1
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Görgens SW, Benninghoff T, Eckardt K, Springer C, Chadt A, Melior A, Wefers J, Cramer A, Jensen J, Birkeland KI, Drevon CA, Al-Hasani H, Eckel J. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway. Diabetes 2017; 66:2800-2807. [PMID: 28811274 DOI: 10.2337/db16-1488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/08/2017] [Indexed: 11/13/2022]
Abstract
Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP, a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Sven W Görgens
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Anita Melior
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Jakob Wefers
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Andrea Cramer
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| |
Collapse
|
3
|
Lahmidi S, Strunk U, Smiley JR, Pearson A, Duplay P. Herpes simplex virus 1 infection of T cells causes VP11/12-dependent phosphorylation and degradation of the cellular protein Dok-2. Virology 2017; 511:66-73. [PMID: 28841444 DOI: 10.1016/j.virol.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that HSV-1 infection of lymphocytes induces the tyrosine phosphorylation of several proteins that might correspond to viral or host proteins. VP11/12, a viral tegument protein, is the major HSV-induced tyrosine phosphorylated protein identified thus far. In this report, we demonstrated that the cellular adaptor proteins Dok-2 and Dok-1 are tyrosine phosphorylated upon HSV-1 infection. In addition, HSV-1 induced the selective degradation of Dok-2. Finally, we provide evidence that Dok-2 interacts with VP11/12, and that HSV-induced tyrosine phosphorylation and degradation of Dok-2 require VP11/12. Inactivation of either the Src Family Kinases binding motifs or the SHC binding motif of VP11/12 eliminated the interaction of Dok-2 with VP11/12. Elimination of the binding of Dok-2 to VP11/12 prevented Dok-2 phosphorylation and degradation. We propose that HSV-induced Dok phosphorylation and Dok-2 degradation is an immune evasion mechanism to inactivate T cells that might play an important role in HSV pathogenesis.
Collapse
Affiliation(s)
- Soumia Lahmidi
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Ulrike Strunk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - James R Smiley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Angela Pearson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Pascale Duplay
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
4
|
Chae HJ, Ha MS, Yun DH, Pae HO, Chung HT, Chae SW, Jung YK, Kim HR. Mechanism of Cyclosporine-induced Overgrowth in Gingiva. J Dent Res 2016; 85:515-9. [PMID: 16723647 DOI: 10.1177/154405910608500607] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclosporine A (CsA) is a widely used immunosuppressant but with significant side-effects, such as gingival overgrowth. This study investigates how CsA induces gingival proliferation and shows the effects of the CsA-associated signaling messengers, IL-6 and TGF-β1, on gingival proliferation. CsA increased both IL-6 and TGF-β1 levels. In addition to CsA, an IL-6 or TGF-β1 treatment also induced gingival fibroblast proliferation. Inhibiting the cytokine resulted in the suppression of CsA-induced proliferation. MAPKs and PI3K are known to be involved in cell proliferation. Therefore, the effect of CsA on the kinase activities was examined. The results showed that both p38 MAPK and PI3K are essential for gingival fibroblast proliferation. TGF-β1 and IL-6 and their associated signaling transduction may be novel bona fide molecular targets for the prevention of gingival overgrowth in CsA-treated patients. (Abbreviations: MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase.)
Collapse
Affiliation(s)
- H-J Chae
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ding H, Heng B, He W, Shi L, Lai C, Xiao L, Ren H, Mo S, Su Z. Chronic reactive oxygen species exposure inhibits glucose uptake and causes insulin resistance in C2C12 myotubes. Biochem Biophys Res Commun 2016; 478:798-803. [DOI: 10.1016/j.bbrc.2016.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023]
|
6
|
Jiang X, Huang L, Xing D. Photoactivation of Dok1/ERK/PPARγ signaling axis inhibits excessive lipolysis in insulin-resistant adipocytes. Cell Signal 2015; 27:1265-75. [PMID: 25813581 DOI: 10.1016/j.cellsig.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 12/19/2022]
Abstract
Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Increased plasma FFA level is an important cause of obesity-associated insulin resistance. Over-activated ERK is closely related with FFA release from adipose tissues in patients with type 2 diabetes. Nevertheless, there are no effective strategies to lower plasma FFA level. Low-power laser irradiation (LPLI) has been reported to regulate multiple biological processes. However, whether LPLI could ameliorate metabolic disorders and the molecular mechanisms involved remain unknown. In this study, we first demonstrated that LPLI suppresses excessive lipolysis of insulin-resistant adipocytes by activating tyrosine kinases-1(Dok1)/ERK/PPARγ pathway. Our data showed that LPLI inhibits ERK phosphorylation through the activation of Dok1, resulting in decreased phospho-PPARγ level. Non-phosphorylated PPARγ maintains in nucleus to promote the expression of adipogenic genes, reversing excessive lipolysis in insulin-resistant adipocytes. In summary, the present research highlights the important roles of Dok1/ERK/PPARγ pathway in lowering FFA release from adipocytes, and our research extends the knowledge of the biological effects induced by LPLI.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lei Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
7
|
Álvarez de Celis H, Gómez CP, Descoteaux A, Duplay P. Dok proteins are recruited to the phagosome and degraded in a GP63-dependent manner during Leishmania major infection. Microbes Infect 2014; 17:285-94. [PMID: 25554486 DOI: 10.1016/j.micinf.2014.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Three adaptor molecules of the Dok family, Dok-1, Dok-2 and Dok-3 are expressed in macrophages and are involved in the negative regulation of signaling in response to lipopolysaccharide and various cytokines and growth factors. We investigated the role and the fate of these proteins following infection with Leishmania major promastigotes in macrophages. The protozoan parasite L. major causes cutaneous leishmaniasis and is known for its capacity to alter host-cell signaling and function. Dok-1/Dok-2(-/-) bone marrow-derived macrophages displayed normal uptake of L. major promastigotes. Following Leishmania infection, Dok-1 was barely detectable by confocal microscopy. By contrast, phagocytosis of latex beads or zymosan led to the recruitment of Dok-1 to phagosomes. In the absence of the Leishmania pathogenesis-associated metalloprotease GP63, Dok-1 was also, partially, recruited to phagosomes containing L. major promastigotes. Further biochemical analyses revealed that similar to Dok-1, Dok-2 and Dok-3 were targets of GP63. Moreover, we showed that upon infection with wild-type or Δgp63 L. major promastigotes, production of nitric oxide and tumor necrosis factor by interferon-γ-primed Dok-1/Dok-2(-/-) macrophages was reduced compared to WT macrophages. These results suggest that Dok proteins may be important regulators of macrophage responses to Leishmania infection.
Collapse
Affiliation(s)
- Hector Álvarez de Celis
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Carolina P Gómez
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Pascale Duplay
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
8
|
Intracellular TCR-signaling pathway: novel markers for lymphoma diagnosis and potential therapeutic targets. Am J Surg Pathol 2014; 38:1349-59. [PMID: 25118816 DOI: 10.1097/pas.0000000000000309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the immunologic functions of T-cell receptor signaling molecules being extensively investigated, their potential as immunohistochemical markers has been poorly explored. With this background, we evaluated the expression of 5 intracellular proteins-GADS, DOK2, SKAP55, ITK, and PKCα-involved in T-cell receptor signaling in normal and neoplastic hematologic tissue samples, using antibodies raised against fixation-resistant epitopes of the 5 molecules. All 5 antibodies were associated with normal T-cell differentiation. GADS, DOK2, SKAP55, and ITK turned out to be T-cell lineage-specific markers in the setting of lymphoid and myeloid precursor neoplasms but showed differential expression in peripheral T-cell lymphoma (PTCL) subtypes, being detected in PTCL/not otherwise specified (NOS) and angioimmunoblastic T-cell lymphoma but negative in anaplastic large cell lymphoma (ALCL). Peripheral B-cell lymphomas were consistently negative for ITK, with occasional cases showing expression of DOK2 and SKAP55, and a proportion (47%) of hairy cell leukemias were GADS. Notably, PKCα highlighted a defective antigen in both PTCL/NOS (6%) and angioimmunoblastic T-cell lymphoma (10%), mostly negative in ALCL, and was aberrantly expressed in classical Hodgkin lymphoma (65%), Burkitt lymphoma (48%), and plasma cell myeloma (48%). In conclusion, all five molecules evaluated play a role in T-cell differentiation in normal and neoplastic tissues. They can be applied confidently to routine sections contributing primarily to assignment of T-lineage differentiation in the setting of hematopoietic precursor neoplasms (GADS/DOK2/SKAP55/ITK) and for the differential diagnosis between ALCL and PTCL/NOS (GADS/DOK2/SKAP55/ITK) or classical Hodgkin lymphoma (PKCα). Finally, association with specific tumor subtypes may have therapeutic potential.
Collapse
|
9
|
You DJ, Park CR, Lee HB, Moon MJ, Kang JH, Lee C, Oh SH, Ahn C, Seong JY, Hwang JI. A splicing variant of NME1 negatively regulates NF-κB signaling and inhibits cancer metastasis by interacting with IKKβ. J Biol Chem 2014; 289:17709-20. [PMID: 24811176 DOI: 10.1074/jbc.m114.553552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IKKβ functions as a principal upstream activator of the canonical NF-κB pathway by phosphorylating IκB, leading to its proteasomal degradation. Because IKKβ is considered a therapeutic target, understanding its regulation may facilitate the design of efficient regulators of this molecule. Here, we report a novel IKKβ-interacting molecule, NME1L, a splicing variant of the NME1 protein. NME1 has attracted attention in cancer research because of its antimetastatic activity and reduced expression in multiple aggressive types of cancer. However, the effect was just moderate but not dramatic in anti-cancer activities. We found that only NME1L interacts with IKKβ. Exogenous expression of NME1L resulted in a potent decrease in TNFα-stimulated NF-κB activation, whereas knockdown of NME1/NME1L with shRNA enhanced activity of NF-κB. NME1L down-regulates IKKβ signaling by blocking IKKβ-mediated IκB degradation. When NME1L was introduced into highly metastatic HT1080 cells, the mobility was efficiently inhibited. Furthermore, in a metastasis assay, NME1L-expressing cells did not colonize the lung. Based on these results, NME1L is a potent antimetastatic protein and may be a useful weapon in the fight against cancers.
Collapse
Affiliation(s)
- Dong-Joo You
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Cho Rong Park
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Hyun Bok Lee
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Mi Jin Moon
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Ju-Hee Kang
- the National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Korea
| | - Cheolju Lee
- the Life Sciences Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea
| | - Seong-Hyun Oh
- the College of Pharmacy, Gachon University, Incheon 406-840, Korea, and
| | - Curie Ahn
- the Transplantation Research Institute, Cancer Research Institute, Seoul National University, Yongun-dong, Jongno-gu, Seoul 110-799, Korea
| | - Jae Young Seong
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Jong-Ik Hwang
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea,
| |
Collapse
|
10
|
Barrett A, Evans IM, Frolov A, Britton G, Pellet-Many C, Yamaji M, Mehta V, Bandopadhyay R, Li N, Brandner S, Zachary IC, Frankel P. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling. J Cell Sci 2014; 127:2647-58. [PMID: 24762811 DOI: 10.1242/jcs.135988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DOK1 regulates platelet-derived growth factor (PDGF)-BB-stimulated glioma cell motility. Mechanisms regulating tumour cell motility are essential for invasion and metastasis. We report here that PDGF-BB-mediated glioma cell invasion and migration are dependent on the adaptor protein downstream of kinase 1 (DOK1). DOK1 is expressed in several glioma cell lines and in tumour biopsies from high-grade gliomas. DOK1 becomes tyrosine phosphorylated upon PDGF-BB stimulation of human glioma cells. Knockdown of DOK1 or expression of a DOK1 mutant (DOK1FF) containing Phe in place of Tyr at residues 362 and 398, resulted in inhibition of both the PDGF-BB-induced tyrosine phosphorylation of p130Cas (also known as BCAR1) and the activation of Rap1. DOK1 colocalises with tyrosine phosphorylated p130Cas at the cell membrane of PDGF-BB-treated cells. Expression of a non-tyrosine-phosphorylatable substrate domain mutant of p130Cas (p130Cas15F) inhibited PDGF-BB-mediated Rap1 activation. Knockdown of DOK1 and Rap1 inhibited PDGF-BB-induced chemotactic cell migration, and knockdown of DOK1 and Rap1 and expression of DOK1FF inhibited PDGF-mediated three-dimensional (3D) spheroid invasion. These data show a crucial role for DOK1 in the regulation of PDGF-BB-mediated tumour cell motility through a p130Cas-Rap1 signalling pathway. [Corrected]
Collapse
Affiliation(s)
- Angela Barrett
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Ian M Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Antonina Frolov
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Gary Britton
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Maiko Yamaji
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Vedanta Mehta
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | | | - Ningning Li
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of NeurologyUniversity College LondonLondon WC1E 6JJUK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of NeurologyUniversity College LondonLondon WC1E 6JJUK
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| | - Paul Frankel
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, Rayne Building, University College London, London WC1E 6JJ, UK
| |
Collapse
|
11
|
Miah S, Goel RK, Dai C, Kalra N, Beaton-Brown E, Bagu ET, Bonham K, Lukong KE. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 2014; 9:e87684. [PMID: 24523872 PMCID: PMC3921129 DOI: 10.1371/journal.pone.0087684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.
Collapse
Affiliation(s)
- Sayem Miah
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chenlu Dai
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Kalra
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Beaton-Brown
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edward T. Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keith Bonham
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven E. Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Berger AH, Chen M, Morotti A, Janas JA, Niki M, Bronson RT, Taylor BS, Ladanyi M, Van Aelst L, Politi K, Varmus HE, Pandolfi PP. DOK2 inhibits EGFR-mutated lung adenocarcinoma. PLoS One 2013; 8:e79526. [PMID: 24255704 PMCID: PMC3821857 DOI: 10.1371/journal.pone.0079526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022] Open
Abstract
Somatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS. These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Alice H. Berger
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming Chen
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alessandro Morotti
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Justyna A. Janas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Masaru Niki
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Roderick T. Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, United States of America
| | - Barry S. Taylor
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Katerina Politi
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harold E. Varmus
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
The frog trefoil factor Bm-TFF2 activates human platelets via Gq and G12/13 signaling pathway. Toxicon 2011; 59:104-9. [PMID: 22100826 DOI: 10.1016/j.toxicon.2011.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/26/2011] [Accepted: 10/27/2011] [Indexed: 11/23/2022]
Abstract
Bm-TFF2 is an amphibian trefoil factor purified from the Bombina maxima skin secretion that is highly toxic to mammals. We previously reported that Bm-TFF2 activates human platelets via protease-activated receptor 1. In this study, for a better understanding of platelet activation induced by Bm-TFF2, we used affinity chromatography and pharmacological inhibitors to investigate the downstream signaling pathway. Using Bm-TFF2-affinity chromatography, Gq was specifically eluted from the Bm-TFF2-coulped column. Pharmacological inhibitors such as U73122, Xestospongin C, BAPTA-AM and Gö6976 can significantly inhibit Bm-TFF2-induced platelet aggregation. These results suggested that Gq activation and the downstream PLCβ-IP3 receptor-cytoplasmic Ca(2+)-PKC signaling pathway is crucial for Bm-TFF2 to stimulate platelet aggregation. Furthermore, Bm-TFF2 induced strong platelet shape change at the concentrations of 5nM, in which the Ca(2+) mobilization of the platelets stimulated was not detectable. The p160(ROCK) inhibitorY27632 totally inhibited the shape change, indicating that Bm-TFF2 may activate the G12/13 pathway which leads to the activation of RhoA-p160(ROCK). In conclusion, Bm-TFF2 induced platelet activation mainly via the Gq and G12/13 signaling pathway. This study on the signaling pathway of Bm-TFF2 stimulation may help us understand the toxicity of B. maxima skin secretion to the human platelets.
Collapse
|
14
|
O'Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 2011; 35:746-56. [PMID: 22078222 DOI: 10.1016/j.immuni.2011.10.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/16/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022]
Abstract
Anergic B cells are characterized by impaired signaling and activation after aggregation of their antigen receptors (BCR). The molecular basis of this impairment is not understood. In studies reported here, Src homology-2 (SH2)-containing inositol 5-phosphatase SHIP-1 and its adaptor Dok-1 were found to be constitutively phosphorylated in anergic B cells, and activation of this inhibitory circuit was dependent on Src-family kinase activity and consequent to biased BCR immunoreceptor tyrosine-based activation motif (ITAM) monophosphorylation. B cell-targeted deletion of SHIP-1 caused severe lupus-like disease. Moreover, absence of SHIP-1 in B cells led to loss of anergy as indicated by restoration of BCR signaling, loss of anergic surface phenotype, and production of autoantibodies. Thus, chronic BCR signals maintain anergy in part via ITAM monophosphorylation-directed activation of an inhibitory signaling circuit involving SHIP-1 and Dok-1.
Collapse
Affiliation(s)
- Shannon K O'Neill
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oncogenic tyrosine kinases target Dok-1 for ubiquitin-mediated proteasomal degradation to promote cell transformation. Mol Cell Biol 2011; 31:2552-65. [PMID: 21536658 DOI: 10.1128/mcb.05045-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular transformation induced by oncogenic tyrosine kinases is a multistep process involving activation of growth-promoting signaling pathways and inactivation of suppressor molecules. Dok-1 is an adaptor protein that acts as a negative regulator of tyrosine kinase-initiated signaling and opposes oncogenic tyrosine kinase-mediated cell transformation. Findings that its loss facilitates transformation induced by oncogenic tyrosine kinases suggest that Dok-1 inactivation could constitute an intermediate step in oncogenesis driven by these oncoproteins. However, whether Dok-1 is subject to regulation by oncogenic tyrosine kinases remained unknown. In this study, we show that oncogenic tyrosine kinases, including p210(bcr-abl) and oncogenic forms of Src, downregulate Dok-1 by targeting it for degradation through the ubiquitin-proteasome pathway. This process is dependent on the tyrosine kinase activity of the oncoproteins and is mediated primarily by lysine-dependent polyubiquitination of Dok-1. Importantly, restoration of Dok-1 levels strongly suppresses transformation of cells expressing oncogenic tyrosine kinases, and this suppression is more pronounced in the context of a Dok-1 mutant that is largely refractory to oncogenic tyrosine kinase-induced degradation. Our findings suggest that proteasome-mediated downregulation of Dok-1 is a key mechanism by which oncogenic tyrosine kinases overcome the inhibitory effect of Dok-1 on cellular transformation and tumor progression.
Collapse
|
16
|
Abstract
A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx.
Collapse
Affiliation(s)
- Yuval Yarkoni
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| | | | | |
Collapse
|
17
|
Waterman PM, Cambier JC. The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms. FEBS Lett 2010; 584:4878-82. [PMID: 20875413 PMCID: PMC2998577 DOI: 10.1016/j.febslet.2010.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/28/2022]
Abstract
Immunoreceptor signals must be appropriately transduced and regulated to achieve effective immunity while controlling inflammation and autoimmunity. It is generally held that these processes are mediated by the interplay of distinct activating and inhibitory receptors via conserved activating (ITAM) and inhibitory (ITIM) signaling motifs. However, recent evidence indicates that under certain conditions incomplete phosphorylation of ITAM tyrosines leads to inhibitory signaling. This new regulatory function of ITAMs has been termed ITAMi (inhibitory ITAM). Here we discuss the potential molecular mechanisms of inhibitory signaling by ITAM-containing receptors.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver CO 80206, USA
| | | |
Collapse
|
18
|
Mashima R, Hishida Y, Tezuka T, Yamanashi Y. The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 2010; 232:273-85. [PMID: 19909370 DOI: 10.1111/j.1600-065x.2009.00844.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian Dok protein family has seven members (Dok-1-Dok-7). The Dok proteins share structural similarities characterized by the NH2-terminal pleckstrin homology and phosphotyrosine-binding domains followed by SH2 target motifs in the COOH-terminal moiety, indicating an adapter function. Indeed, Dok-1 was originally identified as a 62 kDa protein that binds with p120 rasGAP, a potent inhibitor of Ras, upon tyrosine phosphorylation by a variety of protein tyrosine kinases. Among the Dok family, only Dok-1, Dok-2, and Dok-3 are preferentially expressed in hematopoietic/immune cells. Dok-1 and its closest relative Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. By contrast, Dok-3 does not bind with p120 rasGAP. However, accumulating evidence has demonstrated that Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, where the interaction of Dok-3 with SHIP-1 and Grb2 appears to be important. Here, we review the physiological roles and underlying mechanisms of Dok family proteins.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
19
|
Kurotsuchi A, Murakumo Y, Jijiwa M, Kurokawa K, Itoh Y, Kodama Y, Kato T, Enomoto A, Asai N, Terasaki H, Takahashi M. Analysis of DOK-6 function in downstream signaling of RET in human neuroblastoma cells. Cancer Sci 2010; 101:1147-55. [PMID: 20210798 PMCID: PMC11159970 DOI: 10.1111/j.1349-7006.2010.01520.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Point mutations and structural alterations of the RET tyrosine kinase gene cause multiple endocrine neoplasia type 2 (MEN 2) and papillary thyroid carcinoma, respectively. RET activation by glial cell line-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system and the kidney. The signal through RET tyrosine kinase requires several adaptor proteins including the DOK (downstream of kinase) family of proteins. Of the seven members of the DOK protein family, DOK-1, -4, -5, and -6 have been reported to play roles in the GDNF-RET signaling pathway. Although DOK-6 has been shown to bind to RET and promote GDNF-induced neurite outgrowth in mouse Neuro2A cells, DOK-6 function in human cells remains unclear. In the present study, we investigated the role of DOK-6 in GDNF-RET signaling in human cells including neuroblastoma cells. DOK-6 was constitutively localized to the plasma membrane via its pleckstrin homology (PH) domain, and was phosphorylated following RET activation via a MEN2A mutation or GDNF stimulation. However, DOK-6 could not significantly affect downstream signaling and neurite outgrowth in human neuroblastoma cells. The binding affinity of the DOK-6 phosphotyrosine-binding (PTB) domain to RET was much lower than that of the DOK-1, DOK-4, and SHC PTB domains to RET. These findings indicate that DOK-6 is involved in RET signaling with less influence when compared with DOK-1, DOK-4, and SHC.
Collapse
Affiliation(s)
- Ai Kurotsuchi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Annenkov A. The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 2009; 40:195-215. [PMID: 19714501 DOI: 10.1007/s12035-009-8081-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
The insulin-like growth factor receptor type 1 (IGF1R) signalling pathway is activated in the mammalian nervous system from early developmental stages. Its major effect on developing neural cells is to promote their growth and survival. This pathway can integrate its action with signalling pathways of growth and morphogenetic factors that induce cell fate specification and selective expansion of specified neural cell subsets. This suggests that during developmental and adult neurogenesis cellular responses to many signalling factors, including ligands of Notch, sonic hedgehog, fibroblast growth factor family members, ligands of the epidermal growth factor receptor, bone morphogenetic proteins and Wingless and Int-1, may be modified by co-activation of the IGF1R. Modulation of cell migration is another possible role that IGF1R activation may play in neurogenesis. Here, I briefly overview neurogenesis and discuss a role for IGF1R-mediated signalling in the developing and mature nervous system with emphasis on crosstalk between the signalling pathways of the IGF1R and other factors regulating neural cell development and migration. Studies on neural as well as on non-neural cells are highlighted because it may be interesting to test in neurogenic paradigms some of the models based on the information obtained in studies on non-neural cell types.
Collapse
Affiliation(s)
- Alexander Annenkov
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK.
| |
Collapse
|
21
|
Kobayashi R, Patenia R, Ashizawa S, Vykoukal J. Targeted mass spectrometric analysis of N-terminally truncated isoforms generated via alternative translation initiation. FEBS Lett 2009; 583:2441-5. [PMID: 19481542 DOI: 10.1016/j.febslet.2009.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/21/2009] [Accepted: 05/23/2009] [Indexed: 01/19/2023]
Abstract
Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.
Collapse
Affiliation(s)
- Ryuji Kobayashi
- FTN Institute, 1147 Mariner Cove, Sugar Land, TX 77498, USA.
| | | | | | | |
Collapse
|
22
|
Guittard G, Gérard A, Dupuis-Coronas S, Tronchère H, Mortier E, Favre C, Olive D, Zimmermann P, Payrastre B, Nunès JA. Cutting Edge: Dok-1 and Dok-2 Adaptor Molecules Are Regulated by Phosphatidylinositol 5-Phosphate Production in T Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3974-8. [DOI: 10.4049/jimmunol.0804172] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Cady CT, Rice JS, Ott VL, Cambier JC. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunol Rev 2008; 224:44-57. [PMID: 18759919 DOI: 10.1111/j.1600-065x.2008.00663.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.
Collapse
Affiliation(s)
- Carol T Cady
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
| | | | | | | |
Collapse
|
24
|
Lee DF, Hung MC. Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin Cancer Res 2008; 14:5656-62. [PMID: 18794072 DOI: 10.1158/1078-0432.ccr-08-0123] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IkappaB kinases (IKK) and IKK-related kinases play critical roles in regulating the immune response through nuclear factor-kappaB and IFN regulatory factor-dependent signaling transduction cascades. Recently, these kinases have been implicated in the pathogenesis of many human diseases, including cancer. In fact, dysregulation of IKK activities promotes tumor survival, proliferation, migration, metastasis, and angiogenesis-common characteristics of many types of human cancers. Because of their oncogenic effects in human cancer development, targeting IKK and IKK-related kinases is becoming an increasingly popular avenue for the development of novel therapeutic interventions for cancer. This review will briefly cover the recent discovery of the downstream substrates of IKK and IKK-related kinases, and outline the strategies used for targeting IKK as a therapeutic intervention for cancer.
Collapse
Affiliation(s)
- Dung-Fang Lee
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Czyzyk J, Chen HC, Bottomly K, Flavell RA. p21 Ras/impedes mitogenic signal propagation regulates cytokine production and migration in CD4 T cells. J Biol Chem 2008; 283:23004-15. [PMID: 18577512 DOI: 10.1074/jbc.m804084200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The propensity of T cells to generate coordinated cytokine responses is critical for the host to develop resistance to pathogens while maintaining the state of immunotolerance to self-antigens. The exact mechanisms responsible for preventing the overproduction of proinflammatory cytokines including interferon (IFN)-gamma are not fully understood, however. In this study, we examined the role of a recently described Ras GTPase effector and repressor of the Raf/MEK/ERK cascade called impedes mitogenic signal propagation (Imp) in limiting the induction of T-cell cytokines. We found that stimulation of the T cell receptor complex leads to the rapid development of a physical association between Ras and Imp. Consistent with the hypothesis that Imp inhibits signal transduction, we also found that disengagement of this molecule by the Ras(V12G37) effector loop mutant or RNA interference markedly enhances the activation of the NFAT transcription factor and IFN-gamma secretion. A strong output of IFN-gamma is responsible for the distinct lymphocyte traffic pattern observed in vivo because the transgenic or retroviral expression of Ras(V12G37) caused T cells to accumulate preferentially in the lymph nodes and delayed their escape from the lymphoid tissue, respectively. Together, our results describe a hitherto unrecognized negative regulatory role for Imp in the production of IFN-gamma in T cells and point to Ras-Imp binding as an attractive target for therapeutic interventions in conditions involving the production of this inflammatory cytokine.
Collapse
Affiliation(s)
- Jan Czyzyk
- Departments of Pathology and Immunobiology
| | | | | | | |
Collapse
|
26
|
Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H. Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 2008; 7:1763-77. [PMID: 18515860 DOI: 10.1074/mcp.m800196-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.
Collapse
Affiliation(s)
- Philipp Mertins
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Constitutive plasma membrane targeting and microdomain localization of Dok5 studied by single-molecule microscopy. Biophys Chem 2008; 136:13-8. [PMID: 18455289 DOI: 10.1016/j.bpc.2008.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 11/22/2022]
Abstract
In the present study, single-molecule fluorescence microscopy was used to examine the characteristics of plasma membrane targeting and microdomain localization of enhanced yellow fluorescent protein (eYFP)-tagged wild-type Dok5 and its variants in living Chinese hamster ovary (CHO) cells. We found that Dok5 can target constitutively to the plasma membrane, and the PH domain is essential for this process. Furthermore, single-molecule trajectories analysis revealed that Dok5 can constitutively partition into microdomain on the plasma membrane. Finally, the potential mechanism of microdomain localization of Dok5 was discussed. This study provided insights into the characteristics of plasma membrane targeting and microdomain localization of Dok5 in living CHO cells.
Collapse
|
28
|
Honma M, Higuchi O, Shirakata M, Yasuda T, Shibuya H, Iemura SI, Natsume T, Yamanashi Y. Dok-3 sequesters Grb2 and inhibits the Ras-Erk pathway downstream of protein-tyrosine kinases. Genes Cells 2007; 11:143-51. [PMID: 16436051 DOI: 10.1111/j.1365-2443.2006.00926.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adaptor proteins are essential in coordinating recruitment and, in a few cases, restraint of various effectors during cellular signaling. Dok-1, Dok-2 and Dok-3 comprise a closely related family of adaptor, which negatively regulates mitogen-activated protein kinase Erk downstream of protein-tyrosine kinases (PTKs). Recruitment of p120 rasGAP, a potent inhibitor of Ras, by Dok-1 and Dok-2 appears critical in the negative regulation of the Ras-Erk pathway. However, as Dok-3 does not bind rasGAP, it has been unclear how Dok-3 inhibits Erk downstream of PTKs. Here, we identified Grb2 as a Dok-3-binding protein upon its tyrosine phosphorylation. This interaction required the intact binding motifs of the Grb2 SH2 domain, and a mutant (Dok-3-FF) having a Tyr/Phe substitution at these motifs failed to inhibit Ras and Erk activation downstream of a cytoplasmic PTK Src. Because Grb2 forms a stable complex with Sos, a crucial activator of Ras, these data suggest that Dok-3 restrains Grb2 and inhibits the ability of the Grb2-Sos complex to activate Ras. Indeed, forced expression of Dok-3, but not Dok-3-FF, inhibited the recruitment of the Grb2-Sos complex to Shc downstream of Src, which is an essential event for activation of the Ras-Erk pathway. These findings indicate that Dok-3 sequesters Grb2 from Shc and inhibits the Ras-Erk pathway downstream of PTKs.
Collapse
Affiliation(s)
- Miyuki Honma
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ostrakhovitch EA, Li SSC. The role of SLAM family receptors in immune cell signaling. Biochem Cell Biol 2007; 84:832-43. [PMID: 17215871 DOI: 10.1139/o06-191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.
Collapse
Affiliation(s)
- Elena A Ostrakhovitch
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
30
|
Deng Y, Xu H, Riedel H. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways. J Cell Biochem 2007; 100:557-73. [PMID: 16960871 DOI: 10.1002/jcb.21030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.
Collapse
Affiliation(s)
- Youping Deng
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | |
Collapse
|
31
|
Baldwin C, Bedirian A, Li H, Takano T, Lemay S. Identification of Dok-4b, a Dok-4 splice variant with enhanced inhibitory properties. Biochem Biophys Res Commun 2007; 354:783-8. [PMID: 17258175 DOI: 10.1016/j.bbrc.2007.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 02/04/2023]
Abstract
Dok adapter proteins have been primarily implicated in negative regulation of tyrosine kinase signaling, but Dok-4 has been reported to exert both inhibitory and stimulatory effects. We have identified a splice variant of Dok-4, Dok-4b, which contains a 39 aa insert within the its C-terminal region. The approximately 45kDa Dok-4b protein was detected in several human epithelial cell lines. Based on genomic sequences, Dok-4b was also predicted to exist in primates and possibly bovines, but not in rodents or other species. Compared to Dok-4, Dok-4b inhibited the tyrosine kinase-induced activation of both Erk and Elk-1 more strongly. Truncation of the C-terminal region of Dok-4 (Dok-4 DeltaCT) also enhanced the inhibitory activity of Dok-4, whereas expression of the isolated C-terminal domain enhanced Elk-1 activation, suggesting that the N-terminus and C-terminus of Dok-4 possess opposing inhibitory and stimulatory properties, respectively, the balance of which is altered by alternative splicing of Dok-4 to Dok-b.
Collapse
Affiliation(s)
- Cindy Baldwin
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Que., Canada H3A 2B4
| | | | | | | | | |
Collapse
|
32
|
Niu Y, Roy F, Saltel F, Andrieu-Soler C, Dong W, Chantegrel AL, Accardi R, Thépot A, Foiselle N, Tommasino M, Jurdic P, Sylla BS. A nuclear export signal and phosphorylation regulate Dok1 subcellular localization and functions. Mol Cell Biol 2006; 26:4288-301. [PMID: 16705178 PMCID: PMC1489083 DOI: 10.1128/mcb.01817-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.
Collapse
Affiliation(s)
- Yamei Niu
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao M, Janas JA, Niki M, Pandolfi PP, Van Aelst L. Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Mol Cell Biol 2006; 26:2479-89. [PMID: 16537894 PMCID: PMC1430334 DOI: 10.1128/mcb.26.7.2479-2489.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Dok adaptor proteins play key regulatory roles in receptor and non-receptor kinase-initiated signaling pathways. Dok-1, the prototype member of this family, negatively regulates cell proliferation elicited by numerous growth factors, including platelet-derived growth factor (PDGF). However, how Dok-1 exerts its negative effect on mitogenesis has remained elusive. Using Dok-1 knockout cells and Dok-1 mutants deficient in binding to specific Dok-1-interacting proteins, we show that Dok-1 interferes with PDGF-stimulated c-myc induction and Ras/mitogen-activated protein kinase (MAPK) activation by tethering different signaling components to the cell membrane. Specifically, Dok-1 attenuates PDGF-elicited c-myc induction by recruiting Csk to active Src kinases, whereupon their activities and consequent c-myc induction are diminished. On the other hand, Dok-1 negatively regulates PDGF-induced MAPK activation by acting on Ras-GAP and at least one other Dok-1-interacting protein. Importantly, we demonstrate that Dok-1's actions on both of these signaling pathways contribute to its inhibitory effect on mitogenesis. Our data suggest a mechanistic basis for the inhibitory effect of Dok-1 on growth factor-induced mitogenesis and its role as a tumor suppressor.
Collapse
Affiliation(s)
- Mingming Zhao
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
34
|
Dhar MS, Yuan JS, Elliott SB, Sommardahl C. A type IV P-type ATPase affects insulin-mediated glucose uptake in adipose tissue and skeletal muscle in mice. J Nutr Biochem 2006; 17:811-20. [PMID: 16517145 DOI: 10.1016/j.jnutbio.2006.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 11/27/2022]
Abstract
Mice carrying two pink-eyed dilution (p) locus heterozygous deletions represent a novel polygenic mouse model of type 2 diabetes associated with obesity. Atp10c, a putative aminophospholipid transporter on mouse chromosome 7, is a candidate for the phenotype. The phenotype is diet-induced. As a next logical step in the validation and characterization of the model, experiments to analyze metabolic abnormalities associated with these mice were carried out. Results demonstrate that mutants (inheriting the p deletion maternally) heterozygous for Atp10c are hyperinsulinemic, insulin-resistant and have an altered insulin-stimulated response in peripheral tissues. Adipose tissue and the skeletal muscle are the targets, and GLUT4-mediated glucose uptake is the specific metabolic pathway associated with Atp10c deletion. Insulin resistance primarily affects the adipose tissue and the skeletal muscle, and the effect in the liver is secondary. Gene expression profiling using microarray and real-time PCR show significant changes in the expression of four genes--Vamp2, Dok1, Glut4 and Mapk14--involved in insulin signaling. The expression of Atp10c is also significantly altered in the adipose tissue and the soleus muscle. The most striking observation is the loss of Atp10c expression in the mutants, specifically in the soleus muscle, after eating the high-fat diet for 12 weeks. In conclusion, experiments suggest that the target genes and/or their cognate factors in conjunction with Atp10c presumably affect the normal translocation and sequestration of GLUT4 in both the target tissues.
Collapse
Affiliation(s)
- Madhu S Dhar
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-4500, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Embryonic dorsal closure (DC) in Drosophila is a series of morphogenetic movements involving the bilateral dorsal movement of the epidermis (cell stretching) and dorsal suturing of the leading edge (LE) cells to enclose the viscera. The Syk family tyrosine kinase Shark plays a crucial role in this Jun amino-terminal kinase (JNK)-dependent process, where it acts upstream of JNK in LE cells. Using a yeast two-hybrid screen, the unique Drosophila homolog of the downstream of kinase (Dok) family, Ddok,was identified by its ability to bind Shark SH2 domains in a tyrosine phosphorylation-dependent fashion. In cultured S2 embryonic cells, Ddok tyrosine phosphorylation is Src dependent; Shark associates with Ddok and Ddok localizes at the cell cortex, together with a portion of the Shark protein. The embryonic expression pattern of Ddok resembles the expression pattern of Shark. Ddok loss-of-function mutant (DdokPG155)germ-line clones possess DC defects, including the loss of JNK-dependent expression of dpp mRNA in LE cells, and decreased epidermal F-actin staining and LE actin cable formation. Epistatic analysis indicates that Ddok functions upstream of shark to activate JNK signaling during DC. Consistent with these observations, Ddok mutant embryos exhibit decreased levels of tyrosine phosphorylated Shark at the cell periphery of LE and epidermal cells. As there are six mammalian Dok family members that exhibit some functional redundancy, analysis of the regulation of DC by Ddok is expected to provide novel insights into the function of the Dok adapter proteins.
Collapse
Affiliation(s)
- Romi Biswas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
36
|
Yen A, Varvayanis S, Smith JL, Lamkin TJ. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells. Eur J Cell Biol 2005; 85:117-32. [PMID: 16439309 DOI: 10.1016/j.ejcb.2005.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/21/2005] [Accepted: 09/28/2005] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Differentiation/drug effects
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/physiology
- Gene Expression Regulation, Leukemic
- HL-60 Cells
- Humans
- Immunoprecipitation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/physiopathology
- Mutation
- Paxillin/genetics
- Paxillin/physiology
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphorylation
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/physiology
- Receptors, Antigen, T-Cell/physiology
- Resting Phase, Cell Cycle/drug effects
- Signal Transduction
- Superoxides/metabolism
- Transfection
- Tretinoin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Andrew Yen
- Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
37
|
Lu Q, Clemetson JM, Clemetson KJ. Translocation of GPIb and Fc receptor gamma-chain to cytoskeleton in mucetin-activated platelets. J Thromb Haemost 2005; 3:2065-76. [PMID: 16102113 DOI: 10.1111/j.1538-7836.2005.01481.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have implied that GPIb-IX-V as well as functioning as an adhesion receptor may also induce signaling to mediate binding of platelets to damaged vessel wall to prevent bleeding. Reorganization of the cytoskeleton and redistribution of platelet structural proteins and signaling molecules are thought to be important in this early activation process, though the molecular mechanisms remain to be fully defined. In this study, we have used mucetin, a snake venom lectin protein that activates platelets via GPIb, to study the redistribution of GPIb in platelets. In unstimulated platelets, a minor portion of GPIb localized to Triton-insoluble cytoskeleton fractions (TIC). This portion increased considerably after platelet activation by mucetin. We also find increased contents of the FcRgamma chain in TIC. Anti-GPIb antibodies, mocarhagin or cytochalasin D completely inhibited the cytoskeletal translocation. In addition, BAPTA-AM, a cytoplasmic calcium chelator, strongly inhibited this process. On the other hand, inhibitors of alphaIIbbeta3, PLCgamma, PKC, tyrosine kinases, ADP receptor, PI3-kinase or EDTA are effective in preventing GPIb relocation in convulxin- but not in mucetin-activated platelets. We propose that cytoskeletal translocation of GPIb is upstream of alphaIIbbeta3 activation and cross-linking of GPIb is sufficient to induce this event in mucetin-activated platelets.
Collapse
Affiliation(s)
- Q Lu
- Theodor Kocher Institute, University of Berne, Freiestrasse 1, Berne, Switzerland
| | | | | |
Collapse
|
38
|
Shah K, Vincent F. Divergent roles of c-Src in controlling platelet-derived growth factor-dependent signaling in fibroblasts. Mol Biol Cell 2005; 16:5418-32. [PMID: 16135530 PMCID: PMC1266437 DOI: 10.1091/mbc.e05-03-0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vast complexity of platelet-derived growth factor (PDGF)-induced downstream signaling pathways is well known, but the precise roles of critical players still elude us due to our lack of specific and temporal control over their activities. Accordingly, although Src family members are some of the better characterized effectors of PDGFbeta signaling, considerable controversy still surrounds their precise functions. To address these questions and limitations, we applied a chemical-genetic approach to study the role of c-Src at the cellular level, in defined signaling cascades; we also uncovered novel phosphorylation targets and defined its influence on transcriptional events. The spectacular control of c-Src on actin reorganization and chemotaxis was delineated by global substrate labeling and transcriptional analysis, revealing multiple cytoskeletal proteins and chemotaxis promoting genes to be under c-Src control. Additionally, this tool revealed the contrasting roles of c-Src in controlling DNA synthesis, where it transmits conflicting inputs via the phosphatidylinositol 3 kinase and Ras pathways. Finally, this study reveals a mechanism by which Src family kinases may control PDGF-mediated responses both at transcriptional and translational levels.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
39
|
Van Slyke P, Coll ML, Master Z, Kim H, Filmus J, Dumont DJ. Dok-R mediates attenuation of epidermal growth factor-dependent mitogen-activated protein kinase and Akt activation through processive recruitment of c-Src and Csk. Mol Cell Biol 2005; 25:3831-41. [PMID: 15831486 PMCID: PMC1084282 DOI: 10.1128/mcb.25.9.3831-3841.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dok-R has previously been shown to associate with the epidermal growth factor receptor (EGFR) and become tyrosine phosphorylated in response to EGF stimulation. The recruitment of Dok-R to the EGFR, which is mediated through its phosphotyrosine binding (PTB) domain, results in attenuation of mitogen-activated protein kinase (MAPK) activation. Dok-R's ability to attenuate EGF-driven MAPK activation is independent of its ability to recruit rasGAP, a known attenuator of MAPK activity, suggesting an alternate Dok-R-mediated pathway. Herein, we have determined the structural determinants within Dok-R that are required for its ability to attenuate EGF signaling and to associate with c-Src and with the Src family kinase (SFK)-inhibitory kinase, Csk. We demonstrate that Dok-R associates constitutively with c-Src through an SH3-dependent interaction and that this association is essential to Dok-R's ability to attenuate c-Src activity and diminish MAPK and Akt/PKB activity. We further illustrate that EGF-dependent phosphorylation of Dok-R requires SFK activity and, more specifically, that SFK-dependent phosphorylation of tyrosine 402 on Dok-R facilitates the inducible recruitment of Csk. We propose that recruitment of Csk to Dok-R serves to bring Csk to c-Src and down-regulate its activity, resulting in a concomitant attenuation of MAPK and Akt/PKB activity. Furthermore, we demonstrate that Dok-R can abrogate c-Src's ability to protect the breast cancer cell line SKBR3 from anoikis and that an association with c-Src and Csk is required for this activity. Collectively these results demonstrate that Dok-R acts as an EGFR-recruited scaffolding molecule that processively assembles c-Src and Csk to attenuate signaling from the EGFR.
Collapse
Affiliation(s)
- Paul Van Slyke
- Sunnybrook and Women's Research Institute, 2075 Bayview Avenue, Research Building S-218, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | |
Collapse
|
40
|
Heuer K, Arbuzova A, Strauss H, Kofler M, Freund C. The helically extended SH3 domain of the T cell adaptor protein ADAP is a novel lipid interaction domain. J Mol Biol 2005; 348:1025-35. [PMID: 15843031 DOI: 10.1016/j.jmb.2005.02.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/19/2022]
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides. Positively charged surface patches of the domain preferentially bind to polyvalent acidic lipids such as PIP2 or PIP3 over the monovalent PS phospholipid and this interaction is dependent on the N-terminal helix of the hSH3 domain fold. Basic amino acid side-chains from the SH3 scaffold also contribute to lipid binding. In the context of T cell signalling, our findings suggest that ADAP, upon recruitment to the cell-cell junction as part of a multiprotein complex, directly interacts with phosphoinositide-enriched regions of the plasma membrane. Furthermore, the ADAP lipid interaction defines the helically extended SH3 scaffold as a novel member of membrane interaction domains.
Collapse
Affiliation(s)
- Katja Heuer
- Protein Engineering Group, Forschungsinstitut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Yasuda T, Shirakata M, Iwama A, Ishii A, Ebihara Y, Osawa M, Honda K, Shinohara H, Sudo K, Tsuji K, Nakauchi H, Iwakura Y, Hirai H, Oda H, Yamamoto T, Yamanashi Y. Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. ACTA ACUST UNITED AC 2005; 200:1681-7. [PMID: 15611294 PMCID: PMC2211997 DOI: 10.1084/jem.20041247] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dok-1 and Dok-2 are closely related rasGAP-associated docking proteins expressed preferentially in hematopoietic cells. Although they are phosphorylated upon activation of many protein tyrosine kinases (PTKs), including those coupled with cytokine receptors and oncogenic PTKs like Bcr-Abl, their physiological roles are largely unidentified. Here, we generated mice lacking Dok-1 and/or Dok-2, which included the double-deficient mice succumbed to myeloproliferative disease resembling human chronic myelogenous leukemia (CML) and chronic myelomonocytic leukemia. The double-deficient mice displayed medullary and extramedullary hyperplasia of granulocyte/macrophage progenitors with leukemic potential, and their myeloid cells showed hyperproliferation and hypo-apoptosis upon treatment and deprivation of cytokines, respectively. Consistently, the mutant myeloid cells showed enhanced Erk and Akt activation upon cytokine stimulation. Moreover, loss of Dok-1 and/or Dok-2 induced blastic transformation of chronic phase CML-like disease in mice carrying the bcr-abl gene, a cause of CML. These findings demonstrate that Dok-1 and Dok-2 are key negative regulators of cytokine responses and are essential for myeloid homeostasis and suppression of leukemia.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cytokines/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/genetics
- Granulocyte Precursor Cells/metabolism
- Granulocyte Precursor Cells/pathology
- Homeostasis/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lymphocyte Activation/genetics
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Myelopoiesis/genetics
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Tomoharu Yasuda
- Dept. of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Niki M, Di Cristofano A, Zhao M, Honda H, Hirai H, Van Aelst L, Cordon-Cardo C, Pandolfi PP. Role of Dok-1 and Dok-2 in leukemia suppression. ACTA ACUST UNITED AC 2005; 200:1689-95. [PMID: 15611295 PMCID: PMC2211998 DOI: 10.1084/jem.20041306] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic myelogenous leukemia (CML) is characterized by the presence of the chimeric p210bcr/abl oncoprotein that shows elevated and constitutive protein tyrosine kinase activity relative to the normal c-abl tyrosine kinase. Although several p210bcr/abl substrates have been identified, their relevance in the pathogenesis of the disease is unclear. We have identified a family of proteins, Dok (downstream of tyrosine kinase), coexpressed in hematopoietic progenitor cells. Members of this family such as p62dok (Dok-1) and p56dok-2 (Dok-2) associate with the p120 rasGTPase-activating protein (rasGAP) upon phosphorylation by p210bcr/abl as well as receptor and nonreceptor tyrosine kinases. Here, we report the generation and characterization of single and double Dok-1 or Dok-2 knockout (KO) mutants. Single KO mice displayed normal steady-state hematopoiesis. By contrast, concomitant Dok-1 and Dok-2 inactivation resulted in aberrant hemopoiesis and Ras/MAP kinase activation. Strikingly, all Dok-1/Dok-2 double KO mutants spontaneously developed transplantable CML-like myeloproliferative disease due to increased cellular proliferation and reduced apoptosis. Furthermore, Dok-1 or Dok-2 inactivation markedly accelerated leukemia and blastic crisis onset in Tec-p210bcr/abl transgenic mice known to develop, after long latency, a myeloproliferative disorder resembling human CML. These findings unravel the critical and unexpected role of Dok-1 and Dok-2 in tumor suppression and control of the hematopoietic compartment homeostasis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/genetics
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Proliferation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/genetics
- Hematopoiesis/genetics
- Homeostasis/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- p120 GTPase Activating Protein/metabolism
Collapse
Affiliation(s)
- Masaru Niki
- Cancer Biology and Genetics Program and Dept. of Pathology, Box 110, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Shinohara H, Yasuda T, Yamanashi Y. Dok-1 tyrosine residues at 336 and 340 are essential for the negative regulation of Ras-Erk signalling, but dispensable for rasGAP-binding. Genes Cells 2005; 9:601-7. [PMID: 15189452 DOI: 10.1111/j.1356-9597.2004.00748.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dok-1 is a common substrate of many protein tyrosine kinases (PTKs). It recruits rasGAP and other SH2-containing proteins and negatively regulates Ras-Erk signalling downstream of PTKs. However, the mechanisms of its inhibitory effect are yet unclear. Here, a series of C-terminal deletion mutants of Dok-1 delineated the core domain for the inhibition of Erk from 334 to 346 amino acid, which contains two SH2-binding motifs having Tyr-336 or Tyr-340. The Dok-1 mutants having tyrosine-to-phenylalanine (YF) substitution(s) at Tyr-336 and/or Tyr-340 lost their inhibitory effect on Ras and Erk downstream of Src-like PTK, Lyn or Fyn, whereas the rasGAP-binding of each mutant remained intact. However, the Dok-1 mutant having YF substitutions at the rasGAP-binding sites (Tyr-295 and Tyr-361) also showed incapability of Ras and Erk inhibition. Moreover, the Dok-1 mutant having YF substitutions at Tyr-336 and Tyr-340 showed an impaired inhibitory effect on v-Abl-induced transformation of NIH-3T3 cells. These results demonstrate that Tyr-336 and Tyr-340 of Dok-1 are dispensable for rasGAP-binding but essential for inhibition of Ras-Erk signalling and cellular transformation downstream of PTKs. Thus, Dok-1 probably recruits as yet unidentified molecule(s), which, in concert with rasGAP, negatively regulate Ras-Erk signalling.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | |
Collapse
|
44
|
Lee S, Andrieu C, Saltel F, Destaing O, Auclair J, Pouchkine V, Michelon J, Salaun B, Kobayashi R, Jurdic P, Kieff ED, Sylla BS. IkappaB kinase beta phosphorylates Dok1 serines in response to TNF, IL-1, or gamma radiation. Proc Natl Acad Sci U S A 2004; 101:17416-21. [PMID: 15574499 PMCID: PMC536032 DOI: 10.1073/pnas.0408061101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dok1 is an abundant Ras-GTPase-activating protein-associated tyrosine kinase substrate that negatively regulates cell growth and promotes migration. We now find that IkappaB kinase beta (IKKbeta) associated with and phosphorylated Dok1 in human epithelial cells and B lymphocytes. IKKbeta phosphorylation of Dok1 depended on Dok1 S(439), S(443), S(446), and S(450). Recombinant IKKbeta also phosphorylated Dok1 or Dok1 amino acids 430-481 in vitro. TNF-alpha, IL-1, gamma radiation, or IKKbeta overexpression phosphorylated Dok1 S(443), S(446), and S(450) in vivo, as detected with Dok1 phospho-S site-specific antisera. Moreover, Dok1 with S(439), S(443), S(446), and S(450) mutated to A was not phosphorylated by IKKbeta in vivo. Surprisingly, mutant Dok1 A(439), A(443), A(446), and A(450) differed from wild-type Dok1 in not inhibiting platelet-derived growth factor-induced extracellular signal-regulated kinase 1/2 phosphorylation or cell growth. Mutant Dok1 A(439), A(443), A(446), and A(450) also did not promote cell motility, whereas wild-type Dok1 promoted cell motility, and Dok1 E(439), E(443), E(446), and E(450) further enhanced cell motility. These data indicate that IKKbeta phosphorylates Dok1 S(439)S(443) and S(446)S(450) after TNF-alpha, IL-1, or gamma-radiation and implicate the critical Dok1 serines in Dok1 effects after tyrosine kinase activation.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Yan Z, Farooq A, Liu X, Lu C, Zhou MM, He C. Molecular Basis of Distinct Interactions Between Dok1 PTB Domain and Tyrosine-phosphorylated EGF Receptor. J Mol Biol 2004; 343:1147-55. [PMID: 15476828 DOI: 10.1016/j.jmb.2004.08.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/26/2004] [Accepted: 08/16/2004] [Indexed: 11/28/2022]
Abstract
Phosphotyrosine binding (PTB) domains of the adaptor proteins Doks (downstream of tyrosine kinases) play an important role in regulating signal transduction of cell-surface receptors in cell growth, proliferation and differentiation; however, ligand specificity of the Dok PTB domains has until now remained elusive. In this study, we have investigated the molecular basis of specific association between the Dok1 PTB domain and the tyrosine-phosphorylated EGFR. Using yeast two-hybrid and biochemical binding assays, we show that only the PTB domain from Dok1 but not Dok4 or Dok5 can selectively bind to two known tyrosine phosphorylation sites at Y1086 and Y1148 in EGFR. Our structure-based mutational analyses define the molecular determinants for the two distinct Dok1 PTB domain/EGFR interactions and provide the structural understanding of the specific interactions between EGFR and PTB domains in the divergent Dok homologues.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Crowder RJ, Enomoto H, Yang M, Johnson EM, Milbrandt J. Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 2004; 279:42072-81. [PMID: 15286081 DOI: 10.1074/jbc.m403726200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of Ret, the receptor-tyrosine kinase for the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs), results in the recruitment and assembly of adaptor protein complexes that function to transduce signals downstream of the receptor. Here we identify Dok-6, a novel member of the Dok-4/5 subclass of the p62 Dok family of intracellular adaptor molecules, and characterize its interaction with Ret. Expression analysis reveals that Dok-6 is highly expressed in the developing central nervous system and is co-expressed with Ret in several locations, including sympathetic, sensory, and parasympathetic ganglia, as well as in the ureteric buds of the developing kidneys. Pull-down assays using the Dok-6 phosphotyrosine binding (PTB) domain and GDNF-activated Ret indicate that Dok-6 binds to the phosphorylated Ret Tyr(1062) residue. Moreover, ligand activation of Ret resulted in phosphorylation of tyrosine residue(s) located within the unique C terminus of Dok-6 predominantly through a Src-dependent mechanism, indicating that Dok-6 is a substrate of the Ret-Src signaling pathway. Interestingly, expression of Dok-6 potentiated GDNF-induced neurite outgrowth in GDNF family receptor alpha1 (GFRalpha1)-expressing Neuro2A cells that was dependent upon the C-terminal residues of Dok-6. Taken together, these data identify Dok-6 as a novel Dok-4/5-related adaptor molecule that may function in vivo to transduce signals that regulate Ret-mediated processes such as axonal projection.
Collapse
Affiliation(s)
- Robert J Crowder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Woodring PJ, Meisenhelder J, Johnson SA, Zhou GL, Field J, Shah K, Bladt F, Pawson T, Niki M, Pandolfi PP, Wang JYJ, Hunter T. c-Abl phosphorylates Dok1 to promote filopodia during cell spreading. ACTA ACUST UNITED AC 2004; 165:493-503. [PMID: 15148308 PMCID: PMC2172353 DOI: 10.1083/jcb.200312171] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Filopodia are dynamic F-actin structures that cells use to explore their environment. c-Abl tyrosine kinase promotes filopodia during cell spreading through an unknown mechanism that does not require Cdc42 activity. Using an unbiased approach, we identified Dok1 as a specific c-Abl substrate in spreading fibroblasts. When activated by cell adhesion, c-Abl phosphorylates Y361 of Dok1, promoting its association with the Src homology 2 domain (SH2)/SH3 adaptor protein Nck. Each signaling component was critical for filopodia formation during cell spreading, as evidenced by the finding that mouse fibroblasts lacking c-Abl, Dok1, or Nck had fewer filopodia than cells reexpressing the product of the disrupted gene. Dok1 and c-Abl stimulated filopodia in a mutually interdependent manner, indicating that they function in the same signaling pathway. Dok1 and c-Abl were both detected in filopodia of spreading cells, and therefore may act locally to modulate actin. Our data suggest a novel pathway by which c-Abl transduces signals to the actin cytoskeleton through phosphorylating Dok1 Y361 and recruiting Nck.
Collapse
Affiliation(s)
- Pamela J Woodring
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Rd., La Jolla, CA 92037-1099, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee S, Roy F, Galmarini CM, Accardi R, Michelon J, Viller A, Cros E, Dumontet C, Sylla BS. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23:2287-97. [PMID: 14730347 DOI: 10.1038/sj.onc.1207385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a malignant disease characterized by an accumulation of monoclonal CD5+ mature B cells, with a high percentage of cells arrested in the G0/G1 phase of the cell cycle, and a particular resistance toward apoptosis-inducing agents. Dok1 (downstream of tyrosine kinases) is an abundant Ras-GTPase-activating protein (Ras-GAP)-associated tyrosine kinase substrate, which negatively regulates cell proliferation, downregulates MAP kinase activation and promotes cell migration. The gene encoding Dok1 maps to human chromosome 2p13, a region previously found to be rearranged in B-CLL. We have screened the Dok1 gene for mutations from 46 individuals with B-CLL using heteroduplex analysis. A four-nucleotide GGCC deletion in the coding region was found in the leukemia cells from one patient. This mutation causes a frameshift leading to protein truncation at the carboxyl-terminus, with the acquisition of a novel amino-acid sequence. In contrast to the wild-type Dok1 protein, which has cytoplasmic/membrane localization, the mutant Dok1 is a nuclear protein containing a functional bipartite nuclear localization signal. Whereas overexpression of wild-type Dok1 inhibited PDGF-induced MAP kinase activation, this inhibition was not observed with the mutant Dok1. Furthermore the mutant Dok1 forms heterodimers with Dok1 wild type and the association can be enhanced by Lck-mediated tyrosine-phosphorylation. This is the first example of a Dok1 mutation in B-CLL and the data suggest that Dok1 might play a role in leukemogenesis.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert-Thomas, Lyon 69008, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Adaptors are modular proteins implicated in the orchestration of intracellular signalling pathways. Studies of adaptors specifically expressed in immune cells have provided clear examples of the importance of adaptor molecules in normal mammalian biology. Moreover, they have led to the identification of naturally occurring mutations in adaptors that can be linked to human diseases. Lastly, they have highlighted the plasticity of protein-protein interaction modules, and have shed light onto the mechanisms dictating the specificity of adaptor-mediated signals.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Bedirian A, Baldwin C, Abe JI, Takano T, Lemay S. Pleckstrin Homology and Phosphotyrosine-binding Domain-dependent Membrane Association and Tyrosine Phosphorylation of Dok-4, an Inhibitory Adapter Molecule Expressed in Epithelial Cells. J Biol Chem 2004; 279:19335-49. [PMID: 14963042 DOI: 10.1074/jbc.m310689200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-beta or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.
Collapse
Affiliation(s)
- Arda Bedirian
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|