1
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Rishabh K, Matosevic S. The diversity of natural killer cell functional and phenotypic states in cancer. Cancer Metastasis Rev 2025; 44:26. [PMID: 39853430 DOI: 10.1007/s10555-025-10242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The role of natural killer (NK) cells as immune effectors is well established, as is their utility as immunotherapeutic agents against various cancers. However, NK cells' anti-cancer roles are suppressed in cancer patients by various immunomodulatory mechanisms which alter these cells' identity, function, and potential for immunosurveillance. This manifests in abnormal NK cell responses accompanied by changes in phenotypic or genotypic identity, giving rise to specific NK cell subsets that are either hypofunctional or, more broadly, defective in their responses. Anergy, senescence, and exhaustion are some of the terms that have been used to define and characterize these NK cell functional states. These responses vary not only with cancer type but also NK cell location within tissues. Collectively, these phenomena suggest a highly plastic nature of NK cell biology in tumors. In this review, we present and discuss a summary of these functionally distinct states and provide an overview of how NK cells behave at different locations within the context of cancer.
Collapse
Affiliation(s)
- Kumar Rishabh
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Gurner KH, Gardner DK. Blastocyst-Derived Lactate as a Key Facilitator of Implantation. Biomolecules 2025; 15:100. [PMID: 39858494 PMCID: PMC11764449 DOI: 10.3390/biom15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered. Here, we detail the biological significance of the microenvironment created by the blastocyst at implantation, exploring the origin and significance of blastocyst-derived lactate, its functional role at the implantation site and how understanding this mediator of the maternal-fetal dialogue may help to improve implantation in assisted reproduction.
Collapse
Affiliation(s)
| | - David K. Gardner
- Melbourne IVF, East Melbourne, VIC 3002, Australia;
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Bezemer RE, Brenøe JE, Schoots MH, Feenstra ME, van Goor H, Ganzevoort W, Gordijn SJ, Prins JR. Effects of sildenafil treatment on placental immune cell subsets in early-onset fetal growth restriction. Placenta 2025; 159:62-69. [PMID: 39644752 DOI: 10.1016/j.placenta.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Early onset fetal growth restriction is a common pregnancy complication with significant risk of perinatal mortality and morbidity. The most common etiology is placental insufficiency, reflected by several placental lesions that appear with fetal growth restriction. Placental immune cells are involved in almost all aspects of the development of the placenta and immune cell imbalances have been related to common pregnancy complications. The STRIDER trial investigated the therapeutic potential of sildenafil. No clinical improvements were observed, however, since sildenafil can have immunological effects, we aimed to investigate if sildenafil alters local placental immune cells. METHODS Placental samples from 146 patients were included from the STRIDER trial and stained with IHC for leukocytes (CD45), macrophages (CD68 and CD206), T cells (CD3 and CD8), regulatory T cells (FOXP3) and NK cells (CD56). Immune cells were quantified in the decidua basalis and villi at term using a trained detection classifier. In addition, maternal plasma cytokines were measured at inclusion. RESULTS In the sildenafil group, numbers of CD3+ T cells, CD68+ and CD206+ macrophages and CD56+ NK cell were greater in the decidua basalis compared to the control group. Correlating maternal plasma cytokines to placental immune cell subsets showed predominantly negative correlations in the placebo group, whereas most cytokines correlated positively to placental immune cells in the sildenafil group. DISCUSSION Our data demonstrates the immunomodulatory effects of sildenafil in pregnancies complicated by early onset fetal growth restriction and offers valuable insights on the use of immunomodulatory drugs in pregnancy.
Collapse
Affiliation(s)
- R E Bezemer
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands.
| | - J E Brenøe
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - M H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - M E Feenstra
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - H van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - W Ganzevoort
- Department of Gynecology and Obstetrics, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - S J Gordijn
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - J R Prins
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
5
|
Ma G, Yang P, Lu T, Chen Z, Zhou J, Tye KD, Xiao X. The impact of gut microbiota in full-term pregnant women on immune regulation during pregnancy: A prospective, exploratory study. J Obstet Gynaecol Res 2025; 51:e16180. [PMID: 39632255 DOI: 10.1111/jog.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
AIM This study aims to investigate the correlation between gut microbiota and both placental local immune function and the maternal systemic immune system in pregnant women. METHODS Twenty-six pregnant women were included in this study, utilizing high-throughput sequencing for gut microbiota analysis. Immune cells and cytokine levels were measured in placental tissue and peripheral venous blood. Integration of gut microbiota data with immune parameters was performed using R, and network correlation analysis was conducted with Cytoscape software. RESULTS In placental tissues, gut microbiota predominantly influences B lymphocytes (CD3-CD19+/CD3-), indicating a potential bidirectional regulatory role. The impact on CD56+CD16+/CD56+CD16- and CD4+/CD8+ ratios appear minor. Notably, a significant positive correlation was observed between gut microbiota and the placental cytokine interleukin (IL)-5. In peripheral blood, gut microbiota was primarily associated with negative regulation of peripheral B lymphocytes and positive regulation of peripheral Treg cells. Minimal effects are observed on peripheral macrophages and NK cell subtypes. The most substantial impact on peripheral immune balance was reflected in the CD4+/CD8+ ratio, showing a predominant negative correlation, while the influence on the CD56+CD16+/CD56+CD16- ratio is minimal. A significant negative correlation was found between gut microbiota and peripheral cytokines IL-1 and IL-18, while the interaction with the peripheral interferon-γ/IL-4 ratio appears relatively less pronounced. CONCLUSIONS The close correlation between gut microbiota and placental local immune function, as well as maternal systemic immune responses, is evident. This study contributes to a preliminary understanding of the immunomodulatory relationship of gut microbiota during pregnancy.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tong Lu
- Department of Otolaryngology, Shenzhen Long Hua District Central Hospital, Shenzhen, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Chen H, Shao LZ, Wang YX, Han ZJ, Wang YH, Li X, Chen JY, Liu TH. Causal Relationships Between Leukocyte Subsets and Adverse Fetal Outcomes: A Mendelian Randomization Study. Mediators Inflamm 2024; 2024:6349687. [PMID: 39748887 PMCID: PMC11695084 DOI: 10.1155/mi/6349687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Background: The tolerance and dynamic regulation of the maternal immune system during pregnancy are pivotal for ensuring fetal health. Immune cell subsets play a complex and crucial role in this process, closely linked to the neonatal health status. Despite recognizing the significance of dysregulation in the quantity and activity of immune cells in neonatal disease occurrence, their specific roles remain elusive, resulting in a dearth of clinically viable interventions for immune-mediated neonatal diseases. Materials and Methods: Employing two-sample Mendelian randomization (MR) methodology, this study systematically investigated 446 leukocyte features (N = 500,675), including leukocyte subsets, absolute cell (AC) counts, and morphological parameters (MP) and their correlation with seven adverse fetal outcomes (N = 1,100,458), encompassing fetal growth restriction (FGR), preterm birth (PTB), neonatal jaundice (NNJ), digestive system disorders of fetus and newborn (DSDFN), hemorrhagic and hematological disorders of fetus and newborn (HDFN), respiratory distress of newborn (RDN), and transitory disorders of metabolism specific to fetus and newborn (TDMSFN). Results: The results unveiled significant causal relationships between 301 leukocyte subsets and these seven adverse fetal outcomes, with 259, 245, 15, 44, 11, 32, and 68 pairs of notable associations for each adverse outcome, respectively. Furthermore, the study highlighted potential pathogenic mechanisms underlying the mutual influence among neonatal diseases. MR results indicated FGR as a robustly correlated risk factor for PTB and NNJ and showed a reciprocal causal relationship between NNJ and FGR. PTB exhibited a positive correlation with HDFN. Conclusions: This study provided profound insights into the intricate regulatory mechanisms of leukocyte subsets in neonatal diseases, paving the way for new avenues in the diagnosis and treatment of associated disorders.
Collapse
Affiliation(s)
- Hong Chen
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Li-Zhen Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Ying-Xiong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Zhi-Jie Han
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong-Heng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Jing-Yu Chen
- Department of Ultrasound, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Chongqing 400014, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Hosking SL, Moldenhauer LM, Tran HM, Chan HY, Groome HM, Lovell EA, Green ES, O’Hara SE, Roberts CT, Foyle KL, Davidge ST, Robertson SA, Care AS. Treg cells promote decidual vascular remodeling and modulate uterine NK cells in pregnant mice. JCI Insight 2024; 10:e169836. [PMID: 39656539 PMCID: PMC11790030 DOI: 10.1172/jci.insight.169836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Regulatory T (Treg) cells are essential for maternal immune tolerance of the fetus and placenta. In preeclampsia, aberrant Treg cell tolerance is implicated, but how Treg cells affect the uterine vascular dysfunction thought to precede placental impairment and maternal vasculopathy is unclear. We used Foxp3-diphtheria toxin receptor mice to test the hypothesis that Treg cells are essential regulators of decidual spiral artery adaptation to pregnancy. Transient Treg cell depletion during early placental morphogenesis caused impaired remodeling of decidual spiral arteries, altered uterine artery function, and fewer Dolichos biflorus agglutinin+ uterine natural killer (uNK) cells, resulting in late-gestation fetal loss and fetal growth restriction. Replacing the Treg cells by transfer from wild-type donors mitigated the impact on uNK cells, vascular remodeling, and fetal loss. RNA sequencing of decidua revealed genes associated with NK cell function and placental extravillous trophoblasts were dysregulated after Treg cell depletion and normalized by Treg cell replacement. These data implicate Treg cells as essential upstream drivers of uterine vascular adaptation to pregnancy, through a mechanism likely involving phenotypic regulation of uNK cells and trophoblast invasion. The findings provide insight into mechanisms linking impaired adaptive immune tolerance and altered spiral artery remodeling, 2 hallmark features of preeclampsia.
Collapse
Affiliation(s)
- Shanna L. Hosking
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan M. Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ha M. Tran
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hon Y. Chan
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Holly M. Groome
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evangeline A.K. Lovell
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ella S. Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie E. O’Hara
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kerrie L. Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra T. Davidge
- Women and Children’s Health Research Institute, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A. Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison S. Care
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Amarilla-Irusta A, Zenarruzabeitia O, Sevilla A, Sandá V, Lopez-Pardo A, Astarloa-Pando G, Pérez-Garay R, Pérez-Fernández S, Meijide S, Imaz-Ayo N, Arana-Arri E, Amo L, Borrego F. CD151 identifies an NK cell subset that is enriched in COVID-19 patients and correlates with disease severity. J Infect 2024; 89:106304. [PMID: 39374860 DOI: 10.1016/j.jinf.2024.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Severe coronavirus disease 2019 (COVID-19) often leads to acute respiratory distress syndrome and multi-organ dysfunction, driven by a dysregulated immune response, including a cytokine storm with elevated proinflammatory cytokine levels. Natural killer (NK) cells are part of the innate immune system with a fundamental role in the defense against viral infections. However, during COVID-19 acute infection, they exhibit an altered phenotype and impaired functionality contributing to the immunopathogenesis of the disease. In this work, we have studied a cohort of patients with COVID-19 (ranging from mild to severe) by analyzing IL-15, TGF-β, PlGF and GDF-15 plasma levels and performing multiparametric flow cytometry studies. Our results revealed that severe COVID-19 patients exhibited high levels of IL-15, PlGF and GDF-15, along with an enrichment of an NK cell subset expressing the CD151 tetraspanin, which correlated with IL-15 plasma levels and disease severity. In patients, these CD151+ NK cells displayed a more activated phenotype characterized by an increased expression of HLA-DR, CD38 and granzyme B, a distinct receptor repertoire, with lower levels of CD160 and CD31 and higher levels of CD55 and, remarkably, a higher expression of tissue-resident markers CD103 and the NK cell decidual marker CD9. Last of all, in individuals with severe disease, we identified an expansion of a CD151brightCD9+ NK cell subset, suggesting that these cells play a specific role in COVID-19. Altogether, our findings suggest that CD151+ NK cells may have a relevant role in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Arrate Sevilla
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Víctor Sandá
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Ainara Lopez-Pardo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Raquel Pérez-Garay
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Clinical Analysis Service, Cruces University Hospital, OSI Ezkerraldea-Enkarterri-Cruces, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Susana Meijide
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Caba-Flores MD, de la Soledad Lagunes-Castro M, López-Monteon A, Viveros-Contreras R, Kuri JGN, Huerta-Morales D, Ramos SP, Bustos EN, Ramos-Ligonio A. Analysis of the presence of natural killer cell subpopulations in preterm human milk: A first approach. J Reprod Immunol 2024; 166:104394. [PMID: 39561427 DOI: 10.1016/j.jri.2024.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Several immune cell populations are transferred to the newborn through breast milk, including natural killer (NK) cells, which are critical for innate defense and regulation of the immune response, especially in preterm infants. The aim of this study was to analyze the presence of NK cell subpopulations in different types of preterm breast milk. The study quantified the presence of NK cell subpopulations by flow cytometry using the relative expression of CD56 and CD16 markers in colostrum, transitional and mature milk samples from preterm mothers. Flow cytometry analysis revealed the presence of five NK cell subpopulations, but unlike those reported in peripheral blood, CD56dimCD16+ and CD56-CD16+ populations are predominantly present in preterm milk, only the CD56brightCD16dim population is increased in mature milk. Analysis of NK cell subpopulations in preterm milk revealed a pattern of NK cell presence in preterm breast milk with predominantly cytotoxic phenotypes in relation to CD16 marker expression.
Collapse
Affiliation(s)
- Mario Daniel Caba-Flores
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico; Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | | | - Aracely López-Monteon
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | | | - Juan Gerardo Neme Kuri
- Subdirección de Enseñanza, Centro de Alta Especialidad Dr. Rafael Lucio, Xalapa, Veracruz, Mexico
| | - David Huerta-Morales
- Departamento de Pediatría, Centro de Alta Especialidad Dr. Rafael Lucio, Xalapa, Veracruz, Mexico
| | - Samantha Ponce Ramos
- Departamento de Pediatría, Centro de Alta Especialidad Dr. Rafael Lucio, Xalapa, Veracruz, Mexico
| | - Edith Nava Bustos
- Coordinación Hospital Amigo del Niño y de la Niña, Centro de Alta Especialidad Dr. Rafael Lucio, Xalapa, Veracruz, Mexico
| | - Angel Ramos-Ligonio
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.
| |
Collapse
|
10
|
Chen S, Zhang J, Chen J, Ke J, Huang Y, Du X, Fu B, Wei H. Compromised C3b-VSIG4 axis between decidual NK cells and macrophages contributes to recurrent spontaneous abortion. J Transl Med 2024; 22:1017. [PMID: 39529122 PMCID: PMC11556194 DOI: 10.1186/s12967-024-05829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
NK cells and macrophages constitute the predominant immune cell subsets in the decidua during the first trimester of pregnancy, with macrophages typically adopting an anti-inflammatory phenotype. Conversely, in the third trimester, macrophages undergo a shift towards a pro-inflammatory phenotype concurrent with a reduction in NK cell numbers. The direct regulatory impact of NK cells on macrophage phenotype remains poorly explored. In our investigation, we observed that ICAM1+ macrophages stimulate the expression of intracellular C3 in LFA1+ decidual NK cells. Notably, Cathepsin W within NK cells exhibit the potential to generate active C3b fragments, effectively inhibit the proinflammatory phenotype of macrophages by binding to VSIG4. Our study unveils a direct regulatory mechanism orchestrated by decidual NK cells over macrophages, providing a potential pathogenic explanation for recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Siao Chen
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinghe Zhang
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Chen
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Intensive Care Unit, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jieqi Ke
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Huang
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianghui Du
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Binqing Fu
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Dong S, Fu C, Shu C, Xie M, Li Y, Zou J, Meng YZ, Xu P, Shan YH, Tian HM, He J, Yang YG, Hu Z. Development of a humanized mouse model with functional human materno-fetal interface immunity. JCI Insight 2024; 9:e176527. [PMID: 39435662 PMCID: PMC11529984 DOI: 10.1172/jci.insight.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Materno-fetal immunity possesses specialized characteristics to ensure pathogen clearance while maintaining tolerance to the semiallogeneic fetus. Most of our understanding on human materno-fetal immunity is based on conventional rodent models that may not precisely represent human immunological processes owing to the huge evolutionary divergence. Herein, we developed a pregnant human immune system (HIS) mouse model through busulfan preconditioning, which hosts multilineage human immune subset reconstitution at the materno-fetal interface. Human materno-fetal immunity exhibits a tolerogenic feature at the midgestation stage (embryonic day [E] 14.5), and human immune regulatory subsets were detected in the decidua. However, the immune system switches to an inflammatory profile at the late gestation stage (E19). A cell-cell interaction network contributing to the alternations in the human materno-fetal immune atmosphere was revealed based on single-cell RNA-Seq analysis, wherein human macrophages played crucial roles by secreting several immune regulatory mediators. Furthermore, depletion of Treg cells at E2.5 and E5.5 resulted in severe inflammation and fetus rejection. Collectively, these results demonstrate that the pregnant HIS mouse model permits the development of functional human materno-fetal immunity and offers a tool for human materno-fetal immunity investigation to facilitate drug discovery for reproductive disorders.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yan-Hong Shan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Hui-Min Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
12
|
Zhou P, Mo D, Huang H, Xu J, Liao B, Wang Y, Mao D, Zeng Z, Huang Z, Zhang C, Yang Y, Yu Y, Pan H, Li R. Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients. LIFE MEDICINE 2024; 3:lnae036. [PMID: 39872439 PMCID: PMC11749484 DOI: 10.1093/lifemedi/lnae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/19/2024] [Indexed: 01/30/2025]
Abstract
Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF. Hence, we integrated six publicly accessible datasets with 209 samples, including microarray profiles of endometrial samples in the secretory phase. After removing batch effects, we identified 175 differentially expressed genes. Gene set enrichment analysis identified dysregulation of immunological pathways in RIF. We also observed altered immune infiltration and pro-inflammatory cytokines in RIF. Protein-protein interaction network analysis identified ten hub genes, representing two co-expression modules significantly related to RIF. Knockdown of ENTPD3, one of the hub genes, promoted the epithelial-mesenchymal transition process and resulted in elevated levels of pro-inflammatory cytokines. Collectively, our study reveals abnormal gene expressions involving the regulation of epithelial-mesenchymal transition and immune status in RIF, providing valuable insights into its pathogenesis.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Dan Mo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hanji Huang
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jiaqi Xu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yinxue Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Di Mao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhonghong Zeng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ziying Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Heng Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
13
|
Luo YH, Zhang YY, Li MQ, Zhang XY, Zheng ZM. Emerging Roles of IL-27 in Trophoblast Cells and Pregnancy Complications. Am J Reprod Immunol 2024; 92:e13942. [PMID: 39422056 DOI: 10.1111/aji.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
PROBLEM Pregnancy complications such as spontaneous abortion, preeclampsia, and preterm birth persist, despite current interventions aimed at their prevention and treatment largely proving unsuccessful. Interleukin-27 (IL-27), composed of p28 and EBI3 subunits, binds to IL-27R, which consists of gp130 and IL-27Rα (also known as WSX-1 or TCCR), and plays a pivotal role in tumor development and inflammation regulation. At the maternal-fetal interface, IL-27 expression has been detected in trophoblasts, endometrial stromal cells, and decidual cells. Abnormal levels of IL-27/IL-27R have been linked to adverse pregnancy outcomes, including spontaneous miscarriage, preeclampsia, and preterm birth. This review aims to explore the expression of IL-27 at the maternal-fetal interface and its signaling pathway, uncovering the complex role of IL-27 in pregnancy complications. METHOD OF STUDY A comprehensive literature review was conducted using PubMed/Medline, Scopus, and Embase databases, analyzing studies on IL-27 expression and its signaling pathways at the maternal-fetal interface. The review focused on identifying the presence of IL-27 in various cell types and linking abnormal IL-27/IL-27R expression to pregnancy complications such as spontaneous miscarriage, preeclampsia, and preterm birth. DISCUSSION AND CONCLUSION IL-27 plays a complex role at the maternal-fetal interface, with abnormal expression linked to several pregnancy complications. These findings highlight the need for further research to elucidate IL-27's mechanisms and develop targeted interventions. Future studies should aim to develop targeted interventions and improve therapeutic strategies for managing pregnancy complications.
Collapse
Affiliation(s)
- Yi-Hua Luo
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| | - Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Yang P, Ma G, Lu T, Zhou J, Fan H, Zhang X, Fan S, Xiao X. The influence of the oral microbiota in full-term pregnant women on immune regulation during pregnancy. J Reprod Immunol 2024; 165:104298. [PMID: 39002425 DOI: 10.1016/j.jri.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND This study aims to conduct a preliminary exploration of the correlation between the oral microbiota of full-term pregnant women and both local placental immunity and the systemic immune system of the mother. METHODS A total of 26 pregnant women participated in this study, with samples collected from oral swabs, placental tissue, and peripheral venous blood. High-throughput sequencing was used to examine the oral microbial community. Flow cytometry was employed to assess immune cells in placental tissue and peripheral venous blood. ELISA and Luminex liquid bead chip technology were utilized to detect cytokines in both placental tissue and peripheral venous blood. RESULTS In placental tissue, The oral microbial community is primarily negatively correlated with placental CD3+CD4+CD8+T cells and positively correlated with placental IL-5. In the peripheral blood, The oral microbial community is primarily positively correlated with maternal systemic immune parameters, including CD3+CD4+ T cells and the CD4+/CD8+ ratio, as well as positively correlated with peripheral IL-18. CONCLUSIONS The oral microbiota of full-term pregnant women participates in the regulatory function of the maternal immune system. Meanwhile, the oral microbial community may also be an important factor mediating local immune regulation in the placenta.
Collapse
Affiliation(s)
- Ping Yang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tong Lu
- Department of Otolaryngology, Shenzhen Long Hua District Central Hospital, Shenzhen, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haolong Fan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, China
| | - Shangrong Fan
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Guan D, Sun W, Gao M, Chen Z, Ma X. Immunologic insights in recurrent spontaneous abortion: Molecular mechanisms and therapeutic interventions. Biomed Pharmacother 2024; 177:117082. [PMID: 38972152 DOI: 10.1016/j.biopha.2024.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Recurrent spontaneous abortion refers to the occurrence of two or more spontaneous abortions before or during the early stages of pregnancy. The immune system plays a crucial role in the maintenance of pregnancy and embryo implantation. Various immune cells, cytokines, and immune regulatory pathways are involved in the complex immune balance required for a stable pregnancy. Studies suggest that immune abnormalities may be associated with some recurrent spontaneous abortion cases, particularly those involving the dysregulation of immune cell function, autoimmune responses, and placental immunity. In terms of treatment, interventions targeting immune mechanisms are crucial. Various therapeutic approaches, including immunomodulatory drugs, immunoadsorption therapies, and immunocellular therapies, are continually being researched and developed. These approaches aim to restore the immune balance, enhance the success rate of pregnancies, and provide more effective treatment options for patients with recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Wenjie Sun
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingxia Gao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| |
Collapse
|
16
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Jia W, Ma L, Yu X, Wang F, Yang Q, Wang X, Fan M, Gu Y, Meng R, Wang J, Li Y, Li R, Shao X, Wang YL. Human CD56 +CD39 + dNK cells support fetal survival through controlling trophoblastic cell fate: immune mechanisms of recurrent early pregnancy loss. Natl Sci Rev 2024; 11:nwae142. [PMID: 38966071 PMCID: PMC11223582 DOI: 10.1093/nsr/nwae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/06/2024] Open
Abstract
Decidual natural killer (dNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy in both mice and humans, and emerging single-cell transcriptomic studies have uncovered various human dNK subsets that are disrupted in patients experiencing recurrent early pregnancy loss (RPL) at early gestational stage, suggesting a connection between abnormal proportions or characteristics of dNK subsets and RPL pathogenesis. However, the functional mechanisms underlying this association remain unclear. Here, we established a mouse model by adoptively transferring human dNK cells into pregnant NOG (NOD/Shi-scid/IL-2Rγnull) mice, where human dNK cells predominantly homed into the uteri of recipients. Using this model, we observed a strong correlation between the properties of human dNK cells and pregnancy outcome. The transfer of dNK cells from RPL patients (dNK-RPL) remarkably worsened early pregnancy loss and impaired placental trophoblast cell differentiation in the recipients. These adverse effects were effectively reversed by transferring CD56+CD39+ dNK cells. Mechanistic studies revealed that CD56+CD39+ dNK subset facilitates early differentiation of mouse trophoblast stem cells (mTSCs) towards both invasive and syncytial pathways through secreting macrophage colony-stimulating factor (M-CSF). Administration of recombinant M-CSF to NOG mice transferred with dNK-RPL efficiently rescued the exacerbated pregnancy outcomes and fetal/placental development. Collectively, this study established a novel humanized mouse model featuring functional human dNK cells homing into the uteri of recipients and uncovered the pivotal role of M-CSF in fetal-supporting function of CD56+CD39+ dNK cells during early pregnancy, highlighting that M-CSF may be a previously unappreciated therapeutic target for intervening RPL.
Collapse
Affiliation(s)
- Wentong Jia
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyang Ma
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiaoye Wang
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Mengjie Fan
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yan Gu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ran Meng
- Department of Prenatal Screening, Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yuxia Li
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
18
|
Li JW, Xv H, Wan RT. Bibliometric analysis of the global trends in immune-related recurrent pregnancy loss research over the last two decades. J Obstet Gynaecol Res 2024; 50:828-841. [PMID: 38467350 DOI: 10.1111/jog.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
PROBLEM A comprehensive analysis was conducted to explore the scientific output on immune-related recurrent pregnancy loss (RPL) and its key aspects. Despite the lack of clear explanations for most RPL cases, immune factors were found to play a significant role. METHOD OF STUDY The study utilized a bibliometric approach, searching the Web of Science Core Collection database for relevant literature published between 2004 and 2023. RESULTS The collected dataset consisted of 2228 articles and reviews, revealing a consistent increase in publications and citations over the past two decades. The analysis identified the United States and China as the most productive countries in terms of RPL research. Among the institutions, Fudan University in China emerged as the top contributor, followed by Shanghai Jiaotong University. Kwak-kim J was the most prolific author, while Christiansen Ob had the highest number of co-citations. The top 25 co-cited references on diagnosis, treatment, and mechanisms formed the foundation of knowledge in this field. By examining keyword co-occurrence and co-citations, the study found that antiphospholipid syndrome and natural killer cells were the primary areas of focus in immune-related RPL research. Additionally, three emerging hotspots were identified: chronic endometritis, inflammation, and decidual macrophages. These aspects demonstrated increasing interest and research activity within the field of immune-related RPL. CONCLUSIONS Overall, this comprehensive bibliometric analysis provided valuable insights into the patterns, frontiers, and focal points of global scientific output related to immune-related RPL.
Collapse
Affiliation(s)
- Jing-Wei Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - Honglin Xv
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - Ren-Tao Wan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, China
| |
Collapse
|
19
|
Yao Y, Ye Y, Chen J, Zhang M, Cai X, Zheng C. Maternal-fetal immunity and recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13859. [PMID: 38722063 DOI: 10.1111/aji.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jia Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
20
|
Foyle KL, Robertson SA. Gamma delta (γδ) T cells in the female reproductive tract: active participants or indifferent bystanders in reproductive success? DISCOVERY IMMUNOLOGY 2024; 3:kyae004. [PMID: 38863792 PMCID: PMC11165432 DOI: 10.1093/discim/kyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The female reproductive tract accommodates and balances the unique immunological challenges of protection from sexually transmitted pathogens and tolerance of the fetus and placenta in pregnancy. Leukocytes in the female reproductive tract actively engage in extensive maternal adaptations that are imperative for embryo implantation, placental development, and fetal growth support. γδ T cells are abundant at many mucosal sites in the body, where they provide protection against pathogens and cancer, and have roles in tissue renewal and homeostasis. In this review, we summarize studies in humans and rodents showing that γδ T cells are prevalent in the female reproductive tract and fluctuate in response to hormone changes across the reproductive cycle. Emerging evidence points to a link between changes in their abundance and molecular repertoire in the uterus and pregnancy disorders including recurrent miscarriage and preterm birth. However, defining the precise functional role of female reproductive tract γδ T cells and understanding their physiological significance in reproduction and pregnancy have remained elusive. Here, we critically analyze whether reproductive tract γδ T cells could be active participants in reproductive events-or whether their principal function is immune defense, in which case they may compromise pregnancy success unless adequately regulated.
Collapse
Affiliation(s)
- Kerrie L Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Fischer F, Kretschmer T, Seifert P, Howanski J, Krieger E, Rödiger J, Fink B, Yin Z, Bauer M, Zenclussen ML, Meyer N, Schumacher A, Zenclussen AC. Single and combined exposures to bisphenol A and benzophenone-3 during early mouse pregnancy have differential effects on fetal and placental development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171386. [PMID: 38431166 DOI: 10.1016/j.scitotenv.2024.171386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disrupting chemicals (EDCs) possess the capability to interfere with the endocrine system by binding to hormone receptors, for example on immune cells. Specific effects have already been described for individual substances, but the impact of exposure to chemical mixtures during pregnancy on maternal immune regulation, placentation and fetal development is not known. In this study, we aimed to investigate the combined effects of two widespread EDCs, bisphenol A (BPA) and benzophenone-3 (BP-3), at allowed concentrations on crucial pregnancy processes such as implantation, placentation, uterine immune cell populations and fetal growth. From gestation day (gd) 0 to gd10, female mice were exposed to 4 μg/kg/d BPA, 50 mg/kg/d BP-3 or a BPA/BP-3 mixture. High frequency ultrasound and Doppler measurements were used to determine intrauterine fetal development and hemodynamic parameters. Furthermore, uterine spiral artery remodeling and placental mRNA expression were studied via histology and CHIP-RT-PCR, respectively. Effects of EDC exposure on multiple uterine immune cell populations were investigated using flow cytometry. We found that exposure to BP-3 caused intrauterine growth restriction in offspring at gd14, while BPA and BPA/BP-3 mixture caused varying effects. Moreover, placental morphology at gd12 and placental efficiency at gd14 were altered upon BP-3 exposure. Placental gene transcription was altered particularly in female offspring after in utero exposure to BP-3. Flow cytometry analyses revealed an increase in uterine T cells and NK cells in BPA and BPA/BP-3-treated dams at gd14. Doppler measurements revealed no effect on uterine hemodynamic parameters and spiral artery remodeling was not affected following EDC exposure. Our results provide evidence that exposure to BPA and BP-3 during early gestation affects fetal development in a sex-dependent manner, placental function and immune cell frequencies at the feto-maternal interface. These results call for inclusion of studies addressing pregnancy in the risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany; Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Tobias Kretschmer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Paulina Seifert
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Howanski
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Elisabeth Krieger
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jonas Rödiger
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ziran Yin
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (UNL-CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana (FBCB-UNL), Santa Fe, Argentina
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
22
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
25
|
Pellegrino M, Secli V, D’Amico S, Petrilli LL, Caforio M, Folgiero V, Tumino N, Vacca P, Vinci M, Fruci D, de Billy E. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front Immunol 2024; 15:1356321. [PMID: 38420122 PMCID: PMC10899349 DOI: 10.3389/fimmu.2024.1356321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valerio Secli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Silvia D’Amico
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Matteo Caforio
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valentina Folgiero
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Doriana Fruci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
26
|
Eallonardo SJ, Freitag NE. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023; 13:88. [PMID: 38201292 PMCID: PMC10778170 DOI: 10.3390/cells13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vertically transmitted infections are a significant cause of fetal morbidity and mortality during pregnancy and pose substantial risks to fetal development. These infections are primarily transmitted to the fetus through two routes: (1) direct invasion and crossing the placenta which separates maternal and fetal circulation, or (2) ascending the maternal genitourinary tact and entering the uterus. Only two bacterial species are commonly found to cross the placenta and infect the fetus: Listeria monocytogenes and Treponema pallidum subsp. pallidum. L. monocytogenes is a Gram-positive, foodborne pathogen found in soil that acutely infects a wide variety of mammalian species. T. pallidum is a sexually transmitted spirochete that causes a chronic infection exclusively in humans. We briefly review the pathogenesis of these two very distinct bacteria that have managed to overcome the placental barrier and the role placental immunity plays in resisting infection. Both organisms share characteristics which contribute to their transplacental transmission. These include the ability to disseminate broadly within the host, evade immune phagocytosis, and the need for a strong T cell response for their elimination.
Collapse
Affiliation(s)
- Samuel J. Eallonardo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Wasilewska A, Grabowska M, Moskalik-Kierat D, Brzoza M, Laudański P, Garley M. Immunological Aspects of Infertility-The Role of KIR Receptors and HLA-C Antigen. Cells 2023; 13:59. [PMID: 38201263 PMCID: PMC10778566 DOI: 10.3390/cells13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The mechanisms of immune tolerance of a mother against an antigenically foreign fetus without a concomitant loss of defense capabilities against pathogens are the factors underlying the success of a pregnancy. A significant role in human defense is played by killer immunoglobulin-like receptor (KIR) receptors, which regulate the function of the natural killer (NK) cells capable of destroying antigenically foreign cells, virus-infected cells, or tumor-lesioned cells. A special subpopulation of NK cells called uterine NK cells (uNK) is found in the uterus. Disruption of the tolerance process or overactivity of immune-competent cells can lead to immune infertility, a situation in which a woman's immune system attacks her own reproductive cells, making it impossible to conceive or maintain a pregnancy. Since the prominent role of the inflammatory response in infertility, including KIR receptors and NK cells, has been postulated, the process of antigen presentation involving major histocompatibility complex (MHC) molecules (HLA) appears to be crucial for a successful pregnancy. Proper interactions between KIR receptors on female uNK cells and HLA class I molecules, with a predominant role for HLA-C, found on the surface of germ cells, are strategically important during embryo implantation. In addition, maintaining a functional balance between activating and inhibitory KIR receptors is essential for proper placenta formation and embryo implantation in the uterus. A disruption of this balance can lead to complications during pregnancy. The discovery of links between KIR and HLA-C has provided valuable information about the complexity of maternal-fetal immune interactions that determine the success of a pregnancy. The great diversity of maternal KIR and fetal HLA-C ligands is associated with the occurrence of KIR/HLA-C combinations that are more or less favorable for reproductive success.
Collapse
Affiliation(s)
- Anna Wasilewska
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Marcelina Grabowska
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Dominika Moskalik-Kierat
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Martyna Brzoza
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Women’s Health Research Institute, Calisia University, 62-800 Kalisz, Poland
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, 15-269 Białystok, Poland
| |
Collapse
|
28
|
Garratt J, Rahmati M. Assessing the endometrium: An update on current and potential novel biomarkers of receptivity. J Reprod Immunol 2023; 160:104162. [PMID: 37871552 DOI: 10.1016/j.jri.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
A cyclical evolvement of the endometrium into a transient state of receptivity is crucial for acceptance of the semi-allogeneic foetus, conducive to pregnancy. Despite documentation of aberrances in this process within patients experiencing repeated embryo implantation failures and miscarriages, the endometrium is often overlooked in IVF clinics as the cause for failure. Focus instead is usually given to embryo-derived factors, such as aneuploidy. Nevertheless, failure of approximately 30 % of euploid embryos to implant demonstrates that other factors such as the endometrium require clinical exploration. Here, we review both traditional and novel methods used to assess endometrial receptivity such as identifying the WOI, endometrial immune profiling and transcriptomics panel testing. Where reported, we will also discuss their clinical application, as well as novel potential biomarkers within the pre-clinical research stages which show promise in their ability to assess endometrial receptivity.
Collapse
Affiliation(s)
- J Garratt
- London Women's Clinic, 113-115 Harley Street, W1G 6AP London, United Kingdom; University of Kent, School of Biosciences, CT2 7NZ Canterbury, United Kingdom
| | - M Rahmati
- London Women's Clinic, 113-115 Harley Street, W1G 6AP London, United Kingdom.
| |
Collapse
|
29
|
Han N, Xia W, Zhu C, Zhang X, Wang F, Yin Z, Zeng Q. Association of human leukocyte antigen-G and -F with recurrent miscarriage and implantation failure: A systematic review and meta-analysis. Am J Reprod Immunol 2023; 90:e13792. [PMID: 38009058 DOI: 10.1111/aji.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 10/14/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM The immune system plays an essential role in embryonic implantation and pregnancy, but the molecular details remain controversial. In the past four decades, human leukocyte antigen (HLA)-G and -F have garnered significant attention. METHOD OF STUDY MEDLINE, EMBASE, Web of Science, and the Cochrane Trials Registry were searched from their inception dates until December 2022. Studies were selected following PRISMA guidelines. Meta-analyses were used to assess the relationship of soluble HLA-G (sHLA-G) and HLA-G 3'-untranslated region polymorphisms with recurrent miscarriage (RM) and recurrent implantation failure (RIF). Narrative synthesis was conducted to determine the association of RM with other single nucleotide polymorphisms (SNPs) and HLA-G protein in tissues and of RIF with HLA-F. Risk-of-bias was assessed using ROBINS-I. Publication bias was assessed using Egger's and Begg's tests. RESULTS Finally, 42 articles were eligible for inclusion in the systematic review (32 in the meta-analysis; 13 in narrative synthesis). We found a significant association between the 14-bp ins/del HLA-G polymorphism and RM risk, but no definitive association with RIF risk. Women with RM had lower blood concentrations of sHLA-G during pregnancy and non-pregnancy than did controls. For women in the RIF group, no significant difference was found. CONCLUSION HLA-G protein and gene expression levels may be closely related to RM. The relevance of HLA-G to RIF is still being determined. A narrative synthesis of current studies has shown that HLA-F is likely associated with RIF.
Collapse
Affiliation(s)
- Nana Han
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanting Xia
- Gynecology Department, Hospital of Chengdu University of TCM, Chengdu, China
| | - Can Zhu
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Zhang
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Wang
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhixing Yin
- Clinical medical school, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zeng
- Gynecology Department, Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
30
|
Alexandrova M, Manchorova D, You Y, Terzieva A, Dimitrova V, Mor G, Dimova T. Validation of the Sw71-spheroid model with primary trophoblast cells. Am J Reprod Immunol 2023; 90:e13800. [PMID: 38009060 DOI: 10.1111/aji.13800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM Human implantation is a limiting factor for the success of natural and IVF reproduction since about 60% of pregnancy losses occur in the peri-implantation period. The in vitro modeling of human implantation challenges the researchers in accurate recreation of the complex in vivo differentiation and function of human blastocyst in the peri-implantation period. In previous studies, we constructed Sw71-spheroid models, which like human blastocyst undergo compactization, attaches to the endometrial epithelium, invade, and migrate. The aim of this study was to validate the trophoblast Sw71-spheroid model with primary trophoblast cells, derived from healthy women in early pregnancy. METHOD OF STUDY We performed a direct comparison of Sw71-spheroid model with placenta-derived primary trophoblasts regarding their hybrid phenotype and HLA status, as well as the ability to generate spheroids able to migrate and invade. From the primary trophoblast cells, isolated by mild enzymatic treatment and Percoll gradient separation, were generated long-lived clones, which phenotype was assessed by FACS and immunocytochemistry. RESULTS Our results showed that cultured primary trophoblasts have the EVT phenotype (Vim+/CK7+/HLA-C+/HLA-G+), like Sw71 cells. In both 3D culture settings, we obtained stable, round-shaped, multilayered spheroids. Although constructed from the same number of cells, the primary trophoblast spheroids were smaller. The primary trophoblast spheroids migrate successfully, and in term of invasion are equally potent but less stable as compared to Sw71 spheroids. CONCLUSIONS The Sw71 cell line and cultured native trophoblast cells are interchangeable regarding their EVT phenotype (HLA-C+/HLA-G+/Vim+/CK7+). The blastocyst-like spheroids sourced by both types of cells differentiate in the same time frame and function similarly. We strongly advise the use of Sw71 spheroids as blastocyst surrogate for observation on trophectoderm differentiation and function during early human implantation.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Antonia Terzieva
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Fetal medicine clinic, Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia, Bulgaria
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
31
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
33
|
Condrat CE, Cretoiu D, Radoi VE, Mihele DM, Tovaru M, Bordea CI, Voinea SC, Suciu N. Unraveling Immunological Dynamics: HPV Infection in Women-Insights from Pregnancy. Viruses 2023; 15:2011. [PMID: 37896788 PMCID: PMC10611104 DOI: 10.3390/v15102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
During pregnancy, hormonal and immune adaptations are vital for supporting the genetically distinct fetus during elevated infection risks. The global prevalence of HPV necessitates its consideration during pregnancy. Despite a seemingly mild immune response, historical gestational viral infections underscore its significance. Acknowledging the established HPV infection risks during pregnancy, our review explores the unfolding immunological changes in pregnant women with HPV. Our analysis aims to uncover strategies for safely modulating the immune system, mitigating adverse pregnancy consequences, and enhancing maternal and child health. This comprehensive narrative review delves into the existing knowledge and studies on this topic.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (C.E.C.)
| | - Dragos Cretoiu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (D.C.); (V.E.R.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (D.C.); (V.E.R.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Dana Mihaela Mihele
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mihaela Tovaru
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristian Ioan Bordea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| | - Nicolae Suciu
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (C.E.C.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| |
Collapse
|
34
|
Surcel M, Neamtiu IA, Muresan D, Goidescu I, Staicu A, Marta MM, Nemeti G, Harsa R, Doroftei B, Capilna ME, Caracostea G. Killer Cell Immunoglobulin-like Receptor Genotypes and Reproductive Outcomes in a Group of Infertile Women: A Romanian Study. Diagnostics (Basel) 2023; 13:3048. [PMID: 37835791 PMCID: PMC10572162 DOI: 10.3390/diagnostics13193048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
A growing body of evidence suggests that endometrial immune disorders may be responsible for endometrial dysfunctions that can lead to gynecological and obstetrical pathology. The aim of this study was to explore the potential relationship between different killer cell immunoglobulin-like receptor (KIR) genotypes and reproductive outcomes. We conducted a prospective cohort study that included 104 infertile patients undergoing an in vitro fertilization procedure. All participants underwent clinical and ultrasound examination, genetic evaluation (KIR genotyping), endometrial washing fluid sampling for cytokine determination, endometrial tissue sampling for histologic assessment and hysteroscopic evaluation. Our analysis showed statistically significant lower levels of uterine cytokines TNF-α (p = 0.001) and IL-1beta (p = 0.000) in the KIR AA genotype group as compared to KIR AB and BB among study participants with chronic endometritis. The study results suggest that the KIR AA genotype population subgroups may be more susceptible to developing endometrial disorders such as chronic endometritis. The changes in the behavior of NK cells seem to be subtle and expressed as an altered regulatory pattern.
Collapse
Affiliation(s)
- Mihai Surcel
- 1st Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania; (M.S.); (D.M.); (I.G.); (A.S.); (G.N.); (G.C.)
| | - Iulia Adina Neamtiu
- Health Department, Environmental Health Center, Part of ALS, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Daniel Muresan
- 1st Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania; (M.S.); (D.M.); (I.G.); (A.S.); (G.N.); (G.C.)
| | - Iulian Goidescu
- 1st Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania; (M.S.); (D.M.); (I.G.); (A.S.); (G.N.); (G.C.)
| | - Adelina Staicu
- 1st Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania; (M.S.); (D.M.); (I.G.); (A.S.); (G.N.); (G.C.)
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania;
| | - Georgiana Nemeti
- 1st Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania; (M.S.); (D.M.); (I.G.); (A.S.); (G.N.); (G.C.)
| | - Radu Harsa
- In Vitro fertilization Department, “Regina Maria” Hospital, 29 Dorobantilor Street, 400117 Cluj-Napoca, Romania;
| | - Bogdan Doroftei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Mihai Emil Capilna
- 1st Department of Obstetrics and Gynecology, University of Medicine, Pharmacy Science and Technology “George Emil Palade”, 38 Gheorghe Marinescu, 540142 Targu Mures, Romania;
| | - Gabriela Caracostea
- 1st Department of Obstetrics and Gynecology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347 Cluj-Napoca, Romania; (M.S.); (D.M.); (I.G.); (A.S.); (G.N.); (G.C.)
| |
Collapse
|
35
|
Herrera L, Martin-Inaraja M, Bengoetxea A, Vendrell A, Pérez-Fernández S, Eguizabal C, Matorras R. Natural killer cell subsets in endometrial fluid: a pilot study of their association with the endometrial cycle and reproductive parameters. J Assist Reprod Genet 2023; 40:2241-2250. [PMID: 37436645 PMCID: PMC10440323 DOI: 10.1007/s10815-023-02862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
PURPOSE To investigate if there are natural killer (NK) cells in endometrial fluid (EF) and their relationship with the endometrial cycle and reproductive parameters. METHODS The population under study consisted of 43 women aged 18-40 undergoing infertility workup at our University Hospital in 2021-2022. The EF samples were obtained at the first visit to our unit, on occasion of the mock embryo transfer. The day of the cycle was considered only in cycles of 27-29 days. An immunophenotype study of NK in EF was performed by flow cytometry analysis. In a subgroup of women, on the same day, NK was studied in EF and peripheral blood. RESULTS Our study is the first to evidence NK cells in EF. None of the NK cells observed corresponded to a mature peripheral blood NK cell population (stages 4-5), and neither endometrial nor decidual uNK cells were detected. Nevertheless, we found 2 patient groups with an NK cell subset with a higher expression of CD16+, which could belong to an intermediate or transient stage between the uNK and pbNK NK cell population in the EF. We found that CD16 was significantly increased in the mid-late luteal phase and its correlation with the day of the cycle. The NK immunophenotype was different in EF and peripheral blood. CONCLUSION We described a new component of the EF, the NK cells, whose CD16 activity is closely correlated with the day of the cycle. These cells could play a role in implantation/implantation failure.
Collapse
Affiliation(s)
- Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Ainara Bengoetxea
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Alberto Vendrell
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Silvia Pérez-Fernández
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Department of Medical-Surgical Specialties, Basque Country University, Lejona, Spain
- Instituto Valenciano de Infertilidad - IVI Bilbao, IVIRMA, Lejona, Spain
| |
Collapse
|
36
|
Scarpellini F, Sbracia M. Modification of peripheric Treg and CD56 brightNK levels in RIF women after egg donation, treated with GM-CSF or placebo. J Reprod Immunol 2023; 158:103983. [PMID: 37419075 DOI: 10.1016/j.jri.2023.103983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Recurrent implantation failure (RIF) is defined as when implantation repeatedly failed to reach a stage recognizable by pelvic ultrasound in IVF cycle and it may be due to several causes. The GM-CSF is a cytokine promoting leukocyte growth and trophoblast development: we tested it to treat these patients in a pilot-controlled trial evaluating the modification of peripheric Treg and CD56brightNK levels after the treatment with this cytokine and in control patients affected by RIF after egg donation cycles. This study was performed on 24 RIF women after egg donation cycles. Single good quality blastocyst transfer was performed in the cycle object of this study. Patients were randomly assigned to two groups: 12 women treated with subcutaneous GM-CSF 0.3 mg/kg/daily from the day before embryo transfer to the β-hCG day, and 12 women treated with subcutaneous saline solution infusion as control. All patients were tested for Treg and CD56brightNK cell levels in blood circulation before and after treatment using flow-cytometry with specific antibodies. The two groups of patients were similar for epidemiologic characteristics, the ongoing pregnancy rate in the GM-CSF group was 83.3% whereas in the control group was 25.0% (P = 0.0123). In the study group there was a significative increase of Treg cells (P < 0.001) with respect to the levels before treatment and to control group. Instead, the levels of CD56brightNK did not show any significative variation. Our study showed that the treatment with GM-CSF increases the Treg cells in the peripheric blood.
Collapse
|
37
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
38
|
Xie J, Gu A, He H, Zhao Q, Yu Y, Chen J, Cheng Z, Zhou P, Zhou Q, Jin M. Autoimmune thyroid disease disrupts immune homeostasis in the endometrium of unexplained infertility women-a single-cell RNA transcriptome study during the implantation window. Front Endocrinol (Lausanne) 2023; 14:1185147. [PMID: 37501789 PMCID: PMC10368980 DOI: 10.3389/fendo.2023.1185147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/23/2023] [Indexed: 07/29/2023] Open
Abstract
Objective Autoimmune thyroid disease (AITD) is known to be associated with unexplained infertility in women. Although the presence of antithyroid antibodies have been speculated to be a marker of an immune imbalance that might lead to implantation failure, its underlying mechanism influencing the endometrial receptivity remains to be elucidated. In this study, we used single-cell RNA sequencing (scRNA-seq) to dissect immune microenvironment in endometrium of AITD patients during window of implantation (WOI). Methods We collected CD45+ immune cell populations of endometrium samples of unexplained infertile women with AITD (n=3), as well as samples of AITD- controls (n=3). The cells were then processed with 10X Genomics Chromium for further analysis. Results We characterized 28 distinct immune cell subtypes totally, and uncovered differences in the composition and gene expression patterns between AITD patients and controls. The proportions of T CD4+, cNK, ILC3, T CD8+ GZMK+, T CD8+ Cytotoxic and ILC3 CD3E - cells were increased, and CD366+ uNK1 was decreased in AITD+ patients. And the abnormal expression of GNLY and chemokines was observed in AITD patients. In addition, uNK and T CD8+ Cytotoxic cells showed lower cytotoxicity but activation of immune response. Genes enriched in cell adhesion of ILC3 and Tregs were downregulated, while the number of ILC3 and Tregs were increased. Conclusion Immune imbalance exists in endometrium during WOI, which may impact embryo implantation.
Collapse
Affiliation(s)
- Jilai Xie
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
| | - Aiyuan Gu
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Huangyi He
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiaohang Zhao
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
| | - Ya Yu
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
| | - Jian Chen
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
| | - Zhangliang Cheng
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ping Zhou
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
| | - Qi Zhou
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Min Jin
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Department of Reproductive Medicine, Hangzhou, China
| |
Collapse
|
39
|
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Vaucoret V, Kazhalawi A, Rodriguez-Pozo A, Habeichi N, Ruoso L, Cassuto NG, Rahmati M. The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance. Int J Mol Sci 2023; 24:11322. [PMID: 37511080 PMCID: PMC10379072 DOI: 10.3390/ijms241411322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Assisted reproduction techniques have improved considerably in recent decades, but despite these advances, success rates remain relatively low. Endometrial immune profiling involves the analysis of cytokine biomarkers in the endometrium during the mid-luteal phase. This profiling aims to provide insights into the immune environment of the uterus. The aim is to identify immune disturbances and thus guide the development of personalized therapeutic approaches. The first part of the review looks back at the emergence of innovative concepts, highlighting the specificity of the human uterine environment at the time of implantation. Based on this new knowledge, biomarkers have been selected for endometrial immune profiling. The second part details the results of clinical studies conducted over the last ten years. These clinical results suggest that this approach can increase the rate of live births in patients suffering from repeated implantation failures or repeated pregnancy loss. Uterine immune profiling represents a clinical innovation that can significantly improve the performance of medically assisted reproduction treatments through personalized strategies tailored to the local immune profile. Innovation in personalized medicine for assisted reproduction is crucial to improving the success rates of fertility treatments, while reducing the risks and costs associated with ineffective or unnecessary interventions.
Collapse
Affiliation(s)
- Nathalie Lédée
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Marie Petitbarat
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Laura Prat-Ellenberg
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Géraldine Dray
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Virginie Vaucoret
- Centre d'Assistance Médicale à la Procréation, Hôpital des Bluets, 4 Rue Lasson, 75012 Paris, France
| | - Alaa Kazhalawi
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - André Rodriguez-Pozo
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Nada Habeichi
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Lea Ruoso
- Laboratoire Drouot, 21 Rue Drouot, 75010 Paris, France
| | | | - Mona Rahmati
- London Women's Clinic, 113-115 Harley Street, London W1G 6AP, UK
| |
Collapse
|
40
|
Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a 'three-in-one' perspective. Front Immunol 2023; 14:1198430. [PMID: 37350956 PMCID: PMC10282753 DOI: 10.3389/fimmu.2023.1198430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A successful human pregnancy requires the maternal immune system to recognize and tolerate the semi-allogeneic fetus, allowing for appropriate trophoblasts invasion and protecting the fetus from invading pathogens. Therefore, maternal immunity is critical for the establishment and maintenance of pregnancy, especially at the maternal-fetal interface. Anatomically, the maternal-fetal interface has both maternally- and fetally- derived cells, including fetal originated trophoblasts and maternal derived immune cells and stromal cells. Besides, a commensal microbiota in the uterus was supposed to aid the unique immunity in pregnancy. The appropriate crosstalk between fetal derived and maternal originated cells and uterine microbiota are critical for normal pregnancy. Dysfunctional maternal-fetal interactions might be associated with the development of pregnancy complications. This review elaborates the latest knowledge on the interactions between trophoblasts and decidual immune cells, highlighting their critical roles in maternal-fetal tolerance and pregnancy development. We also characterize the role of commensal bacteria in promoting pregnancy progression. Furthermore, this review may provide new thought on future basic research and the development of clinical applications for pregnancy complications.
Collapse
Affiliation(s)
- Yonghong Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhaozhao Liu
- Reproduction Center, The Third Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
41
|
Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 2023; 19:257-270. [PMID: 36635411 PMCID: PMC10038936 DOI: 10.1038/s41581-022-00670-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Denise Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
42
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Herrock O, Deer E, LaMarca B. Setting a stage: Inflammation during preeclampsia and postpartum. Front Physiol 2023; 14:1130116. [PMID: 36909242 PMCID: PMC9995795 DOI: 10.3389/fphys.2023.1130116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality worldwide. The immune system plays a critical role in normal pregnancy progression; however, inappropriate inflammatory responses have been consistently linked with PE pathophysiology. This inflammatory phenotype consists of activation of the innate immune system, adaptive immune system, and increased inflammatory mediators in circulation. Moreover, recent studies have shown that the inflammatory profile seen in PE persists into the postpartum period. This manuscript aims to highlight recent advances in research relating to inflammation in PE as well as the inflammation that persists postpartum in women after a PE pregnancy. With the advent of the COVID-19 pandemic, there has been an increase in obstetric disorders associated with COVID-19 infection during pregnancy. This manuscript also aims to shed light on the relationship between COVID-19 infection during pregnancy and the increased incidence of PE in these women.
Collapse
Affiliation(s)
- Owen Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
44
|
A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. Int J Mol Sci 2023; 24:ijms24043454. [PMID: 36834865 PMCID: PMC9965492 DOI: 10.3390/ijms24043454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The fundamental basis of pregnancy and cancer is to determine the fate of the survival or the death of humanity. However, the development of fetuses and tumors share many similarities and differences, making them two sides of the same coin. This review presents an overview of the similarities and differences between pregnancy and cancer. In addition, we will also discuss the critical roles that Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 may play in the immune system, cell migration, and angiogenesis, all of which are essential for fetal and tumor development. Even though the comprehensive understanding of ERAP2 lags that of ERAP1 due to the lack of an animal model, recent studies have shown that both enzymes are associated with an increased risk of several diseases, including pregnancy disorder pre-eclampsia (PE), recurrent miscarriages, and cancer. The exact mechanisms in both pregnancy and cancer need to be elucidated. Therefore, a deeper understanding of ERAP's role in diseases can make it a potential therapeutic target for pregnancy complications and cancer and offer greater insight into its impact on the immune system.
Collapse
|
45
|
Chen Q, Shan D, Xie Y, Luo X, Wu Y, Chen Q, Dong R, Hu Y. Single cell RNA sequencing research in maternal fetal interface. Front Cell Dev Biol 2023; 10:1079961. [PMID: 36704195 PMCID: PMC9871254 DOI: 10.3389/fcell.2022.1079961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The maternal-fetal interface is an essential environment for embryonic growth and development, and a successful pregnancy depends on the dynamic balance of the microenvironment at the maternal-fetal interface. Single-cell sequencing, which unlike bulk sequencing that provides averaged data, is a robust method for interpreting the cellular and molecular landscape at single-cell resolution. With the support of single-cell sequencing, the issue of maternal-fetal interface heterogeneity during pregnancy has been more deeply elaborated and understood, which is important for a deeper understanding of physiological and pathological pregnancy. In this paper, we analyze the recent studies of single-cell transcriptomics in the maternal-fetal interface, and provide new directions for understanding and treating various pathological pregnancies.
Collapse
Affiliation(s)
- Qian Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,*Correspondence: Qian Chen, ; Yayi Hu,
| | - Dan Shan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yupei Xie
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xingrong Luo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuxia Wu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qiuhe Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruihong Dong
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yayi Hu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,Qingbaijiang Maternal and Child Health Hospital, Chengdu, China,*Correspondence: Qian Chen, ; Yayi Hu,
| |
Collapse
|
46
|
Alteration in IFN-γ and CCL2 serum levels at first trimester of pregnancy contribute to development of preeclampsia and fetal growth restriction. Taiwan J Obstet Gynecol 2023; 62:71-76. [PMID: 36720555 DOI: 10.1016/j.tjog.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Pregnancy is a unique challenge for the immune system. Any disturbance in the immune system in the first trimester could result in further pregnancy complications. In this regard, the current study aimed to investigate the association between serum levels of a group of cytokines in the first trimester of pregnancy with the onset of preeclampsia (PE) and fetal growth restriction (FGR). MATERIALS AND METHODS Serum samples were collected from 550 pregnant women at their 11th - 13th weeks of pregnancy and followed up to delivery. Out of all cases, 15 women complicated with preeclampsia and 15 ones diagnosed with FGR were included in the study. The serum levels of IFN-γ, CCL2, IL-10, IL-35 and IL-27 were checked in the collected sera of mentioned patients and compared to 60 women with normal pregnancy outcomes. RESULTS In the preeclampsia group, the mean level of IFN-γ was significantly higher (p < 0.001) while the CCL2 serum level was significantly lower (p < 0.003) as compared to control group. There was no significant difference between the preeclampsia group and controls regarding other cytokines. In the FGR group, the mean serum level of IFN-γ was significantly higher compared to the healthy pregnancy group (p < 0.001) but other cytokines showed no significant differences. In the FGR group, a significant positive correlation was found between IL-10 level and neonates' weight (p < 0.05). CONCLUSION Based on the results of the present study, an elevated level of IFN-γ and a reduced level of CCL2 at the first trimester of pregnancy could lead to complications such as PE and/or FGR.
Collapse
|
47
|
Wang P, Liang T, Zhan H, Zhu M, Wu M, Qian L, Zhou Y, Ni F. Unique metabolism and protein expression signature in human decidual NK cells. Front Immunol 2023; 14:1136652. [PMID: 36936959 PMCID: PMC10020942 DOI: 10.3389/fimmu.2023.1136652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Human decidual natural killer (dNK) cells are a unique type of tissue-resident NK cells at the maternal-fetal interface. dNK cells are likely to have pivotal roles during pregnancy, including in maternal-fetal immune tolerance, trophoblast invasion, and fetal development. However, detailed insights into these cells are still lacking. In this study, we performed metabolomic and proteomic analyses on human NK cells derived from decidua and peripheral blood. We found that 77 metabolites were significantly changed in dNK cells. Notably, compared to peripheral blood NK (pNK) cells, 29 metabolites involved in glycerophospholipid and glutathione metabolism were significantly decreased in dNK cells. Moreover, we found that 394 proteins were differentially expressed in dNK cells. Pathway analyses and network enrichment analyses identified 110 differentially expressed proteins involved in focal adhesion, cytoskeleton remodeling, oxidoreductase activity, and fatty acid metabolism in dNK cells. The integrated proteomic and metabolomic analyses revealed significant downregulation in glutathione metabolism in dNK cells compared to pNK cells. Our data indicate that human dNK cells have unique metabolism and protein-expression features, likely regulating their function in pregnancy and immunity.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Heqin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingming Zhu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Mingming Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Fang Ni,
| |
Collapse
|
48
|
Lodge-Tulloch NA, Toews AJ, Atallah A, Cotechini T, Girard S, Graham CH. Cross-Generational Impact of Innate Immune Memory Following Pregnancy Complications. Cells 2022; 11:3935. [PMID: 36497193 PMCID: PMC9741472 DOI: 10.3390/cells11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications can have long-term negative effects on the health of the affected mothers and their children. In this review, we highlight the underlying inflammatory etiologies of common pregnancy complications and discuss how aberrant inflammation may lead to the acquisition of innate immune memory. The latter can be described as a functional epigenetic reprogramming of innate immune cells following an initial exposure to an inflammatory stimulus, ultimately resulting in an altered response following re-exposure to a similar inflammatory stimulus. We propose that aberrant maternal inflammation associated with complications of pregnancy increases the cross-generational risk of developing noncommunicable diseases (i.e., pregnancy complications, cardiovascular disease, and metabolic disease) through a process mediated by innate immune memory. Elucidating a role for innate immune memory in the cross-generational health consequences of pregnancy complications may lead to the development of novel strategies aimed at reducing the long-term risk of disease.
Collapse
Affiliation(s)
| | - Alexa J. Toews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
49
|
Manchorova D, Papadopoulou M, Alexandrova M, Dimitrova V, Djerov L, Zapryanova S, Dimitrova P, Vangelov I, Vermijlen D, Dimova T. Human decidual gamma/delta T cells possess unique effector and TCR repertoire profiles during pregnancy. Cell Immunol 2022; 382:104634. [PMID: 36308817 DOI: 10.1016/j.cellimm.2022.104634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 01/13/2023]
Abstract
Human γδ T cells are enriched at the maternal-fetal interface (MFI, decidua basalis) showing a highly differentiated phenotype. However, their functional potential is not well-known and it is not clear whether this decidua-enrichment is associated with specific γδ T cell receptors (TCR) as is observed in mice. Here we addressed these open questions by investigating decidual γδ T cells during early and late gestation, in comparison with paired blood samples, with flow cytometry (cytotoxic mediators, cytokines) and TCR high-throughput sequencing. While decidual γδ T cells expressed less perforin than their counterparts in the blood, they expressed significant more granulysin during early pregnancy. Strikingly, this high granulysin expression was limited to early pregnancy, as it was reduced at term pregnancy. In contrast to this granulysin expression pattern, decidual γδ T cells produced reduced levels of IFNγ and TNFα (compared to paired blood) in early pregnancy that then increased by term pregnancy. TCR repertoire analysis indicated that human decidual γδ T cells are not generated early in life as in the mouse. Despite this, a specific enrichment of the Vγ2 chain in the decidua in early pregnancy was observed that disappeared later onwards, reflecting dynamic changes in the decidual γδ TCR repertoire during human gestation. In conclusion, our data indicate that decidual γδ T cells express a specific and dynamic pattern of cytotoxic mediators, Th1 cytokines and TCR repertoire suggesting an important role for these unconventional T cells in assuring a healthy pregnancy in human.
Collapse
Affiliation(s)
- D Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - M Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Universite Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - M Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - V Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia 1463, 2 Zdrave Str., Bulgaria
| | - L Djerov
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia 1463, 2 Zdrave Str., Bulgaria
| | - S Zapryanova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - P Dimitrova
- Institute of Microbiology "Acad. St. Angelov", Bulgarian Academy of Sciences, Sofia 1113, 25 Acad. G. Bonchev str., Bulgaria
| | - I Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - D Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Universite Libre de Bruxelles (ULB), 1050 Brussels, Belgium; Institute for Medical Immunology, Universitȇ Libre de Bruxelles (ULB), 6041 Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), Universite Libre de Bruxelles (ULB), Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - T Dimova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria.
| |
Collapse
|
50
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|