1
|
van Pul L, Stunnenberg M, Kroeze S, van Dort KA, Boeser-Nunnink BDM, Harskamp AM, Geijtenbeek TBH, Kootstra NA. Energy demanding RNA and protein metabolism drive dysfunctionality of HIV-specific T cell changes during chronic HIV infection. PLoS One 2024; 19:e0298472. [PMID: 39356699 PMCID: PMC11446443 DOI: 10.1371/journal.pone.0298472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Antiretroviral treatment of HIV infected individuals cannot eliminate the HIV reservoir and immune control of HIV is rarely seen upon treatment interruption. In long-term non-progressors (LTNP), an effective CD8 T cell response is thought to contribute to be immune control of HIV. Here we studied the transcriptional profile of virus specific CD8 T cells during the asymptomatic phase of disease, to gain molecular insights in CD8 T cell functionality in HIV progressors and different groups of LTNP: HLA-B*57 LTNP, non-HLA-B*57 LTNP and individuals carrying the MAVS minor genotype (rs7262903/rs7269320). Principal component analysis revealed distinct overall transcriptional profiles between the groups. The transcription profile of HIV-specific CD8 T cells of LTNP groups was associated with increased cytokine/IL-12 signaling and protein/RNA metabolism pathways, indicating an increased CD8 T cell functionality. Although the transcription profile of CMV-specific CD8 T cells differed from that of HIV-specific CD8 T cells, with mainly an upregulation of gene expression in progressors, similar affected pathways were identified. Moreover, CMV-specific CD8 T cells from progressors showed increased expression of genes related to effector functions and suggests recent antigen exposure. Our data shows that changes in cytokine signaling and the energy demanding RNA and protein metabolism are related to CD8 T cell dysfunction, which may indicate that mitochondrial dysfunction is an important driver of T cell dysfunctionality during chronic HIV infection. Indeed, improvement of mitochondrial function by IL-12 and mitoTempo treatment, enhanced in vitro IFNγ release by PBMC from PWH upon HIV gag and CMV pp65 peptide stimulation. Our study provides new insights into the molecular pathways associated with CD8 T cell mediated immune control of chronic HIV infection which is important for the design of novel treatment strategies to restore or improve the HIV-specific immune response.
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melissa Stunnenberg
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Stefanie Kroeze
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Brigitte D M Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Agnes M Harskamp
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
3
|
Mokaleng B, Choga WT, Bareng OT, Maruapula D, Ditshwanelo D, Kelentse N, Mokgethi P, Moraka NO, Motswaledi MS, Tawe L, Koofhethile CK, Moyo S, Zachariah M, Gaseitsiwe S. No Difference in the Prevalence of HIV-1 gag Cytotoxic T-Lymphocyte-Associated Escape Mutations in Viral Sequences from Early and Late Parts of the HIV-1 Subtype C Pandemic in Botswana. Vaccines (Basel) 2023; 11:1000. [PMID: 37243104 PMCID: PMC10221913 DOI: 10.3390/vaccines11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
HIV is known to accumulate escape mutations in the gag gene in response to the immune response from cytotoxic T lymphocytes (CTLs). These mutations can occur within an individual as well as at a population level. The population of Botswana exhibits a high prevalence of HLA*B57 and HLA*B58, which are associated with effective immune control of HIV. In this retrospective cross-sectional investigation, HIV-1 gag gene sequences were analyzed from recently infected participants across two time periods which were 10 years apart: the early time point (ETP) and late time point (LTP). The prevalence of CTL escape mutations was relatively similar between the two time points-ETP (10.6%) and LTP (9.7%). The P17 protein had the most mutations (9.4%) out of the 36 mutations that were identified. Three mutations (A83T, K18R, Y79H) in P17 and T190A in P24 were unique to the ETP sequences at a prevalence of 2.4%, 4.9%, 7.3%, and 5%, respectively. Mutations unique to the LTP sequences were all in the P24 protein, including T190V (3%), E177D (6%), R264K (3%), G248D (1%), and M228L (11%). Mutation K331R was statistically higher in the ETP (10%) compared to the LTP (1%) sequences (p < 0.01), while H219Q was higher in the LTP (21%) compared to the ETP (5%) (p < 0.01). Phylogenetically, the gag sequences clustered dependently on the time points. We observed a slower adaptation of HIV-1C to CTL immune pressure at a population level in Botswana. These insights into the genetic diversity and sequence clustering of HIV-1C can aid in the design of future vaccine strategies.
Collapse
Affiliation(s)
- Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Wonderful Tatenda Choga
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Ontlametse Thato Bareng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Patrick Mokgethi
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone 999106, Botswana
| | - Natasha Onalenna Moraka
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Modisa Sekhamo Motswaledi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Catherine Kegakilwe Koofhethile
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Matshediso Zachariah
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
4
|
White JA, Simonetti FR, Beg S, McMyn NF, Dai W, Bachmann N, Lai J, Ford WC, Bunch C, Jones JL, Ribeiro RM, Perelson AS, Siliciano JD, Siliciano RF. Complex decay dynamics of HIV virions, intact and defective proviruses, and 2LTR circles following initiation of antiretroviral therapy. Proc Natl Acad Sci U S A 2022; 119:e2120326119. [PMID: 35110411 PMCID: PMC8833145 DOI: 10.1073/pnas.2120326119] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Subul Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Natalie F McMyn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Weiwei Dai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Niklas Bachmann
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - William C Ford
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christina Bunch
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Joyce L Jones
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ruy M Ribeiro
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- HHMI, Baltimore, MD 21205
| |
Collapse
|
5
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
6
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Walker FC, Hassan E, Peterson ST, Rodgers R, Schriefer LA, Thompson CE, Li Y, Kalugotla G, Blum-Johnston C, Lawrence D, McCune BT, Graziano VR, Lushniak L, Lee S, Roth AN, Karst SM, Nice TJ, Miner JJ, Wilen CB, Baldridge MT. Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLoS Pathog 2021; 17:e1009402. [PMID: 33705489 PMCID: PMC7987144 DOI: 10.1371/journal.ppat.1009402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/23/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.
Collapse
Affiliation(s)
- Forrest C. Walker
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan T. Peterson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cassandra E. Thompson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carla Blum-Johnston
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dylan Lawrence
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Broc T. McCune
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Vincent R. Graziano
- Departments of Laboratory Medicine & Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Larissa Lushniak
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sanghyun Lee
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alexa N. Roth
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Stephanie M. Karst
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan J. Miner
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine & Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
8
|
Acevedo-Saenz L, Perdomo-Celis F, Montoya CJ, Velilla PA. Polyfunctional CD8+ T-Cell Response to Autologous Peptides from Protease and Reverse Transcriptase of HIV-1 Clade B. Curr HIV Res 2020; 17:350-359. [PMID: 31622220 DOI: 10.2174/1570162x17666191017105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diversity of the HIV proteome influences the cellular response and development of an effective vaccine, particularly due to the generation of viral variants with mutations located within CD8+ T-cell epitopes. These mutations can affect the recognition of the epitopes, that may result in the selection of HIV variants with mutated epitopes (autologous epitopes) and different CD8+ T-cell functional profiles. OBJECTIVE To determine the phenotype and functionality of CD8+ T-cell from HIV-infected Colombian patients in response to autologous and consensus peptides derived from HIV-1 clade B protease and reverse transcriptase (RT). METHODS By flow cytometry, we compared the ex vivo CD8+ T-cell responses from HIV-infected patients to autologous and consensus peptides derived from HIV-1 clade B protease and RT, restricted by HLA-B*35, HLA-B*44 and HLA-B*51 alleles. RESULTS Although autologous peptides restricted by HLA-B*35 and HLA-B*44 did not show any differences compared with consensus peptides, we observed the induction of a higher polyfunctional profile of CD8+ T-cells by autologous peptides restricted by HLA-B*51, particularly by the production of interferon-γ and macrophage inflammatory protein-1β. The response by different memory CD8+ T-cell populations was comparable between autologous vs. consensus peptides. In addition, the magnitude of the polyfunctional response induced by the HLA-B*51-restricted QRPLVTIRI autologous epitope correlated with low viremia. CONCLUSION Autologous peptides should be considered for the evaluation of HIV-specific CD8+ Tcell responses and to reveal some relevant epitopes that could be useful for therapeutic strategies aiming to promote polyfunctional CD8+ T-cell responses in a specific population of HIV-infected patients.
Collapse
Affiliation(s)
- Liliana Acevedo-Saenz
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigación Enfermería-CES, Facultad de Enfermería, Universidad CES, Medellin, Colombia
| | - Federico Perdomo-Celis
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Carlos J Montoya
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Paula A Velilla
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
9
|
Gomes STM, da Silva Graça Amoras E, Gomes ÉR, Queiroz MAF, Júnior ECS, de Vasconcelos Massafra JM, da Silva Lemos P, Júnior JLV, Ishak R, Vallinoto ACR. Immune escape mutations in HIV-1 controllers in the Brazilian Amazon region. BMC Infect Dis 2020; 20:546. [PMID: 32711474 PMCID: PMC7382849 DOI: 10.1186/s12879-020-05268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV-1) infection is characterized by high viral replication and a decrease in CD4+ T cells (CD4+TC), resulting in AIDS, which can lead to death. In elite controllers and viremia controllers, viral replication is naturally controlled, with maintenance of CD4+TC levels without the use of antiretroviral therapy (ART). METHODS The aim of the present study was to describe virological and immunological risk factors among HIV-1-infected individuals according to characteristics of progression to AIDS. The sample included 30 treatment-naive patients classified into three groups based on infection duration (> 6 years), CD4+TC count and viral load: (i) 2 elite controllers (ECs), (ii) 7 viremia controllers (VCs) and (iii) 21 nonviremia controllers (NVCs). Nested PCR was employed to amplify the virus genome, which was later sequenced using the Ion PGM platform for subtyping and analysis of immune escape mutations. RESULTS Viral samples were classified as HIV-1 subtypes B and F. Greater selection pressure on mutations was observed in the group of viremia controllers, with a higher frequency of immunological escape mutations in the genes investigated, including two new mutations in gag. The viral sequences of viremia controllers and nonviremia controllers did not differ significantly regarding the presence of immune escape mutations. CONCLUSION The results suggest that progression to AIDS is not dependent on a single variable but rather on a set of characteristics and pressures exerted by virus biology and interactions with immunogenetic host factors.
Collapse
Affiliation(s)
- Samara Tatielle Monteiro Gomes
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Ananindeua, Brazil
| | | | - Érica Ribeiro Gomes
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | - Edivaldo Costa Sousa Júnior
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Poliana da Silva Lemos
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | - João Lídio Vianez Júnior
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | | |
Collapse
|
10
|
MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4 + T Cell Infection in HIV-1-Infected Individuals. Viruses 2020; 12:v12070764. [PMID: 32708557 PMCID: PMC7412276 DOI: 10.3390/v12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.
Collapse
|
11
|
Bauer AM, Ziani W, Lindemuth E, Kuri-Cervantes L, Li H, Lee FH, Watkins M, Ding W, Xu H, Veazey R, Bar KJ. Novel Transmitted/Founder Simian-Human Immunodeficiency Viruses for Human Immunodeficiency Virus Latency and Cure Research. J Virol 2020; 94:e01659-19. [PMID: 31969435 PMCID: PMC7108852 DOI: 10.1128/jvi.01659-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
A robust simian-human immunodeficiency virus (SHIV)-macaque model of latency is critical to investigate eradicative and suppressive strategies that target HIV-1 Env. To this end, we previously reported a novel strategy for constructing SHIVs that bear primary or transmitted/founder (TF) Envs with modifications at Env residue 375 that enable efficient replication in Indian rhesus macaques (RM). Such TF SHIVs, however, have not been examined for their suitability for HIV-1 latency and cure research. Here, we evaluate two promising TF SHIVs, SHIV.D.191859 and SHIV.C.CH848, which encode TF subtype D and C HIV-1 Envs, respectively, for their viral kinetics and persistence during suppressive combination antiretroviral therapy (cART) and treatment interruption in RM. Our results suggest that the viral kinetics of these SHIVs in RM during acute, early, and chronic infection, and upon cART initiation, maintenance and discontinuation, mirror those of HIV-1 infection. We demonstrate consistent early peak and set point viremia, rapid declines in viremia to undetectable plasma titers following cART initiation, infection of long-lived cellular subsets and establishment of viral latency, and viral rebound with return to pretreatment set point viremia following treatment interruption. The viral dynamics and reservoir biology of SHIV.D.191859, and to a lesser extent SHIV.C.CH848, during chronic infection, cART administration, and upon treatment interruption suggest that these TF SHIVs are promising reagents for a SHIV model of HIV-1 latency and cure.IMPORTANCE Simian-human immunodeficiency viruses (SHIVs) have been successfully used for over 2 decades to study virus-host interactions, transmission, and pathogenesis in rhesus macaques. The majority of Env trimers of most previously studied SHIVs, however, do not recapitulate key properties of transmitted/founder (TF) or primary HIV-1 isolates, such as CCR5 tropism, tier 2 neutralization resistance, and native trimer conformation. Here, we test two recently generated TF SHIVs, SHIV.D.191859 and SHIV.C.CH848, which were designed to address these issues as components of a nonhuman primate model of HIV-1 latency. We conclude that the TF SHIV-macaque model reflects several hallmarks of HIV and SIV infection and latency. Results suggest that this model has broad applications for evaluating eradicative and suppressive strategies against the HIV reservoir, including Env-specific interventions, therapeutic vaccines, and engineered T cells.
Collapse
Affiliation(s)
- Anya M Bauer
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Widade Ziani
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang-Hua Lee
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meagan Watkins
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Ronald Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Rep 2019; 25:893-908.e7. [PMID: 30355496 PMCID: PMC6426304 DOI: 10.1016/j.celrep.2018.09.087] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Densely arranged N-linked glycans shield the HIV-1 envelope (Env) trimer from antibody recognition. Strain-specific breaches in this shield (glycan holes) can be targets of vaccine-induced neutralizing antibodies that lack breadth. To understand the interplay between glycan holes and neutralization breadth in HIV-1 infection, we developed a sequence-and structure-based approach to identify glycan holes for individual Env sequences that are shielded in most M-group viruses. Applying this approach to 12 longitudinally followed individuals, we found that transmitted viruses with more intact glycan shields correlated with development of greater neutralization breadth. Within 2 years, glycan acquisition filled most glycan holes present at transmission, indicating escape from hole-targeting neutralizing antibodies. Glycan hole filling generally preceded the time to first detectable breadth, although time intervals varied across hosts. Thus, completely glycan-shielded viruses were associated with accelerated neutralization breadth development, suggesting that Env immunogens with intact glycan shields may be preferred components of AIDS vaccines. Wagh et al. show that transmitted viruses with more intact glycan shields are correlated with development of neutralization breadth in HIV-1-infected individuals. This is consistent with previous findings that glycan holes in Env immunogens are targeted by strain-specific neutralizing responses, and suggests that immunogens with intact glycan Shields may be advantageous.
Collapse
|
13
|
Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute HIV-1 Viremia. J Virol 2019; 93:JVI.00814-19. [PMID: 31375576 DOI: 10.1128/jvi.00814-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
BLT (bone marrow-liver-thymus) humanized mice, which reconstitute a functional human immune system, develop prototypic human virus-specific CD8+ T cell responses following infection with human immunodeficiency virus type 1 (HIV-1). We explored the utility of the BLT model for HIV-1 vaccine development by immunizing BLT mice against the conserved viral Gag protein, utilizing a rapid prime-boost protocol of poly(lactic-co-glycolic) acid microparticles and a replication-defective herpes simplex virus (HSV) recombinant vector. After HIV-1 challenge, the mice developed broad, proteome-wide gamma interferon-positive (IFN-γ+) T cell responses against HIV-1 that reached magnitudes equivalent to what is observed in HIV-1-infected individuals. The functionality of these responses was underscored by the consistent emergence of escape mutations in multiple CD8+ T cell epitopes during the course of infection. Although prechallenge vaccine-induced responses were largely undetectable, the Gag immunization increased both the magnitude and the kinetics of anamnestic Gag-specific T cell responses following HIV-1 infection, and the magnitude of these postchallenge Gag-specific responses was inversely correlated with acute HIV-1 viremia. Indeed, Gag immunization was associated with a modest but significant 0.5-log reduction in HIV-1 viral load when analyzed across four experimental groups of BLT mice. Notably, the HSV vector induced elevated plasma concentrations of polarizing cytokines and chemotactic factors, including interleukin-12p70 (IL-12p70) and MIP-1α, which were positively correlated with the magnitude of Gag-specific responses. Overall, these results support the ability of BLT mice to recapitulate human pathogen-specific T cell responses and to respond to immunization; however, additional improvements to the model are required to develop a robust system for testing HIV-1 vaccine efficacy.IMPORTANCE Advances in the development of humanized mice have raised the possibility of a small-animal model for preclinical testing of an HIV-1 vaccine. Here, we describe the capacity of BLT humanized mice to mount broadly directed HIV-1-specific human T cell responses that are functionally active, as indicated by the rapid emergence of viral escape mutations. Although immunization of BLT mice with the conserved viral Gag protein did not result in detectable prechallenge responses, it did increase the magnitude and kinetics of postchallenge Gag-specific T cell responses, which was associated with a modest but significant reduction in acute HIV-1 viremia. Additionally, the BLT model revealed immunization-associated increases in the plasma concentrations of immunomodulatory cytokines and chemokines that correlated with more robust T cell responses. These data support the potential utility of the BLT humanized mouse for HIV-1 vaccine development but suggest that additional improvements to the model are warranted.
Collapse
|
14
|
Suboptimal stimulation by weak agonist epitope variants does not drive dysfunction of HIV-1-specific cytotoxic T lymphocyte clones. AIDS 2019; 33:1565-1574. [PMID: 31306165 DOI: 10.1097/qad.0000000000002259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess whether weakly recognized epitope variants induce anergy in HIV-1-specific CD8 T lymphocyte (CTL) clones as a mechanism of dysfunction. DESIGN HIV-1-specific CTL clones were exposed to suboptimally recognized epitope variants, and screened for anergy and other T-cell dysfunction markers, and subsequent capability to kill target cells bearing index epitope. METHODS In addition to the optimally recognized index epitope, two suboptimally recognized epitope variants were selected based on titration curves for killing of peptide-labeled target cells by three HIV-1-specific CTL clones targeting the epitopes SLYNTVATL (Gag 77-85, A02-restricted), RPAEPVPLQL (Rev 66-75, B07-restricted), and KRWIIMGLNK (Gag 263-272, B27-restricted). Consequences of suboptimal stimulation were assessed by cytokine secretion, gene expression, and capacity to kill index epitope-labeled target cells upon rechallenge. RESULTS Suboptimal recognition of epitope variants reduced cytokine production by CTL similarly to reduction in killing of target cells. Gene expression profiles after suboptimal stimulation demonstrated no patterns consistent with T-cell dysfunction due to anergy, exhaustion, or apoptosis. Preexposure of CTL to epitope variants had no discernable impact on their subsequent capacity to kill index epitope-bearing target cells. CONCLUSION Our data explore the hypothesis that poorly recognized epitope variants not only facilitate HIV-1 evasion of CTL recognition, but also induce CTL dysfunction through suboptimal signaling causing anergy. However, the results do not suggest that suboptimal signaling induces anergy (or exhaustion or apoptosis), indicating that the major role of CTL epitope variation is likely viral escape.
Collapse
|
15
|
Yang Y, Ganusov VV. Defining Kinetic Properties of HIV-Specific CD8⁺ T-Cell Responses in Acute Infection. Microorganisms 2019; 7:E69. [PMID: 30836625 PMCID: PMC6462943 DOI: 10.3390/microorganisms7030069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple lines of evidence indicate that CD8 + T cells are important in the control of HIV-1 (HIV) replication. However, CD8 + T cells induced by natural infection cannot eliminate the virus or reduce viral loads to acceptably low levels in most infected individuals. Understanding the basic quantitative features of CD8 + T-cell responses induced during HIV infection may therefore inform us about the limits that HIV vaccines, which aim to induce protective CD8 + T-cell responses, must exceed. Using previously published experimental data from a cohort of HIV-infected individuals with sampling times from acute to chronic infection we defined the quantitative properties of CD8 + T-cell responses to the whole HIV proteome. In contrast with a commonly held view, we found that the relative number of HIV-specific CD8 + T-cell responses (response breadth) changed little over the course of infection (first 400 days post-infection), with moderate but statistically significant changes occurring only during the first 35 symptomatic days. This challenges the idea that a change in the T-cell response breadth over time is responsible for the slow speed of viral escape from CD8 + T cells in the chronic infection. The breadth of HIV-specific CD8 + T-cell responses was not correlated with the average viral load for our small cohort of patients. Metrics of relative immunodominance of HIV-specific CD8 + T-cell responses such as Shannon entropy or the Evenness index were also not significantly correlated with the average viral load. Our mathematical-model-driven analysis suggested extremely slow expansion kinetics for the majority of HIV-specific CD8 + T-cell responses and the presence of intra- and interclonal competition between multiple CD8 + T-cell responses; such competition may limit the magnitude of CD8 + T-cell responses, specific to different epitopes, and the overall number of T-cell responses induced by vaccination. Further understanding of mechanisms underlying interactions between the virus and virus-specific CD8 + T-cell response will be instrumental in determining which T-cell-based vaccines will induce T-cell responses providing durable protection against HIV infection.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
16
|
Abdel-Hakeem MS. Viruses Teaching Immunology: Role of LCMV Model and Human Viral Infections in Immunological Discoveries. Viruses 2019; 11:E106. [PMID: 30691215 PMCID: PMC6410308 DOI: 10.3390/v11020106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Virology has played an essential role in deciphering many immunological phenomena, thus shaping our current understanding of the immune system. Animal models of viral infection and human viral infections were both important tools for immunological discoveries. This review discusses two immunological breakthroughs originally identified with the help of the lymphocytic choriomeningitis virus (LCMV) model; immunological restriction by major histocompatibility complex and immunotherapy using checkpoint blockade. In addition, we discuss related discoveries such as development of tetramers, viral escape mutation, and the phenomenon of T-cell exhaustion.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| |
Collapse
|
17
|
Kim J, De La Cruz J, Lam K, Ng H, Daar ES, Balamurugan A, Yang OO. CD8 + Cytotoxic T Lymphocyte Responses and Viral Epitope Escape in Acute HIV-1 Infection. Viral Immunol 2018; 31:525-536. [PMID: 30059271 DOI: 10.1089/vim.2018.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epitope escape from HIV-1-targeted CD8+ cytotoxic T lymphocyte (CTL) responses occurs rapidly after acute infection and contributes to the eventual failure of effective immune control of HIV-1 infection. Because the early CTL response is key in determining HIV-1 disease outcome, studying the process of epitope escape is crucial for understanding what leads to failure of immune control in acute HIV-1 infection and will provide important implications for HIV-1 vaccine design. HIV-1-specific CD8+ T lymphocyte responses against viral epitopes were mapped in six acutely infected individuals, and the magnitudes of these responses were measured longitudinally during acute infection. The evolution of autologous circulating viral epitopes was determined in four of these subjects. In-depth testing of CD8+ T lymphocyte responses against index and all autologous-detected variant epitopes was performed in one subject. Among the four individuals examined, 10 of a total of 35 CD8+ T cell responses within Gag, Pol, and Nef showed evidence of epitope escape. CTL responses with viral epitope variant evolution were shown in one subject, and this evolution occurred with and without measurable CTL responses against epitope variants. These results demonstrate a dynamic period of viral epitope evolution in early HIV-1 infection due to CD8+ CTL response pressure.
Collapse
Affiliation(s)
- Joseph Kim
- 1 Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Justin De La Cruz
- 1 Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Karen Lam
- 2 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California
| | - Hwee Ng
- 1 Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Eric S Daar
- 3 Los Angeles Biomedical Research Institute , Harbor-UCLA Medical Center, Torrance, California
| | - Arumugam Balamurugan
- 1 Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Otto O Yang
- 1 Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California , Los Angeles, California.,2 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California.,4 AIDS Healthcare Foundation , Los Angeles, California
| |
Collapse
|
18
|
Potential immune escape mutations under inferred selection pressure in HIV-1 strains circulating in Medellín, Colombia. INFECTION GENETICS AND EVOLUTION 2018; 69:267-278. [PMID: 30808498 DOI: 10.1016/j.meegid.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has significantly improved life expectancy of HIV-infected patients; nevertheless, it does not eliminate the virus from hosts, so a cure for this infection is crucial. Some strategies have employed the induction of anti-HIV CD8+ T cells. However, the high genetic variability of HIV-1 represents the biggest obstacle for these strategies, since immune escape mutations within epitopes restricted by Human Leukocyte Antigen class I molecules (HLA-I) abrogate the antiviral activity of these cells. We used a bioinformatics pipeline for the determination of such mutations, based on selection pressure and docking/refinement analyses. Fifty HIV-1 infected patients were recruited; HLA-A and HLA-B alleles were typified using sequence-specific oligonucleotide approach, and viral RNA was extracted for the amplification of HIV-1 gag, which was bulk sequenced and aligned to perform selection pressure analysis, using Single Likelihood Ancestor Counting (SLAC) and Fast Unconstrained Bayesian Approximation (FUBAR) algorithms. Positively selected sites were mapped into HLA-I-specific epitopes, and both mutated and wild type epitopes were modelled using PEP-FOLD. Molecular docking and refinement assays were carried out using AutoDock Vina 4 and FlexPepDock. Five positively selected sites were found: S54 at HLA-A*02 GC9, T84 at HLA-A*02 SL9, S125 at HLA-B*35 HY9, S173 at HLA-A*02/B*57 KS12 and I223 at HLA-B*35 HA9. Although some mutations have been previously described as immune escape mutations, the majority of them have not been reported. Molecular docking/refinement analysis showed that one combination of mutations at GC9, one at SL9, and eight at HY9 epitopes could act as immune escape mutations. Moreover, HLA-A*02-positive patients harbouring mutations at KS12, and HLA-B*35-positive patients with mutations at HY9 have significantly higher plasma viral loads than patients lacking such mutations. Thus, HLA-A and -B alleles could be shaping the genetic diversity of HIV-1 through the selection of potential immune escape mutations.
Collapse
|
19
|
Partridge T, Nicastri A, Kliszczak AE, Yindom LM, Kessler BM, Ternette N, Borrow P. Discrimination Between Human Leukocyte Antigen Class I-Bound and Co-Purified HIV-Derived Peptides in Immunopeptidomics Workflows. Front Immunol 2018; 9:912. [PMID: 29780384 PMCID: PMC5946011 DOI: 10.3389/fimmu.2018.00912] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Elucidation of novel peptides presented by human leukocyte antigen (HLA) class I alleles by immunopeptidomics constitutes a powerful approach that can inform the rational design of CD8+ T cell inducing vaccines to control infection with pathogens such as human immunodeficiency virus type 1 (HIV-1) or to combat tumors. Recent advances in the sensitivity of liquid chromatography tandem mass spectrometry instrumentation have facilitated the discovery of thousands of natural HLA-restricted peptides in a single measurement. However, the extent of contamination of class I-bound peptides identified using HLA immunoprecipitation (IP)-based immunopeptidomics approaches with peptides from other sources has not previously been evaluated in depth. Here, we investigated the specificity of the IP-based immunopeptidomics methodology using HLA class I- or II-deficient cell lines and membrane protein-specific antibody IPs. We demonstrate that the 721.221 B lymphoblastoid cell line, widely regarded to be HLA class Ia-deficient, actually expresses and presents peptides on HLA-C*01:02. Using this cell line and the C8166 (HLA class I- and II-expressing) cell line, we show that some HLA class II-bound peptides were co-purified non-specifically during HLA class I and membrane protein IPs. Furthermore, IPs of "irrelevant" membrane proteins from HIV-1-infected HLA class I- and/or II-expressing cells revealed that unusually long HIV-1-derived peptides previously reported by us and other immunopeptidomics studies as potentially novel CD8+ T cell epitopes were non-specifically co-isolated, and so constitute a source of contamination in HLA class I IPs. For example, a 16-mer (FLGKIWPSYKGRPGNF), which was detected in all samples studied represents the full p1 segment of the abundant intracellular or virion-associated proteolytically-processed HIV-1 Gag protein. This result is of importance, as these long co-purified HIV-1 Gag peptides may not elicit CD8+ T cell responses when incorporated into candidate vaccines. These results have wider implications for HLA epitope discovery from abundant or membrane-associated antigens by immunopeptidomics in the context of infectious diseases, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Thomas Partridge
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Anna E. Kliszczak
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Louis-Marie Yindom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Liu D, Wang C, Hora B, Zuo T, Goonetilleke N, Liu MKP, Berrong M, Ferrari G, McMichael AJ, Bhattacharya T, Perelson AS, Gao F. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies. Retrovirology 2017; 14:46. [PMID: 29017536 PMCID: PMC5634943 DOI: 10.1186/s12977-017-0371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023] Open
Abstract
Background Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Results Strongly selected mutations were identified by analyzing 5′-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. Conclusions The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.
Collapse
Affiliation(s)
- Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.,Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Bhavna Hora
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Mark Berrong
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | | | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China. .,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.
| |
Collapse
|
21
|
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. THE JOURNAL OF IMMUNOLOGY 2017; 197:407-17. [PMID: 27382129 DOI: 10.4049/jimmunol.1600343] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.
Collapse
Affiliation(s)
- Alexandra J Murray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Howard Hughes Medical Institute, Baltimore MD 21250
| |
Collapse
|
22
|
Broadening CD4 + and CD8 + T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes. J Virol 2017; 91:JVI.00130-17. [PMID: 28446674 DOI: 10.1128/jvi.00130-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023] Open
Abstract
Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity.IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many chronic infections, including HCV infection, have a remarkable ability to drive initially strong CD4+ and CD8+ T cell responses against dominant epitopes toward an exhausted, dysfunctional state. Thus, new and innovative vaccine approaches to control HCV should be evaluated. Here, we report on a novel peptide-based nanoparticle vaccine strategy (NS3 pepmix) aimed at generating T cell immunity against potential subdominant T cell epitopes that are not efficiently targeted by vaccination with full-length recombinant protein (rNS3) or infection with HCV. As proof of concept, we found that NS3 pepmix excels in broadening the repertoire of epitope-specific, multifunctional, and cytotoxic CD4+ and CD8+ T cells compared to vaccination with rNS3, which generated only CD4+ T cell responses.
Collapse
|
23
|
Garcia V, Feldman MW. Within-Epitope Interactions Can Bias CTL Escape Estimation in Early HIV Infection. Front Immunol 2017; 8:423. [PMID: 28507544 PMCID: PMC5410659 DOI: 10.3389/fimmu.2017.00423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023] Open
Abstract
As human immunodeficiency virus (HIV) begins to replicate within hosts, immune responses are elicited against it. Escape mutations in viral epitopes—immunogenic peptide parts presented on the surface of infected cells—allow HIV to partially evade these responses, and thus rapidly go to fixation. The faster they go to fixation, i.e., the higher their escape rate, the larger the selective pressure exerted by the immune system is assumed to be. This relation underpins the rationale for using escapes to assess the strength of immune responses. However, escape rate estimates are often obtained by employing an aggregation procedure, where several mutations that affect the same epitope are aggregated into a single, composite epitope mutation. The aggregation procedure thus rests upon the assumption that all within-epitope mutations have indistinguishable effects on immune recognition. In this study, we investigate how violation of this assumption affects escape rate estimates. To this end, we extend a previously developed simulation model of HIV that accounts for mutation, selection, and recombination to include different distributions of fitness effects (DFEs) and inter-mutational genomic distances. We use this discrete time Wright–Fisher based model to simulate early within-host evolution of HIV for DFEs and apply standard estimation methods to infer the escape rates. We then compare true with estimated escape rate values. We also compare escape rate values obtained by applying the aggregation procedure with values estimated without use of that procedure. We find that across the DFEs analyzed, the aggregation procedure alters the detectability of escape mutations: large-effect mutations are overrepresented while small-effect mutations are concealed. The effect of the aggregation procedure is similar to extracting the largest-effect mutation appearing within an epitope. Furthermore, the more pronounced the over-exponential decay of the DFEs, the more severely true escape rates are underestimated. We conclude that the aggregation procedure has two main consequences. On the one hand, it leads to a misrepresentation of the DFE of fixed mutations. On the other hand, it conceals within-epitope interactions that may generate irregularities in mutation frequency trajectories that are thus left unexplained.
Collapse
Affiliation(s)
- Victor Garcia
- Department of Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
24
|
Cardinaud S, Urrutia A, Rouers A, Coulon PG, Kervevan J, Richetta C, Bet A, Maze EA, Larsen M, Iglesias MC, Appay V, Graff-Dubois S, Moris A. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol 2017; 47:818-829. [PMID: 28266028 DOI: 10.1002/eji.201646603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/02/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
A variety of signals influence the capacity of dendritic cells (DCs) to mount potent antiviral cytotoxic T-cell (CTL) responses. In particular, innate immune sensing by pathogen recognition receptors, such as TLR and C-type lectines, influences DC biology and affects their susceptibility to HIV infection. Yet, whether the combined effects of PPRs triggering and HIV infection influence HIV-specific (HS) CTL responses remain enigmatic. Here, we dissect the impact of innate immune sensing by pathogen recognition receptors on DC maturation, HIV infection, and on the quality of HS CTL activation. Remarkably, ligand-driven triggering of TLR-3, -4, NOD2, and DC-SIGN, despite reducing viral replication, markedly increased the capacity of infected DCs to stimulate HS CTLs. This was exemplified by the diversity and the quantity of cytokines produced by HS CTLs primed by these DCs. Infecting DCs with viruses harboring members of the APOBEC family of antiviral factors enhanced the antigen-presenting skills of infected DCs. Our results highlight the tight interplay between innate and adaptive immunity and may help develop innovative immunotherapies against viral infections.
Collapse
Affiliation(s)
- Sylvain Cardinaud
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
- INSERM, U955, IMRB Equipe-16, Vaccine Research Institute-VRI, Creteil, France
| | - Alejandra Urrutia
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Angeline Rouers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Pierre-Grégoire Coulon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Jérome Kervevan
- INSERM, U955, IMRB Equipe-16, Vaccine Research Institute-VRI, Creteil, France
| | - Clémence Richetta
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Anne Bet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Emmanuel A Maze
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Martin Larsen
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Maria-Candela Iglesias
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Stéphanie Graff-Dubois
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| |
Collapse
|
25
|
Kamori D, Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front Microbiol 2017; 8:80. [PMID: 28194140 PMCID: PMC5276809 DOI: 10.3389/fmicb.2017.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency.
Collapse
Affiliation(s)
- Doreen Kamori
- Center for AIDS Research, Kumamoto University Kumamoto, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto UniversityKumamoto, Japan; International Research Center for Medical Sciences, Kumamoto UniversityKumamoto, Japan
| |
Collapse
|
26
|
Wikramaratna PS, Lourenço J, Klenerman P, Pybus OG, Gupta S. Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0290. [PMID: 26150656 PMCID: PMC4528488 DOI: 10.1098/rstb.2014.0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite substantial advances in our knowledge of immune responses against HIV-1 and of its evolution within the host, it remains unclear why control of the virus eventually breaks down. Here, we present a new theoretical framework for the infection dynamics of HIV-1 that combines antibody and CD8+ T-cell responses, notably taking into account their different lifespans. Several apparent paradoxes in HIV pathogenesis and genetics of host susceptibility can be reconciled within this framework by assigning a crucial role to antibody responses in the control of viraemia. We argue that, although escape from or progressive loss of quality of CD8+ T-cell responses can accelerate disease progression, the underlying cause of the breakdown of virus control is the loss of antibody induction due to depletion of CD4+ T cells. Furthermore, strong antibody responses can prevent CD8+ T-cell escape from occurring for an extended period, even in the presence of highly efficacious CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
27
|
Obuku AE, Bugembe DL, Musinguzi K, Watera C, Serwanga J, Ndembi N, Levin J, Kaleebu P, Pala P. Macrophage Inflammatory Protein-1 Beta and Interferon Gamma Responses in Ugandans with HIV-1 Acute/Early Infections. AIDS Res Hum Retroviruses 2016; 32:237-46. [PMID: 26548707 DOI: 10.1089/aid.2015.0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Control of HIV replication through CD4(+) and CD8(+) T cells might be possible, but the functional and phenotypic characteristics of such cells are not defined. Among cytokines produced by T cells, CCR5 ligands, including macrophage inflammatory protein-1 beta (MIP-1β), compete for the CCR5 coreceptor with HIV, promoting CCR5 internalization and decreasing its availability for virus binding. Interferon (IFN)-γ also has some antiviral activity and has been used as a read-out for T cell immunogenicity. We used cultured ELISpot assays to compare the relative contribution of MIP-1β and IFN-γ to HIV-specific responses. The magnitude of responses was 1.36 times higher for MIP-1β compared to IFN-γ. The breadth of the MIP-1β response (45.41%) was significantly higher than IFN-γ (36.88%), with considerable overlap between the peptide pools that stimulated both MIP-1β and IFN-γ production. Subtype A and D cross-reactive responses were observed both at stimulation and test level, but MIP-1β and IFN-γ responses displayed different effect patterns. We conclude that the MIP-1β ELISpot would be a useful complement to the evaluation of the immunogenicity of HIV vaccines and the activity of adjuvants.
Collapse
Affiliation(s)
- Andrew Ekii Obuku
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Daniel L. Bugembe
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Kenneth Musinguzi
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Christine Watera
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Jennifer Serwanga
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Nicaise Ndembi
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Jonathan Levin
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Pietro Pala
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| |
Collapse
|
28
|
Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J, Hahn BH, Borrow P, McMichael AJ. HIV-Host Interactions: Implications for Vaccine Design. Cell Host Microbe 2016; 19:292-303. [PMID: 26922989 DOI: 10.1016/j.chom.2016.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of an effective AIDS vaccine is a global priority. However, the extreme diversity of HIV type 1 (HIV-1), which is a consequence of its propensity to mutate to escape immune responses, along with host factors that prevent the elicitation of protective immune responses, continue to hinder vaccine development. Breakthroughs in understanding of the biology of the transmitted virus, the structure and nature of its envelope trimer, vaccine-induced CD8 T cell control in primates, and host control of broadly neutralizing antibody elicitation have given rise to new vaccine strategies. Despite this promise, emerging data from preclinical trials reinforce the need for additional insight into virus-host biology in order to facilitate the development of a successful vaccine.
Collapse
Affiliation(s)
- Barton F Haynes
- Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA.
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Joseph Sodroski
- Dana Farber-Cancer Institute, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
29
|
Siliciano JD, Siliciano RF. Recent developments in the effort to cure HIV infection: going beyond N = 1. J Clin Invest 2016; 126:409-14. [PMID: 26829622 DOI: 10.1172/jci86047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Combination antiretroviral therapy (ART) can suppress plasma HIV to undetectable levels, allowing HIV-infected individuals who are treated early a nearly normal life span. Despite the clear ability of ART to prevent morbidity and mortality, it is not curative. Even in individuals who have full suppression of viral replication on ART, there are resting memory CD4+ T cells that harbor stably integrated HIV genomes, which are capable of producing infectious virus upon T cell activation. This latent viral reservoir is considered the primary obstacle to the development of an HIV cure, and recent efforts in multiple areas of HIV research have been brought to bear on the development of strategies to eradicate or develop a functional cure for HIV. Reviews in this series detail progress in our understanding of the molecular and cellular mechanisms of viral latency, efforts to accurately assess the size and composition of the latent reservoir, the characterization and development of HIV-targeted broadly neutralizing antibodies and cytolytic T lymphocytes, and animal models for the study HIV latency and therapeutic strategies.
Collapse
|
30
|
Zanini F, Brodin J, Thebo L, Lanz C, Bratt G, Albert J, Neher RA. Population genomics of intrapatient HIV-1 evolution. eLife 2015; 4:e11282. [PMID: 26652000 PMCID: PMC4718817 DOI: 10.7554/elife.11282] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022] Open
Abstract
Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lina Thebo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Christa Lanz
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Göran Bratt
- Department of Clinical Science and Education, Stockholm South General Hospital, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Richard A Neher
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
31
|
Xu Q, Ma X, Wang F, Li H, Zhao X. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens. Virus Res 2015. [PMID: 26196055 DOI: 10.1016/j.virusres.2015.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Xingjiang Ma
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China.
| |
Collapse
|
32
|
Antibody escape kinetics of equine infectious anemia virus infection of horses. J Virol 2015; 89:6945-51. [PMID: 25878104 DOI: 10.1128/jvi.00137-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022] Open
Abstract
Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies.
Collapse
|
33
|
Roberts HE, Hurst J, Robinson N, Brown H, Flanagan P, Vass L, Fidler S, Weber J, Babiker A, Phillips RE, McLean AR, Frater J. Structured observations reveal slow HIV-1 CTL escape. PLoS Genet 2015; 11:e1004914. [PMID: 25642847 PMCID: PMC4333731 DOI: 10.1371/journal.pgen.1004914] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/23/2014] [Indexed: 01/11/2023] Open
Abstract
The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years.
Collapse
Affiliation(s)
- Hannah E. Roberts
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Jacob Hurst
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
| | - Nicola Robinson
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Brown
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Peter Flanagan
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Laura Vass
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Jonathan Weber
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Abdel Babiker
- Medical Research Council Clinical Trials Unit, London, United Kingdom
| | - Rodney E. Phillips
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
- * E-mail:
| | - Angela R. McLean
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - John Frater
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|
34
|
Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog 2015; 11:e1004565. [PMID: 25569444 PMCID: PMC4287535 DOI: 10.1371/journal.ppat.1004565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
Collapse
|
35
|
Broad and persistent Gag-specific CD8+ T-cell responses are associated with viral control but rarely drive viral escape during primary HIV-1 infection. AIDS 2015; 29:23-33. [PMID: 25387316 DOI: 10.1097/qad.0000000000000508] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We characterized protein-specific CD8 T-cell immunodominance patterns during the first year of HIV-1 infection, and their impact on viral evolution and immune control. METHODS We analyzed CD8 T-cell responses to the full HIV-1 proteome during the first year of infection in 18 antiretroviral-naïve individuals with acute HIV-1 subtype C infection, all identified prior to seroconversion. Ex-vivo and cultured interferon-γ ELISPOT assays were performed and viruses from plasma were sequenced within defined CTL Gag epitopes. RESULTS Nef-specific CD8 T-cell responses were dominant during the first 4 weeks after infection and made up 40% of the total responses at this time; yet, by 1 year, responses against this region had declined and Gag responses made up to 47% of all T-cell responses measured. An inverse correlation between the breadth of Gag-specific responses and viral load set point was evident at 26 weeks after infection (P = 0.0081, r = -0.60) and beyond. An inverse correlation between the number of persistent responses targeting Gag and viral set point was also identified (P = 0.01, r = -0.58). Gag-specific responses detectable by the cultured ELISPOT assay correlated negatively with viral load set point (P = 0.0013, r = -0.91). Sequence evolution in targeted and nontargeted Gag epitopes in this cohort was infrequent. CONCLUSIONS These data underscore the importance of HIV-specific CD8 T-cell responses, particularly to the Gag protein, in the maintenance of low viral load levels during primary infection, and show that these responses are initially poorly elicited by natural infection. These data have implications for vaccine design strategies.
Collapse
|
36
|
Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a bird of many feathers. Prog Retin Eye Res 2015; 44:99-110. [DOI: 10.1016/j.preteyeres.2014.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023]
|
37
|
Short conserved sequences of HIV-1 are highly immunogenic and shift immunodominance. J Virol 2014; 89:1195-204. [PMID: 25378501 DOI: 10.1128/jvi.02370-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Cellular immunity is pivotal in HIV-1 pathogenesis but is hampered by viral sequence diversity. An approach to minimize this diversity is to focus immunity on conserved proteome sequences; therefore, we selected four relatively conserved regions (Gag amino acids 148 to 214 and 250 to 335, Env amino acids 521 to 606, and Nef amino acids 106 to 148), each created in three mosaics, to provide better coverage of M-group HIV-1 sequences. A conserved-region vaccine (CRV) delivering genes for these four regions as equal mixtures of three mosaics each (each region at a separate injection site) was compared to a whole-protein vaccine (WPV) delivering equimolar amounts of genes for whole Gag, Env, and Nef as clade B consensus sequences (separate injection sites). Three rhesus macaques were vaccinated via three DNA primes and a recombinant adenovirus type 5 boost (weeks 0, 4, 8, and 24, respectively). Although CRV inserts were about one-fifth that of WPV, the CRV generated comparable-magnitude blood CD4+ and CD8+ T lymphocyte responses against Gag, Env, and Nef. WPV responses preferentially targeted proteome areas outside the selected conserved regions in direct proportion to sequence lengths, indicating similar immunogenicities for the conserved regions and the outside regions. The CRV yielded a conserved-region targeting density that was approximately 5-fold higher than that of the WPV. A similar pattern was seen for bronchoalveolar lymphocytes, but with quadruple the magnitudes seen in blood. Overall, these findings demonstrate that the selected conserved regions are highly immunogenic and that anatomically isolated vaccinations with these regions focus immunodominance compared to the case for full-length protein vaccination. IMPORTANCE HIV-1 sequence diversity is a major barrier limiting the capability of cellular immunity to contain infection and the ability of vaccines to match circulating viral sequences. To date, vaccines tested in humans have delivered whole proteins or genes for whole proteins, and it is unclear whether including only conserved sequences would yield sufficient cellular immunogenicity. We tested a vaccine delivering genes for four small conserved HIV-1 regions compared to a control vaccine with genes for whole Gag, Env, and Nef. Although the conserved regions ranged from 43 to 86 amino acids and comprised less than one-fifth of the whole Gag/Env/Nef sequence, the vaccines elicited equivalent total magnitudes of both CD4+ and CD8+ T lymphocyte responses. These data demonstrate the immunogenicity of these small conserved regions and the potential for a vaccine to steer immunodominance toward conserved epitopes.
Collapse
|
38
|
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 2014; 6:3271-92. [PMID: 25196483 PMCID: PMC4147695 DOI: 10.3390/v6083271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
Collapse
|
39
|
Al-Mawsawi LQ, Wu NC, De La Cruz J, Shi VC, Wu TT, Daar ES, Lewis MJ, Yang OO, Sun R. Short communication: HIV-1 gag genetic variation in a single acutely infected participant defined by high-resolution deep sequencing. AIDS Res Hum Retroviruses 2014; 30:806-11. [PMID: 24914638 DOI: 10.1089/aid.2014.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute HIV-1 infection is characterized by the rapid generation of highly diverse genetic variants to adapt to the new host environment. Understanding the dynamics of viral genetic variation at this stage of infection is critical for vaccine design efforts and early drug treatment. Here, using a high-resolution deep sequencing approach targeting the HIV-1 gag region, we reveal very early immune pressure with dramatic subpopulation shifts in a single acutely infected participant providing further insight into the genetic dynamics of acute HIV-1 infection.
Collapse
Affiliation(s)
- Laith Q Al-Mawsawi
- 1 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California , Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
UNLABELLED Recall T cell responses to HIV-1 antigens are used as a surrogate for endogenous cellular immune responses generated during infection. Current methods of identifying antigen-specific T cell reactivity in HIV-1 infection use bulk peripheral blood mononuclear cells (PBMC) yet ignore professional antigen-presenting cells (APC) that could reveal otherwise hidden responses. In the present study, peptides representing autologous variants of major histocompatibility complex (MHC) class I-restricted epitopes from HIV-1 Gag and Env were used as antigens in gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and polyfunctional cytokine assays. Here we show that dendritic cells (DC) enhanced T cell reactivity at all stages of disease progression but specifically restored T cell reactivity after combination antiretroviral therapy (cART) to early infection levels. Type 1 cytokine secretion was also enhanced by DC and was most apparent late post-cART. We additionally show that DC reveal polyfunctional T cell responses after many years of treatment, when potential immunotherapies would be implemented. These data underscore the potential efficacy of DC immunotherapy that aims to awaken a dormant, autologous, HIV-1-specific CD8+ T cell response. IMPORTANCE Assessment of endogenous HIV-1-specific T cell responses is critical for generating immunotherapies for subjects on cART. Current assays ignore the ability of dendritic cells to reveal these responses and may therefore underestimate the breadth and magnitude of T cell reactivity. As DC do not prime new responses in these assays, it can be assumed that the observed responses are not detected without appropriate stimulation. This is important because dogma states that HIV-1 mutates to evade host recognition and that CD8+ cytotoxic T lymphocyte (CTL) failure is due to the inability of T cells to recognize the autologous virus. The results presented here indicate that responses to autologous virus are generated during infection but may need additional stimulation to be effective. Detecting the breadth and magnitude of HIV-1-specific T cell reactivity generated in vivo is of the utmost importance for generating effective DC immunotherapies.
Collapse
|
41
|
Liu Y, Rao U, McClure J, Konopa P, Manocheewa S, Kim M, Chen L, Troyer RM, Tebit DM, Holte S, Arts EJ, Mullins JI. Impact of mutations in highly conserved amino acids of the HIV-1 Gag-p24 and Env-gp120 proteins on viral replication in different genetic backgrounds. PLoS One 2014; 9:e94240. [PMID: 24713822 PMCID: PMC3979772 DOI: 10.1371/journal.pone.0094240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/14/2014] [Indexed: 11/24/2022] Open
Abstract
It has been hypothesized that a single mutation at a highly conserved amino acid site (HCS) can be severely deleterious to HIV in most if not all isolate-specific genetic backgrounds. Consequently, potentially universal HIV-1 vaccines exclusively targeting highly conserved regions of the viral proteome have been proposed. To test this hypothesis, we examined the impact of 10 Gag-p24 and 9 Env-gp120 HCS single mutations on viral fitness. In the original founder sequence of the subject in whom these mutations were identified, all Gag-p24 HCS mutations significantly reduced viral replication fitness, including 7 that were lethal. Similar results were obtained at 9/10 sites when the same mutations were introduced into the founder sequences of two epidemiologically unlinked subjects. In contrast, none of the 9 Env-gp120 HCS mutations were lethal in the original founder sequence, and four had no fitness cost. Hence, HCS mutations in Gag-p24 are likely to be severely deleterious in different HIV-1 subtype B backgrounds; however, some HCS mutations in both Gag-p24 and Env-gp120 fragments can be well tolerated. Therefore, when designing HIV-1 immunogens that are intended to force the virus to nonviable escape pathways, the fitness constraints on the HIV segments included should be considered beyond their conservation level.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| | - Ushnal Rao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jan McClure
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Philip Konopa
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Siriphan Manocheewa
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Moon Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lennie Chen
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ryan M. Troyer
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Denis M. Tebit
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sarah Holte
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eric J. Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
42
|
The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate. AIDS 2014; 28:477-86. [PMID: 24384691 DOI: 10.1097/qad.0000000000000175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. METHODS To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. RESULTS For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. CONCLUSIONS Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.
Collapse
|
43
|
The impact of viral evolution and frequency of variant epitopes on primary and memory human immunodeficiency virus type 1-specific CD8⁺ T cell responses. Virology 2013; 450-451:34-48. [PMID: 24503065 DOI: 10.1016/j.virol.2013.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
Abstract
It is unclear if HIV-1 variants lose the ability to prime naïve CD8(+) cytotoxic T lymphocytes (CTL) during progressive, untreated infection. We conducted a comprehensive longitudinal analysis of viral evolution and its impact on primary and memory CD8(+) T cell responses pre-seroconversion (SC), post-SC, and during combination antiretroviral therapy (cART). Memory T cell responses targeting autologous virus variants reached a nadir by 8 years post-SC with development of AIDS, followed by a transient enhancement of anti-HIV-1 CTL responses upon initiation of cART. We show broad and high magnitude primary T cell responses to late variants in pre-SC T cells, comparable to primary anti-HIV-1 responses induced in T cells from uninfected persons. Despite evolutionary changes, CD8(+) T cells could still be primed to HIV-1 variants. Hence, vaccination against late, mutated epitopes could be successful in enhancing primary reactivity of T cells for control of the residual reservoir of HIV-1 during cART.
Collapse
|
44
|
Seich al Basatena NK, Chatzimichalis K, Graw F, Frost SDW, Regoes RR, Asquith B. Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog 2013; 9:e1003656. [PMID: 24244151 PMCID: PMC3828169 DOI: 10.1371/journal.ppat.1003656] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 08/12/2013] [Indexed: 02/07/2023] Open
Abstract
The CD8+ T cell effector mechanisms that mediate control of HIV-1 and SIV infections remain poorly understood. Recent work suggests that the mechanism may be primarily non-lytic. This is in apparent conflict with the observation that SIV and HIV-1 variants that escape CD8+ T cell surveillance are frequently selected. Whilst it is clear that a variant that has escaped a lytic response can have a fitness advantage compared to the wild-type, it is less obvious that this holds in the face of non-lytic control where both wild-type and variant infected cells would be affected by soluble factors. In particular, the high motility of T cells in lymphoid tissue would be expected to rapidly destroy local effects making selection of escape variants by non-lytic responses unlikely. The observation of frequent HIV-1 and SIV escape poses a number of questions. Most importantly, is the consistent observation of viral escape proof that HIV-1- and SIV-specific CD8+ T cells lyse infected cells or can this also be the result of non-lytic control? Additionally, the rate at which a variant strain escapes a lytic CD8+ T cell response is related to the strength of the response. Is the same relationship true for a non-lytic response? Finally, the potential anti-viral control mediated by non-lytic mechanisms compared to lytic mechanisms is unknown. These questions cannot be addressed with current experimental techniques nor with the standard mathematical models. Instead we have developed a 3D cellular automaton model of HIV-1 which captures spatial and temporal dynamics. The model reproduces in vivo HIV-1 dynamics at the cellular and population level. Using this model we demonstrate that non-lytic effector mechanisms can select for escape variants but that outgrowth of the variant is slower and less frequent than from a lytic response so that non-lytic responses can potentially offer more durable control. The interplay between viruses and the immune system cannot always be studied with current experimental techniques or commonly used mathematical models. Consequently, many important questions remain unanswered. The questions we wished to address fall into this category. Recent evidence strongly suggests that CD8+ T cells control SIV, and potentially HIV-1, primarily by secreting anti-viral factors rather than by killing infected cells. However, this does not seem compatible with the common observation that HIV and SIV evolve to escape the immune response. Soluble anti-viral factors, like RANTES which protects uninfected cells from infection, would be expected to inhibit both wild-type and variant virus. Furthermore, the high speed and motility of T cells in lymphoid tissue will increase homogeneity and again decrease the likelihood that an escape variant can have a selective advantage in the face of non-lytic control. We wanted to understand whether viral escape is proof that HIV-1- and SIV-specific CD8+ T cells kill infected cells, determine the factors that facilitate viral escape, and investigate the comparative efficiency of lytic and non-lytic responses in controlling viral infections. Here we develop an elaborate but robust computational framework that captures T cell kinetics and spatial interactions in lymphoid tissue to addresses these important questions.
Collapse
Affiliation(s)
| | | | - Frederik Graw
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- University of Heidelberg, Heidelberg, Germany
| | | | | | - Becca Asquith
- Imperial College, London, London, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Rapid, complex adaptation of transmitted HIV-1 full-length genomes in subtype C-infected individuals with differing disease progression. AIDS 2013; 27:507-18. [PMID: 23370465 DOI: 10.1097/qad.0b013e32835cab64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE(S) There is limited information on full-length genome sequences and the early evolution of transmitted HIV-1 subtype C viruses, which constitute the majority of viruses spread in Africa. The purpose of this study was to characterize the earliest changes across the genome of subtype C viruses following transmission, to better understand early control of viremia. DESIGN We derived the near full-length genome sequence responsible for clinical infection from five HIV subtype C-infected individuals with different disease progression profiles and tracked adaptation to immune responses in the first 6 months of infection. METHODS Near full-length genomes were generated by single genome amplification and direct sequencing. Sequences were analyzed for amino acid mutations associated with cytotoxic T lymphocyte (CTL) or antibody-mediated immune pressure, and for reversion. RESULTS Fifty-five sequence changes associated with adaptation to the new host were identified, with 38% attributed to CTL pressure, 35% to antibody pressure, 16% to reversions and the remainder were unclassified. Mutations in CTL epitopes were most frequent in the first 5 weeks of infection, with the frequency declining over time with the decline in viral load. CTL escape predominantly occurred in nef, followed by pol and env. Shuffling/toggling of mutations was identified in 81% of CTL epitopes, with only 7% reaching fixation within the 6-month period. CONCLUSION There was rapid virus adaptation following transmission, predominantly driven by CTL pressure, with most changes occurring during high viremia. Rapid escape and complex escape pathways provide further challenges for vaccine protection.
Collapse
|
46
|
Ganusov VV, Neher RA, Perelson AS. Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses. JOURNAL OF STATISTICAL MECHANICS (ONLINE) 2013; 2013:P01010. [PMID: 24660019 PMCID: PMC3961578 DOI: 10.1088/1742-5468/2013/01/p01010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the absence of treatment leads to AIDS and death in almost all infected individuals. HIV infection elicits a vigorous immune response starting about 2-3 weeks post infection that can lower the amount of virus in the body, but which cannot eradicate the virus. How HIV establishes a chronic infection in the face of a strong immune response remains poorly understood. It has been shown that HIV is able to rapidly change its proteins via mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an HIV-infected patient will generate 4-12 CTL responses specific for parts of viral proteins called epitopes. Such CTL responses lead to strong selective pressure to change the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the viral population "escapes" from about half of the CTL responses by mutation in the first year. Here we review experimental data on HIV evolution in response to CTL pressure, mathematical models developed to explain this evolution, and highlight problems associated with the data and previous modeling efforts. We show that estimates of the strength of the epitope-specific CTL response depend on the method used to fit models to experimental data and on the assumptions made regarding how mutants are generated during infection. We illustrate that allowing CTL responses to decay over time may improve the fit to experimental data and provides higher estimates of the killing efficacy of HIV-specific CTLs. We also propose a novel method for simultaneously estimating the killing efficacy of multiple CTL populations specific for different epitopes of HIV using stochastic simulations. Lastly, we show that current estimates of the efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by more frequent sampling of viral sequences and by combining data on sequence evolution with experimentally measured CTL dynamics.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard A Neher
- Max-Planck-Institute for Developmental Biology, 72070 Tübingen, Germany
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, MS K710 Los Alamos, 87545 NM, USA
| |
Collapse
|
47
|
Liu MKP, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, Li H, Pavlicek JW, Cai F, Rose-Abrahams M, Treurnicht F, Hraber P, Riou C, Gray C, Ferrari G, Tanner R, Ping LH, Anderson JA, Swanstrom R, Cohen M, Karim SSA, Haynes B, Borrow P, Perelson AS, Shaw GM, Hahn BH, Williamson C, Korber BT, Gao F, Self S, McMichael A, Goonetilleke N. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 2012; 123:380-93. [PMID: 23221345 DOI: 10.1172/jci65330] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022] Open
Abstract
HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell-mediated in vivo control of HIV-1. Primary HIV-1-specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or "vertical" immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.
Collapse
Affiliation(s)
- Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Prince JL, Claiborne DT, Carlson JM, Schaefer M, Yu T, Lahki S, Prentice HA, Yue L, Vishwanathan SA, Kilembe W, Goepfert P, Price MA, Gilmour J, Mulenga J, Farmer P, Derdeyn CA, Tang J, Heckerman D, Kaslow RA, Allen SA, Hunter E. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS Pathog 2012; 8:e1003041. [PMID: 23209412 PMCID: PMC3510241 DOI: 10.1371/journal.ppat.1003041] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Initial studies of 88 transmission pairs in the Zambia Emory HIV Research Project cohort demonstrated that the number of transmitted HLA-B associated polymorphisms in Gag, but not Nef, was negatively correlated to set point viral load (VL) in the newly infected partners. These results suggested that accumulation of CTL escape mutations in Gag might attenuate viral replication and provide a clinical benefit during early stages of infection. Using a novel approach, we have cloned gag sequences isolated from the earliest seroconversion plasma sample from the acutely infected recipient of 149 epidemiologically linked Zambian transmission pairs into a primary isolate, subtype C proviral vector, MJ4. We determined the replicative capacity (RC) of these Gag-MJ4 chimeras by infecting the GXR25 cell line and quantifying virion production in supernatants via a radiolabeled reverse transcriptase assay. We observed a statistically significant positive correlation between RC conferred by the transmitted Gag sequence and set point VL in newly infected individuals (p = 0.02). Furthermore, the RC of Gag-MJ4 chimeras also correlated with the VL of chronically infected donors near the estimated date of infection (p = 0.01), demonstrating that virus replication contributes to VL in both acute and chronic infection. These studies also allowed for the elucidation of novel sites in Gag associated with changes in RC, where rare mutations had the greatest effect on fitness. Although we observed both advantageous and deleterious rare mutations, the latter could point to vulnerable targets in the HIV-1 genome. Importantly, RC correlated significantly (p = 0.029) with the rate of CD4+ T cell decline over the first 3 years of infection in a manner that is partially independent of VL, suggesting that the replication capacity of HIV-1 during the earliest stages of infection is a determinant of pathogenesis beyond what might be expected based on set point VL alone. In the majority of HIV-1 cases, a single virus establishes infection. However, mutations in the viral genome accumulate over time in order to avoid recognition by the host immune response. Certain mutations in the main structural protein, Gag, driven by cytotoxic T lymphocytes are detrimental to viral replication, and we showed previously that, upon transmission, viruses with higher numbers of escape mutations in Gag were associated with lower early set point viral loads. We hypothesized that this could be attributed to attenuation of the transmitted virus. Here, we have cloned the gag gene from 149 newly infected individuals from linked transmission pairs into a clade C proviral vector and determined the replicative capacity in vitro. We found that the replicative capacity conferred by the transmitted Gag correlated with set point viral loads in newly infected individuals, as well as with the viral load of the transmitting partner, and we identified previously unrecognized residues associated with increasing and decreasing replicative capacity. Importantly, we demonstrate that transmitted viruses with high replicative capacity cause more rapid CD4+ decline over the first three years, independent of viral load. This suggests that the trajectory of pathogenesis may be affected very early in infection, before adaptive immunity can respond.
Collapse
Affiliation(s)
- Jessica L. Prince
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Daniel T. Claiborne
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | - Malinda Schaefer
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, United States of America
| | - Shabir Lahki
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Heather A. Prentice
- Department of Epidemiology, University of Alabama, Birmingham, Alabama, United States of America
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sundaram A. Vishwanathan
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | - Paul Goepfert
- Department of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - Matthew A. Price
- International AIDS Vaccine Initiative, San Francisco, California, United States of America
| | - Jill Gilmour
- International AIDS Vaccine Initiative, London, England
| | | | - Paul Farmer
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jiaming Tang
- Department of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - David Heckerman
- Microsoft Research, Los Angeles, California, United States of America
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama, Birmingham, Alabama, United States of America
| | - Susan A. Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet JP, Bordi R, Filali-Mouhim A, Loubert JB, El-Far M, Dupuy FP, Boulassel MR, Tremblay C, Routy JP, Bernard N, Balderas R, Haddad EK, Sékaly RP. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog 2012; 8:e1002840. [PMID: 22916009 PMCID: PMC3420930 DOI: 10.1371/journal.ppat.1002840] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
Chronic viral infections lead to persistent CD8 T cell activation and functional exhaustion. Expression of programmed cell death-1 (PD-1) has been associated to CD8 T cell dysfunction in HIV infection. Herein we report that another negative regulator of T cell activation, CD160, was also upregulated on HIV-specific CD8 T lymphocytes mostly during the chronic phase of infection. CD8 T cells that expressed CD160 or PD-1 were still functional whereas co-expression of CD160 and PD-1 on CD8 T cells defined a novel subset with all the characteristics of functionally exhausted T cells. Blocking the interaction of CD160 with HVEM, its natural ligand, increased HIV-specific CD8 T cell proliferation and cytokine production. Transcriptional profiling showed that CD160−PD-1+CD8 T cells encompassed a subset of CD8+ T cells with activated transcriptional programs, while CD160+PD-1+ T cells encompassed primarily CD8+ T cells with an exhausted phenotype. The transcriptional profile of CD160+PD-1+ T cells showed the downregulation of the NFκB transcriptional node and the upregulation of several inhibitors of T cell survival and function. Overall, we show that CD160 and PD-1 expressing subsets allow differentiating between activated and exhausted CD8 T cells further reinforcing the notion that restoration of function will require multipronged approaches that target several negative regulators. HIV infection is widely known to cause generalized immune activation and immune exhaustion ultimately leading to HIV disease progression. Several studies have suggested over the years that the accumulation of inhibitory signalling proteins on the surface of responding cells is linked to immune exhaustion in HIV. It has become paramount to distinguish functionally exhausted CD8 T cells from activated HIV-specific CD8 T cells because both cell types have different fates. Using specific cell surface markers, we were able to identify these different cell types and show that HIV-infected patients accumulate dysfunctional CD8 T cells over time. Importantly, we show that this dysfunction is reversible.
Collapse
Affiliation(s)
- Yoav Peretz
- Caprion/ImmuneCarta Services, Montreal, Quebec, Canada
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Zhong He
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Yu Shi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Bader Yassine-Diab
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Philippe Goulet
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Rebeka Bordi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Ali Filali-Mouhim
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Baptiste Loubert
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Franck P. Dupuy
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Mohamed Rachid Boulassel
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicole Bernard
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert Balderas
- BD Biosciences, San Diego, California, United States of America
| | - Elias K. Haddad
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Institut National de la Santé et de la Recherche Médicale U743, CRCHUM, Université de Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
50
|
Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, Bonsignori M, Chen X, Hwang KK, Montefiori DC, Liao HX, Hraber P, Fischer W, Li H, Wang S, Sterrett S, Keele BF, Ganusov VV, Perelson AS, Korber BT, Georgiev I, McLellan JS, Pavlicek JW, Gao F, Haynes BF, Hahn BH, Kwong PD, Shaw GM. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog 2012; 8:e1002721. [PMID: 22693447 PMCID: PMC3364956 DOI: 10.1371/journal.ppat.1002721] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50)) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one.
Collapse
Affiliation(s)
- Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chun-yen Tsao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shilpa S. Iyer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie M. Decker
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mattia Bonsignori
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xi Chen
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kwan-Ki Hwang
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - William Fischer
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuyi Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah Sterrett
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon F. Keele
- SAIC-Frederick Inc, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vitaly V. Ganusov
- University of Tennessee, Knoxville, Tennessee, United States of America
| | - Alan S. Perelson
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ivelin Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason S. McLellan
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey W. Pavlicek
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Beatrice H. Hahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|