1
|
Emam M, Kumar S, Eslamloo K, Caballero-Solares A, Hall JR, Xue X, Paradis H, Gendron RL, Santander J, Rise ML. Transcriptomic response of lumpfish ( Cyclopterus lumpus) head kidney to viral mimic, with a focus on the interferon regulatory factor family. Front Immunol 2024; 15:1439465. [PMID: 39211041 PMCID: PMC11357929 DOI: 10.3389/fimmu.2024.1439465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
The economic importance of lumpfish (Cyclopterus lumpus) is increasing, but several aspects of its immune responses are not well understood. To discover genes and mechanisms involved in the lumpfish antiviral response, fish were intraperitoneally injected with either the viral mimic polyinosinic:polycytidylic acid [poly(I:C)] or phosphate-buffered saline (PBS; vehicle control), and head kidneys were sampled 24 hours post-injection (hpi) for transcriptomic analyses. RNA sequencing (RNA-Seq) (adjusted p-value <0.05) identified 4,499 upregulated and 3,952 downregulated transcripts in the poly(I:C)-injected fish compared to the PBS-injected fish. Eighteen genes identified as differentially expressed by RNA-Seq were included in a qPCR study that confirmed the upregulation of genes encoding proteins with antiviral immune response functions (e.g., rsad2) and the downregulation of genes (e.g., jarid2b) with potential cellular process functions. In addition, transcript expression levels of 12 members of the interferon regulatory factor (IRF) family [seven of which were identified as poly(I:C)-responsive in this RNA-Seq study] were analyzed using qPCR. Levels of irf1a, irf1b, irf2, irf3, irf4b, irf7, irf8, irf9, and irf10 were significantly higher and levels of irf4a and irf5 were significantly lower in the poly(I:C)-injected fish compared to the PBS-injected fish. This research and associated new genomic resources enhance our understanding of the genes and molecular mechanisms underlying the lumpfish response to viral mimic stimulation and help identify possible therapeutic targets and biomarkers for viral infections in this species.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
- Centre for Marine Applied Research, Dartmouth, NS, Canada
| | | | - Jennifer R. Hall
- Aquatic Research Cluster, Core Research Equipment and Instrument Training (CREAIT) Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hélène Paradis
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Robert L. Gendron
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
2
|
Hirsch T, Neyens D, Duhamel C, Bayard A, Vanhaver C, Luyckx M, Sala de Oyanguren F, Wildmann C, Dauguet N, Squifflet JL, Montiel V, Deschamps M, van der Bruggen P. IRF4 impedes human CD8 T cell function and promotes cell proliferation and PD-1 expression. Cell Rep 2024; 43:114401. [PMID: 38943641 DOI: 10.1016/j.celrep.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Human CD8 tumor-infiltrating lymphocytes (TILs) with impaired effector functions and PD-1 expression are categorized as exhausted. However, the exhaustion-like features reported in TILs might stem from their activation rather than the consequence of T cell exhaustion itself. Using CRISPR-Cas9 and lentiviral overexpression in CD8 T cells from non-cancerous donors, we show that the T cell receptor (TCR)-induced transcription factor interferon regulatory factor 4 (IRF4) promotes cell proliferation and PD-1 expression and hampers effector functions and expression of nuclear factor κB (NF-κB)-regulated genes. While CD8 TILs with impaired interferon γ (IFNγ) production exhibit activation markers IRF4 and CD137 and exhaustion markers thymocyte selection associated high mobility group box (TOX) and PD-1, activated T cells in patients with COVID-19 do not demonstrate elevated levels of TOX and PD-1. These results confirm that IRF4+ TILs are exhausted rather than solely activated. Our study indicates, however, that PD-1 expression, low IFNγ production, and active cycling in TILs are all influenced by IRF4 upregulation after T cell activation.
Collapse
Affiliation(s)
- Thibault Hirsch
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Damien Neyens
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Duhamel
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Mathieu Luyckx
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Claude Wildmann
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Squifflet
- Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Virginie Montiel
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mélanie Deschamps
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Mickael ME, Kubick N, Dragan M, Atanasov AG, Ławiński M, Paszkiewicz J, Horbańczuk JO, Religa P, Thorne A, Sacharczuk M. The impact of BDNF and CD4 + T cell crosstalk on depression. Immunol Res 2024:10.1007/s12026-024-09514-4. [PMID: 38980567 DOI: 10.1007/s12026-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Małgorzata Dragan
- Faculty of Psychology, University of Warsaw, Krakowskie Przedmieście26/28, 00-927, Warsaw, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Michał Ławiński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500, Biała Podlaska, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77, Solna, Sweden
| | - Ana Thorne
- Medical Faculty, University of Nis, Bulevar Dr Zorana Djidjica 81, 18000, Nis, Serbia
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| |
Collapse
|
4
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
5
|
Ren X, Cui Z, Zhang Q, Su Z, Xu W, Wu J, Jiang H. JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 2024; 15:mjad072. [PMID: 38140943 PMCID: PMC11080659 DOI: 10.1093/jmcb/mjad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Xuxia Ren
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zexu Cui
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- Center of Geriatrics and Gerontology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Choi J, Crotty S, Choi YS. Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions. Immune Netw 2024; 24:e8. [PMID: 38455461 PMCID: PMC10917579 DOI: 10.4110/in.2024.24.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.
Collapse
Affiliation(s)
- Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
8
|
Zou D, Yin Z, Yi SG, Wang G, Guo Y, Xiao X, Li S, Zhang X, Gonzalez NM, Minze LJ, Wang L, Wong STC, Osama Gaber A, Ghobrial RM, Li XC, Chen W. CD4 + T cell immunity is dependent on an intrinsic stem-like program. Nat Immunol 2024; 25:66-76. [PMID: 38168955 PMCID: PMC11064861 DOI: 10.1038/s41590-023-01682-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.
Collapse
Affiliation(s)
- Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Yin
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Stephanie G Yi
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Guohua Wang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yang Guo
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shuang Li
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Xiaolong Zhang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Laurie J Minze
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Lin Wang
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rafik M Ghobrial
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Frueh JT, Campe J, Sunaga-Franze DY, Verheyden NA, Ghimire S, Meedt E, Haslinger D, Harenkamp S, Staudenraus D, Sauer S, Kreft A, Schubert R, Lohoff M, Krueger A, Bonig H, Chiocchetti AG, Zeiser R, Holler E, Ullrich E. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis. Oncoimmunology 2023; 13:2296712. [PMID: 38170159 PMCID: PMC10761041 DOI: 10.1080/2162402x.2023.2296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.
Collapse
Affiliation(s)
- Jochen T. Frueh
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Julia Campe
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Daniele Yumi Sunaga-Franze
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
| | - Sakhila Ghimire
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
| | | | - Sascha Sauer
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department of Pediatric Medicine, Division of Pneumology, Allergology, Infectious diseaes und Gastroenterology. Frankfurt am Main, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Lohoff
- Institute for Microbiology, Philipps University, Marburg, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ernst Holler
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ, University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| |
Collapse
|
10
|
Titcombe PJ, Silva Morales M, Zhang N, Mueller DL. BATF represses BIM to sustain tolerant T cells in the periphery. J Exp Med 2023; 220:e20230183. [PMID: 37862030 PMCID: PMC10588758 DOI: 10.1084/jem.20230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/13/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
T cells that encounter self-antigens after exiting the thymus avert autoimmunity through peripheral tolerance. Pathways for this include an unresponsive state known as anergy, clonal deletion, and T regulatory (Treg) cell induction. The transcription factor cues and kinetics that guide distinct peripheral tolerance outcomes remain unclear. Here, we found that anergic T cells are epigenetically primed for regulation by the non-classical AP-1 family member BATF. Tolerized BATF-deficient CD4+ T cells were resistant to anergy induction and instead underwent clonal deletion due to proapoptotic BIM (Bcl2l11) upregulation. During prolonged antigen exposure, BIM derepression resulted in fewer PD-1+ conventional T cells as well as loss of peripherally induced FOXP3+ Treg cells. Simultaneous Batf and Bcl2l11 knockdown meanwhile restored anergic T cell survival and Treg cell maintenance. The data identify the AP-1 nuclear factor BATF as a dominant driver of sustained T cell anergy and illustrate a mechanism for divergent peripheral tolerance fates.
Collapse
Affiliation(s)
- Philip J. Titcombe
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Na Zhang
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel L. Mueller
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
11
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Rochman Y, Kotliar M, Ben-Baruch Morgenstern N, Barski A, Wen T, Rothenberg ME. TSLP shapes the pathogenic responses of memory CD4 + T cells in eosinophilic esophagitis. Sci Signal 2023; 16:eadg6360. [PMID: 37699081 PMCID: PMC10602003 DOI: 10.1126/scisignal.adg6360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The cytokine thymic stromal lymphopoietin (TSLP) mediates type 2 immune responses, and treatments that interfere with TSLP activity are in clinical use for asthma. Here, we investigated whether TSLP contributes to allergic inflammation by directly stimulating human CD4+ T cells and whether this process is operational in eosinophilic esophagitis (EoE), a disease linked to variants in TSLP. We showed that about 10% of esophageal-derived memory CD4+ T cells from individuals with EoE and less than 3% of cells from control individuals expressed the receptor for TSLP and directly responded to TSLP, as determined by measuring the phosphorylation of STAT5, a transcription factor activated downstream of TSLP stimulation. Accordingly, increased numbers of TSLP-responsive memory CD4+ T cells were present in the circulation of individuals with EoE. TSLP increased the proliferation of CD4+ T cells, enhanced type 2 cytokine production, induced the increased abundance of its own receptor, and modified the expression of 212 genes. The epigenetic response to TSLP was associated with an enrichment in BATF and IRF4 chromatin-binding sites, and these transcription factors were induced by TSLP, providing a feed-forward loop. The numbers of circulating and esophageal CD4+ T cells responsive to TSLP correlated with the numbers of esophageal eosinophils, supporting a potential functional role for TSLP in driving the pathogenesis of EoE and providing the basis for a blood-based diagnostic test based on the extent of TSLP-induced STAT5 phosphorylation in circulating CD4+ T cells. These findings highlight the potential therapeutic value of TSLP inhibitors for the treatment of EoE.
Collapse
Affiliation(s)
- Yrina Rochman
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
17
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Prolonged T cell - DC macro-clustering within lymph node microenvironments initiates Th2 cell differentiation in a site-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547554. [PMID: 37461439 PMCID: PMC10350056 DOI: 10.1101/2023.07.07.547554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
| | - Elya A. Shamskhou
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
18
|
Schmidt C, Harberts A, Reimers D, Bertram T, Voß LC, Schmid J, Lory NC, Spohn M, Koch-Nolte F, Huber S, Raczkowski F, Breloer M, Mittrücker HW. IRF4 is required for migration of CD4 + T cells to the intestine but not for Th2 and Th17 cell maintenance. Front Immunol 2023; 14:1182502. [PMID: 37469513 PMCID: PMC10352983 DOI: 10.3389/fimmu.2023.1182502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
The transcription factor Interferon Regulatory Factor 4 (IRF4) is central in control of T cell activation and differentiation. Deficiency of IRF4 results in severe immune deficiency and affects maturation and function of most if not all T cell subsets. Here we use mouse infection models for Citrobacter rodentium and Strongyloides ratti to analyze the function of IRF4 in T helper (Th) 17 and Th2 cell responses, respectively. IRF4 deficient mice were impaired in the control of both pathogens, failed to mount Th17 and Th2 cell responses and showed impaired recruitment of T helper cells to the intestine, the infection site of both pathogens. Compromised intestinal migration was associated with reduced expression of the intestinal homing receptors α4β7 integrin, CCR9 and GPR15. Identification of IRF4 binding sites in the gene loci of these receptors suggests a direct control of their expression by IRF4. Competitive T cell transfer assays further demonstrated that loss of one functional Irf4 allele already affected intestinal accumulation and Th2 and Th17 cell generation, indicating that lower IRF4 levels are of disadvantage for Th2 and Th17 cell differentiation as well as their migration to the intestine. Conversion of peripheral CD4+ T cells from an Irf4 wildtype to an Irf4 heterozygous or from an Irf4 heterozygous to a homozygous mutant genotype after C. rodentium or S. ratti infection did not reduce their capacity to produce Th17 or Th2 cytokines and only partially affected their persistence in the intestine, revealing that IRF4 is not essential for maintenance of the Th2 and Th17 phenotype and for survival of these T helper cells in the intestine. In conclusion, we demonstrate that the expression levels of IRF4 determine Th2 and Th17 cell differentiation and their intestinal accumulation but that IRF4 expression is not crucial for Th2 and Th17 cell survival.
Collapse
Affiliation(s)
- Constantin Schmidt
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aenne Harberts
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Reimers
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Bertram
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Caroline Voß
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Schmid
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Christian Lory
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Raczkowski
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minka Breloer
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department for Biology, University Hamburg, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Zhang Z, Zhu Z, Wang X, Liu D, Liu X, Mi Z, Tao H, Fan H. Comprehensive landscape of immune-based classifier related to early diagnosis and macrophage M1 in spinal cord injury. Aging (Albany NY) 2023; 15:1158-1176. [PMID: 36842142 PMCID: PMC10008498 DOI: 10.18632/aging.204548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Numerous studies have documented that immune responses are crucial in the pathophysiology of spinal cord injury (SCI). Our study aimed to uncover the function of immune-related genes (IRGs) in SCI. Here, we comprehensively evaluated the transcriptome data of SCI and healthy controls (HC) obtained from the GEO Database integrating bioinformatics and experiments. First, a total of 2067 DEGs were identified between the SCI and HC groups. Functional enrichment analysis revealed substantial immune-related pathways and functions that were abnormally activated in the SCI group. Immune analysis revealed that myeloid immune cells were predominantly upregulated in SCI patients, while a large number of lymphoid immune cells were dramatically downregulated. Subsequently, 51 major IRGs were screened as key genes involved in SCI based on the intersection of the results of WGCNA analysis, DEGs, and IRGs. Based on the expression profiles of these genes, two distinct immune modulation patterns were recognized exhibiting opposite immune characteristics. Moreover, 2 core IRGs (FCER1G and NFATC2) were determined to accurately predict the occurrence of SCI via machine learning. qPCR analysis was used to validate the expression of core IRGs in an external independent cohort. Finally, the expression of these core IRGs was validated by sequencing, WB, and IF analysis in vivo. We found that these two core IRGs were closely associated with immune cells and verified the co-localization of FCER1G with macrophage M1 via IF analysis. Our study revealed the key role of immune-related genes in SCI and contributed to a fresh perspective for early diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhijie Zhu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Xuankang Wang
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Dong Liu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Xincheng Liu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhenzhou Mi
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Huiren Tao
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen 518052, China
| | - Hongbin Fan
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
20
|
Ma X, Liu Z, Yu Y, Jiang Y, Wang C, Zuo Z, Ling S, He M, Cao S, Wen Y, Zhao Q, Wu R, Huang X, Zhong Z, Peng G, Gu Y. Microsporum gypseum Isolated from Ailuropoda melanoleuca Provokes Inflammation and Triggers Th17 Adaptive Immunity Response. Int J Mol Sci 2022; 23:ijms231912037. [PMID: 36233337 PMCID: PMC9570494 DOI: 10.3390/ijms231912037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 12/02/2022] Open
Abstract
Microsporum gypseum causes dermatomycoses in giant pandas (Ailuropoda melanoleuca). This study aimed to investigate the immune response of M. gypseum following deep infection. The degree of damage to the heart, liver, spleen, lungs, and kidneys was evaluated using tissue fungal load, organ index, and histopathological methods. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) detected the mRNA expression of receptors and cytokines in the lung, and immunofluorescence staining and flow cytometry, were used to assess immune cells in the lung. The results indicated that conidia mainly colonized the lungs and caused serious injury with M. gypseum infection. Furthermore, dectin-1, TLR-2, and TLR-4 played a role in recognizing M. gypseum cells. Numerous inflammatory cells, mainly macrophages, dendritic cells, polymorphonuclear neutrophils, and inflammatory cytokines (TGF-β, TNF-α, IL-1β, IL-6, IL-10, IL-12, and IL-23), were activated in the early stages of infection. With the high expression of IL-22, IL-17A, and IL-17F, the Th17 pathway exerted an adaptive immune response to M. gypseum infection. These results can potentially aid in the diagnosis and treatment of diseases caused by M. gypseum in giant pandas.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaozhang Jiang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China
| | - Ming He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-18190681226
| |
Collapse
|
21
|
Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. SCIENCE ADVANCES 2022; 8:eabn6552. [PMID: 36206339 PMCID: PMC9544339 DOI: 10.1126/sciadv.abn6552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marisa Mitchell-Flack
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul G. Thomas
- St. Jude’s Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sean P. Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | | | - Maria A. Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
22
|
IRF4 as an Oncogenic Master Transcription Factor. Cancers (Basel) 2022; 14:cancers14174314. [PMID: 36077849 PMCID: PMC9454692 DOI: 10.3390/cancers14174314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Master transcription factors regulate essential developmental processes and cellular maintenance that characterize cell identity. Many of them also serve as oncogenes when aberrantly expressed or activated. IRF4 is one of prime examples of oncogenic master transcription factors that has been implicated in various mature lymphoid neoplasms. IRF4 forms unique regulatory circuits and induces oncogenic transcription programs through the interactions with upstream pathways and binding partners. Abstract IRF4 is a transcription factor in the interferon regulatory factor (IRF) family. Since the discovery of this gene, various research fields including immunology and oncology have highlighted the unique characteristics and the importance of IRF4 in several biological processes that distinguish it from other IRF family members. In normal lymphocyte development and immunity, IRF4 mediates critical immune responses via interactions with upstream signaling pathways, such as the T-cell receptor and B-cell receptor pathways, as well as their binding partners, which are uniquely expressed in each cell type. On the other hand, IRF4 acts as an oncogene in various mature lymphoid neoplasms when abnormally expressed. IRF4 induces several oncogenes, such as MYC, as well as genes that characterize each cell type by utilizing its ability as a master regulator of immunity. IRF4 and its upstream factor NF-κB form a transcriptional regulatory circuit, including feedback and feedforward loops, to maintain the oncogenic transcriptional program in malignant lymphoid cells. In this review article, we provide an overview of the molecular functions of IRF4 in mature lymphoid neoplasms and highlight its upstream and downstream pathways, as well as the regulatory circuits mediated by IRF4.
Collapse
|
23
|
Coillard L, Guaddachi F, Ralu M, Brabencova E, Garbar C, Bensussan A, Le Bras M, Lehmann-Che J, Jauliac S. The NFAT3/RERG Complex in Luminal Breast Cancers Is Required to Inhibit Cell Invasion and May Be Correlated With an Absence of Axillary Lymph Nodes Colonization. Front Oncol 2022; 12:804868. [PMID: 35847954 PMCID: PMC9280138 DOI: 10.3389/fonc.2022.804868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Luminal breast cancers represent 70% of newly diagnosed breast cancers per annum and have a relatively good prognosis compared with triple-negative breast cancers. Luminal tumors that are responsive to hormonal therapy are particularly associated with a favorable prognosis. Nonetheless, the absolute number of metastatic relapses in luminal cancers is larger than in triple-negative breast cancers. A better understanding of the biology of luminal cancers, control of metastases formation, and identification of predictive markers of their evolution are therefore still necessary. In this context, we previously disclosed the key role of NFAT3 in regulating luminal breast cancer invasion. We have now identified a specific inhibitory region, in the C-terminal part of NFAT3, required for the inhibition of invasion of the human luminal breast cancer cell line T-47D. Indeed, we showed that this 85 amino acid C-terminal region acts as a dominant negative form of NFAT3 and that its overexpression in the T-47D cell line led to increased cell invasion. Mechanistically, we have revealed that this region of NFAT3 interacts with the small Ras GTPase RERG (RAS like estrogen regulated growth inhibitor) and shown that RERG expression is required for NFAT3 to impede T-47D cell invasion. We have validated the association of NFAT3 with RERG in human luminal breast cancer tissues. We have shown an increase of the quantity of the NFAT3/RERG complexes in patients without axillary lymph node colonization and therefore proposed that the detection of this complex may be a non-invasive marker of axillary lymph node colonization.
Collapse
Affiliation(s)
- Lucie Coillard
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
| | - Frédéric Guaddachi
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
| | - Maëlle Ralu
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
| | - Eva Brabencova
- Department of Biopathology, Centre Régional de Lutte Contre le Cancer, Institut Godinot, Reims, France
| | - Christian Garbar
- Department of Biopathology, Centre Régional de Lutte Contre le Cancer, Institut Godinot, Reims, France
| | - Armand Bensussan
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
| | - Morgane Le Bras
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
| | - Jacqueline Lehmann-Che
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
- Molecular Oncology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | - Sébastien Jauliac
- Université de Paris, Research Saint Louis Institute (IRSL), Institut National de la Santé et de la Recherche Médicale, Human Immunology Pathophysiology Immunotherapy (INSERM HIPI) U976, Paris, France
- *Correspondence: Sébastien Jauliac,
| |
Collapse
|
24
|
Hsieh T, Sasaki D, Taira N, Chien H, Sarkar S, Seto Y, Miyagi M, Ishikawa H. JunB Is Critical for Survival of T Helper Cells. Front Immunol 2022; 13:901030. [PMID: 35837408 PMCID: PMC9273772 DOI: 10.3389/fimmu.2022.901030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Clonal expansion and differentiation of various T helper subsets, such as Th1, Th2, and Th17 cells, depend on a complex of transcription factors, IRF4 and a BATF-containing AP-1 heterodimer. A major BATF heterodimeric partner, JunB, regulates Th17 differentiation, but the role of JunB in other T helper subsets is not well understood. Here we demonstrate that JunB is required for clonal expansion of Th1, Th2 and Th17 cells. In mice immunized with lipopolysaccharide (LPS), papain, or complete Freund's adjuvant (CFA), which induce predominantly Th1, Th2 and Th17 cells, respectively, accumulation of antigen-primed, Junb-deficient CD4+ T cells is significantly impaired. TCR-stimulated Junb-deficient CD4+ T cells are more sensitive to apoptosis, although they showed largely normal proliferation and cellular metabolism. JunB directly inhibits expression of genes involved in apoptosis, including Bcl2l11 (encoding Bim), by promoting IRF4 DNA binding at the gene locus. Taken together, JunB serves a critical function in clonal expansion of diverse T helper cells by inhibiting their apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
25
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Michée-Cospolite M, Boudigou M, Grasseau A, Simon Q, Mignen O, Pers JO, Cornec D, Le Pottier L, Hillion S. Molecular Mechanisms Driving IL-10- Producing B Cells Functions: STAT3 and c-MAF as Underestimated Central Key Regulators? Front Immunol 2022; 13:818814. [PMID: 35359922 PMCID: PMC8961445 DOI: 10.3389/fimmu.2022.818814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Regulatory B cells (Bregs) have been highlighted in very different pathology settings including autoimmune diseases, allergy, graft rejection, and cancer. Improving tools for the characterization of Bregs has become the main objective especially in humans. Transitional, mature B cells and plasma cells can differentiate into IL-10 producing Bregs in both mice and humans, suggesting that Bregs are not derived from unique precursors but may arise from different competent progenitors at unrestricted development stages. Moreover, in addition to IL-10 production, regulatory B cells used a broad range of suppressing mechanisms to modulate the immune response. Although Bregs have been consistently described in the literature, only a few reports described the molecular aspects that control the acquisition of the regulatory function. In this manuscript, we detailed the latest reports describing the control of IL-10, TGFβ, and GZMB production in different Breg subsets at the molecular level. We focused on the understanding of the role of the transcription factors STAT3 and c-MAF in controlling IL-10 production in murine and human B cells and how these factors may represent an important crossroad of several key drivers of the Breg response. Finally, we provided original data supporting the evidence that MAF is expressed in human IL-10- producing plasmablast and could be induced in vitro following different stimulation cocktails. At steady state, we reported that MAF is expressed in specific human B-cell tonsillar subsets including the IgD+ CD27+ unswitched population, germinal center cells and plasmablast.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Divi Cornec
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| | | | - Sophie Hillion
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| |
Collapse
|
27
|
Zhu Y, Yang G. Molecular identification and functional characterization of IRF4 from common carp (Cyprinus carpio. L) in immune response: a negative regulator in the IFN and NF-κB signalling pathways. BMC Vet Res 2022; 18:106. [PMID: 35300694 PMCID: PMC8928632 DOI: 10.1186/s12917-022-03205-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background The interferon (IFN) regulatory factors (IRFs) were originally identified as transcription factors playing critical roles in the regulation of IFN-related genes in the signal pathway. In mammals, IRF4 plays a vital role in both the innate and adaptive immune system. This study aims to reveal the molecular characterization, phylogenetic analysis, expression profiles and the regulatory role in the IFN and NF-κB signalling pathways of IRF4 in common carp (Cyprinus carpio. L) (abbreviation, ccIRF4). Results Here, ccIRF4 was identified and characterized, it contained a DNA binding domain (DBD) which possess five tryptophans and an IRF-associated domain (IAD). The predicted protein sequence of the ccIRF4 showed higher identities with grass carp (Ctenopharyngodon idella) and zebrafish (Danio rerio). Phylogenetic analysis suggested that ccIRF4 has the closest relationship with zebrafish IRF4. Quantitative real-time PCR analysis showed that ccIRF4 was constitutively expressed in all investigated tissues with the highest expression level in the gonad. Polyinosinic:polycytidylic acid (poly I:C) stimulation up-regulated the ccIRF4 expressions in the liver, spleen, head kidney, skin, foregut and hindgut. Upon Aeromonas hydrophila injection, the expression level of ccIRF4 was up-regulated in all tissues with the exception of spleen. In addition, ccIRF4 was induced by lipopolysaccharide (LPS), peptidoglycan (PGN) and Flagellin in head kidney leukocytes (HKLs). Overexpression of the ccIRF4 gene in epithelioma papulosum cyprini cells (EPC) down regulated the expressions of IFN-related genes and proinflammatory factors. Dual-luciferase reporter assay revealed that ccIRF4 decreased the activation of NF-κB through MyD88. Conclusions These results indicate that ccIRF4 participates in both antiviral and antibacterial immune response and negatively regulates the IFN and NF-κB response. Overall, our study on ccIRF4 provides more new insights into the innate immune system of common carp as well as a theoretical basis for investigating the pathogenesis and prevention of fish disease.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Key Laboratory of Tropical Marine Fishery Resources Protection and Utilization of Hainan Province, College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China. .,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
28
|
Michaels Lopez V, Legrand A, Tejerina E, Megret J, Bordin C, Quellec V, Ezine S. Intrathymic SIRPa cDC subsets organization in normal and stress conditions reveal another level of cDCs heterogeneity. J Leukoc Biol 2022; 112:629-639. [DOI: 10.1002/jlb.1a0921-502rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Agnès Legrand
- Institut Necker Enfants Malades, Université de Paris Paris France
| | | | - Jérome Megret
- Structure Fédérative de Recherche Necker Paris France
| | - Chantal Bordin
- Institut Necker Enfants Malades, Université de Paris Paris France
| | | | - Sophie Ezine
- Institut Necker Enfants Malades, Université de Paris Paris France
| |
Collapse
|
29
|
Tsao HW, Kaminski J, Kurachi M, Barnitz RA, DiIorio MA, LaFleur MW, Ise W, Kurosaki T, Wherry EJ, Haining WN, Yosef N. Batf-mediated epigenetic control of effector CD8 + T cell differentiation. Sci Immunol 2022; 7:eabi4919. [PMID: 35179948 DOI: 10.1126/sciimmunol.abi4919] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The response of naive CD8+ T cells to their cognate antigen involves rapid and broad changes to gene expression that are coupled with extensive chromatin remodeling, but the mechanisms governing these changes are not fully understood. Here, we investigated how these changes depend on the basic leucine zipper ATF-like transcription factor Batf, which is essential for the early phases of the process. Through genome scale profiling, we characterized the role of Batf in chromatin organization at several levels, including the accessibility of key regulatory regions, the expression of their nearby genes, and the interactions that these regions form with each other and with key transcription factors. We identified a core network of transcription factors that cooperated with Batf, including Irf4, Runx3, and T-bet, as indicated by their colocalization with Batf and their binding in regions whose accessibility, interactions, and expression of nearby genes depend on Batf. We demonstrated the synergistic activity of this network by overexpressing the different combinations of these genes in fibroblasts. Batf and Irf4, but not Batf alone, were sufficient to increase accessibility and transcription of key loci, normally associated with T cell function. Addition of Runx3 and T-bet further contributed to fine-tuning of these changes and was essential for establishing chromatin loops characteristic of T cells. These data provide a resource for studying the epigenomic and transcriptomic landscape of effector differentiation of cytotoxic T cells and for investigating the interdependency between transcription factors and its effects on the epigenome and transcriptome of primary cells.
Collapse
Affiliation(s)
- Hsiao-Wei Tsao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - R Anthony Barnitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael A DiIorio
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin W LaFleur
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
30
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
31
|
Zhai X, Hong T, Zhang T, Xing B, Wang J, Wang X, Miao R, Li T, Wei L. Identification and antiviral effect of Cherry Valley duck IRF4. Poult Sci 2021; 101:101560. [PMID: 34823176 PMCID: PMC8628015 DOI: 10.1016/j.psj.2021.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a multifunctional transcription factor that plays an important regulatory role in the interferon (IFN) signaling. IRF4 participates in the process of antivirus, Th cell differentiation and B cell maturation by regulating the expression of IFN and some lymphokines. In this study, Cherry Valley duck IRF4 (duIRF4) was cloned and its cDNA was analyzed. Expression of duIRF4 in a wide variety of tissues and changes in duIRF4 expression due to viral infection also was detected by quantitative real-time PCR. The results show that duIRF4 contains 1,341 bp of ORF encoding a protein with 446 amino acids and contains 3 domains: DNA-binding domain (DBD), IRF-association domain (IAD) and nuclear localization signal (NLS). Quantitative real-time PCR analysis showed that duIRF4 was evenly expressed in all tissues examined, with the highest expression in the spleen, followed by the bursa of Fabricius, and lower in the skin and brain. In addition, expression of duIRF4 in the brain and spleen was significantly upregulated after being infected by duck plague virus, duck Tembusu virus, and novel duck reovirus. These data suggest that duIRF4 may be involved in innate immune response.
Collapse
Affiliation(s)
- Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Tianqi Hong
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City 271000, Shandong Province, China
| | - Bin Xing
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Jinchao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Xiuyuan Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Runchun Miao
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Tianxu Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City 271000, Shandong Province, China.
| |
Collapse
|
32
|
Aria H, Ghaedrahmati F, Ganjalikhani-Hakemi M. Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer. J Cell Physiol 2021; 236:6168-6189. [PMID: 33561318 DOI: 10.1002/jcp.30303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
A recently proposed term "immunometabolism" points to the functional intracellular metabolic changes that occur within different immune cells. Recent findings suggest that immune responses can be determined by the metabolic status of immune cells and metabolic reprogramming is an important feature of immune cell activation. Metabolic reprogramming is also well known for cancer cells and has been suggested as a major sign of cancer progression. Metabolic reprogramming of immune cells is also seen in the tumor microenvironment. In the past decade, immunometabolism has progressively become an extraordinarily vibrant and productive area of study in immunology because of its importance for immunotherapy. Understanding the immunometabolic situation of T cells and other immune cells along with the metabolic behavior of cancer cells can help us design new therapeutic approaches against cancers. Here, we have the aim to review the cutting-edge findings on the immunometabolic situation in immune and tumor cells. We discuss new findings on signaling pathways during metabolic reprogramming, its regulation, and the participation of reactive oxygen species in these processes.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
33
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
34
|
Lee EG, Kim KH, Hur J, Kang JY, Lee HY, Lee SY. Platycodin D attenuates airway inflammation via suppression Th2 transcription factor in a murine model of acute asthma. J Asthma 2021; 59:1279-1289. [PMID: 34129415 DOI: 10.1080/02770903.2021.1941084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Bronchial asthma is a common chronic inflammatory condition of the airway tissue. Platycodin D (PLD) has antiinflammatory effects in a mouse model of allergic asthma. In this work, the anti-asthma potential of PLD was studied by investigation of its effect to suppress airway inflammation and mucin production, a murine model of asthma and the possible mechanisms.Methods: Mice were randomly assigned to five experimental groups: control, ovalbumin (OVA), OVA+ICS (intranasal fluticasone), OVA+PLD and OVA+PLD/ICS. Airway histological studies were evaluated by the H&E staining; IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid were evaluated by ELISA; GATA3 and IRF4 mRNA of airway were measured by RT-PCR and their protein level were measured by Western blotting.Results: Our study showed that PLD suppressed eosinophilic inflammation and mucin production in bronchial mucosa. Moreover, PLD inhibited production of Th2 cytokines such as IL-4, IL-5, and IL-13. Protein production of GATA3 and IRF4, were also decreased in PLD treated OVA asthma model. Taken together, our results provided evidence that PLD inhibits the airway inflammation via suppression of Th2 transcription factor production.Conclusion: These findings suggest that PLD may effectively ameliorate the progression of asthma. These results suggest that PLD could be used as a therapy for allergic asthma.
Collapse
Affiliation(s)
- Eung Gu Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Hoon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hur
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
35
|
Lin CC, Law BF, Hettick JM. Acute 4,4'-Methylene Diphenyl Diisocyanate Exposure-Mediated Downregulation of miR-206-3p and miR-381-3p Activates Inducible Nitric Oxide Synthase Transcription by Targeting Calcineurin/NFAT Signaling in Macrophages. Toxicol Sci 2021; 173:100-113. [PMID: 31609387 DOI: 10.1093/toxsci/kfz215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exposure to 4,4'-methylene diphenyl diisocyanate (MDI) in the occupational setting may lead to development of occupational asthma (OA), and the underlying molecular mechanisms of MDI-induced disease pathogenesis remain an active area of research. Using a nose-only mouse inhalation model, we find that circulating microRNA (miR)-206-3p and miR-381-3p are downregulated after MDI exposure; however, cellular miR-206-3p and miR-381-3p responses after MDI aerosol exposure and their pathophysiological roles in MDI-OA are unknown. We hypothesize that miR-206-3p and miR-381-3p-regulated mechanisms cause increased expression of the inducible nitric oxide synthase (iNOS) after MDI aerosol exposure. We examined cellular miR-206-3p and miR-381-3p, calcineurins, nuclear factors of activated T cells (NFATs), and iNOS levels from both nose-only exposed murine bronchoalveolar lavage cells (BALCs) and differentiated THP-1 macrophages treated with MDI-glutathione (GSH) conjugates. Both in vivo murine MDI aerosol exposure and in vitro MDI-GSH exposures in THP-1 macrophages result in downregulation of endogenous miR-206-3p and miR-381-3p and upregulation of PPP3CA and iNOS expression. Transfection of THP-1 macrophages with miR-inhibitor-206-3p and miR-inhibitor-381-3p resulted in the upregulation of PPP3CA and iNOS. Using RNA-induced silencing complex immunoprecipitation and translational reporter assays, we verified that PPP3CA, but not iNOS, is directly targeted by both miR-206-3p and miR-381-3p. Downregulation of miR-206-3p and miR-381-3p following by MDI exposure induces calcineurin/NFAT signaling-mediated iNOS transcription in macrophages and BALCs.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Brandon F Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Justin M Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
36
|
Interferon regulatory factor 4 controls effector functions of CD8 + memory T cells. Proc Natl Acad Sci U S A 2021; 118:2014553118. [PMID: 33859042 DOI: 10.1073/pnas.2014553118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor IRF4 is required for CD8+ T cell activation, proliferation, and differentiation to effector cells and thus is essential for robust CD8+ T cell responses. The function of IRF4 in memory CD8+ T cells yet needs to be explored. To investigate the role of IRF4 for maintaining differentiation state and survival of CD8+ memory T cells, we used a mouse model with tamoxifen-inducible Irf4 knockout to preclude effects due to inefficient memory cell differentiation in absence of IRF4. We infected mice with ovalbumin-recombinant listeria and induced Irf4 knockout after clearance of the pathogen. Loss of IRF4 resulted in phenotypical changes of CD8+ memory T cells but did not cause a reduction of the total memory T cell population. However, upon reencounter of the pathogen, CD8+ memory T cells showed impaired expansion and acquisition of effector functions. When compared to CD8+ effector memory T cells, CD8+ tissue-resident memory T cells (TRM cells) expressed higher IRF4 levels. Mice with constitutive Irf4 knockout had diminished CD8+ TRM-cell populations, and tamoxifen-induced Irf4 deletion caused a reduction of this cell population. In conclusion, our results demonstrate that IRF4 is required for effective reactivation but not for general survival of CD8+ memory T cells. Formation and maintenance of CD8+ TRM cells, in contrast, appear to depend on IRF4.
Collapse
|
37
|
Zhao Y, Liu Z, Qin L, Wang T, Bai O. Insights into the mechanisms of Th17 differentiation and the Yin-Yang of Th17 cells in human diseases. Mol Immunol 2021; 134:109-117. [PMID: 33756352 DOI: 10.1016/j.molimm.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Th17 cells are a lineage of CD4+ T helper cells with Th17-specific transcription factors RORγt and RoRα. Since its discovery in 2005, research on Th17 has been in rapid progress, and increasing cytokines or transcription factors have been uncovered in the activation and differentiation of Th17 cells. Furthermore, growing evidence proves there are two different subsets of Th17 cells, namely non-pathogenic Th17 (non-pTh17) and pathogenic Th17 (pTh17), both of which play important roles in adaptive immunity, especially in host defenses, autoimmune diseases, and cancer. In this review, we summarize and discuss the mechanisms of Th17 cells differentiation, and their roles in immunity and diseases.
Collapse
Affiliation(s)
- Yangzhi Zhao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| | - Zhongshan Liu
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Lei Qin
- Institute for Immunology, Tsinghua University, Beijing, China.
| | - Tiejun Wang
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
38
|
Choi J, Crotty S. Bcl6-Mediated Transcriptional Regulation of Follicular Helper T cells (T FH). Trends Immunol 2021; 42:336-349. [PMID: 33663954 DOI: 10.1016/j.it.2021.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023]
Abstract
Follicular helper T cells (TFH) are essential B cell-help providers in the formation of germinal centers (GCs), affinity maturation of GC B cells, differentiation of high-affinity antibody-producing plasma cells, and production of memory B cells. The transcription factor (TF) B cell lymphoma 6 (Bcl6) is at the center of gene regulation in TFH biology, including differentiation and function, but how Bcl6 does this, and what additional TFs contribute, remain complex questions. This review focuses on advances in our understanding of Bcl6-mediated gene regulation of TFH functions, and the modulation of TFH by other TFs. These advances may have important implications in deciphering how repressor TFs can regulate many immunological cell types. An improved understanding of TFH biology will likely provide insights into biomedically relevant diseases.
Collapse
Affiliation(s)
- Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
39
|
Ray S, Tillo D, Durell SR, Khund-Sayeed S, Vinson C. REL Domain of NFATc2 Binding to Five Types of DNA Using Protein Binding Microarrays. ACS OMEGA 2021; 6:4147-4154. [PMID: 33644537 PMCID: PMC7906578 DOI: 10.1021/acsomega.0c04069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
NFATc2 is a DNA binding protein in the Rel family transcription factors, which binds a CGGAA motif better when both cytosines in the CG dinucleotide are methylated. Using protein binding microarrays (PBMs), we examined the DNA binding of NFATc2 to three additional types of DNA: single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with either 5-methylcytosine (5mC, M) or 5-hydroxymethylcytosine (5hmC, H) in one strand and a cytosine in the second strand. ATTTCCAC, the complement of the core GGAA motif, is better bound as ssDNA compared to dsDNA. dsDNA containing the 5-mer CGGAA with either 5mC or 5hmC in one DNA strand is bound stronger than CGGAA. In contrast, the reverse complement TTCCG is bound weaker when it contains 5mC. Analysis of the available NFATc2:dsDNA complexes rationalizes these PBM data.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Desiree Tillo
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Stewart R. Durell
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Syed Khund-Sayeed
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Charles Vinson
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| |
Collapse
|
40
|
Ripperger TJ, Bhattacharya D. Transcriptional and Metabolic Control of Memory B Cells and Plasma Cells. Annu Rev Immunol 2021; 39:345-368. [PMID: 33556247 DOI: 10.1146/annurev-immunol-093019-125603] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.
Collapse
Affiliation(s)
- Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| |
Collapse
|
41
|
Katagiri T, Kameda H, Nakano H, Yamazaki S. Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunol Med 2021; 44:197-203. [PMID: 33470914 DOI: 10.1080/25785826.2021.1872838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JunB, a component of the activator protein-1 (AP-1) transcription factor, is known to exhibit an important role in bone formation and bone marrow cell proliferation. During T helper type 2 (Th2) cell differentiation, JunB contributes to the regulation of interleukin (IL)-4 expression, and AP-1 and nuclear factor of activated T cell (NFAT) constitute a heteromer and contribute to IL-2 production. However, the role of JunB in other T cells has not been investigated. In 2017, it was revealed that JunB, in collaboration with basic leucine zipper ATF-like transcription factor (BATF), regulates the expression of Th17-related genes. Furthermore, JunB was found to play an important role in regulatory T (Treg) cell differentiation, contributing to CD25 expression and IL-2 production. IL-2 is a T cell activator and has been shown as a necessary factor for Treg proliferation. Here, we review the role of JunB in T cells based on basic research data and discuss the potential for its clinical applications.
Collapse
Affiliation(s)
- Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hideto Kameda
- Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Spinner CA, Lazarevic V. Transcriptional regulation of adaptive and innate lymphoid lineage specification. Immunol Rev 2020; 300:65-81. [PMID: 33615514 DOI: 10.1111/imr.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Once alerted to the presence of a pathogen, activated CD4+ T cells initiate distinct gene expression programs that produce multiple functionally specialized T helper (Th) subsets. The cytokine milieu present at the time of antigen encounter instructs CD4+ T cells to differentiate into interferon-(IFN)-γ-producing Th1 cells, interleukin-(IL)-4-producing Th2 cells, IL-17-producing Th17 cells, follicular T helper (Tfh) cells, or regulatory T (Treg) cells. In each of these Th cell subsets, a single transcription factor has been identified as a critical regulator of its specialized differentiation program. In this context, the expression of the "master regulator" is necessary and sufficient to activate lineage-specific genes while restricting the gene expression program of alternative Th fates. Thus, the transcription factor T-bet controls Th1 differentiation program, while the development of Th2, Th17, Tfh, and Treg cells is dependent on transcription factors GATA3, RORγt, Bcl6, and Foxp3, respectively. Nevertheless, master regulators or, more precisely, lineage-defining transcription factors do not function in isolation. In fact, they interact with a complex network of transcription factors, orchestrating cell lineage specification programs. In this review, we discuss the concept of the combinatorial interactions of key transcription factors in determining helper T cell identity. Additionally, lineage-defining transcription factors have well-established functions beyond their role in CD4+ Th subsets. They play critically important functions at distinct stages during T cell development in the thymus and they control the development of innate lymphoid cells (ILCs) in the bone marrow. In tracking the journey of T cells traversing from the thymus to the periphery and during the immune response, we discuss in broad terms developmental stage and context-dependent functions of lineage-defining transcription factors in regulating specification programs of innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Jakobi M, Kiefer A, Mirzakhani H, Rauh M, Zimmermann T, Xepapadaki P, Stanic B, Akdis M, Papadopoulos NG, Raby BA, Weiss ST, Finotto S. Role of nuclear factor of activated T cells 2 (NFATc2) in allergic asthma. Immun Inflamm Dis 2020; 8:704-712. [PMID: 33079489 PMCID: PMC7654396 DOI: 10.1002/iid3.360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We recently described increased NFATc1, IRF4, and NIP45 messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMCs) of asthmatic children and adults with multiple allergies. OBJECTIVE NFATc2 has been described to associate with IRF4 to induce interleukin-4, and to be inhibited by T-bet. Here, we analyzed the role of NFATc2 in asthmatic children and adults. METHODS PBMCs were isolated from the blood of control of asthmatics subjects. Some PBMCs were analyzed untreated and some cultured with and without phytohemagglutinin. Then, RNA was extracted from the cells and cytokines were measured in the supernatants via enzyme-linked immunosorbent assay or multiplex analysis. RNA was then reverse-transcribed and NFATc1, NFATC2, IRF4, and T-bet mRNA were analyzed by real-time polymerase chain reaction. In addition, in peripheral blood cells, NFATc2 expression was analyzed, in a population of asthmatic children and adults from the Asthma BRIDGE study. RESULTS In addition to NFATc1 and NIP45, also NFATc2 was found upregulated in PBMCs and peripheral blood cells from asthmatic children and adults with allergic asthma. Moreover, NFATc1 directly correlated with lymphocytes number whereas NFATc2 correlated with peripheral eosinophilia in asthma. CONCLUSIONS In addition to NFATc1 and NIP45, NFATc2 was found upregulated in asthma. Moreover, NFATc1 mRNA correlated with lymphocytes both in control and asthma, and NFATC1 and NFATc2 mRNA showed a direct correlation with eosinophils in controls but not in asthma, indicating that NFATc1 is associated with lymphocytes and not eosinophils in asthma. CLINICAL SIGNIFICANCE Targeting NFATc2 in T lymphocytes might ameliorate the allergic phenotype in asthmatic subjects.
Collapse
Affiliation(s)
- Marielena Jakobi
- Department of Molecular Pneumology, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Alexander Kiefer
- Department of Allergy and Pneumology, Children's Hospital, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Manfred Rauh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Theodor Zimmermann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Paraskevi Xepapadaki
- Department of Allergy, 2nd Pediatric ClinicNational and Kapodistrian University of AthensAthensGreece
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavos WolfgangSwitzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavos WolfgangSwitzerland
| | - Nikolaos G. Papadopoulos
- Department of Allergy, 2nd Pediatric ClinicNational and Kapodistrian University of AthensAthensGreece
- Centre for Respiratory Medicine and AllergyUniversity of ManchesterUK
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Susetta Finotto
- Department of Molecular Pneumology, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
44
|
Del Zotto G, Principi E, Antonini F, Baratto S, Panicucci C, Bruno C, Raffaghello L. Comprehensive Phenotyping of Peripheral Blood T Lymphocytes in Healthy Mice. Cytometry A 2020; 99:243-250. [PMID: 33098601 DOI: 10.1002/cyto.a.24246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023]
Abstract
T lymphocytes play a central role in antigen-specific immune responses. They modulate the function of different immune cells both through a direct contact (receptor binding) and through the secretion of cytokines. At the same time, they are deeply involved in the direct killing of aberrant target cells. T lymphocytes derive from a bone marrow precursor that migrates in the thymus where the main differentiation steps take place. Mature CD4 and CD8 single-positive cells, then, leave the thymus to reach the secondary lymphoid organs. T-cell subsets and their maturation steps can be identified mainly based on the expression of extracellular markers, intracellular transcription factors and cytokine production profiles. In this review, we report, from a cytometric point of view, an overview of the most important T-cell subpopulations and their differentiation state. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Genny Del Zotto
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Francesca Antonini
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| |
Collapse
|
45
|
Kalekar LA, Cohen JN, Prevel N, Sandoval PM, Mathur AN, Moreau JM, Lowe MM, Nosbaum A, Wolters PJ, Haemel A, Boin F, Rosenblum MD. Regulatory T cells in skin are uniquely poised to suppress profibrotic immune responses. Sci Immunol 2020; 4:4/39/eaaw2910. [PMID: 31492709 DOI: 10.1126/sciimmunol.aaw2910] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
At the center of fibrosing diseases is the aberrant activation of tissue fibroblasts. The cellular and molecular mechanisms of how the immune system augments fibroblast activation have been described; however, little is known about how the immune system controls fibroblast function in tissues. Here, we identify regulatory T cells (Tregs) as important regulators of fibroblast activation in skin. Bulk cell and single-cell analysis of Tregs in murine skin and lungs revealed that Tregs in skin are transcriptionally distinct and skewed toward T helper 2 (TH2) differentiation. When compared with Tregs in lung, skin Tregs preferentially expressed high levels of GATA3, the master TH2 transcription factor. Genes regulated by GATA3 were highly enriched in skin "TH2 Treg" subsets. In functional experiments, Treg depletion resulted in a preferential increase in TH2 cytokine production in skin. Both acute depletion and chronic reduction of Tregs resulted in spontaneous skin fibroblast activation, profibrotic gene expression, and dermal fibrosis, all of which were exacerbated in a bleomycin-induced murine model of skin sclerosis. Lineage-specific deletion of Gata3 in Tregs resulted in an exacerbation of TH2 cytokine secretion that was preferential to skin, resulting in enhanced fibroblast activation and dermal fibrosis. Together, we demonstrate that Tregs play a critical role in regulating fibroblast activation in skin and do so by expressing a unique tissue-restricted transcriptional program that is mediated, at least in part, by GATA3.
Collapse
Affiliation(s)
- Lokesh A Kalekar
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Jarish N Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Prevel
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Anubhav N Mathur
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua M Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Nosbaum
- Department of Allergy and Clinical Immunology, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Lyon, France
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Anna Haemel
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Francesco Boin
- Department of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Cook SL, Franke MC, Sievert EP, Sciammas R. A Synchronous IRF4-Dependent Gene Regulatory Network in B and Helper T Cells Orchestrating the Antibody Response. Trends Immunol 2020; 41:614-628. [PMID: 32467029 DOI: 10.1016/j.it.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.
Collapse
Affiliation(s)
- Sarah L Cook
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA.
| | - Marissa C Franke
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Evelyn P Sievert
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
47
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y, Wang S, Wang Z, Wang Z, Wang Y, Zhou H, Cai Z, Ye Z. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front Immunol 2020; 11:1026. [PMID: 32508847 PMCID: PMC7251969 DOI: 10.3389/fimmu.2020.01026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4+ T cells remains to be further explored since the current ACT is mainly focused on CD8+ cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4+ T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhai Cai
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Han D, Medina-Rodriguez EM, Lowell JA, Beurel E. Glycogen synthase kinase-3 promotes T helper type 17 differentiation by promoting interleukin-9 production. Immunology 2020; 160:357-365. [PMID: 32277469 DOI: 10.1111/imm.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
T helper type 17 (Th17) cells are recognized as important contributors to the deleterious effects of several neurological and psychiatric diseases. Clarifying mechanisms that control the production of Th17 cells may therefore provide new strategies for developing novel interventions in a broad spectrum of disorders. Th17 cell differentiation is promoted by glycogen synthase kinase-3 (GSK3), but the mechanisms for this are only beginning to be understood. Using T-cell-selective depletion of GSK3β and multiple selective pharmacological GSK3 inhibitors, we found that GSK3 inhibition decreased C-C motif chemokine (ccl)20, C-C motif chemokine receptor (ccr)6, interleukin (IL)-9, Runt-related transcription factor (Runx)1, interferon regulatory factor (Irf)4 and c-maf mRNA expression after 2 days of Th17 cell differentiation in vitro. These effects were found to be independent of the master regulator transcription factor retinoic acid receptor-related orphan receptor γT (RORγT), as GSK3 inhibition still reduced Th17 cell differentiation in RORγT-depleted cells. Because IL-9 was approximately ninefold down-regulated in GSK3β-/- CD4 cells, we tested if reintroduction of IL-9 during Th17 cell differentiation abolished the inhibition by GSK3 deficiency of Th17 cell differentiation. We found that IL-9 over-expression was sufficient to reverse the inhibition of Th17 cell differentiation by GSK3 inhibition or depletion. We found that IL-9 enhances Th17 cell differentiation in part through signal transducer and activator of transcription 3 (STAT3) activation, and IL-9 also enhances STAT3 binding to the IL-17a promoter. Altogether, these findings suggest that IL-9 might be an important mediator of GSK3β-dependent enhancement of Th17 cell differentiation.
Collapse
Affiliation(s)
- Dongmei Han
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeffrey A Lowell
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
49
|
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2020; 14:113-132. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
Collapse
Affiliation(s)
- Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Sagar Rohondia
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Raheel Khan
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Qingping P Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
50
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|