1
|
Kato H. Dr. Jekyll and Mr. Hyde in sand fly saliva. Parasitol Int 2025; 105:102998. [PMID: 39581305 DOI: 10.1016/j.parint.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phlebotomine sand flies are very small hematophagous insects, and some species transmit human pathogens, such as Leishmania protozoa. Similar to other hematophagous insects, sand flies possess unique bioactive substances in their saliva to facilitate blood feeding. Active transcriptome and proteome analyses revealed that sand flies have unique molecules in their saliva that are structurally different from those of other arthropods. These components exert anticoagulant, antiplatelet, vasodilator, and anti-inflammatory effects on the host, and the unique bioactivities of each molecule are currently being characterized. Several bioactivities of salivary components have been associated with the exacerbation of Leishmania infection, and investigations on the molecular mechanisms responsible are underway. On the other hand, host immunity to some salivary components has been shown to confer protection against Leishmania infection, suggesting the potential of salivary components as vaccine candidates. Although some negative effects of protection by sand fly saliva have been reported, the identification of suitable immunogens and elucidation of appropriate protective immunity are expected for the development of a sand fly saliva vaccine against Leishmania infection.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke city, Tochigi 329-0498, Japan.
| |
Collapse
|
2
|
de Araujo FF, Abdeladhim M, Teixeira C, Hummer K, Wilkerson MD, Ressner R, Lakhal-Naouar I, Ellis MW, Meneses C, Nurmukhambetova S, Gomes R, Tolbert WD, Turiansky GW, Pazgier M, Oliveira F, Valenzuela JG, Kamhawi S, Aronson N. Immune response profiles from humans experimentally exposed to Phlebotomus duboscqi bites. Front Immunol 2024; 15:1335307. [PMID: 38633260 PMCID: PMC11021656 DOI: 10.3389/fimmu.2024.1335307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.
Collapse
Affiliation(s)
- Fernanda Fortes de Araujo
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Clarissa Teixeira
- Department of Biotechnology, Laboratory of Immunoparasitology, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - Kelly Hummer
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Matthew D. Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roseanne Ressner
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ines Lakhal-Naouar
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Saule Nurmukhambetova
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Regis Gomes
- Department of Biotechnology, Laboratory of Immunoparasitology, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - W. David Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - George W. Turiansky
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Naomi Aronson
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
4
|
Differential expression of Phlebotomus tobbi Adler, Theodor & Lourie, 1930 (Diptera: Psychodidae) genes under different environmental conditions. Acta Trop 2023; 239:106808. [PMID: 36577475 DOI: 10.1016/j.actatropica.2022.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/26/2022]
Abstract
Phlebotomus tobbi is a widely distributed sand fly species in Turkey and is the proven vector of Leishmania infantum and several Phleboviruses. Information regarding the genetic basis of phenotypic plasticity is crucial for managing vector-borne diseases, as the changing environmental conditions have consequences for the survival of arthropods and the disease agents they transmit. However, limited data is available on the impacts of environmental conditions on the traits associated with sand fly survival, reproduction, and vectorial competence. The present study aimed to reveal the changes in the expression levels of three selected P. tobbi genes using laboratory-reared and wild-caught populations. A nervous system protein, Cacophony (PtCac), related to the life history traits of sand flies, and two sand fly salivary protein genes, PtSP32 and PtSP38, influence the infection of the vertebrate hosts, were assessed. Sand flies were maintained at 23 °C and 27 °C in the laboratory to evaluate the relationship between temperature and the expressed phenotypes. Field collections were carried out in three climatically distinct regions of Turkey to establish the regional differences in the gene expression levels of natural P. tobbi populations. In the laboratory, PtCac expression increased with the temperature. However, PtCac expression was negatively correlated with local temperature and humidity conditions. No differences were detected in the PtSP32 gene expression levels of both laboratory-reared and wild-caught females, but a negative correlation was observed with relative humidity in natural populations. Although the expression levels of PtSP38 did not differ among the females collected from distinct regions, a positive correlation was detected in the laboratory-reared colony. The findings indicated that changes in environmental conditions could drive the expression levels of P. tobbi genes, which influence population dynamics and the transmission risk of the disease.
Collapse
|
5
|
Souissi C, Marzouki S, Elbini-Dhouib I, Jebali J, Oliveira F, Valenzuela JG, Srairi-Abid N, Kamhawi S, Ben Ahmed M. PpSP32, the Phlebotomus papatasi immunodominant salivary protein, exerts immunomodulatory effects on human monocytes, macrophages, and lymphocytes. Parasit Vectors 2023; 16:1. [PMID: 36593519 PMCID: PMC9806891 DOI: 10.1186/s13071-022-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The saliva of sand flies, vectors of Leishmania parasites, contains several components that exert pharmacological activity facilitating the acquisition of blood by the insect and contributing to the establishment of infection. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and validated its usefulness as a predictive biomarker of disease. PpSP32, whose functions are little known to date, is an intriguing protein due to its involvement in the etiopathogenesis of pemphigus, an auto-immune disease. Herein, we aimed to better decipher its role through the screening of several immunomodulatory activity either on lymphocytes or on monocytes/macrophages. METHODS Peripheral mononuclear cells from healthy volunteers were stimulated with anti-CD3/anti-CD28 antibodies, phytohemagglutinin, phorbol 12-myristate 13-acetate/ionomycin, or lipopolysaccharide in the presence of increasing doses of PpSP32. Cell proliferation was measured after the addition of tritiated thymidine. Monocyte activation was tested by analyzing the expression of CD86 and HLA-DR molecules by flow cytometry. Cytokine production was analyzed in culture supernatants by ELISA. THP-1-derived macrophages were stimulated with LPS in the presence of increasing doses of PpSP32, and cytokine production was analyzed in culture supernatants by ELISA and multiplex technique. The effect of PpSP32 on NF-kB signaling was tested by Western blot. The anti-inflammatory activity of PpSP32 was assessed in vivo in an experimental inflammatory model of carrageenan-induced paw edema in rats. RESULTS Our data showed that PpSP32 down-modulated the expression of activation markers in LPS-stimulated monocytes and THP1-derived macrophages. This protein negatively modulated the secretion of Th1 and Th2 cytokines by human lymphocytes as well as pro-inflammatory cytokines by monocytes, and THP1-derived macrophages. PpSP32 treatment led to a dose-dependent reduction of IκB phosphorylation. When PpSP32 was injected into the paw of carrageenan-injected rats, edema was significantly reduced. CONCLUSIONS Our data indicates that PpSP32 induces a potent immunomodulatory effect on monocytes and THP-1-derived macrophages. This inhibition could be mediated, among others, by the modulation of the NF-kB signaling pathway. The anti-inflammatory activity of PpSP32 was confirmed in vivo in the carrageenan-induced paw edema model in rats.
Collapse
Affiliation(s)
- Cyrine Souissi
- grid.418517.e0000 0001 2298 7385Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Pasteur Institute de Tunis, Tunis, Tunisia
| | - Soumaya Marzouki
- grid.418517.e0000 0001 2298 7385Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Pasteur Institute de Tunis, Tunis, Tunisia
| | - Ines Elbini-Dhouib
- grid.12574.350000000122959819Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Jed Jebali
- grid.12574.350000000122959819Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Fabiano Oliveira
- grid.94365.3d0000 0001 2297 5165Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD USA
| | - Jesus G. Valenzuela
- grid.94365.3d0000 0001 2297 5165Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD USA
| | - Najet Srairi-Abid
- grid.12574.350000000122959819Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Shaden Kamhawi
- grid.94365.3d0000 0001 2297 5165Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD USA
| | - Melika Ben Ahmed
- grid.418517.e0000 0001 2298 7385Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Pasteur Institute de Tunis, Tunis, Tunisia ,grid.12574.350000000122959819Faculty of Medicine de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Inspiring Anti-Tick Vaccine Research, Development and Deployment in Tropical Africa for the Control of Cattle Ticks: Review and Insights. Vaccines (Basel) 2022; 11:vaccines11010099. [PMID: 36679944 PMCID: PMC9866923 DOI: 10.3390/vaccines11010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.
Collapse
|
7
|
Alvarenga PH, Andersen JF. An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. BIOLOGY 2022; 12:biology12010039. [PMID: 36671732 PMCID: PMC9855781 DOI: 10.3390/biology12010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Each time an insect bites a vertebrate host, skin and vascular injury caused by piercing triggers a series of responses including hemostasis, inflammation and immunity. In place, this set of redundant and interconnected responses would ultimately cause blood coagulation, itching and pain leading to host awareness, resulting in feeding interruption in the best-case scenario. Nevertheless, hematophagous arthropod saliva contains a complex cocktail of molecules that are crucial to the success of blood-feeding. Among important protein families described so far in the saliva of blood sucking arthropods, is the D7, abundantly expressed in blood feeding Nematocera. D7 proteins are distantly related to insect Odorant-Binding Proteins (OBP), and despite low sequence identity, observation of structural similarity led to the suggestion that like OBPs, they should bind/sequester small hydrophobic compounds. Members belonging to this family are divided in short forms and long forms, containing one or two OBP-like domains, respectively. Here, we provide a review of D7 proteins structure and function, discussing how gene duplication and some modifications in their OBP-like domains during the course of evolution lead to gain and loss of function among different hematophagous Diptera species.
Collapse
|
8
|
Fayaz S, Bahrami F, Parvizi P, Fard-Esfahani P, Ajdary S. An overview of the sand fly salivary proteins in vaccine development against leishmaniases. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:792-801. [PMID: 36721440 PMCID: PMC9867623 DOI: 10.18502/ijm.v14i6.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leishmaniases are a group of vector-borne parasitic diseases transmitted through the infected sand flies. Leishmania parasites are inoculated into the host skin along with sand fly saliva. The sand fly saliva consists of biologically active molecules with anticoagulant, anti-inflammatory, and immunomodulatory properties. Such properties help the parasite circumvent the host's immune responses. The salivary compounds support the survival and multiplication of the parasite and facilitate the disease progression. It is documented that frequent exposure to uninfected sand fly bites produces neutralizing antibodies against specific salivary proteins and further activates the cellular mechanisms to prevent the establishment of the disease. The immune responses due to sand fly saliva are highly specific and depend on the composition of the salivary molecules. Hence, thorough knowledge of these compounds in different sand fly species and information about their antigenicity are paramount to designing an effective vaccine. Herein, we review the composition of the sand fly saliva, immunomodulatory properties of some of its components, immune responses to its proteins, and potential vaccine candidates against leishmaniases.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Soheila Ajdary, Ph.D, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-2166968857 Fax: +98-2166968857 ;
| |
Collapse
|
9
|
Lajevardi MS, Taheri T, Gholami E, Seyed N, Rafati S. Structural analysis of PpSP15 and PsSP9 sand fly salivary proteins designed with a self-cleavable linker as a live vaccine candidate against cutaneous leishmaniasis. Parasit Vectors 2022; 15:377. [PMID: 36261836 PMCID: PMC9580450 DOI: 10.1186/s13071-022-05437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Leishmania parasites are deposited in the host through sand fly bites along with sand fly saliva. Therefore, salivary proteins are promising vaccine candidates for controlling leishmaniasis. Herein, two immunogenic salivary proteins, PpSP15 from Phlebotomus papatasi and PsSP9 from Phlebotomus sergenti, were selected as vaccine candidates to be delivered by live Leishmania tarentolae as vector. The stepwise in silico protocol advantaged in this study for multi-protein design in L. tarentolae is then described in detail. Methods All possible combinations of two salivary proteins, PpSP15 and PsSP9, with or without T2A peptide were designed at the mRNA and protein levels. Then, the best combination for the vaccine candidate was selected based on mRNA and protein stability along with peptide analysis. Results At the mRNA level, the most favored secondary structure was PpSP15-T2A-PsSP9. At the protein level, the refined three-dimensional models of all combinations were structurally valid; however, local quality estimation showed that the PpSp15-T2A-PsSP9 fusion had higher stability for each amino acid position, with low root-mean-square deviation (RMSD), compared with the original proteins. In silico evaluation confirmed the PpSP15-T2A-PsSP9 combination as a good Th1-polarizing candidate in terms of high IFN-γ production and low IL-10/TGF-β ratio in response to three consecutive immunizations. Potential protein expression was then confirmed by Western blotting. Conclusions The approach presented herein is among the first studies to have privileged protein homology modeling along with mRNA analysis for logical live vaccine design-coding multi-proteins. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05437-x.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Barillas-Mury C, Ribeiro JMC, Valenzuela JG. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science 2022; 377:eabc2757. [PMID: 36173836 DOI: 10.1126/science.abc2757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many endemic poverty-associated diseases, such as malaria and leishmaniasis, are transmitted by arthropod vectors. Pathogens must interact with specific molecules in the vector gut, the microbiota, and the vector immune system to survive and be transmitted. The vertebrate host, in turn, is infected when the pathogen and vector-derived factors, such as salivary proteins, are delivered into the skin by a vector bite. Here, we review recent progress in our understanding of the biology of pathogen transmission from the human to the vector and back, from the vector to the host. We also highlight recent advances in the biology of vector-borne disease transmission, which have translated into additional strategies to prevent human disease by either reducing vector populations or by disrupting their ability to transmit pathogens.
Collapse
Affiliation(s)
- Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| |
Collapse
|
11
|
Gomes R, Kolářová I, Sá-Nunes A, Carneiro M. Editorial: Hematophagous arthropod saliva: a multifunctional tool. Front Cell Infect Microbiol 2022; 12:977511. [PMID: 35909959 PMCID: PMC9326350 DOI: 10.3389/fcimb.2022.977511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Regis Gomes
- Biotechnology, Oswaldo Cruz Foundation, Eusébio, Brazil
- *Correspondence: Regis Gomes,
| | - Iva Kolářová
- Laboratory for Biology of Insect Vectors, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development, Rio de Janeiro, Brazil
| | - Matheus Carneiro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Kawahori S, Seki C, Mizushima D, Tabbabi A, Yamamoto DS, Kato H. Ayaconin, a novel inhibitor of the plasma contact system from the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Acta Trop 2022; 234:106602. [PMID: 35817195 DOI: 10.1016/j.actatropica.2022.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
Transcriptome analysis of the salivary gland cDNA library from a phlebotomine sand fly, Lutzomyia ayacuchensis, identified a transcript coding for the PpSP15/SL1 family protein as the second most abundant salivary component. In the present study, a recombinant protein of the PpSP15/SL1 family protein, designated ayaconin, was expressed in Escherichia coli, and its biological activity was characterized. The recombinant ayaconin purified from the soluble fraction of E. coli lysate efficiently inhibited the intrinsic but not extrinsic blood coagulation pathway. When the target of ayaconin was evaluated using fluorescent substrates of coagulation factors, ayaconin inhibited factor XIIa (FXIIa) activity more efficiently in a dose-dependent manner, suggesting that FXII is the primary target of ayaconin. In addition, incubation of ayaconin with FXII prior to activation effectively inhibited FXIIa activity, whereas such inhibition was not observed when ayaconin was mixed after the production of FXIIa, indicating that ayaconin inhibits the activation process of FXII to produce FXIIa, but not the enzymatic activity of FXIIa. Moreover, ayaconin was shown to bind to FXII, suggesting that the binding of ayaconin to FXII is involved in the inhibitory mechanism against FXII activation. These results suggest that ayaconin plays an important role in the blood-sucking of Lu. ayacuchensis.
Collapse
Affiliation(s)
- Satoru Kawahori
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Chisato Seki
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan.
| |
Collapse
|
13
|
Lajevardi MS, Gholami E, Taheri T, Sarvnaz H, Habibzadeh S, Seyed N, Mortazavi Y, Rafati S. Leishmania tarentolae as Potential Live Vaccine Co-Expressing Distinct Salivary Gland Proteins Against Experimental Cutaneous Leishmaniasis in BALB/c Mice Model. Front Immunol 2022; 13:895234. [PMID: 35757692 PMCID: PMC9226313 DOI: 10.3389/fimmu.2022.895234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Leishmaniasis is a neglected vector-borne disease caused by Leishmania parasites transmitted through the infected sand flies bite. Current treatments are limited, partly due to their high cost and significant adverse effects, and no human vaccine is yet available. Sand flies saliva has been examined for their potential application as an anti-Leishmania vaccine. The salivary protein, PpSP15, was the first protective vaccine candidate against L. major. Additionally, PsSP9 was already introduced as a highly immunogenic salivary protein against L. tropica. Herein, we aimed to develop an effective multivalent live vaccine to control Cutaneous Leishmaniasis induced by two main species, L. major and L. tropica. Hence, the two above-mentioned salivary proteins using T2A linker were incorporated inside the L. tarentolae genome as a safe live vector. Then, the immunogenicity and protective effects of recombinant L. tarentolae co-expressing PpSP15 and PsSP9 were evaluated in pre-treated BALB/c mice with CpG against L. major and L. tropica. Following the cytokine assays, parasite burden and antibody assessment at different time-points at pre and post-infection, promising protective Th1 immunity was obtained in vaccinated mice with recombinant L. tarentolae co-expressing PpSP15 and PsSP9. This is the first study demonstrating the potency of a safe live vaccine based on the combination of different salivary proteins against the infectious challenge with two different species of Leishmania.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Sarvnaz
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Ismail N, Karmakar S, Bhattacharya P, Sepahpour T, Takeda K, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Dey R, Nakhasi HL. Leishmania Major Centrin Gene-Deleted Parasites Generate Skin Resident Memory T-Cell Immune Response Analogous to Leishmanization. Front Immunol 2022; 13:864031. [PMID: 35419001 PMCID: PMC8996177 DOI: 10.3389/fimmu.2022.864031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen -/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.
Collapse
Affiliation(s)
- Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Telly Sepahpour
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Kazuyo Takeda
- Laboratory of Clinical Hematology, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
15
|
Aoki V, Abdeladhim M, Li N, Cecilio P, Prisayanh P, Diaz LA, Valenzuela JG. Some Good and Some Bad: Sand Fly Salivary Proteins in the Control of Leishmaniasis and in Autoimmunity. Front Cell Infect Microbiol 2022; 12:839932. [PMID: 35281450 PMCID: PMC8913536 DOI: 10.3389/fcimb.2022.839932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
Sand flies are hematophagous insects responsible for the transmission of vector-borne diseases to humans. Prominent among these diseases is Leishmaniasis that affects the skin and mucous surfaces and organs such as liver and spleen. Importantly, the function of blood-sucking arthropods goes beyond merely transporting pathogens. The saliva of vectors of disease contains pharmacologically active components that facilitate blood feeding and often pathogen establishment. Transcriptomic and proteomic studies have enumerated the repertoire of sand fly salivary proteins and their potential use for the control of Leishmaniasis, either as biomarkers of vector exposure or as anti-Leishmania vaccines. However, a group of specific sand fly salivary proteins triggers formation of cross-reactive antibodies that bind the ectodomain of human desmoglein 1, a member of the epidermal desmosomal cadherins. These cross-reactive antibodies are associated with skin autoimmune blistering diseases, such as pemphigus, in certain immunogenetically predisposed individuals. In this review, we focus on two different aspects of sand fly salivary proteins in the context of human disease: The good, which refers to salivary proteins functioning as biomarkers of exposure or as anti-Leishmania vaccines, and the bad, which refers to salivary proteins as environmental triggers of autoimmune skin diseases.
Collapse
Affiliation(s)
- Valeria Aoki
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Universidade de Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Valeria Aoki,
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
16
|
Aronson NE, Oliveira F, Gomes R, Porter WD, Howard RS, Kamhawi S, Valenzuela JG. Antibody Responses to Phlebotomus papatasi Saliva in American Soldiers With Cutaneous Leishmaniasis Versus Controls. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.766273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmania major, transmitted in Iraq by the bite of a sand fly Phlebotomus papatasi, causes cutaneous leishmaniasis (CL). The sand fly saliva is immunogenic, with both systemic humoral and cellular human immune responses resulting from natural exposure. 248 Americans who developed L. major infection in Iraq were sex, race/ethnicity, year of Iraq deployment-matched to controls without CL. Using a case-control study design, we compared sand fly saliva-specific human IgG levels and recognized antigens between the two groups. Serologic responses to Ph. papatasi salivary gland homogenate were studied with ELISA and Western blot, using serial samples obtained from before travel, during CL treatment (CL) or at time of return to US (controls), as well as (for CL cases) six to 24 months after return to non-endemic US. The mean change in optical density (MCOD), reflecting the change in sand fly saliva-specific IgG before and after exposure in Iraq, was 0.296 (range -0.138 to 2.057) in cases and 0.151 (range -0.454 to1.085) in controls, p<0.001. Low levels of sand fly saliva specific antibody were noted in CL cases by 7-8 months after return to the US. The most frequently recognized Ph. papatasi salivary antigens were MW30 (PpSP32) and MW64, although other salivary proteins recognized were MW12/14, 15, 18, 28, 32, 36, 42, 44, 46, 52. Logistic regression suggested that MW15, 28 and 42 were associated with the largest effect on the MCOD. MW30 was the most frequently recognized antigen suggesting a role as biomarker for sand fly exposure and CL risk. Anti-Ph. papatasi saliva IgG waned within months of return to the US. We also discuss vector antigenic saliva proteins in the context of CL presentation and identify some salivary antigens that may correlate with less lesion area, ulcer versus papule/plaque, race among those with CL.
Collapse
|
17
|
Sumova P, Sanjoba C, Willen L, Polanska N, Matsumoto Y, Noiri E, Paul SK, Ozbel Y, Volf P. PpSP32-like protein as a marker of human exposure to Phlebotomus argentipes in Leishmania donovani foci in Bangladesh. Int J Parasitol 2021; 51:1059-1068. [PMID: 34273394 PMCID: PMC8575019 DOI: 10.1016/j.ijpara.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Phlebotomus argentipes is a sole vector of Leishmania donovani in the Indian subcontinent. 40% of humans in the study area have IgG antibodies against P. argentipes saliva. A correlation was found between IgG responses against P. argentipes saliva and rPagSP06. rPagSP06 is a valid antigen to measure human exposure to P. argentipes.
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
Collapse
Affiliation(s)
- Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic.
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Laura Willen
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| | - Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Eisei Noiri
- Hemodialysis and Apheresis, Nephrology 107 Lab, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2206, Bangladesh
| | - Yusuf Ozbel
- Department of Parasitology, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| |
Collapse
|
18
|
Bordbar A, Amanlou M, Pooshang Bagheri K, Ready PD, Ebrahimi S, Shahbaz Mohammadi H, Ghafari SM, Parvizi P. Cloning, high-level gene expression and bioinformatics analysis of SP15 and LeIF from Leishmania major and Iranian Phlebotomus papatasi saliva as single and novel fusion proteins: a potential vaccine candidate against leishmaniasis. Trans R Soc Trop Med Hyg 2021; 115:699-713. [PMID: 33155034 DOI: 10.1093/trstmh/traa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/09/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Early exacerbation of cutaneous leishmaniasis is mainly affected by both the salivary and Leishmania parasite components. Little is known of the vaccine combination made by immunogenic proteins of sandfly saliva (SP15) with Leishmania parasites (LeIF) as a single prophylactic vaccine, namely SaLeish. Also, there are no data available to determine the species-specific sequence of SP15 isolated from the Iranian Phlebotomus papatasi. METHODS Integrated bioinformatics and genetic engineering methods were employed to design, optimize and obtain a vector-parasite-based vaccine formulation in a whole-length fusion form of LeIF-SP15 against leishmaniasis. Holistic gene optimization was initially performed to obtain a high yield of pure 'whole-SaLeish' expression using bioinformatics analyses. Genomic and salivary gland RNAs of wild-caught P. papatasi were extracted and their complementary DNA was amplified and cloned into pJET vector. RESULTS The new chimeric protein of whole-SaLeish and randomly selected transcripts of native PpIRSP15 (GenBank accession nos. MT025054 and MN938854, MN938855 and MN938856) were successfully expressed, purified and validated by immunoblotting assay. Furthermore, despite the single amino acid polymorphisms of PpIRSP15 found at positions Y23 and E73 within the population of wild Iranian sandflies, antigenicity and conservancy of PpIRSP15 epitopes remained constant to activate T cells. CONCLUSIONS The SaLeish vaccine strategy takes advantage of a plethora of vector-parasite immunogenic proteins with potential protective efficacy to stimulate both the innate and specific cellular immune responses against Leishmania parasites.
Collapse
Affiliation(s)
- Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, Iran.,Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Paul Donald Ready
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, Iran
| | - Hamid Shahbaz Mohammadi
- Department of Biochemistry, Genetics and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Maryam Ghafari
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, Iran
| |
Collapse
|
19
|
Karmakar S, Nath S, Sarkar B, Chakraborty S, Paul S, Karan M, Pal C. Insect vectors' saliva and gut microbiota as a blessing in disguise: probability versus possibility. Future Microbiol 2021; 16:657-670. [PMID: 34100305 DOI: 10.2217/fmb-2020-0239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drawing of host blood is a natural phenomenon during the bite of blood-probing insect vectors. Along with the blood meal, the vectors introduce salivary components and a trail of microbiota. In the case of infected vectors, the related pathogen accompanies the aforementioned biological components. In addition to Anopheles gambiae or Anopheles stephensi, the bites of other nonmalarial vectors cannot be ignored in malaria-endemic regions. Similarly, the bite incidence of Phlebotomus papatasi cannot be ignored in visceral leishmaniasis-endemic regions. Even the chances of getting bitten by uninfected vectors are higher than the infected vectors. We have discussed the probability or possibility of uninfected, infected, and/or nonvector's saliva and gut microbiota as a therapeutic option leading to the initial deterrent to pathogen establishment.
Collapse
Affiliation(s)
- Suman Karmakar
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Supriya Nath
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Biswajyoti Sarkar
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Sondipon Chakraborty
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Sharmistha Paul
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Mintu Karan
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Chiranjib Pal
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| |
Collapse
|
20
|
Adly E, Shehata MG, El-Demerdash E, Alfarraj S, Ali Alharbi S, Soliman DE. Impact of anti-sandfly saliva antibodies on biological aspects of Phlebotomus papatasi (Diptera: Psychodidae), vector of cutaneous leishmaniasis. Saudi J Biol Sci 2021; 28:2695-2700. [PMID: 34025155 PMCID: PMC8117046 DOI: 10.1016/j.sjbs.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/26/2022] Open
Abstract
Sandflies are the main vectors of Leishmania parasites in tropical and subtropical areas. The immunization of vertebrate hosts with vector components through repeated bites may offer an alternative method for sandfly control. Aliquots of female Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) were weekly blood fed on 12 individual hamsters throughout 18 successive weeks. Significant biological and biochemical changes resulting from antibodies developed by immunized host sera against repeated biting were observed in sandfly females. Blood feeding and fertility rates of females significantly gradually declined to the end of the study period. No appreciable difference was observed in mortality rates among flies repeatedly fed on individual hamsters throughout weeks 9 and 18, compared to flies fed on naïve hamsters. Total salivary gland proteins of female sandflies were compared to proteins in sera of sensitized hamsters. SDS-page revealed bands common to both flies and hosts, indicating the development of anti-saliva antibodies in hamster sera. The importance of anti-sandfly saliva antibodies as a potential tool for vector control leading to the interruption of leishmaniasis is discussed.
Collapse
Affiliation(s)
- Eslam Adly
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Magdi G Shehata
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Doaa E Soliman
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
21
|
Bordbar A, Parvizi P. Species diversity and spatial distribution of CL/VL vectors: assessing bioclimatic effect on expression plasticity of genes possessing vaccine properties isolated from wild-collected sand flies in endemic areas of Iran. BMC Infect Dis 2021; 21:455. [PMID: 34011276 PMCID: PMC8136226 DOI: 10.1186/s12879-021-06129-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Leishmaniasis is one of the ten most important neglected tropical diseases worldwide. Understanding the distribution of vectors of visceral and cutaneous leishmaniasis (VL/CL) is one of the significant strategic frameworks to control leishmaniasis. In this study, the extent of the bioclimatic variability was investigated to recognize a rigorous cartographic of the spatial distribution of VL/CL vectors as risk-maps using ArcGIS modeling system. Moreover, the effect of bioclimatic diversity on the fold change expression of genes possessing vaccine traits (SP15 and LeIF) was evaluated in each bioclimatic region using real-time PCR analysis. Methods The Inverse Distance Weighting interpolation method was used to obtain accurate geography map in closely-related distances. Bioclimatic indices were computed and vectors spatial distribution was analyzed in ArcGIS10.3.1 system. Species biodiversity was calculated based on Shannon diversity index using Rv.3.5.3. Expression fold change of SP15 and LeIF genes was evaluated using cDNA synthesis and RT-qPCR analysis. Results Frequency of Phlebotomus papatasi was predominant in plains areas of Mountainous bioclimate covering the CL hot spots. Mediterranean region was recognized as an important bioclimate harboring prevalent patterns of VL vectors. Semi-arid bioclimate was identified as a major contributing factor to up-regulate salivary-SP15 gene expression (P = 0.0050, P < 0.05). Also, Mediterranean bioclimate had considerable effect on up-regulation of Leishmania-LeIF gene in gravid and semi-gravid P. papatasi population (P = 0.0109, P < 0.05). Conclusions The diversity and spatial distribution of CL/VL vectors associated with bioclimatic regionalization obtained in our research provide epidemiological risk maps and establish more effectively control measures against leishmaniasis. Oscillations in gene expression indicate that each gene has its own features, which are profoundly affected by bioclimatic characteristics and physiological status of sand flies. Given the efficacy of species-specific antigens for vaccine production, it is essential to consider bioclimatic factors that have a fundamental role in affecting the regulatory regions of environmentally responsive loci for genes used in vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06129-0.
Collapse
Affiliation(s)
- Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave, Tehran, Iran.
| |
Collapse
|
22
|
Kozak RP, Mondragon-Shem K, Williams C, Rose C, Perally S, Caljon G, Van Den Abbeele J, Wongtrakul-Kish K, Gardner RA, Spencer D, Lehane MJ, Acosta-Serrano Á. Tsetse salivary glycoproteins are modified with paucimannosidic N-glycans, are recognised by C-type lectins and bind to trypanosomes. PLoS Negl Trop Dis 2021; 15:e0009071. [PMID: 33529215 PMCID: PMC7880456 DOI: 10.1371/journal.pntd.0009071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/12/2021] [Accepted: 12/14/2020] [Indexed: 12/01/2022] Open
Abstract
African sleeping sickness is caused by Trypanosoma brucei, a parasite transmitted by the bite of a tsetse fly. Trypanosome infection induces a severe transcriptional downregulation of tsetse genes encoding for salivary proteins, which reduces its anti-hemostatic and anti-clotting properties. To better understand trypanosome transmission and the possible role of glycans in insect bloodfeeding, we characterized the N-glycome of tsetse saliva glycoproteins. Tsetse salivary N-glycans were enzymatically released, tagged with either 2-aminobenzamide (2-AB) or procainamide, and analyzed by HILIC-UHPLC-FLR coupled online with positive-ion ESI-LC-MS/MS. We found that the N-glycan profiles of T. brucei-infected and naïve tsetse salivary glycoproteins are almost identical, consisting mainly (>50%) of highly processed Man3GlcNAc2 in addition to several other paucimannose, high mannose, and few hybrid-type N-glycans. In overlay assays, these sugars were differentially recognized by the mannose receptor and DC-SIGN C-type lectins. We also show that salivary glycoproteins bind strongly to the surface of transmissible metacyclic trypanosomes. We suggest that although the repertoire of tsetse salivary N-glycans does not change during a trypanosome infection, the interactions with mannosylated glycoproteins may influence parasite transmission into the vertebrate host. In addition to helping the ingestion of a bloodmeal, the saliva of vector insects can modulate vertebrate immune responses. However, most research has focused on the salivary proteins, while the sugars (glycans) that modify them remain unexplored. Here we studied N-glycosylation, a common post-translational modification where sugar structures are attached to specific sites of a protein. Insect salivary N-glycans may affect how the saliva is recognized by the host, possibly playing a role during pathogen transmission. In this manuscript, we present the first detailed structural characterization of the salivary N-glycans in the tsetse fly Glossina morsitans, vector of African trypanosomiasis. We found that tsetse fly glycoproteins are mainly modified by simple N-glycans with short mannose modifications, which are recognised by mammalian C-type lectins (mannose receptor and DC-SIGN). Furthermore, we show that salivary glycoproteins bind to the surface of the trypanosomes that are transmitted to the vertebrate host; this opens up interesting questions as to the role of these glycoproteins in the successful establishment of infection by this parasite. Overall, our work represents a novel contribution towards the salivary N-glycome of an important insect vector, and towards the understanding of vector saliva and its complex effects in the vertebrate host.
Collapse
Affiliation(s)
| | - Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christopher Williams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samirah Perally
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | - Daniel Spencer
- Ludger Ltd., Culham Science Centre, Oxford, United Kingdom
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Ng YQ, Gupte TP, Krause PJ. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol 2021; 43:e12819. [PMID: 33428244 DOI: 10.1111/pim.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Immune-mediated hypersensitivity reactions to ticks and other arthropods are well documented. Hypersensitivity to ixodid (hard bodied) ticks is especially important because they transmit infection to humans throughout the world and are responsible for most vector-borne diseases in the United States. The causative pathogens of these diseases are transmitted in tick saliva that is secreted into the host while taking a blood meal. Tick salivary proteins inhibit blood coagulation, block the local itch response and impair host anti-tick immune responses, which allows completion of the blood meal. Anti-tick host immune responses are heightened upon repeated tick exposure and have the potential to abrogate tick salivary protein function, interfere with the blood meal and prevent pathogen transmission. Although there have been relatively few tick bite hypersensitivity studies in humans compared with those in domestic animals and laboratory animal models, areas of human investigation have included local hypersensitivity reactions at the site of tick attachment and generalized hypersensitivity reactions. Progress in the development of anti-tick vaccines for humans has been slow due to the complexities of such vaccines but has recently accelerated. This approach holds great promise for future prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Yu Quan Ng
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Trisha P Gupte
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Mina JGM, Charlton RL, Alpizar-Sosa E, Escrivani DO, Brown C, Alqaisi A, Borsodi MPG, Figueiredo CP, de Lima EV, Dickie EA, Wei W, Coutinho-Silva R, Merritt A, Smith TK, Barrett MP, Rossi-Bergmann B, Denny PW, Steel PG. Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the Leishmania Inositol Phosphorylceramide Synthase. ACS Infect Dis 2021; 7:47-63. [PMID: 33291887 PMCID: PMC7802075 DOI: 10.1021/acsinfecdis.0c00546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current chemotherapeutics for leishmaniasis have multiple deficiencies, and there is a need for new safe, efficacious, and affordable medicines. This study describes a successful drug repurposing approach that identifies the over-the-counter antihistamine, clemastine fumarate, as a potential antileishmanial drug candidate. The screening for inhibitors of the sphingolipid synthase (inositol phosphorylceramide synthase, IPCS) afforded, following secondary screening against Leishmania major (Lmj) promastigotes, 16 active compounds. Further refinement through the dose response against LmjIPCS and intramacrophage L. major amastigotes identified clemastine fumarate with good activity and selectivity with respect to the host macrophage. On target engagement was supported by diminished sensitivity in a sphingolipid-deficient L. major mutant (ΔLmjLCB2) and altered phospholipid and sphingolipid profiles upon treatment with clemastine fumarate. The drug also induced an enhanced host cell response to infection indicative of polypharmacology. The activity was sustained across a panel of Old and New World Leishmania species, displaying an in vivo activity equivalent to the currently used drug, glucantime, in a mouse model of L. amazonensis infection. Overall, these data validate IPCS as an antileishmanial drug target and indicate that clemastine fumarate is a candidate for repurposing for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- John G. M. Mina
- Departments of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Rebecca L. Charlton
- Departments of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edubiel Alpizar-Sosa
- Department of Biosciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Douglas O. Escrivani
- Departments of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christopher Brown
- Departments of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Amjed Alqaisi
- Department of Biosciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
- Department of Biology, College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Maria Paula G. Borsodi
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia P. Figueiredo
- School of Pharmacy, Universidade Federal do Rio de Janeiro, 21944-590 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuelle V. de Lima
- School of Pharmacy, Universidade Federal do Rio de Janeiro, 21944-590 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Wenbin Wei
- Department of Biosciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andy Merritt
- LifeArc, Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Terry K. Smith
- BSRC, Schools of Biology and Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul W. Denny
- Department of Biosciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Patrick G. Steel
- Departments of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
25
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Marzouki S, Zaraa I, Abdeladhim M, Benabdesselem C, Oliveira F, Kamhawi S, Mokni M, Louzir H, Valenzuela JG, Ahmed MB. Implicating bites from a leishmaniasis sand fly vector in the loss of tolerance in pemphigus. JCI Insight 2020; 5:123861. [PMID: 33108348 PMCID: PMC7714401 DOI: 10.1172/jci.insight.123861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
A possible etiological link between the onset of endemic pemphigus in Tunisia and bites of Phlebotomus papatasi, the vector of zoonotic cutaneous leishmaniasis, has been previously suggested. We hypothesized that the immunodominant P. papatasi salivary protein PpSP32 binds to desmogleins 1 and 3 (Dsg1 and Dsg3), triggering loss of tolerance to these pemphigus target autoantigens. Here, we show using far-Western blot that the recombinant PpSP32 protein (rPpSP32) binds to epidermal proteins with a MW of approximately 170 kDa. Coimmunoprecipitation revealed the interaction of rPpSP32 with either Dsg1 or Dsg3. A specific interaction between PpSP32 and Dsg1 and Dsg3 was further demonstrated by ELISA assays. Finally, mice immunized with rPpSP32 twice per week exhibited significantly increased levels of anti-Dsg1 and -Dsg3 antibodies from day 75 to 120. Such antibodies were specific for Dsg1 and Dsg3 and were not the result of cross-reactivity to PpSP32. In this study, we demonstrated for the first time to our knowledge a specific binding between PpSP32 and Dsg1 and Dsg3, which might underlie the triggering of anti-Dsg antibodies in patients exposed to sand fly bites. We also confirmed the development of specific anti-Dsg1 and -Dsg3 antibodies in vivo after PpSP32 immunization in mice. Collectively, our results provide evidence that environmental factors, such as the exposure to P. papatasi bites, can trigger the development of autoimmune antibodies.
Collapse
Affiliation(s)
- Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Pasteur Institut de Tunis, Tunis, Tunisia
| | - Ines Zaraa
- Department of Dermatology, La Rabta Hospital Tunis, Tunis, Tunisia
- Faculty of Medicine de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Chaouki Benabdesselem
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Pasteur Institut de Tunis, Tunis, Tunisia
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Mourad Mokni
- Department of Dermatology, La Rabta Hospital Tunis, Tunis, Tunisia
- Faculty of Medicine de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Pasteur Institut de Tunis, Tunis, Tunisia
- Faculty of Medicine de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Melika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Pasteur Institut de Tunis, Tunis, Tunisia
- Faculty of Medicine de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
27
|
Cecílio P, Oristian J, Meneses C, Serafim TD, Valenzuela JG, Cordeiro da Silva A, Oliveira F. Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Sci Rep 2020; 10:18653. [PMID: 33122717 PMCID: PMC7596519 DOI: 10.1038/s41598-020-75410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis is a spectrum of diseases transmitted by sand fly vectors that deposit Leishmania spp. parasites in the host skin during blood feeding. Currently, available treatment options are limited, associated with high toxicity and emerging resistance. Even though a vaccine for human leishmaniasis is considered an achievable goal, to date we still do not have one available, a consequence (amongst other factors) of a lack of pre-clinical to clinical translatability. Pre-exposure to uninfected sand fly bites or immunization with defined sand fly salivary proteins was shown to negatively impact infection. Still, cross-protection reports are rare and dependent on the phylogenetic proximity of the sand fly species, meaning that the applicability of a sand fly saliva-based vaccine will be limited to a defined geography, one parasite species and one form of leishmaniasis. As a proof of principle of a future vector saliva-based pan-Leishmania vaccine, we engineered through a reverse vaccinology approach that maximizes translation to humans, a fusion protein consisting of immunogenic portions of PdSP15 and LJL143, sand fly salivary proteins demonstrated as potential vaccine candidates against cutaneous and visceral leishmaniasis, respectively. The in silico analysis was validated ex vivo, through T cell proliferation experiments, proving that the fusion protein (administered as a DNA vaccine) maintained the immunogenicity of both PdSP15 and LJL143. Additionally, while no significant effect was detected in the context of L. major transmission by P. duboscqi, this DNA vaccine was defined as partially protective, in the context of L. major transmission by L. longipalpis sand flies. Importantly, a high IFNγ response alone was not enough to confer protection, that mainly correlated with low T cell mediated Leishmania-specific IL-4 and IL-10 responses, and consequently with high pro/anti-inflammatory cytokine ratios. Overall our immunogenicity data suggests that to design a potentially safe vector-based pan-Leishmania vaccine, without geographic restrictions and against all forms of leishmaniasis is an achievable goal. This is why we propose our approach as a proof-of principle, perhaps not only applicable to the anti-Leishmania vector-based vaccines' field, but also to other branches of knowledge that require the design of multi-epitope T cell vaccines with a higher potential for translation.
Collapse
Affiliation(s)
- Pedro Cecílio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Anabela Cordeiro da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| |
Collapse
|
28
|
RNA-sequencing of the Nyssomyia neivai sialome: a sand fly-vector from a Brazilian endemic area for tegumentary leishmaniasis and pemphigus foliaceus. Sci Rep 2020; 10:17664. [PMID: 33077743 PMCID: PMC7572365 DOI: 10.1038/s41598-020-74343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis encompasses a spectrum of diseases caused by a protozoan belonging to the genus Leishmania. The parasite is transmitted by the bite of sand flies, which inoculate the promastigote forms into the host’s skin while acquiring a blood meal. Nyssomyia neivai is one of the main vectors of tegumentary leishmaniasis (TL) in Brazil. Southeastern Brazil is an endemic region for TL but also overlaps with an endemic focus for pemphigus foliaceus (PF), also known as Fogo Selvagem. Salivary proteins of sand flies, specifically maxadilan and LJM11, have been related to pemphigus etiopathogenesis in the New World, being proposed as an environmental trigger for autoimmunity. We present a comprehensive description of the salivary transcriptome of the N. neivai, using deep sequencing achieved by the Illumina protocol. In addition, we highlight the abundances of several N. neivai salivary proteins and use phylogenetic analysis to compare with Old- and New-World sand fly salivary proteins. The collection of protein sequences associated with the salivary glands of N. neivai can be useful for monitoring vector control strategies as biomarkers of N. neivai, as well as driving vector-vaccine design for leishmaniasis. Additionally, this catalog will serve as reference to screen for possible antigenic peptide candidates triggering anti-Desmoglein-1 autoantibodies.
Collapse
|
29
|
Maryam Ghafari S, Ebrahimi S, Nateghi Rostami M, Bordbar A, Parvizi P. Comparative evaluation of salivary glands proteomes from wild Phlebotomus papatasi-proven vector of zoonotic cutaneous leishmaniasis in Iran. Vet Med Sci 2020; 7:362-369. [PMID: 32969601 PMCID: PMC8025609 DOI: 10.1002/vms3.368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Zoonotic Cutaneous Leishmaniasis is increasing in the world and Phlebotomus papatasi as a proven vector was considered in different aspects for disease control. Sandfly saliva contains proteins which provoke host immune system. These proteins are candidates for developing vaccines. OBJECTIVES The main purpose of this research was comparing evaluation of salivary glands proteomes from wild P. papatasi. Extracting these proteins and purifying of original SP15 as inducer agent in vector salivary glands from endemic leishmaniasis foci were other objectives. METHODS Adult sandflies were sampled using aspirators and funnel traps from three endemic foci in 2017-2018. Each pair of salivary glands of unfed females was dissected and proteins were extracted using thermal shocking and sonication methods. Purification was performed through RP-HPLC. All equivalent fractions were added together in order to reach sufficient protein concentration. Protein content and profile determination were examined with SDS-PAGE. RESULTS The protein concentration of whole-salivary glands of specimens was determined approximately 1.6 µg/µl (Isfahan) and 1 µg/µl (Varamin and Kashan). SDS-PAGE revealed 10 distinct bands between 10 and 63 kDa. Analysis of proteomes showed some similarities and differences in the chromatograms of different foci. SDS-PAGE of all collected fractions revealed SP15-like proteins were isolated in 24 min from Varamin, 26 to 30 min from Kashan and 29.4 min from Isfahan and were around 15 kDa. CONCLUSIONS Isolation of salivary components of Iranian wild P. papatasi is very important for finding potential proteins in vaccine development and measuring control strategy of zoonotic cutaneous leishmaniasis in Iran and this could be concluded elsewhere in the world.
Collapse
Affiliation(s)
- Seyedeh Maryam Ghafari
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Malghani Z, Khan AU, Faheem M, Danish MZ, Nadeem H, Ansari SF, Maqbool M. Molecular Docking, Antioxidant, Anticancer and Antileishmanial Effects of Newly Synthesized Quinoline Derivatives. Anticancer Agents Med Chem 2020; 20:1516-1529. [DOI: 10.2174/1871520620666200516145117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/27/2023]
Abstract
Background:
Due to the pressing need and adverse effects associated with the available anti-cancer
agents, an attempt was made to develop the new anti-cancer agents with better activity and lesser adverse
effects.
Objective:
Synthetic approaches based on chemical modification of quinoline derivatives have been undertaken
with the aim of improving anti-cancer agents’ safety profile.
Methods:
In the present study, quinoline derivatives 6-hydroxy-2-(4-methoxyphenyl) quinoline-4-carboxylic
acid (M1) and 2-(4-chlorophenyl)-6-hydroxyquinoline-4-carboxylic acid (M3) were synthesized by the reaction
of aldehyde and pyruvic acid. The complete reaction was indicated by thin-layer chromatography. Newly synthesized
M1and M3were tested for in silico and in vitro studies.
Results:
M1 and M3 were docked against selected targets. Both the test compounds showed good affinity against
all targets except the p300\CBP-associated factor target as there was no H-bond formed by M1. IC50 values of
M1 and M3 against 1, 1-diphenyl-picrylhydrazyl free radical scavenging activity were 562 and 136.56ng/mL,
respectively. In brine shrimp lethality assay, M1 and M3 showed IC50 value of 81.98 and 139.2ng/mL, respectively.
IC50 values recorded for M1 and M3 in tumor inhibition activity were 129 and 219μg/mL, respectively.
M1 and M3 exhibited concentration-dependent anti-cancer effects against human cell lines of hepatocellular
carcinoma (HepG2) and colon cancer (HCT-116). Against HepG2 cells, M1 and M3 exhibited IC50 of 88.6 and
43.62μg/mL, respectively. M1 and M3 utilized against HCT-116 cell lines possessed IC50 values of 62.5 and
15.3μg/mL. M1 and M3 also showed an anti-leishmanial effect with IC50 values of 336.64 and 530.142μg/mL,
respectively.
Conclusion:
From the results of pharmacological studies, we conclude that the newly synthesized compound
showed enhanced anti-oxidant, anti-cancer and anti-leishmanial profile with good yield.
Collapse
Affiliation(s)
- Zoonish Malghani
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Z. Danish
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sameen F. Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Madeeha Maqbool
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
31
|
Liu Z, Kundu R, Damena S, Biter AB, Nyon MP, Chen WH, Zhan B, Strych U, Hotez PJ, Bottazzi ME. A scalable and reproducible manufacturing process for Phlebotomus papatasi salivary protein PpSP15, a vaccine candidate for leishmaniasis. Protein Expr Purif 2020; 177:105750. [PMID: 32920041 DOI: 10.1016/j.pep.2020.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Cutaneous leishmaniasis is a parasitic and neglected tropical disease transmitted by the bites of sandflies. The emergence of cutaneous leishmaniasis in areas of war, conflict, political instability, and climate change has prompted efforts to develop a preventive vaccine. One vaccine candidate antigen is PpSP15, a 15 kDa salivary antigen from the sandfly Phlebotomus papatasi that facilitates the infection of the Leishmania parasite and has been shown to induce parasite-specific cell-mediated immunity. Previously, we developed a fermentation process for producing recombinant PpSP15 in Pichia pastoris and a two-chromatographic-step purification process at 100 mL scale. Here we expand the process design to the 10 L scale and examine its reproducibility by performing three identical process runs, an essential transition step towards technology transfer for pilot manufacture. The process was able to reproducibly recover 81% of PpSP15 recombinant protein with a yield of 0.75 g/L of fermentation supernatant, a purity level of 97% and with low variance among runs. Additionally, a freeze-thaw stability study indicated that the PpSP15 recombinant protein remains stable after undergoing three freeze-thaw cycles, and an accelerated stability study confirmed its stability at 37 °C for at least one month. A research cell bank for the expression of PpSP15 was generated and fully characterized. Collectively, the cell bank and the production process are ready for technology transfer for future cGMP pilot manufacturing.
Collapse
Affiliation(s)
- Zhuyun Liu
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA.
| | - Rakhi Kundu
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
| | | | - Amadeo B Biter
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
| | - Mun Peak Nyon
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
| | - Wen-Hsiang Chen
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
| | - Bin Zhan
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
| | - Ulrich Strych
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
| | - Peter J Hotez
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; National School of Tropical Medicine, Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA; Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA; James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; National School of Tropical Medicine, Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA; Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA.
| |
Collapse
|
32
|
Nacif-Pimenta R, Pinto LC, Volfova V, Volf P, Pimenta PFP, Secundino NFC. Conserved and distinct morphological aspects of the salivary glands of sand fly vectors of leishmaniasis: an anatomical and ultrastructural study. Parasit Vectors 2020; 13:441. [PMID: 32883363 PMCID: PMC7469427 DOI: 10.1186/s13071-020-04311-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 08/19/2023] Open
Abstract
Background Sand flies are vectors of Leishmania spp., the causative agents of leishmaniasis in vertebrates, including man. The sand fly saliva contains powerful pharmacologically active substances that prevent hemostasis and enhance Leishmania spp. infections. On the other hand, salivary proteins can protect vaccinated mice challenged with parasites. Therefore, sand fly salivary proteins are relevant for the epidemiology of leishmaniasis and can be a potential target for a vaccine against leishmaniasis. Despite this, studies on sand fly salivary glands (SGs) are limited. Methods The present study analyzes, in detail, the morphology, anatomy and ultrastructure of the SGs of sand fly vectors of the genera Lutzomyia and Phlebotomus. We used histology, transmission and scanning electron microscopy and lectin labeling associated with confocal laser microscopy. Results The SGs have conserved and distinct morphological aspects according to the distinct sand fly species. Each SG has a single rounded lobe constituting of c.100–120 secretory cells. The SG secretory cells, according to their ultrastructure and lectin binding, were classified into five different subpopulations, which may differ in secretory pathways. Conclusions To the best of our knowledge, these morphological details of sand fly salivary glands are described for the first time. Further studies are necessary to better understand the role of these different cell types and better relate them with the production and secretion of the saliva substances, which has a fundamental role in the interaction of the sand fly vectors with Leishmania.![]()
Collapse
Affiliation(s)
- Rafael Nacif-Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Foundation Oswaldo Cruz, Fiocruz-MG, Belo Horizonte, Brazil
| | - Luciana C Pinto
- Laboratory of Medical Entomology, Institute René Rachou, Foundation Oswaldo Cruz, Fiocruz-MG, Belo Horizonte, Brazil
| | - Vera Volfova
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Paulo F P Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Foundation Oswaldo Cruz, Fiocruz-MG, Belo Horizonte, Brazil
| | - Nagila F C Secundino
- Laboratory of Medical Entomology, Institute René Rachou, Foundation Oswaldo Cruz, Fiocruz-MG, Belo Horizonte, Brazil.
| |
Collapse
|
33
|
Th1 concomitant immune response mediated by IFN-γ protects against sand fly delivered Leishmania infection: Implications for vaccine design. Cytokine 2020; 147:155247. [PMID: 32873468 DOI: 10.1016/j.cyto.2020.155247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is an unresolved global health problem with a high socio-economic impact. Data generated in mouse models has revealed that the Th1 response, with IL-12, IFN-γ, TNF-α, and IL-2 as prominent cytokines, predominantly controls the disease progression. Premised on these findings, all examined vaccine formulations have been aimed at generating a long-lived memory Th1 response. However, all vaccine formulations with the exception of live Leishmania inoculation (leishmanization) have failed to sufficiently protect against sand fly delivered infection. It has been recently unraveled that sand fly dependent factors may compromise pre-existing Th1 memory. Further scrutinizing the immune response after leishmanization has uncovered the prominent role of early (within hours) and robust IFN-γ production (Th1 concomitant immunity) in controlling the sand fly delivered secondary infection. The response is dependent upon parasite persistence and subclinical ongoing primary infection. The immune correlates of concomitant immunity (Resident Memory T cells and Effector T subsets) mitigate the early effects of sand fly delivered infection and help to control the disease. In this review, we have described the early events after sand fly challenge and the role of Th1 concomitant immunity in the protective immune response in leishmanized resistant mouse model, although leishmanization is under debate for human use. Undoubtedly, the lessons we learn from leishmanization must be further implemented in alternative vaccine approaches.
Collapse
|
34
|
Flanley CM, Ramalho-Ortigao M, Coutinho-Abreu IV, Mukbel R, Hanafi HA, El-Hossary SS, Fawaz EY, Hoel DF, Bray AW, Stayback G, Shoue DA, Kamhawi S, Emrich S, McDowell MA. Phlebotomus papatasi sand fly predicted salivary protein diversity and immune response potential based on in silico prediction in Egypt and Jordan populations. PLoS Negl Trop Dis 2020; 14:e0007489. [PMID: 32658913 PMCID: PMC7377520 DOI: 10.1371/journal.pntd.0007489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Phlebotomus papatasi sand flies inject their hosts with a myriad of pharmacologically active salivary proteins to assist with blood feeding and to modulate host defenses. In addition, salivary proteins can influence cutaneous leishmaniasis disease outcome, highlighting the potential of the salivary components to be used as a vaccine. Variability of vaccine targets in natural populations influences antigen choice for vaccine development. Therefore, the objective of this study was to investigate the variability in the predicted protein sequences of nine of the most abundantly expressed salivary proteins from field populations, testing the hypothesis that salivary proteins appropriate to target for vaccination strategies will be possible. PpSP12, PpSP14, PpSP28, PpSP29, PpSP30, PpSP32, PpSP36, PpSP42, and PpSP44 mature cDNAs from field collected P. papatasi from three distinct ecotopes in the Middle East and North Africa were amplified, sequenced, and in silico translated to assess the predicted amino acid variability. Two of the predicted sequences, PpSP12 and PpSP14, demonstrated low genetic variability across the three geographic isolated sand fly populations, with conserved multiple predicted MHCII epitope binding sites suggestive of their potential application in vaccination approaches. The other seven predicted salivary proteins revealed greater allelic variation across the same sand fly populations, possibly precluding their use as vaccine targets.
Collapse
Affiliation(s)
- Catherine M. Flanley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Marcelo Ramalho-Ortigao
- Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Iliano V. Coutinho-Abreu
- Laboratory of Malaria and Vector Research, NIAID-NIH, Rockville, Maryland, United States of America
| | - Rami Mukbel
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanafi A. Hanafi
- Vector Biology Research Program, U.S. Naval Medical Research Unit No. 3, Cairo, Egypt
| | - Shabaan S. El-Hossary
- Vector Biology Research Program, U.S. Naval Medical Research Unit No. 3, Cairo, Egypt
| | - Emadeldin Y. Fawaz
- Vector Biology Research Program, U.S. Naval Medical Research Unit No. 3, Cairo, Egypt
| | - David F. Hoel
- Lee County Mosquito Control District, Lehigh Acres, Florida, United States of America
| | - Alexander W. Bray
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gwen Stayback
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Douglas A. Shoue
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, NIAID-NIH, Rockville, Maryland, United States of America
| | - Scott Emrich
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
35
|
Li Z, Guerrero F, Pérez de León AA, Foil LD, Swale DR. Small-Molecule Inhibitors of Inward Rectifier Potassium (Kir) Channels Reduce Bloodmeal Feeding and Have Insecticidal Activity Against the Horn Fly (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1131-1140. [PMID: 32006426 DOI: 10.1093/jme/tjaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Bloodmeal feeding by the horn fly, Haematobia irritans (L.), is associated with reduced milk production and blood loss that ultimately prevents weight gain of calves and yearlings. Thus, blood feeding by H. irritans causes significant economic losses in several continents. As with other arthropods, resistance to the majority of commercialized insecticides reduces the efficacy of current control programs. Thus, innovative technologies and novel biochemical targets for horn fly control are needed. Salivary gland and Malpighian tubule function are critical for H. irritans survivorship as they drive bloodmeal acquisition and maintain ion- and fluid homeostasis during bloodmeal processing, respectively. Experiments were conducted to test the hypothesis that pharmacological modulation of H. irritans inward rectifier potassium (Kir) channels would preclude blood feeding and induce mortality by reducing the secretory activity of the salivary gland while simultaneously inducing Malpighian tubule failure. Experimental results clearly indicate structurally diverse Kir channel modulators reduce the secretory activity of the salivary gland by up to fivefold when compared to control and the reduced saliva secretion was highly correlated to a reduction in bloodmeal acquisition in adult flies. Furthermore, adult feeding on blood treated with Kir channel modulators resulted in significant mortality. In addition to validating the Kir channels of H. irritans as putative insecticide targets, the knowledge gained from this study could be applied to develop novel therapeutic technologies targeting salivary gland or Malpighian tubule function to reduce the economic burden of horn fly ectoparasitism on cattle health and production.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | | | - Adalberto A Pérez de León
- Knipling-Bushland Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX
| | - Lane D Foil
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| |
Collapse
|
36
|
Oliveira F, Giorgobiani E, Guimarães-Costa AB, Abdeladhim M, Oristian J, Tskhvaradze L, Tsertsvadze N, Zakalashvili M, Valenzuela JG, Kamhawi S. Immunity to vector saliva is compromised by short sand fly seasons in endemic regions with temperate climates. Sci Rep 2020; 10:7990. [PMID: 32409684 PMCID: PMC7224377 DOI: 10.1038/s41598-020-64820-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Individuals exposed to sand fly bites develop humoral and cellular immune responses to sand fly salivary proteins. Moreover, cellular immunity to saliva or distinct salivary proteins protects against leishmaniasis in various animal models. In Tbilisi, Georgia, an endemic area for visceral leishmaniasis (VL), sand flies are abundant for a short period of ≤3 months. Here, we demonstrate that humans and dogs residing in Tbilisi have little immunological memory to saliva of P. kandelakii, the principal vector of VL. Only 30% of humans and 50% of dogs displayed a weak antibody response to saliva after the end of the sand fly season. Likewise, their peripheral blood mononuclear cells mounted a negligible cellular immune response after stimulation with saliva. RNA seq analysis of wild-caught P. kandelakii salivary glands established the presence of a typical salivary repertoire that included proteins commonly found in other sand fly species such as the yellow, SP15 and apyrase protein families. This indicates that the absence of immunity to P. kandelakii saliva in humans and dogs from Tbilisi is probably caused by insufficient exposure to sand fly bites. This absence of immunity to vector saliva will influence the dynamics of VL transmission in Tbilisi and other endemic areas with brief sand fly seasons.
Collapse
Affiliation(s)
- Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Ekaterina Giorgobiani
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Anderson B Guimarães-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Lamzira Tskhvaradze
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Nikoloz Tsertsvadze
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Mariam Zakalashvili
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA.
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA.
| |
Collapse
|
37
|
Process Characterization and Biophysical Analysis for a Yeast-Expressed Phlebotomus papatasi Salivary Protein (PpSP15) as a Leishmania Vaccine Candidate. J Pharm Sci 2020; 109:1673-1680. [PMID: 32070701 PMCID: PMC7125844 DOI: 10.1016/j.xphs.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Cutaneous leishmaniasis is a neglected tropical disease caused by the parasite Leishmania and transmitted by sandflies. It has become a major health problem in many tropical and subtropical countries, especially in regions of conflict and political instability. Currently, there are only limited drug treatments and no available licensed vaccine; thus, the need for more therapeutic interventions remains urgent. Previously, a DNA vaccine encoding a 15 kDa sandfly (Phlebotomus papatasi) salivary protein (PpSP15) and recombinant nonpathogenic Leishmania tarentolae secreting PpSP15 have been shown to induce protective immunity against Leishmania major in mice, demonstrating that PpSP15 is a promising vaccine candidate. In this study, we developed a fermentation process in yeast with a yield of ~1g PpSP15/L and a scalable purification process consisting of only 2 chromatographic purification steps with high binding capacity for PpSP15, suggesting that PpSP15 can be produced economically. The biophysical/biochemical analysis of the purified PpSP15 indicated that the protein was of high purity (>97%) and conformationally stable between pH 4.4 and 9.0. More importantly, the recombinant protein had a defined structure similar to that of the related PdSP15 from Phlebotomus duboscqi, implying the suitability of the yeast expression system for producing a correctly folded PpSP15.
Collapse
|
38
|
Bordbar A, Bagheri KP, Ebrahimi S, Parvizi P. Bioinformatics analyses of immunogenic T-cell epitopes of LeIF and PpSP15 proteins from Leishmania major and sand fly saliva used as model antigens for the design of a multi-epitope vaccine to control leishmaniasis. INFECTION GENETICS AND EVOLUTION 2020; 80:104189. [PMID: 31931259 DOI: 10.1016/j.meegid.2020.104189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/17/2022]
Abstract
Leishmaniasis is caused by protozoan parasites belonging to 20 Leishmania species. This infectious disease is transmitted by bites of infected phlebotomine sandflies, and is widespread in 97 countries throughout the world. No preventive or effective vaccine has been developed yet. In this study, diverse computational methods were integrated to calculate evolutionary divergence, immunogenicity, IFN-γ production, epitope conservancy, and population coverage of protein fusion models of LeIF-SP15 namely SaLeish. Immunogenicity of LeIF of Leishmania species and SP15 of sandfly saliva has not been investigated in-silico in fusion form. A complete set of 9-mer MHC class I and 15-mer MHC class II peptides were identified with a high affinity for the antigenic epitopes of SaLeish inducing specific responses of CD8+ and CD4+ T cells from BALB/c and human. Our preferred approach was determining truncated fragment of SaLeish rather than a whole length bearing the capacity to trigger specific immune response. Phylogenetic analysis showed that LeIF protein is under balancing selection and is conserved between different Leishmania species. Selected SaLeish model contained 19 and 35 antigenic peptides for MHC class I and II, respectively, with strong binding affinity to both highly frequent HLA-I and HLA-II alleles. Analysis of class I CTL epitopes showed that promiscuous peptides of KSLKADIRK, MSCIPHCKY, LQAGVIVAV, and YQYYGFVAM have greater affinity to interact with HLA-A*01:01, HLA-A*02 (03, 06), HLA-A*30:02, HLA-B*40:01, and HLA-B*52:01 molecules. Population coverage with a range of 78-85% confirmed SaLeish-Model4 as an appropriate vaccine candidate among Persian, South Asia, Europe, and North America population. Also, predicted antigenic epitopes of AKPEIRTFSNVLIKY, TRVQDDLRKLQAGVI, and VALFSATMPEEVLEL corresponding to MHC class II were found to provide strong ability to produce IFNγ toward TH(1)-biased-DTH responses. Findings of the current investigation warrant the future experimental assessment of promising SaLeish prophylaxis vaccine that is capable to enhance both innate and specific cellular immune responses.
Collapse
Affiliation(s)
- Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2020; 14:e0007939. [PMID: 31899767 PMCID: PMC6941807 DOI: 10.1371/journal.pntd.0007939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous leishmaniasisis a vector-borne disease transmitted by Leishmania infected sand flies. PpSP15 is an immunogenic salivary protein from the sand fly Phlebotomus papatasi. Immunization with PpSP15 was shown to protect against Leishmania major infection. Lactococcus lactis is a safe non-pathogenic delivery system that can be used to express antigens in situ. Here, the codon-optimized Ppsp15-egfp gene was cloned in pNZ8121 vector downstream of the PrtP signal peptide that is responsible for expression and secretion of the protein on the cell wall. Expression of PpSP15-EGFP recombinant protein was monitored by immunofluorescence, flow cytometry and Western blot. Also, expression of protein in cell wall compartment was verified using whole cell ELISA, Western blot and TEM microscopy. BALB/c mice were immunized three times with recombinant L. lactis-PpSP15-EGFPcwa, and the immune responses were followed up, at short-term (ST, 2 weeks) and long-term (LT, 6 months) periods. BALB/c mice were challenged with L. major plus P. papatasi Salivary Gland Homogenate. Evaluation of footpad thickness and parasite burden showed a delay in the development of the disease and significantly decreased parasite numbers in PpSP15 vaccinated animals as compared to control group. In addition, immunized mice showed Th1 type immune responses. Importantly, immunization with L. lactis-PpSP15-EGFPcwa stimulated the long-term memory in mice which lasted for at least 6 months.
Collapse
Affiliation(s)
- Elaheh Davarpanah
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Biter AB, Pollet J, Chen WH, Strych U, Hotez PJ, Bottazzi ME. A method to probe protein structure from UV absorbance spectra. Anal Biochem 2019; 587:113450. [DOI: 10.1016/j.ab.2019.113450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023]
|
41
|
Ribeiro JM, Debat HJ, Boiani M, Ures X, Rocha S, Breijo M. An insight into the sialome, mialome and virome of the horn fly, Haematobia irritans. BMC Genomics 2019; 20:616. [PMID: 31357943 PMCID: PMC6664567 DOI: 10.1186/s12864-019-5984-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The horn fly (Haematobia irritans) is an obligate blood feeder that causes considerable economic losses in livestock industries worldwide. The control of this cattle pest is mainly based on insecticides; unfortunately, in many regions, horn flies have developed resistance. Vaccines or biological control have been proposed as alternative control methods, but the available information about the biology or physiology of this parasite is rather scarce. RESULTS We present a comprehensive description of the salivary and midgut transcriptomes of the horn fly (Haematobia irritans), using deep sequencing achieved by the Illumina protocol, as well as exploring the virome of this fly. Comparison of the two transcriptomes allow for identification of uniquely salivary or uniquely midgut transcripts, as identified by statistically differential transcript expression at a level of 16 x or more. In addition, we provide genomic highlights and phylogenetic insights of Haematobia irritans Nora virus and present evidence of a novel densovirus, both associated to midgut libraries of H. irritans. CONCLUSIONS We provide a catalog of protein sequences associated with the salivary glands and midgut of the horn fly that will be useful for vaccine design. Additionally, we discover two midgut-associated viruses that infect these flies in nature. Future studies should address the prevalence, biological effects and life cycles of these viruses, which could eventually lead to translational work oriented to the control of this economically important cattle pest.
Collapse
Affiliation(s)
- J. M. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway Room 3E28, Rockville, MD 20852 USA
| | - Humberto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - M. Boiani
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - X. Ures
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - S. Rocha
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - M. Breijo
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| |
Collapse
|
42
|
MIANDOABI T, BAHRAMI F, MOEIN VAZIRI V, AJDARY S. Cloning of a Recombinant Plasmid Encoding PpSP42 Protein Fragment of Phlebotomus papatasi and expressing it in HEK-293T Eukaryotic Cell. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1387-1389. [PMID: 31497566 PMCID: PMC6708533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Touraj MIANDOABI
- Department of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariborz BAHRAMI
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh MOEIN VAZIRI
- Department of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila AJDARY
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding Author:
| |
Collapse
|
43
|
Seyed N, Rafati S. Resolution and pro-resolving lipid mediators in Leishmania infection. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.3.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
44
|
Chelbi I, Zhioua E. Establishment, Maintenance of Phlebotomus spp. in the Laboratory, and Infection with Leishmania spp. Methods Mol Biol 2019; 1971:351-368. [PMID: 30980314 DOI: 10.1007/978-1-4939-9210-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sand fly colonies are of major importance for experimental studies on biology, behavior, vector competence, relationship with Leishmania parasites, and vector control. This chapter is intended to provide methods and techniques used to initiate, establish, and maintain sand fly colonies. Details on collecting sand flies for colonization, colony initiation, maintenance, and experimental infection of Phlebotomus spp. with Leishmania spp. are reported.
Collapse
Affiliation(s)
- Ifhem Chelbi
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia.
| |
Collapse
|
45
|
Gholami E, Oliveira F, Taheri T, Seyed N, Gharibzadeh S, Gholami N, Mizbani A, Zali F, Habibzadeh S, Bakhadj DO, Meneses C, Kamyab-Hesari K, Sadeghipour A, Taslimi Y, khadir F, Kamhawi S, Mazlomi MA, Valenzuela JG, Rafati S. DNA plasmid coding for Phlebotomus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Negl Trop Dis 2019; 13:e0007067. [PMID: 30633742 PMCID: PMC6345478 DOI: 10.1371/journal.pntd.0007067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/24/2019] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The vector-borne disease leishmaniasis is transmitted to humans by infected female sand flies, which transmits Leishmania parasites together with saliva during blood feeding. In Iran, cutaneous leishmaniasis (CL) is caused by Leishmania (L.) major and L. tropica, and their main vectors are Phlebotomus (Ph.) papatasi and Ph. sergenti, respectively. Previous studies have demonstrated that mice immunized with the salivary gland homogenate (SGH) of Ph. papatasi or subjected to bites from uninfected sand flies are protected against L. major infection. METHODS AND RESULTS In this work we tested the immune response in BALB/c mice to 14 different plasmids coding for the most abundant salivary proteins of Ph. sergenti. The plasmid coding for the salivary protein PsSP9 induced a DTH response in the presence of a significant increase of IFN-γ expression in draining lymph nodes (dLN) as compared to control plasmid and no detectable PsSP9 antibody response. Animals immunized with whole Ph. sergenti SGH developed only a saliva-specific antibody response and no DTH response. Mice immunized with whole Ph. sergenti saliva and challenged intradermally with L. tropica plus Ph. sergenti SGH in their ears, exhibited no protective effect. In contrast, PsSP9-immunized mice showed protection against L. tropica infection resulting in a reduction in nodule size, disease burden and parasite burden compared to controls. Two months post infection, protection was associated with a significant increase in the ratio of IFN-γ to IL-5 expression in the dLN compared to controls. CONCLUSION This study demonstrates that while immunity to the whole Ph. sergenti saliva does not induce a protective response against cutaneous leishmaniasis in BALB/c mice, PsSP9, a member of the PpSP15 family of Ph. sergenti salivary proteins, provides protection against L. tropica infection. These results suggest that this family of proteins in Ph. sergenti, Ph. duboscqi and Ph. papatasi may have similar immunogenic and protective properties against different Leishmania species. Indeed, this anti-saliva immunity may act as an adjuvant to accelerate the cell-mediated immune response to co-administered Leishmania antigens, or even cause the activation of infected macrophages to remove parasites more efficiently. These findings highlight the idea of applying arthropod saliva components in vaccination approaches for diseases caused by vector-borne pathogens.
Collapse
Affiliation(s)
- Elham Gholami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
- Research Centre for Emerging and Reemerging Infectious Disease, Pasteur Institute of Iran, Tehran, Iran
| | - Nasim Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mizbani
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Fatemeh Zali
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Daniel Omid Bakhadj
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kambiz Kamyab-Hesari
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadeghipour
- Department of Pathology, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh khadir
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Pereira L, Oliveira F, Townsend S, Metangmo S, Meneses C, Moore IN, Brodskyn CI, Valenzuela JG, Magez S, Kamhawi S. Coinfection With Trypanosoma brucei Confers Protection Against Cutaneous Leishmaniasis. Front Immunol 2018; 9:2855. [PMID: 30619253 PMCID: PMC6297747 DOI: 10.3389/fimmu.2018.02855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
Infection with certain bacteria, parasites, and viruses alters the host immune system to Leishmania major influencing disease outcome. Here, we determined the outcome of a chronic infection with Trypanosoma brucei brucei on cutaneous leishmaniasis (CL) caused by L. major. C57BL/6 mice infected with T. b. brucei were given a sub-curative treatment with diminazene aceturate then coinfected with L. major by vector bites. Our results revealed that infection with T. b. brucei controls CL pathology. Compared to controls, coinfected mice showed a significant decrease in lesion size (P < 0.05) up to 6 weeks post-infection and a significant decrease in parasite burden (P < 0.0001) at 3 weeks post-infection. Protection against L. major resulted from a non-specific activation of T cells by trypanosomes. This induced a strong immune response characterized by IFN-γ production at the site of bites and systemically, creating a hostile inflammatory environment for L. major parasites and conferring protection from CL.
Collapse
Affiliation(s)
- Lais Pereira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Shannon Townsend
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Sonia Metangmo
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Claudia I Brodskyn
- Laboratorio da interação parasita hospedeito e epidemiologia, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Stefan Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Ghent University Global Campus, Incheon, South Korea
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
47
|
Knorr S, Anguita J, Cortazar JT, Hajdusek O, Kopáček P, Trentelman JJ, Kershaw O, Hovius JW, Nijhof AM. Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle. Front Physiol 2018; 9:1696. [PMID: 30568595 PMCID: PMC6290058 DOI: 10.3389/fphys.2018.01696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/20/2023] Open
Abstract
Anti-tick vaccines have the potential to be an environmentally friendly and cost-effective option for tick control. In vaccine development, the identification of efficacious antigens forms the major bottleneck. In this study, the efficacy of immunization with recombinant ferritin 2 and native tick protein extracts (TPEs) against Ixodes ricinus infestations in calves was assessed in two immunization experiments. In the first experiment, each calf (n = 3) was immunized twice with recombinant ferritin 2 from I. ricinus (IrFER2), TPE consisting of soluble proteins from the internal organs of partially fed I. ricinus females, or adjuvant, respectively. In the second experiment, each calf (n = 4) was immunized with protein extracts from the midgut (ME) of partially fed females, the salivary glands (SGE) of partially fed females, a combination of ME and SGE, or adjuvant, respectively. Two weeks after the booster immunization, calves were challenged with 100 females and 200 nymphs. Blood was collected from the calves before the first and after the second immunization and fed to I. ricinus females and nymphs using an in vitro artificial tick feeding system. The two calves vaccinated with whole TPE and midgut extract (ME) showed hyperemia on tick bite sites 2 days post tick infestation and exudative blisters were observed in the ME-vaccinated animal, signs that were suggestive of a delayed type hypersensitivity (DTH) reaction. Significantly fewer ticks successfully fed on the three animals vaccinated with TPE, SGE, or ME. Adults fed on the TPE and ME vaccinated animals weighed significantly less. Tick feeding on the IrFER2 vaccinated calf was not impaired. The in vitro feeding of serum or fresh whole blood collected from the vaccinated animals did not significantly affect tick feeding success. Immunization with native I. ricinus TPEs thus conferred a strong immune response in calves and significantly reduced the feeding success of both nymphs and adults. In vitro feeding of serum or blood collected from vaccinated animals to ticks did not affect tick feeding, indicating that antibodies alone were not responsible for the observed vaccine immunity.
Collapse
Affiliation(s)
- Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Juan Anguita
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Julen T Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jos J Trentelman
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
48
|
Miandoabi T, Bahrami F, Moein Vaziri V, Ajdary S. Construction of a Novel DNA Vaccine Candidate encoding LmSTI1-PpSP42 Fusion Protein from Leishmania major and Phlebotomus papatasi against Cutaneous Leishmaniasis. Rep Biochem Mol Biol 2018; 7:67-75. [PMID: 30324120 PMCID: PMC6175588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Background Cutaneous leishmaniasis (CL) is a serious public health problem in many tropical countries. The infection is caused by a protozoan parasite of Leishmania genus transmitted by Phlebotominae sandflies. In the present study, we constructed a eukaryotic expression vector to produce a fusion protein containing LmSTI1 from Leishmania major (L. major) and PpSP42 from Phlebotomus papatasi (Ph. papatasi). In future studies we will test this construct as a DNA vaccine against zoonotic CL. Methods The nucleotide sequences encoding the LmSTI1 protein and a fragment encoding 79% of PpSP42 were amplified using L. major and Ph. papatasi genomic DNA, respectively. The amplicons were cloned into the pcDNA3.1(+) eukaryotic expression vector. The recombinant plasmid pcDNA-LmSTI1Pp42 was propagated in Escherichia coli (E. coli) and used to transfect HEK-293T cells. The expressed fusion protein was analyzed by Western blotting using anti-LmSTI1 mouse serum. Results Sequences encoding LmSTI1 and partial PpSP42 were cloned into pcDNA3.1(+). Production of the recombinant LmSTI1Pp42 fusion protein was confirmed by Western blotting. Conclusion An LmSTI1Pp42 fusion protein was expressed HEK-293T cells. This construct may be an effective DNA vaccine against CL.
Collapse
Affiliation(s)
- Touraj Miandoabi
- Department of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Bahrami
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran, Iran.
| | - Vahideh Moein Vaziri
- Department of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soheila Ajdary
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran, Iran.
| |
Collapse
|
49
|
Martin-Martin I, Aryan A, Meneses C, Adelman ZN, Calvo E. Optimization of sand fly embryo microinjection for gene editing by CRISPR/Cas9. PLoS Negl Trop Dis 2018; 12:e0006769. [PMID: 30180160 PMCID: PMC6150542 DOI: 10.1371/journal.pntd.0006769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/21/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology has rapidly emerged as a very effective tool for gene editing. Although great advances on gene editing in the medical entomology field have arisen, no attempts of gene editing have been reported in sand flies, the vectors of Leishmaniasis. Methodology/Principal findings Here, we described a detailed protocol for sand fly embryo microinjection taking into consideration the sand fly life cycle, and manipulation and oviposition requirements of this non-model organism. Following our microinjection protocol, a hatching rate of injected embryos of 11.90%-14.22% was achieved, a rate consistent with other non-model organism dipterans such as mosquitoes. Essential factors for the adaptation of CRISPR/Cas9 technology to the sand fly field were addressed including the selection of a target gene and the design and production of sgRNA. An in vitro cleavage assay was optimized to test the activity of each sgRNA and a protocol for Streptococcus pyogenes Cas9 (spCas9) protein expression and purification was described. Relevant considerations for a successful gene editing in the sand fly such as specifics of embryology and double-stranded break DNA repair mechanisms were discussed. Conclusion and significance The step-by-step methodology reported in this article will be of significant use for setting up a sand fly embryo microinjection station for the incorporation of CRISPR/Cas9 technology in the sand fly field. Gene editing strategies used in mosquitoes and other model insects have been adapted to work with sand flies, providing the tools and relevant information for adapting gene editing techniques to the vectors of Leishmaniasis. Gene editing in sand flies will provide essential information on the biology of these vectors of medical and veterinary relevance and will rise a better understanding of vector-parasite-host interactions. The CRISPR/Cas9 system, based on the adaptive immune system in bacteria and archaea against viral infections, has been adapted and has rapidly emerged as a very effective genetic engineering tool in many organisms. Although great advances on gene editing in the medical entomology field have arisen, no attempts have been reported in sand flies, the vectors of Leishmania spp. Leishmaniasis is one of the most neglected parasitic diseases with twelve million people affected worldwide. Despite their importance as disease vectors, sand fly genetics and molecular studies are limited when compared to other insects. In this article, gene editing strategies used in mosquitoes and other model insects have been adapted to work with sand flies, providing the tools and relevant information for adapting embryo microinjection techniques to sand flies, an essential step in a successful gene editing experiment. We believe gene editing in sand flies will provide essential information of medical and veterinary relevance on the biology of these vectors, and will further a better understanding of vector-parasite-host interactions.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azadeh Aryan
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zach N. Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, Texas, United States of America
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Coutinho-Abreu IV, Valenzuela JG. Comparative Evolution of Sand Fly Salivary Protein Families and Implications for Biomarkers of Vector Exposure and Salivary Vaccine Candidates. Front Cell Infect Microbiol 2018; 8:290. [PMID: 30211125 PMCID: PMC6123390 DOI: 10.3389/fcimb.2018.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Sand fly salivary proteins that produce a specific antibody response in humans and animal reservoirs have been shown to be promising biomarkers of sand fly exposure. Furthermore, immunity to sand fly salivary proteins were shown to protect rodents and non-human primates against Leishmania infection. We are missing critical information regarding the divergence amongst sand fly salivary proteins from different sand fly vectors, a knowledge that will support the search of broad or specific salivary biomarkers of vector exposure and those for vaccines components against leishmaniasis. Here, we compare the molecular evolution of the salivary protein families in New World and Old World sand flies from 14 different sand fly vectors. We found that the protein families unique to OW sand flies are more conserved than those unique to NW sand flies regarding both sequence polymorphisms and copy number variation. In addition, the protein families unique to OW sand flies do not display as many conserved cysteine residues as the one unique to the NW group (28.5% in OW vs. 62.5% in NW). Moreover, the expression of specific protein families is restricted to the salivary glands of unique sand fly taxon. For instance, the ParSP15 family is unique to the Larroussius subgenus whereas phospholipase A2 is only expressed in member of Larroussius and Adlerius subgenera. The SP2.5-like family is only expressed in members of the Phlebotomus and Paraphlebotomus subgenera. The sequences shared between OW and NW sand flies have diverged at similar rates (38.7 and 45.3% amino acid divergence, respectively), yet differences in gene copy number were evident across protein families and sand fly species. Overall, this comparative analysis sheds light on the different modes of sand fly salivary protein family divergence. Also, it informs which protein families are unique and conserved within taxon for the choice of taxon-specific biomarkers of vector exposure, as well as those families more conserved across taxa to be used as pan-specific vaccines for leishmaniasis.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|