patients with COVID-19. In addition, some clinical data were used to determine changes in the concentrations of ferritin and transferrin. Our study aimed to establish a relationship between the inflammatory process and iron-dependent parameters, as changes in concentration could lead to pathological status in the post-COVID-19 period. People suffered from COVID-19 with different titers of anti-SARS-CoV-2 IgG in the blood participated in our experiment. It was established that the maximal concentration of CRP and ferritin was characterized for the donor group with a titer of anti-SARS-CoV-2 IgG 95 ± 5 Index (S/C) following the development of inflammatory anemia. Moreover, it was discovered that the group with a minimal titer of anti-SARS-CoV-2 IgG was characterized by the maximal concentration of transferrin, leading to the destruction of iron transport. Due to the acute inflammatory process and damage to the transport and storage of iron by transferrin and ferritin, the iron deficit could destroy the functioning of the muscle system. There was a change in the concentration of creatine kinase in the donor group with a titer of anti-SARS-CoV-2 IgG of 95 ± 5 Index (S/C). The study showed that infection with the SARS-CoV-2 virus in the body often leads to the development of acute inflammatory reactions, resulting in iron transport and storage processes, which cause pathological processes in the post-COVID-19 period.
Collapse
|
39
|
Losurdo G, Brescia IV, Lillo C, Mezzapesa M, Barone M, Principi M, Ierardi E, Di Leo A, Rendina M. Liver involvement in inflammatory bowel disease: What should the clinician know? World J Hepatol 2021; 13:1534-1551. [PMID: 34904028 PMCID: PMC8637677 DOI: 10.4254/wjh.v13.i11.1534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) may show a wide range of extraintestinal manifestations. In this context, liver involvement is a focal point for both an adequate management of the disease and its prognosis, due to possible serious comorbidity. The association between IBD and primary sclerosing cholangitis is the most known example. This association is relevant because it implies an increased risk of both colorectal cancer and cholangiocarcinoma. Additionally, drugs such as thiopurines or biologic agents can cause drug-induced liver damage; therefore, this event should be considered when planning IBD treatment. Additionally, particular consideration should be given to the evidence that IBD patients may have concomitant chronic viral hepatitis, such as hepatitis B and hepatitis C. Chronic immunosuppressive regimens may cause a hepatitis flare or reactivation of a healthy carrier state, therefore careful monitoring of these patients is necessary. Finally, the spread of obesity has involved even IBD patients, thus increasing the risk of non-alcoholic fatty liver disease, which has already proven to be more common in IBD patients than in the non-IBD population. This phenomenon is considered an emerging issue, as it will become the leading cause of liver cirrhosis.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy.
| | - Irene Vita Brescia
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Chiara Lillo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Martino Mezzapesa
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Michele Barone
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Mariabeatrice Principi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Enzo Ierardi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| | - Maria Rendina
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, Bari 70124, Italy
| |
Collapse
|
40
|
Katsa ME, Kostopoulou E, Magana M, Ioannidis A, Chatzipanagiotou S, Sachlas A, Dimopoulos I, Spiliotis BE, Rojas Gil AP. Association of the apoptotic marker APO1/Fas with children's predisposing factors for metabolic syndrome and with mean platelet volume. J Pediatr Endocrinol Metab 2021; 34:1393-1400. [PMID: 34332515 DOI: 10.1515/jpem-2021-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Apoptosis antigen 1/FAS receptor (APO1/Fas) signaling in endothelial cells plays a significant role in angiogenesis while increased mean platelet volume (MPV) is an important marker for platelet activation. We investigated the possible correlation between APO1/Fas and both metabolic parameters and platelet activity (indicated by the MPV) in a healthy pediatric population. METHODS One hundred and eighty-five children, aged 5-17 years old, were enrolled in the study. The participants were divided into subgroups according to their age and body mass index percentile (BMI%). APO1/Fas was measured by enzyme-linked immunosorbent assay (ELISA) and MPV by the MEK-6410K. RESULTS Eighty-one children (43.8%) had excess weight, which was more prevalent in children ≤9 years of age. Sixty-five children (35.1%) exhibited a predisposition for metabolic syndrome. A negative correlation was found between APO1/Fas and predisposing factors for metabolic syndrome: Glucose, cholesterol, uric acid, low-density lipoprotein (LDL), and triglycerides. In contrast, a positive correlation was found between APO1/Fas and C-reactive protein (CRP). Receiver operating characteristic (ROC) analysis showed a predisposition to metabolic syndrome when APO1/Fas was <78.46 pg/mL. A negative correlation was also observed between APO1/Fas and MPV. MPV was also positively correlated with predisposing factors for metabolic syndrome: BMI%, glucose, cholesterol, uric acid, LDL, and negatively with high-density lipoprotein. CONCLUSIONS APO1/Fas expression is associated with a lower predisposition to metabolic syndrome may be through endothelial homeostasis, the induction of apoptosis of cells involved in atherosclerosis, and platelet activity. It may also enhance CRP-mediated noninflammatory clearance of apoptotic cells. Early monitoring of all the components of metabolic syndrome in overweight children is important in order to prevent metabolic and cardiovascular complications.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Laboratory of Biology and Biochemistry, Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Eirini Kostopoulou
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras, Greece
| | - Maria Magana
- Laboratory of Biology and Biochemistry, Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | | | - Athanasios Sachlas
- Department of Statistics and Insurance Science, Faculty of Finance and Statistics, University of Piraeus, Athens, Greece
| | | | - Bessie E Spiliotis
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras, Greece
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
41
|
Mosquera‐Sulbaran JA, Pedreañez A, Carrero Y, Callejas D. C-reactive protein as an effector molecule in Covid-19 pathogenesis. Rev Med Virol 2021; 31:e2221. [PMID: 34773448 PMCID: PMC7995022 DOI: 10.1002/rmv.2221] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
The current pandemic caused by SARS-CoV-2 virus infection is known as Covid-19 (coronavirus disease 2019). This disease can be asymptomatic or can affect multiple organ systems. Damage induced by the virus is related to dysfunctional activity of the immune system, but the activity of molecules such as C-reactive protein (CRP) as a factor capable of inducing an inflammatory status that may be involved in the severe evolution of the disease, has not been extensively evaluated. A systematic review was performed using the NCBI-PubMed database to find articles related to Covid-19 immunity, inflammatory response, and CRP published from December 2019 to December 2020. High levels of CRP were found in patients with severe evolution of Covid-19 in which several organ systems were affected and in patients who died. CRP activates complement, induces the production of pro-inflammatory cytokines and induces apoptosis which, together with the inflammatory status during the disease, can lead to a severe outcome. Several drugs can decrease the level or block the effect of CRP and might be useful in the treatment of Covid-19. From this review it is reasonable to conclude that CRP is a factor that can contribute to severe evolution of Covid-19 and that the use of drugs able to lower CRP levels or block its activity should be evaluated in randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jesús A. Mosquera‐Sulbaran
- Instituto de Investigaciones Clinicas “Dr. Americo Negrette”Facultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Adriana Pedreañez
- Catedra de InmunologiaEscuela de BioanalisisFacultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Yenddy Carrero
- Facultad de Ciencias de la SaludCarrera de MedicinaUniversidad Tecnica de AmbatoAmbatoEcuador
| | - Diana Callejas
- Facultad de Ciencias de la SaludDepartamento de Ciencias BiologicasUniversidad Tecnica de ManabiPortoviejoEcuador
| |
Collapse
|
42
|
Hernández-Hermoso JA, Nescolarde L, Roca E, Revuelta-López E, Ara J, Bayes-Genis A. Marathon Running Increases Synthesis and Decreases Catabolism of Joint Cartilage Type II Collagen Accompanied by High-Energy Demands and an Inflamatory Reaction. Front Physiol 2021; 12:722718. [PMID: 34707508 PMCID: PMC8542987 DOI: 10.3389/fphys.2021.722718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To determine the effect of marathon running on serum levels of inflammatory, high energy, and cartilage matrix biomarkers and to ascertain whether these biomarkers levels correlate. Design: Blood samples from 17 Caucasian male recreational athletes at the Barcelona Marathon 2017 were collected at the baseline, immediately and 48 h post-race. Serum C reactive protein (CRP), creatin kinase (CK), and lactate dehydrogenase (LDH) were determined using an AU-5800 chemistry analyser. Serum levels of hyaluronan (HA), cartilage oligomeric matrix protein (COMP), aggrecan chondroitin sulphate 846 (CS846), glycoprotein YKL-40, human procollagen II N-terminal propeptide (PIINP), human type IIA collagen N-propeptide (PIIANP), and collagen type II cleavage (C2C) were measured by sandwich enzyme-linked immune-sorbent assay (ELISA). Results: Medians CK and sLDH levels increased (three-fold, two-fold) post-race [429 (332) U/L, 323 (69) U/L] (p < 0.0001; p < 0.0001) and (six-fold, 1.2-fold) 48 h post-race [658 (1,073) U/L, 218 (45) U/L] (p < 0.0001; p < 0.0001). Medians CRP increased (ten-fold) after 48 h post-race [6.8 (4.1) mg/L] (p < 0.0001). Mean sHA levels increased (four-fold) post-race (89.54 ± 53.14 ng/ml) (p < 0.0001). Means PIINP (9.05 ± 2.15 ng/ml) levels increased post-race (10.82 ± 3.44 ng/ml) (p = 0.053) and 48 h post-race (11.00 ± 2.96 ng/ml) (p = 0.001). Mean sC2C levels (220.83 ± 39.50 ng/ml) decreased post-race (188.67 ± 38.52 ng/ml) (p = 0.002). In contrast, means COMP, sCS846, sPIIANP, and median sYKL-40 were relatively stable. We found a positive association between sCK levels with sLDH pre-race (r = 0.758, p < 0.0001), post-race (r = 0.623, p = 0.008) and 48-h post-race (r = 0.842, p < 0.0001); sHA with sCRP post-race vs. 48 h post-race (r = 0.563, p = 0.019) and sPIINP with sCK pre-race vs. 48-h post-race (r = 0.499, p = 0.044) and with sLDH 48-h pre-race vs. post-race (r = 0.610, p = 0.009) and a negative correlation of sPIIANP with sCRP 48-h post-race (r = −0.570, p = 0.017). Conclusion: Marathon running is an exercise with high-energy demands (sCK and sLDH increase) that provokes a high and durable general inflammatory reaction (sCRP increase) and an immediately post-marathon mechanism to protect inflammation and cartilage (sHA increase). Accompanied by an increase in type II collagen cartilage fibrils synthesis (sPIINP increase) and a decrease in its catabolism (sC2C decrease), without changes in non-collagenous cartilage metabolism (sCOMP, sC846, and sYKL-40). Metabolic changes on sPIINP and sHA synthesis may be related to energy consumption (sCK, sLDH) and the inflammatory reaction (sCRP) produced.
Collapse
Affiliation(s)
- José A Hernández-Hermoso
- Department of Orthopedic Surgery and Traumatology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Department of Surgery, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Lexa Nescolarde
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Elena Revuelta-López
- Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jordi Ara
- Departament of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Nephrology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Antoni Bayes-Genis
- Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.,Departament of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cardiology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
43
|
Geyer CE, Newling M, Sritharan L, Griffith GR, Chen HJ, Baeten DLP, den Dunnen J. C-Reactive Protein Controls IL-23 Production by Human Monocytes. Int J Mol Sci 2021; 22:ijms222111638. [PMID: 34769069 PMCID: PMC8583945 DOI: 10.3390/ijms222111638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.
Collapse
Affiliation(s)
- Chiara E. Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Melissa Newling
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lathees Sritharan
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Dominique L. P. Baeten
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
44
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
45
|
Li HY, Tang ZM, Wang Z, Lv JM, Liu XL, Liang YL, Cheng B, Gao N, Ji SR, Wu Y. C-Reactive Protein Protects Against Acetaminophen-Induced Liver Injury by Preventing Complement Overactivation. Cell Mol Gastroenterol Hepatol 2021; 13:289-307. [PMID: 34536564 PMCID: PMC8599171 DOI: 10.1016/j.jcmgh.2021.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS C-reactive protein (CRP) is a hepatocyte-produced marker of inflammation yet with undefined function in liver injury. We aimed to examine the role of CRP in acetaminophen-induced liver injury (AILI). METHODS The effects of CRP in AILI were investigated using CRP knockout mice and rats combined with human CRP rescue. The mechanisms of CRP action were investigated in vitro and in mice with Fcγ receptor 2B knockout, C3 knockout, or hepatic expression of CRP mutants defective in complement interaction. The therapeutic potential of CRP was investigated by intraperitoneal administration at 2 or 6 hours post-AILI induction in wild-type mice. RESULTS CRP knockout exacerbated AILI in mice and rats, which could be rescued by genetic knock-in, adeno-associated virus-mediated hepatic expression or direct administration of human CRP. Mechanistically, CRP does not act via its cellular receptor Fcγ receptor 2B to inhibit the early phase injury to hepatocytes induced by acetaminophen; instead, CRP acts via factor H to inhibit complement overactivation on already injured hepatocytes, thereby suppressing the late phase amplification of inflammation likely mediated by C3a-dependent actions of neutrophils. Importantly, CRP treatment effectively alleviated AILI with a significantly extended therapeutic time window than that of N-acetyl cysteine. CONCLUSION Our results thus identify CRP as a crucial checkpoint that limits destructive activation of complement in acute liver injury, and we argue that long-term suppression of CRP expression or function might increase the susceptibility to AILI.
Collapse
Affiliation(s)
- Hai-Yun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhao-Ming Tang
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhe Wang
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jian-Min Lv
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiao-Ling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Yu-Lin Liang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Ning Gao
- Department of Infectious Disease, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China,Shang-Rong Ji, PhD, MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China. fax: 86-931-8914102.
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China,Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Children’s Hospital, Xi'an Jiaotong University, Xi'an, P.R. China,Correspondence Address correspondence to: Yi Wu, PhD, MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, P.R. China. fax: 86-029-82657013.
| |
Collapse
|
46
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Hwang JJ, Hur JY, Eo W, An S, Kim DH, Lee S. Clinical significance of C-Reactive Protein to Lymphocyte Count Ratio as a prognostic factor for Survival in Non-small Cell Lung Cancer Patients undergoing Curative Surgical Resection. J Cancer 2021; 12:4497-4504. [PMID: 34149913 PMCID: PMC8210557 DOI: 10.7150/jca.58094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose: We assessed the clinical feasibility of C-reactive protein to lymphocyte ratio (CLR) as a determinant of survival in patients with non-small cell lung cancer (NSCLC) undergoing curative surgical resection. Methods: A retrospective study was conducted on patients with stage I and II NSCLC undergoing curative resection. Demographic and clinical variables, including CLR, were collected and analyzed. The Cox proportional hazards model was used to calculate hazard ratios for overall survival (OS) and cancer-specific survival (CSS). The Mann-Whitney U test was used to compare differences between two independent groups. Results: The median age of the patients was 69.0 years, and male patients comprised 63.9% of all patients. A total of 164 (75.9%) patients were categorized as having stage I disease and 52 (24.1%) as having stage II disease. Using the multivariate Cox model, age (hazard ratio [HR] 1.08, p<0.001), lymphatic invasion (HR 3.12, p=0.004), stage (HR 5.10, p<0.001), and CLR (HR 1.01, p=0.003) were significant determinants of OS. In addition, age (HR 1.11, p=0.002), lymphatic invasion (HR 3.16, p=0.010), stage (HR 6.89, p<0.001), and CLR (HR 1.05, p=0.002) were significant determinants of CSS. Conclusions: Our findings show that CLR could be a determinant of survival in NSCLC patients undergoing curative surgical resection.
Collapse
Affiliation(s)
- Jae-Joon Hwang
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Joon Young Hur
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Wankyu Eo
- Department of Medical Oncology & Hematology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soomin An
- College of Nursing, Hallym Polytechnic University, Gangwon-do, Republic of Korea
| | - Dae Hyun Kim
- Department of Thoracic Surgery, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Sookyung Lee
- Department of Clinical Oncology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
48
|
SARIKAYA S, YAŞİN S, ÇALIK M, YOLDAŞ T, AKSOY N, YILMAZ M. Investigation on Acute Phase Reactants and Oxidant - Antioxidant Parameters in Patients Diagnosed as Having Generalized Tonic Clonic Type Epilepsy on Antiepileptic Monotherapy and Polytherapy. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2021. [DOI: 10.17944/mkutfd.910039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
C-Reactive Protein as a Prognostic Indicator in COVID-19 Patients. Interdiscip Perspect Infect Dis 2021; 2021:5557582. [PMID: 33968148 PMCID: PMC8083820 DOI: 10.1155/2021/5557582] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
While some biomolecules have been explored to identify potential biomarkers for the prognosis of COVID-19 patients, there is no reliable prognostic indicator of the disease progression and severity. We aimed to evaluate the ability of the C-reactive protein (CRP) to predict COVID-19 infection outcome. This retrospective study was conducted on 429 patients diagnosed with COVID-19 between March 30, 2020, and April 30, 2020. The study population was divided into severe (n = 175) and nonsevere cases (n = 254). Data on demographic characteristics, clinical features, and laboratory findings on admission were collected. The proportion of patients with increased CRP levels was significantly higher in severe cases than in nonsevere patients. Analysis of the receiver operating characteristic (ROC) curve found that CRP could be used as an independent factor in predicting the severity of COVID-19. Also, patients with CRP >64.75 mg/L were more likely to have severe complications. In conclusion, CRP serum levels can predict the severity and progression of illness in patients with COVID-19.
Collapse
|
50
|
Temming AR, Tammes Buirs M, Bentlage AEH, Treffers LW, Feringa H, de Taeye SW, Kuijpers TW, Nagelkerke SQ, Brasser G, Mok JY, van Esch WJE, van den Berg TK, Rispens T, van der Schoot CE, Vidarsson G. C-Reactive Protein Enhances IgG-Mediated Cellular Destruction Through IgG-Fc Receptors in vitro. Front Immunol 2021; 12:594773. [PMID: 33790888 PMCID: PMC8006934 DOI: 10.3389/fimmu.2021.594773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-mediated blood disorders ensue after auto- or alloimmunization against blood cell antigens, resulting in cytopenia. Although the mechanisms of cell destruction are the same as in immunotherapies targeting tumor cells, many factors are still unknown. Antibody titers, for example, often do not strictly correlate with clinical outcome. Previously, we found C-reactive protein (CRP) levels to be elevated in thrombocytopenic patients, correlating with thrombocyte counts, and bleeding severity. Functionally, CRP amplified antibody-mediated phagocytosis of thrombocytes by phagocytes. To investigate whether CRP is a general enhancer of IgG-mediated target cell destruction, we extensively studied the effect of CRP on in vitro IgG-Fc receptor (FcγR)-mediated cell destruction: through respiratory burst, phagocytosis, and cellular cytotoxicity by a variety of effector cells. We now demonstrate that CRP also enhances IgG-mediated effector functions toward opsonized erythrocytes, in particular by activated neutrophils. We performed a first-of-a-kind profiling of CRP binding to all human FcγRs and IgA-Fc receptor I (FcαRI) using a surface plasmon resonance array. CRP bound these receptors with relative affinities of FcγRIa = FcγRIIa/b = FcγRIIIa > FcγRIIIb = FcαRI. Furthermore, FcγR blocking (in particular FcγRIa) abrogated CRP's ability to amplify IgG-mediated neutrophil effector functions toward opsonized erythrocytes. Finally, we observed that CRP also amplified killing of breast-cancer tumor cell line SKBR3 by neutrophils through anti-Her2 (trastuzumab). Altogether, we provide for the first time evidence for the involvement of specific CRP-FcγR interactions in the exacerbation of in vitro IgG-mediated cellular destruction; a trait that should be further evaluated as potential therapeutic target e.g., for tumor eradication.
Collapse
Affiliation(s)
- A. Robin Temming
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias Tammes Buirs
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E. H. Bentlage
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Louise W. Treffers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hannah Feringa
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W. de Taeye
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q. Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Giso Brasser
- Sanquin Reagents, Sanquin, Amsterdam, Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, Sanquin, Amsterdam, Netherlands
| | | | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|