1
|
Märkle H, John S, Metzger L, Ansari MA, Pedergnana V, Tellier A. Inference of Host-Pathogen Interaction Matrices from Genome-Wide Polymorphism Data. Mol Biol Evol 2024; 41:msae176. [PMID: 39172738 DOI: 10.1093/molbev/msae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Host-pathogen coevolution is defined as the reciprocal evolutionary changes in both species due to genotype × genotype (G×G) interactions at the genetic level determining the outcome and severity of infection. While co-analyses of hosts and pathogen genomes (co-genome-wide association studies) allow us to pinpoint the interacting genes, these do not reveal which host genotype(s) is/are resistant to which pathogen genotype(s). The knowledge of this so-called infection matrix is important for agriculture and medicine. Building on established theories of host-pathogen interactions, we here derive four novel indices capturing the characteristics of the infection matrix. These indices can be computed from full genome polymorphism data of randomly sampled uninfected hosts, as well as infected hosts and their pathogen strains. We use these indices in an approximate Bayesian computation method to pinpoint loci with relevant G×G interactions and to infer their underlying interaction matrix. In a combined single nucleotide polymorphism dataset of 451 European humans and their infecting hepatitis C virus (HCV) strains and 503 uninfected individuals, we reveal a new human candidate gene for resistance to HCV and new virus mutations matching human genes. For two groups of significant human-HCV (G×G) associations, we infer a gene-for-gene infection matrix, which is commonly assumed to be typical of plant-pathogen interactions. Our model-based inference framework bridges theoretical models of G×G interactions with host and pathogen genomic data. It, therefore, paves the way for understanding the evolution of key G×G interactions underpinning HCV adaptation to the European human population after a recent expansion.
Collapse
Affiliation(s)
- Hanna Märkle
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sona John
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| | - Lukas Metzger
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Vincent Pedergnana
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), Montpellier, France
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Smeir M, Chumala P, Katselis GS, Liu L. Lymphocyte-Specific Protein 1 Regulates Expression and Stability of Endothelial Nitric Oxide Synthase. Biomolecules 2024; 14:111. [PMID: 38254711 PMCID: PMC10813790 DOI: 10.3390/biom14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), plays a critical role in blood pressure regulation. Genome-wide association studies have identified genetic susceptibility loci for hypertension in human lymphocyte-specific protein 1 (LSP1) gene. LSP1 is recognized as modulator of leukocyte extravasation, and endothelial permeability, however, the role of LSP1 in regulation of NO signaling within endothelial cells (ECs) remains unknown. The present study investigated the role of LSP1 in the regulation of eNOS expression and activity utilizing human macrovascular ECs in vitro and LSP1 knockout (KO) mice. In ECs, specific CRISPR-Cas9 genomic editing deleted LSP1 and caused downregulation of eNOS expression. LSP1 gain-of-function through adenovirus-mediated gene transfer was associated with enhanced expression of eNOS. Co-immunoprecipitation and confocal fluorescence microscopy revealed that eNOS and LSP1 formed a protein complex under basal conditions in ECs. Furthermore, LSP1 deficiency in mice promoted significant upregulation and instability of eNOS. Utilizing a mass-spectrometry-based bottom-up proteomics approach, we identified novel truncated forms of eNOS in immunoprecipitates from LSP1 KO aortae. Our experimental data suggest an important role of endothelial LSP1 in regulation of eNOS expression and activity within human ECs and murine vascular tissues.
Collapse
Affiliation(s)
- Musstafa Smeir
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Paulos Chumala
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - George S. Katselis
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
4
|
Mukhopadhyay A, Tsukasaki Y, Chan WC, Le JP, Kwok ML, Zhou J, Natarajan V, Mostafazadeh N, Maienschein-Cline M, Papautsky I, Tiruppathi C, Peng Z, Rehman J, Ganesh B, Komarova Y, Malik AB. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 2024; 57:52-67.e10. [PMID: 38091995 PMCID: PMC10872880 DOI: 10.1016/j.immuni.2023.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.
Collapse
Affiliation(s)
- Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jonathan P Le
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Man Long Kwok
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jian Zhou
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Nima Mostafazadeh
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ian Papautsky
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Zhangli Peng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia Komarova
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Zhou LY, Jin CX, Wang WX, Song L, Shin JB, Du TT, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. eLife 2023; 12:e90155. [PMID: 37982489 PMCID: PMC10703445 DOI: 10.7554/elife.90155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Chen-Xi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Wen-Xiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ting-Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| |
Collapse
|
6
|
Puhm F, Laroche A, Boilard E. Diversity of Megakaryocytes. Arterioscler Thromb Vasc Biol 2023; 43:2088-2098. [PMID: 37675634 DOI: 10.1161/atvbaha.123.318782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Megakaryocytes are commonly known as large, polyploid, bone marrow resident cells that contribute to hemostasis through the production of platelets. Soon after their discovery in the 19th century, megakaryocytes were described in tissue locations other than the bone marrow, specifically in the lungs and the blood circulation. However, the localization of megakaryocytes in the lungs and the contribution of lung megakaryocytes to the general platelet pool has only recently been appreciated. Moreover, the conception of megakaryocytes as uniform cells with the sole purpose of platelet production has been challenged. Here, we review the literature on megakaryocyte cell identity and location with a special focus on recent observations of megakaryocyte subpopulations identified by transcriptomic analyses.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| | - Audrée Laroche
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| |
Collapse
|
7
|
Tebben K, Yirampo S, Coulibaly D, Koné A, Laurens M, Stucke E, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry A, Kouriba B, Plowe C, Doumbo O, Lyke K, Takala-Harrison S, Thera M, Travassos M, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. RESEARCH SQUARE 2023:rs.3.rs-3487114. [PMID: 37961587 PMCID: PMC10635353 DOI: 10.21203/rs.3.rs-3487114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
| | - Salif Yirampo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Drissa Coulibaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Abdoulaye Koné
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Ahmadou Dembélé
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Youssouf Tolo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Karim Traoré
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Ahmadou Niangaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Bourema Kouriba
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Ogobara Doumbo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Mahamadou Thera
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER)
| | | | | |
Collapse
|
8
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
9
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
10
|
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int J Mol Sci 2023; 24:ijms24076831. [PMID: 37047799 PMCID: PMC10095190 DOI: 10.3390/ijms24076831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
To date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia. Using this approach, we identified and analyzed 11 SNPs from 6 genes in 553 Russian individuals (331 patients with IS and 222 controls). We assessed the association of SNPs with the risk of IS and IS outcomes. We found that the SNPs rs858239 (GPNMB), rs907611 (LSP1), and rs494356 (TAGLN) were associated with different parameters of IS functional outcomes. In addition, the SNP rs1261025 (PDPN) was associated significantly with IS itself (p = 0.0188, recessive model). All these associations were demonstrated for the first time. Analysis of the literature suggests that they should be characterized as being inflammation related. This supports the pivotal role of inflammation in both the incidence of stroke and post-stroke outcomes. We believe the findings reported here will help with stroke prognosis in the future.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Gennady V. Khvorykh
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Anna S. Arapova
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna E. Kulinskaya
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Svetlana A. Limborska
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
11
|
Chen J, Xiao Q, Li X, Liu R, Long X, Liu Z, Xiong H, Li Y. The correlation of leukocyte-specific protein 1 (LSP1) rs3817198(T>C) polymorphism with breast cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e31548. [PMID: 36397430 PMCID: PMC9666160 DOI: 10.1097/md.0000000000031548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Multiple studies have investigated the correlation of single nucleotide polymorphisms (SNPs) in leukocyte-specific protein 1 (LSP1) with susceptibility to breast cancer (BC) and have yielded inconsistent conclusions, particularly rs3817198(T > C). Consequently, we performed a meta-analysis to estimate this relationship more comprehensively. METHODS Four databases were utilized to locate eligible publications: PubMed, Embase, Web of Science, and China National Knowledge Infrastructure. This meta-analysis included 14 studies, including 22 reports of 33194 cases and 36661 controls. The relationship of rs3817198 polymorphism with breast cancer was estimated using odds ratios (ORs) with 95% confidence intervals (CIs). The LSP1 co-expression network was constructed by STRING, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using DAVIDE. Download TCGA breast cancer mRNA-seq data and analyze the relationship between LSP1 expression and breast cancer chemotherapy sensitivity. RESULTS The results indicated that rs3817198(T > C) was positively correlated to with breast malignancy (dominant model: OR = 1.11, 95%CI = 1.06-1.17; recessive model: OR = 1.10, 95%CI = 1.04-1.15; heterozygous model: OR = 1.09, 95%CI = 1.04-1.15; homozygous model: OR = 1.18, 95%CI = 1.09-1.28; additive model: OR = 1.09, 95%CI = 1.05-1.13), among Caucasians and Asians. However, rs3817198(T > C) may reduce the risk of breast carcinoma in Africans. Rs3817198(T > C) might result in breast carcinoma in individuals with BRCA1 and BRCA2 variants and can contribute to estrogen receptor (ER)-positive breast carcinoma. The expression of LSP1 was inversely correlated with the IC50 of doxorubicin (P = 8.91e-15, Cor = -0.23), 5-fluorouracil (P = 1.18e-22, Cor = -0.29), and cisplatin (P = 1.35e-42, Cor = -0.40). CONCLUSION Our study identified that LSP1 rs3817198 polymorphism might result in breast malignancy, particularly among Caucasians and Asians, but lower breast cancer susceptibility in African populations. The expression of LSP1 was negatively correlated with the IC50 of doxorubicin, 5-fluorouracil, and cisplatin.
Collapse
Affiliation(s)
- Jian Chen
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Xiao
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xudong Li
- Surgery Department, Wannian Maternal and Child Health Hospital, Shangrao, Jiangxi, China
| | - Ruihao Liu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhou Long
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhigao Liu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haiwei Xiong
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yingliang Li
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * Correspondence: Yingliang Li, First Affiliated Hospital of Nanchang University, No 17, YongWaiZheng Street, DongHu District, Nanchang 330006, Jiangxi, China (e-mail: )
| |
Collapse
|
12
|
Wen L, Marki A, Wang Z, Orecchioni M, Makings J, Billitti M, Wang E, Suthahar SSA, Kim K, Kiosses WB, Mikulski Z, Ley K. A humanized β 2 integrin knockin mouse reveals localized intra- and extravascular neutrophil integrin activation in vivo. Cell Rep 2022; 39:110876. [PMID: 35649374 PMCID: PMC10375464 DOI: 10.1016/j.celrep.2022.110876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
β2 integrins are leukocyte-specific adhesion molecules that are essential for leukocyte recruitment. The lack of tools for reporting β2 integrin activation in mice hindered the study of β2 integrin-related immune responses in vivo. Here, we generated a humanized β2 integrin knockin mouse strain by targeting the human β2 integrin coding sequence into the mouse Itgb2 locus to enable imaging of β2 integrin activation using the KIM127 (extension) and mAb24 (high-affinity) reporter antibodies. Using a CXCL1-induced acute inflammation model, we show the local dynamics of β2 integrin activation in arresting neutrophils in vivo in venules of the mouse cremaster muscle. Activated integrins are highly concentrated in a small area at the rear of arresting neutrophils in vivo. In a high-dose lipopolysaccharide model, we find that β2 integrins are activated in association with elevated neutrophil adhesion in lung and liver. Thus, these mice enable studies of β2 integrin activation in vivo.
Collapse
Affiliation(s)
- Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Alex Marki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zhihao Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Marco Orecchioni
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Jeffrey Makings
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Monica Billitti
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Erpei Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sujit S A Suthahar
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - William B Kiosses
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Schäringer K, Maxeiner S, Schalla C, Rütten S, Zenke M, Sechi A. LSP1-myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB J 2021; 35:e21268. [PMID: 33470457 DOI: 10.1096/fj.202000740rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.
Collapse
Affiliation(s)
- Katja Schäringer
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Maxeiner
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Carmen Schalla
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Antonio Sechi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Tan X, Petri B, DeVinney R, Jenne CN, Chaconas G. The Lyme disease spirochete can hijack the host immune system for extravasation from the microvasculature. Mol Microbiol 2021; 116:498-515. [PMID: 33891779 DOI: 10.1111/mmi.14728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Lyme disease is the most common tick-transmitted disease in the northern hemisphere and is caused by the spirochete Borrelia burgdorferi and related Borrelia species. The constellation of symptoms attributable to this malady results from vascular dissemination of B. burgdorferi throughout the body to invade various tissue types. However, little is known about the mechanism by which the spirochetes can breach the blood vessel wall to reach distant tissues. We have studied this process by direct observation of spirochetes in the microvasculature of living mice using multi-laser spinning-disk intravital microscopy. Our results show that in our experimental system, instead of phagocytizing B. burgdorferi, host neutrophils are involved in the production of specific cytokines that activate the endothelium and potentiate B. burgdorferi escape into the surrounding tissue. Spirochete escape is not induced by paracellular permeability and appears to occur via a transcellular pathway. Neutrophil repurposing to promote bacterial extravasation represents a new and innovative pathogenic strategy.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Björn Petri
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Rebekah DeVinney
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Genetic basis and identification of candidate genes for wooden breast and white striping in commercial broiler chickens. Sci Rep 2021; 11:6785. [PMID: 33762630 PMCID: PMC7990949 DOI: 10.1038/s41598-021-86176-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Wooden breast (WB) and white striping (WS) are highly prevalent and economically damaging muscle disorders of modern commercial broiler chickens characterized respectively by palpable firmness and fatty white striations running parallel to the muscle fiber. High feed efficiency and rapid growth, especially of the breast muscle, are believed to contribute to development of such muscle defects; however, their etiology remains poorly understood. To gain insight into the genetic basis of these myopathies, a genome-wide association study was conducted using a commercial crossbred broiler population (n = 1193). Heritability was estimated at 0.5 for WB and WS with high genetic correlation between them (0.88). GWAS revealed 28 quantitative trait loci (QTL) on five chromosomes for WB and 6 QTL on one chromosome for WS, with the majority of QTL for both myopathies located in a ~ 8 Mb region of chromosome 5. This region has highly conserved synteny with a portion of human chromosome 11 containing a cluster of imprinted genes associated with growth and metabolic disorders such as type 2 diabetes and Beckwith-Wiedemann syndrome. Candidate genes include potassium voltage-gated channel subfamily Q member 1 (KCNQ1), involved in insulin secretion and cardiac electrical activity, lymphocyte-specific protein 1 (LSP1), involved in inflammation and immune response.
Collapse
|
16
|
Hao L, Marshall AJ, Liu L. Suppressive Role of Bam32/DAPP1 in Chemokine-Induced Neutrophil Recruitment. Int J Mol Sci 2021; 22:ijms22041825. [PMID: 33673180 PMCID: PMC7918626 DOI: 10.3390/ijms22041825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/02/2022] Open
Abstract
Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada;
| | - Aaron J. Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E0T5, Canada;
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada;
- Correspondence: ; Tel.: +01-306-966-6300
| |
Collapse
|
17
|
Wen L, Marki A, Roy P, McArdle S, Sun H, Fan Z, Gingras AR, Ginsberg MH, Ley K. Kindlin-3 recruitment to the plasma membrane precedes high-affinity β2-integrin and neutrophil arrest from rolling. Blood 2021; 137:29-38. [PMID: 32777822 PMCID: PMC7808012 DOI: 10.1182/blood.2019003446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Integrin-mediated neutrophil adhesion starts by arrest from rolling. Activation of integrins involves conformational changes from an inactive, bent conformation to an extended conformation (E+) with high affinity for ligand binding (H+). The cytoplasmic protein kindlin-3 is necessary for leukocyte adhesion; mutations of kindlin-3 cause leukocyte adhesion deficiency type 3. Kindlin-3 binds the β2-integrin cytoplasmic tail at a site distinct from talin-1, but the molecular mechanism by which kindlin-3 activates β2-integrins is unknown. In this study, we measured the spatiotemporal dynamics of kindlin-3 and β2-integrin conformation changes during neutrophil and HL-60 cell rolling and arrest under flow. Using high-resolution quantitative dynamic footprinting microscopy and kindlin-3-fluorescent protein (FP) fusion proteins, we found that kindlin-3 was recruited to the plasma membrane in response to interleukin-8 (IL-8) before induction of the H+ β2-integrin conformation. Intravital imaging revealed that EGFP-kindlin-3-reconstituted, kindlin-3-knockout neutrophils arrest in vivo in response to CXCL1. EGFP-kindlin-3 in primary mouse neutrophils was also recruited to the plasma membrane before arrest. Upon arrest, we found small clusters of high-affinity β2-integrin molecules within large areas of membrane-proximal kindlin-3 FP. Deletion of kindlin-3 or its pleckstrin homology (PH) domain in neutrophil-like HL-60 cells completely abolished H+ β2-integrin induction. IL-8 also triggered recruitment of the isolated kindlin-3 PH domain to the plasma membrane before arrest. In summary, we showed that the kindlin-3 PH domain is necessary for recruitment to the plasma membrane, where full-length kindlin-3 is indispensable for the induction of high-affinity β2-integrin.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology and
| | | | - Payel Roy
- Laboratory of Inflammation Biology and
| | - Sara McArdle
- Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhichao Fan
- Laboratory of Inflammation Biology and
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT; and
| | | | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Klaus Ley
- Laboratory of Inflammation Biology and
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
18
|
Hao L, Marshall AJ, Liu L. Bam32/DAPP1-Dependent Neutrophil Reactive Oxygen Species in WKYMVm-Induced Microvascular Hyperpermeability. Front Immunol 2020; 11:1028. [PMID: 32536926 PMCID: PMC7267069 DOI: 10.3389/fimmu.2020.01028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
B cell adaptor molecule of 32 kDa (Bam32), known as dual adapter for phosphotyrosine and 3-phosphoinositides 1 (DAPP1), has been implicated in regulating lymphocyte proliferation and recruitment during inflammation. However, its role in neutrophils during inflammation remains unknown. Using intravital microscopy, we examined the role of Bam32 in formyl peptide receptor agonist WKYMVm-induced permeability changes in post-capillary venules and assessed simultaneously neutrophil adhesion and emigration in cremaster muscles of Bam32-deficient (Bam32−/−) and wild-type (WT) control mice. We observed significantly reduced WKYMVm-induced microvascular hyperpermeability accompanied by markedly decreased neutrophil emigration in Bam32−/− mice. The Bam32-specific decrease in WKYMVm-induced hyperpermeability was neutrophil-dependent as this was verified in bone marrow transplanted chimeric mice. We discovered that Bam32 was critically required for WKYMVm-induced intracellular and extracellular production of reactive oxygen species (ROS) in neutrophils. Pharmacological scavenging of ROS eliminated the differences in WKYMVm-induced hyperpermeability between Bam32−/− and WT mice. Deficiency of Bam32 decreased WKYMVm-induced ERK1/2 but not p38 or JNK phosphorylation in neutrophils. Inhibition of ERK1/2 signaling cascade suppressed WKYMVm-induced ROS generation in WT neutrophils and microvascular hyperpermeability in WT mice. In conclusion, our study reveals that Bam32-dependent, ERK1/2-involving ROS generation in neutrophils is critical in WKYMVm-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Choudhury SR, Babes L, Rahn JJ, Ahn BY, Goring KAR, King JC, Lau A, Petri B, Hao X, Chojnacki AK, Thanabalasuriar A, McAvoy EF, Tabariès S, Schraeder C, Patel KD, Siegel PM, Kopciuk KA, Schriemer DC, Muruve DA, Kelly MM, Yipp BG, Kubes P, Robbins SM, Senger DL. Dipeptidase-1 Is an Adhesion Receptor for Neutrophil Recruitment in Lungs and Liver. Cell 2020; 178:1205-1221.e17. [PMID: 31442408 DOI: 10.1016/j.cell.2019.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.
Collapse
Affiliation(s)
- Saurav Roy Choudhury
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Liane Babes
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer J Rahn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bo-Young Ahn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kimberly-Ann R Goring
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer C King
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Arthur Lau
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Björn Petri
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrew K Chojnacki
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ajitha Thanabalasuriar
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Erin F McAvoy
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christoph Schraeder
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kamala D Patel
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Karen A Kopciuk
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada
| | - David C Schriemer
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel A Muruve
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret M Kelly
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bryan G Yipp
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Stephen M Robbins
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
20
|
Kulkarni R, Jiang S, Birrane G, Prasad A. Lymphocyte-specific protein 1 (LSP1) regulates bone marrow stromal cell antigen 2 (BST-2)-mediated intracellular trafficking of HIV-1 in dendritic cells. FEBS Lett 2020; 594:1947-1959. [PMID: 32279313 DOI: 10.1002/1873-3468.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) subverts intracellular trafficking pathways to avoid its degradation and elimination, thereby enhancing its survival and spread. The molecular mechanisms involved in intracellular transport of HIV-1 are not yet fully defined. We demonstrate that the actin-binding protein lymphocyte-specific protein 1 (LSP1) interacts with the interferon-inducible protein bone marrow stromal antigen 2 (BST-2) in dendritic cells (DCs) to facilitate both endocytosis of surface-bound HIV-1 and the formation of early endosomes. Analysis of the molecular interaction between LSP1 and BST-2 reveals that the N terminus of LSP1 interacts with BST-2. Overall, we identify a novel mechanism of intracellular trafficking of HIV-1 in DCs centering on the LSP1/BST-2 complex. We also show that the HIV-1 accessory protein Vpu subverts this pathway by inducing proteasomal degradation of LSP1, augmenting cell-cell transmission of HIV-1.
Collapse
Affiliation(s)
- Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Heather JM, Myers PT, Shi F, Aziz-Zanjani MO, Mahoney KE, Perez M, Morin B, Brittsan C, Shabanowitz J, Hunt DF, Cobbold M. Murine xenograft bioreactors for human immunopeptidome discovery. Sci Rep 2019; 9:18558. [PMID: 31811195 PMCID: PMC6898210 DOI: 10.1038/s41598-019-54700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
The study of peptides presented by MHC class I and class II molecules is limited by the need for relatively large cell numbers, especially when studying post-translationally modified or otherwise rare peptide species. To overcome this problem, we pose the hypothesis that human cells grown as xenografts in immunodeficient mice should produce equivalent immunopeptidomes as cultured cells. Comparing human cell lines grown either in vitro or as murine xenografts, we show that the immunopeptidome is substantially preserved. Numerous features are shared across both sample types, including peptides and proteins featured, length distributions, and HLA-binding motifs. Peptides well-represented in both groups were from more abundant proteins, or those with stronger predicted HLA binding affinities. Samples grown in vivo also recapitulated a similar phospho-immunopeptidome, with common sequences being those found at high copy number on the cell surface. These data indicate that xenografts are indeed a viable methodology for the production of cells for immunopeptidomic discovery.
Collapse
Affiliation(s)
- James M Heather
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | | | - Feng Shi
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Keira E Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Mark Cobbold
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
22
|
Gordon MH, Anowai A, Young D, Das N, Campden RI, Sekhon H, Myers Z, Mainoli B, Chopra S, Thuy-Boun PS, Kizhakkedathu J, Bindra G, Jijon HB, Heitman S, Yates R, Wolan DW, Edgington-Mitchell LE, MacNaughton WK, Dufour A. N-Terminomics/TAILS Profiling of Proteases and Their Substrates in Ulcerative Colitis. ACS Chem Biol 2019; 14:2471-2483. [PMID: 31393699 DOI: 10.1021/acschembio.9b00608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated protease activity is often implicated in the initiation of inflammation and immune cell recruitment in gastrointestinal inflammatory diseases. Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compared proteases, along with their substrates and inhibitors, between colonic mucosal biopsies of healthy patients and those with ulcerative colitis (UC). Among the 1642 N-termini enriched using TAILS, increased endogenous processing of proteins was identified in UC compared to healthy patients. Changes in the reactome pathways for proteins associated with metabolism, adherens junction proteins (E-cadherin, liver-intestinal cadherin, catenin alpha-1, and catenin delta-1), and neutrophil degranulation were identified between the two groups. Increased neutrophil infiltration and distinct proteases observed in ulcerative colitis may result in extensive break down, altered processing, or increased remodeling of adherens junctions and other cellular functions. Analysis of the preferred proteolytic cleavage sites indicated that the majority of proteolytic activity and processing comes from host proteases, but that key microbial proteases may also play a role in maintaining homeostasis. Thus, the identification of distinct proteases and processing of their substrates improves the understanding of dysregulated proteolysis in normal intestinal physiology and ulcerative colitis.
Collapse
Affiliation(s)
- Marilyn H. Gordon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Anthonia Anowai
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Nabangshu Das
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Rhiannon I. Campden
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Henna Sekhon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Zoe Myers
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Barbara Mainoli
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Sameeksha Chopra
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Peter S. Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Gurmeet Bindra
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Humberto B. Jijon
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Steven Heitman
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Robin Yates
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Parkville, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, United States
| | - Wallace K. MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
23
|
Hao L, Lei X, Zhou H, Marshall AJ, Liu L. Critical role for PI3Kγ-dependent neutrophil reactive oxygen species in WKYMVm-induced microvascular hyperpermeability. J Leukoc Biol 2019; 106:1117-1127. [PMID: 31216371 DOI: 10.1002/jlb.3a0518-184rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
PI3K has been indicated in regulating microvascular permeability changes during inflammation. However, its role in neutrophil-driven microvascular leakage in acute inflammation remains unclear. Using intravital microscopy in mice, we examined the role of PI3Kγ and PI3Kδ in formyl peptide WKYMVm- and chemokine CXCL2-induced permeability changes and assessed simultaneously neutrophil adhesion and emigration in post-capillary venules of murine cremaster muscle. We found a PI3Kγ-specific mechanism in WKYMVm-induced but not CXCL2-induced microvascular hyperpermeability. The increased microvascular permeability triggered by WKYMVm was not entirely due to neutrophil adhesion and emigration in cremasteric microvasculature in different PI3K transgenic mouse strains. The PI3Kγ-specific hyperpermeability was neutrophil-mediated as this was reduced after depletion of neutrophils in mouse circulation. Chimeric mice with PI3Kγ-deficient neutrophils but wild-type endothelium also showed reduced hyperpermeability. Furthermore, we found that the catalytic function of PI3Kγ was required for reactive oxygen species (ROS) generation in neutrophils stimulated with WKYMVm. Pharmacological scavenging PI3Kγ-dependent ROS in the tissue eliminated the discrepancy in hyperpermeability between different PI3K transgenic mice and alleviated WKYMVm-induced microvascular leakage in all mouse strains tested. In conclusion, our study uncovers the critical role for PI3Kγ-dependent ROS generation by neutrophils in formyl peptide-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xi Lei
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Ren C, Yuan Q, Braun M, Zhang X, Petri B, Zhang J, Kim D, Guez-Haddad J, Xue W, Pan W, Fan R, Kubes P, Sun Z, Opatowsky Y, Polleux F, Karatekin E, Tang W, Wu D. Leukocyte Cytoskeleton Polarization Is Initiated by Plasma Membrane Curvature from Cell Attachment. Dev Cell 2019; 49:206-219.e7. [PMID: 30930167 DOI: 10.1016/j.devcel.2019.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/15/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Cell polarization is important for various biological processes. However, its regulation, particularly initiation, is incompletely understood. Here, we investigated mechanisms by which neutrophils break their symmetry and initiate their cytoskeleton polarization from an apolar state in circulation for their extravasation during inflammation. We show here that a local increase in plasma membrane (PM) curvature resulting from cell contact to a surface triggers the initial breakage of the symmetry of an apolar neutrophil and is required for subsequent polarization events induced by chemical stimulation. This local increase in PM curvature recruits SRGAP2 via its F-BAR domain, which in turn activates PI4KA and results in PM PtdIns4P polarization. Polarized PM PtdIns4P is targeted by RPH3A, which directs PIP5K1C90 and subsequent phosphorylated myosin light chain polarization, and this polarization signaling axis regulates neutrophil firm attachment to endothelium. Thus, this study reveals a mechanism for the initiation of cell cytoskeleton polarization.
Collapse
Affiliation(s)
- Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Martha Braun
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Xia Zhang
- Department of Geriatrics, the First affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wenzhi Xue
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, and Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10025, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Stavsky J, Maitra R. The Synergistic Role of Diet and Exercise in the Prevention, Pathogenesis, and Management of Ulcerative Colitis: An Underlying Metabolic Mechanism. Nutr Metab Insights 2019; 12:1178638819834526. [PMID: 30911221 PMCID: PMC6425530 DOI: 10.1177/1178638819834526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Ulcerative colitis (UC) is a biologically complex condition characterized by chronic, relapsing inflammation of the gastrointestinal tract. The relative incidence of this debilitating condition is increasing and sociologically damaging outcomes are a continued reality. Several etiological theories for UC are currently under investigation, spanning between genetic and environmental determinants. From an environmental perspective, previous literature reviews have demonstrated the independent effectiveness of specific diet and exercise patterns in modifying UC immuno-pathophysiology. This article explores the synergistic role of diet and aerobic exercise in the prevention, pathogenesis, and management of UC in the context of recent immunological research. Through a unifying mechanism-that is, microbial influence of colonic inflammation and immuno-pathophysiology-the simultaneous reduction of pro-inflammatory dietary sulfurous amino acid intake (ie methionine, cysteine, homocysteine, and taurine) and the upregulation of aerobic exercise frequency (which spurs the colonization of anti-inflammatory butyrate, acetate, and propionate producing microbial taxa) demonstrate the clinical efficacy of incorporating both diet and exercise modifications for UC prevention and management through pathogenic alterations.
Collapse
Affiliation(s)
- Jonah Stavsky
- Department of Biology, Yeshiva University, New York, NY, USA
| | | |
Collapse
|
26
|
Wang J, Xu J, Zhao X, Xie W, Wang H, Kong H. Fasudil inhibits neutrophil-endothelial cell interactions by regulating the expressions of GRP78 and BMPR2. Exp Cell Res 2018; 365:97-105. [PMID: 29481792 DOI: 10.1016/j.yexcr.2018.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Regulation of leukocyte-endothelial cell interactions and of vascular permeability plays a critical role in the maintenance of functional pulmonary microvascular barriers. Little is yet known about the effect of the Rho-associated protein kinase (ROCK) inhibitor fasudil on leukocyte-endothelial cell interactions or the underlying mechanism. In the present study, as evaluated using co-culture systems of neutrophils and human pulmonary microvascular endothelial cells (HPMECs), fasudil dose-dependently suppressed neutrophil chemotaxis by decreasing the production of chemotactic factors in lipopolysaccharide (LPS)-treated HPMECs. The inhibitory role of fasudil in neutrophil chemotaxis was mediated by down-regulation of the chaperone glucose-regulated protein 78 (GRP78), since the inhibition was abolished by 4-phenyl butyric acid (a chemical chaperone mimicking GRP78). In addition, fasudil inhibited LPS-induced neutrophil-endothelial adhesion by reducing the expression of intercellular adhesion molecule (ICAM)-1. By use of lentiviral transfection in HPMECs, bone morphogenic protein receptor 2 (BMPR2) overexpression suppressed the LPS-induced increase of both ICAM-1 expression and neutrophil-endothelial adhesion, whereas knocking down BMPR2 abolished the inhibitory role of fasudil in both ICAM-1 expression and neutrophil-endothelial adhesion. Moreover, fasudil alleviated LPS-induced hyperpermeability of HPMEC monolayers by leading to the recovery of intercellular junctions, thereafter reduced neutrophil transendothelial cell migration. Therefore, fasudil inhibited leukocyte-endothelial cell interactions and vascular hyperpermeability through modulation of GRP78 and BMPR2 expression, suggesting a potential role for ROCK as a switch for inhibiting leukocyte-endothelial cell interactions.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jian Xu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Xinyun Zhao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Weiping Xie
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Hong Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Hui Kong
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
27
|
IL-4 driven transcription factor FoxQ1 is expressed by monocytes in atopic dermatitis and stimulates monocyte migration. Sci Rep 2017; 7:16847. [PMID: 29203829 PMCID: PMC5715145 DOI: 10.1038/s41598-017-17307-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Monocytes are actively recruited at sites of chronic inflammation. However, molecular factors involved in this process are not fully elucidated. Here, we show that cytokine IL-4 which is implicated in the development of chronic inflammatory disease atopic dermatitis (AD) induces expression of transcription factor FoxQ1 in human monocytes and macrophages. FoxQ1 mRNA levels were elevated in monocytes of AD patients compared to healthy donors. Overexpression of FoxQ1 in RAW 264.7 monocytic cells facilitated their migration towards MCP-1 and was associated with decreased expression of migration-regulating genes (claudin 11 and plexin C1). Furthermore, FoxQ1 overexpression in RAW cells accelerated TNFα secretion after LPS challenge. Overall, our results indicate that FoxQ1 stimulates monocyte motility, increases pro-inflammatory potential, and directs monocyte migration towards MCP-1 that is crucial for monocyte influx into inflammatory sites. This mechanism could contribute to the pathogenesis of chronic inflammatory disorders such as AD.
Collapse
|
28
|
The Specific Mitogen- and Stress-Activated Protein Kinase MSK1 Inhibitor SB-747651A Modulates Chemokine-Induced Neutrophil Recruitment. Int J Mol Sci 2017; 18:ijms18102163. [PMID: 29039777 PMCID: PMC5666844 DOI: 10.3390/ijms18102163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling is involved in a variety of cellular functions. MAPK-dependent functions rely on phosphorylation of target proteins such as mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 participates in the early gene expression and in the production of pro- and anti-inflammatory cytokines. However, the role of MSK1 in neutrophil recruitment remains elusive. Here, we show that chemokine macrophage inflammatory protein-2 (CXCL2) enhances neutrophil MSK1 expression. Using intravital microscopy and time-lapsed video analysis of cremasteric microvasculature in mice, we studied the effect of pharmacological suppression of MSK1 by SB-747651A on CXCL2-elicited neutrophil recruitment. SB-747651A treatment enhanced CXCL2-induced neutrophil adhesion while temporally attenuating neutrophil emigration. CXCL2-induced intraluminal crawling was reduced following SB-747651A treatment. Fluorescence-activated cell sorting analysis of integrin expression revealed that SB-747651A treatment attenuated neutrophil integrin αMβ₂ (Mac-1) expression following CXCL2 stimulation. Both the transmigration time and detachment time of neutrophils from the venule were increased following SB-747651A treatment. It also decreased the velocity of neutrophil migration in cremasteric tissue in CXCL2 chemotactic gradient. SB-747651A treatment enhanced the extravasation of neutrophils in mouse peritoneal cavity not at 1-2 h but at 3-4 h following CXCL2 stimulation. Collectively, our data suggest that inhibition of MSK1 by SB-747651A treatment affects CXCL2-induced neutrophil recruitment by modulating various steps of the recruitment cascade in vivo.
Collapse
|
29
|
Romualdo GR, Grassi TF, Goto RL, Tablas MB, Bidinotto LT, Fernandes AAH, Cogliati B, Barbisan LF. An integrative analysis of chemically-induced cirrhosis-associated hepatocarcinogenesis: Histological, biochemical and molecular features. Toxicol Lett 2017; 281:84-94. [PMID: 28943392 DOI: 10.1016/j.toxlet.2017.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
This study aimed the integrative characterization of morphological, biochemical and molecular features of chemically-induced cirrhosis-associated hepatocarcinogenesis. Thus, male Wistar rats were submitted to a diethylnitrosamine (DEN)/thioacetamide (TAA)-induced model. Liver tissue was processed for global gene expression, histopathological and collagen evaluations; as well as immunohistochemical and oxidative stress analysis. Gene Ontology and functional analysis showed the upregulation of extracellular matrix deposition genes, such as collagen type I alpha 1 and 2 (Col1α1 and Col1α2) and tissue inhibitor of metalloproteinase 1 and 2 genes (Timp1 and Timp2). In agreement these findings, animals presented extensive liver cirrhosis with increased collagen deposition (Sirius red). Besides, the animals developed many glutathione S-transferase pi (GST-P)-positive preneoplastic lesions showing high cell proliferation (Ki-67), in keeping with the Gstp1 and Gstp2 increased gene expression. DEN/TAA-treated rats also showed the upregulation of tumorigenesis-related annexin A2 gene (Anxa2) and few neoplastic lesions (hepatocellular adenomas, carcinomas, and cholangiocarcinoma). In contrast, gene expression and activity of antioxidant enzymes were decreased (glutathione peroxidase, total glutathione-S-transferase, and catalase). The model featured remarkable similarities to human hepatocarcinogenesis. Our findings could bring up new molecular insights into cirrhosis-associated hepatocarcinogenesis, and provide a suitable animal model for the establishment of further diagnostic, preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Tony Fernando Grassi
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Renata Leme Goto
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Mariana Baptista Tablas
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Lucas Tadeu Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos - SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos - SP, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, São Paulo University (USP), São Paulo - SP, Brazil
| | - Luís Fernando Barbisan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil.
| |
Collapse
|
30
|
Abstract
Myeloid cell recruitment to sites of infection and injury started out as a simple model that has been referred to as the universal concept of leukocyte recruitment. However, as we gain more insight into the different mechanisms, it is becoming clear that each organ and perhaps even each cell has its own unique mechanism of recruitment. Moreover, as the ability to visualize specific cell types in specific organs becomes more accessible, it is also becoming clear that there are resident populations of leukocytes, some within the tissues and others attached to the vasculature of tissues, the latter poised to affect the local environment. In this review, we will first highlight the imaging approaches that have allowed us to gain spectacular insight into locale and function of specific cell types, and then we will discuss what we have learned from this approach as far as myeloid cells are concerned. We will also highlight some of the gaps in our knowledge, which exist almost certainly because of the challenges of being able to visualize certain compartments of the body.
Collapse
|
31
|
Hein A, Rack B, Li L, Ekici AB, Reis A, Lux MP, Cunningham JM, Rübner M, Fridley BL, Schneeweiss A, Tesch H, Lichtenegger W, Fehm T, Heinrich G, Rezai M, Beckmann MW, Janni W, Weinshilboum RM, Wang L, Fasching PA, Häberle L. Genetic Breast Cancer Susceptibility Variants and Prognosis in the Prospectively Randomized SUCCESS A Study. Geburtshilfe Frauenheilkd 2017; 77:651-659. [PMID: 28757652 DOI: 10.1055/s-0042-113189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022] Open
Abstract
Large-scale genotyping studies have identified over 70 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. However, knowledge regarding genetic risk factors associated with the prognosis is limited. The aim of this study was therefore to investigate the prognostic effect of nine known breast cancer risk SNPs. BC patients (n = 1687) randomly sampled in an adjuvant, randomized phase III trial (SUCCESS A study) were genotyped for nine BC risk SNPs: rs17468277 (CASP8) , rs2981582 (FGFR2) , rs13281615(8q24), rs3817198 (LSP1) , rs889312 (MAP3K1) , rs3803662 (TOX3) , rs13387042(2q35), rs4973768 (SLC4A7) , rs6504950 (COX11) . Cox proportional hazards models were used to test the SNPs' association with overall survival (OS) and progression-free survival (PFS). Additional analyses were carried out for molecular subgroups. rs3817198 in LSP1 (lymphocyte-specific protein 1) was the only SNP that significantly influenced OS (p = 0.01) and PFS (p < 0.01) in the likelihood ratio test comparing the genetic survival model with the clinical survival model. In the molecular subgroups, triple-negative patients with two minor alleles in rs3817198 had a much better prognosis relative to OS (adjusted HR 0.03; 95% CI 0.002 - 0.279) and PFS (HR 0.09; 95% CI 0.02 - 0.36) than patients with the common alleles. The same effect on PFS was shown for patients with luminal A tumors (HR 0.19; 95% CI 0.05 - 0.84), whereas patients with luminal B tumors had a poorer PFS with two minor alleles (HR 2.13; 95% CI 1.02 - 4.40). The variant in rs3817198 has a prognostic effect particularly in the subgroup of patients with triple-negative BC, suggesting a possible link with immunomodulation and BC.
Collapse
Affiliation(s)
- A Hein
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - B Rack
- Department of Gynecology and Obstetrics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - L Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA.,Department of Oncology; Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Tiantan Xili, Beijing, 100050, China
| | - A B Ekici
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - A Reis
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - M P Lux
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - J M Cunningham
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, USA
| | - M Rübner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - B L Fridley
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Schneeweiss
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - H Tesch
- Department of Oncology, Onkologie Bethanien, Frankfurt am Main, Germany
| | - W Lichtenegger
- Department of Gynecology and Obstetrics, Charité University Hospital Campus Virchow, Berlin, Germany
| | - T Fehm
- Department of Gynecology and Obstetrics, University Hospital Duesseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - G Heinrich
- Department of Gynecologic Oncology, Schwerpunktpraxis für Gynäkologische Onkologie, Fürstenwalde, Germany
| | - M Rezai
- Department of Breast Diseases, Breast Center of Düsseldorf, Luisenkrankenhaus, Düsseldorf, Germany
| | - M W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - W Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - R M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA
| | - L Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA
| | - P A Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Medicine, Division of Hematology/Oncology, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - L Häberle
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
32
|
Yuan Q, Ren C, Xu W, Petri B, Zhang J, Zhang Y, Kubes P, Wu D, Tang W. PKN1 Directs Polarized RAB21 Vesicle Trafficking via RPH3A and Is Important for Neutrophil Adhesion and Ischemia-Reperfusion Injury. Cell Rep 2017; 19:2586-2597. [PMID: 28636945 PMCID: PMC5548392 DOI: 10.1016/j.celrep.2017.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023] Open
Abstract
Polarized vesicle transport plays an important role in cell polarization, but the mechanisms underlying this process and its role in innate immune responses are not well understood. Here, we describe a phosphorylation-regulated polarization mechanism that is important for neutrophil adhesion to endothelial cells during inflammatory responses. We show that the protein kinase PKN1 phosphorylates RPH3A, which enhances binding of RPH3A to guanosine triphosphate (GTP)-bound RAB21. These interactions are important for polarized localization of RAB21 and RPH3A in neutrophils, which leads to PIP5K1C90 polarization. Consistent with the roles of PIP5K1C90 polarization, the lack of PKN1 or RPH3A impairs neutrophil integrin activation, adhesion to endothelial cells, and infiltration in inflammatory models. Furthermore, myeloid-specific loss of PKN1 decreases tissue injury in a renal ischemia-reperfusion model. Thus, this study characterizes a mechanism for protein polarization in neutrophils and identifies a potential protein kinase target for therapeutic intervention in reperfusion-related tissue injury.
Collapse
Affiliation(s)
- Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wenwen Xu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yong Zhang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Hordijk PL. Recent insights into endothelial control of leukocyte extravasation. Cell Mol Life Sci 2016; 73:1591-608. [PMID: 26794844 PMCID: PMC11108429 DOI: 10.1007/s00018-016-2136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
In the process of leukocyte migration from the circulation across the vascular wall, the crosstalk with endothelial cells that line the blood vessels is essential. It is now firmly established that in endothelial cells important signaling events are initiated upon leukocyte adhesion that impinge on the regulation of cell-cell contact and control the efficiency of transendothelial migration. In addition, several external factors such as shear force and vascular stiffness were recently identified as important regulators of endothelial signaling and, consequently, leukocyte transmigration. Here, I review recent insights into endothelial signaling events that are linked to leukocyte migration across the vessel wall. In this field, protein phosphorylation and Rho-mediated cytoskeletal dynamics are still widely studied using increasingly sophisticated mouse models. In addition, activation of tyrosine phosphatases, changes in endothelial cell stiffness as well as different vascular beds have all been established as important factors in endothelial signaling and leukocyte transmigration. Finally, I address less-well-studied but interesting components in the endothelium that also control transendothelial migration, such as the ephrins and their Eph receptors, that provide novel insights in the complexity associated with this process.
Collapse
Affiliation(s)
- Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 2015; 15:125-42. [PMID: 26612664 DOI: 10.1038/nrd.2015.2] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of vascular permeability, recruitment of leukocytes from blood to tissue and angiogenesis are all processes that occur at the level of the microvasculature during both physiological and pathological conditions. The interplay between microvascular cells and leukocytes during inflammation, together with the emerging roles of leukocytes in the modulation of the angiogenic process, make leukocyte-vascular interactions prime targets for therapeutics to potentially treat a wide range of diseases, including pathological and dysfunctional vessel growth, chronic inflammation and fibrosis. In this Review, we discuss how the different cell types that are present in and around microvessels interact, cooperate and instruct each other, and in this context we highlight drug targets as well as emerging druggable processes that can be exploited to restore tissue homeostasis.
Collapse
Affiliation(s)
- Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| |
Collapse
|
35
|
Le NPK, Channabasappa S, Hossain M, Liu L, Singh B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L995-1008. [PMID: 26320151 DOI: 10.1152/ajplung.00068.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/25/2015] [Indexed: 01/21/2023] Open
Abstract
The mechanisms of excessive migration of activated neutrophils into inflamed lungs, credited with tissue damage, are not fully understood. We explored the hitherto unknown expression of leukocyte-specific protein 1 (LSP1) in human and mouse lungs and neutrophils and examined its role in neutrophil migration in acute lung inflammation. Autopsied septic human lungs showed increased LSP1 labeling in epithelium, endothelium, and leukocytes, including in their nuclei compared with normal lungs. We induced acute lung inflammation through intranasal administration of E. coli lipopolysaccharide (LPS) (80 μg) in LSP1-deficient (Lsp1(-/-)) and wild-type (WT) 129/SvJ mice. Immunocytochemistry and Western blots showed increased expression of LSP1 and phosphorylated LSP1 in lungs of LPS-treated WT mice. Histology showed more congestion, inflammation, and Gr-1(+) neutrophils in lung of WT mice than Lsp1(-/-) mice. LPS-treated WT mice had significantly more neutrophils in bronchoalveolar lavage (BAL) and myeloperoxidase levels in lungs compared with Lsp1(-/-) mice. However, there were no differences in lung tissue and BAL concentrations of keratinocyte-derived chemokine, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and -1β, vascular permeability, and phosphorylated p38 MAPK between LPS-treated WT and Lsp1(-/-) mice, whereas TNF-α concentration was higher in BAL fluid from LPS-treated WT. Immunoelectron microscopy showed increased LSP1 in the nuclei of LPS-treated neutrophils. We also found increased levels of phosphorylated LSP1 associated with plasma membrane, nucleus, and cytosol at various times after LPS treatment of murine bone marrow-derived neutrophils, suggesting its role in modulation of neutrophil cytoskeleton and the membrane. These data collectively show increased expression of LSP1 in inflamed mouse and human lungs and its role in neutrophil recruitment and lung inflammation.
Collapse
Affiliation(s)
- Nguyen Phuong Khanh Le
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Shankaramurthy Channabasappa
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
36
|
Hossain M, Qadri SM, Xu N, Su Y, Cayabyab FS, Heit B, Liu L. Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression. THE JOURNAL OF IMMUNOLOGY 2015; 195:2408-16. [PMID: 26238489 DOI: 10.4049/jimmunol.1402225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 07/05/2015] [Indexed: 01/13/2023]
Abstract
During inflammation, leukocyte-endothelial cell interactions generate molecular signals that regulate cell functions. The Ca(2+)- and F-actin-binding leukocyte-specific protein 1 (LSP1) expressed in leukocytes and nonhematopoietic endothelial cells is pivotal in regulating microvascular permeability and leukocyte recruitment. However, cell-specific function of LSP1 during leukocyte recruitment remains elusive. Using intravital microscopy of cremasteric microvasculature of chimeric LSP1-deficient mice, we show that not neutrophil but endothelial LSP1 regulates neutrophil transendothelial migration and extravascular directionality without affecting the speed of neutrophil migration in tissue in response to CXCL2 chemokine gradient. The expression of PECAM-1-sensitive α6β1 integrins on the surface of transmigrated neutrophils was blunted in mice deficient in endothelial LSP1. Functional blocking studies in vivo and in vitro elucidated that α6β1 integrins orchestrated extravascular directionality but not the speed of neutrophil migration. In LSP1-deficient mice, PECAM-1 expression was reduced in endothelial cells, but not in neutrophils. Similarly, LSP1-targeted small interfering RNA silencing in murine endothelial cells mitigated mRNA and protein expression of PECAM-1, but not ICAM-1 or VCAM-1. Overexpression of LSP1 in endothelial cells upregulated PECAM-1 expression. Furthermore, the expression of transcription factor GATA-2 that regulates endothelial PECAM-1 expression was blunted in LSP1-deficient or LSP1-silenced endothelial cells. The present study unravels endothelial LSP1 as a novel cell-specific regulator of integrin α6β1-dependent neutrophil extravascular chemotactic function in vivo, effective through GATA-2-dependent transcriptional regulation of endothelial PECAM-1 expression.
Collapse
Affiliation(s)
- Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Syed M Qadri
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Najia Xu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; and
| | - Bryan Heit
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada;
| |
Collapse
|
37
|
Hennings JM, Uhr M, Klengel T, Weber P, Pütz B, Touma C, Czamara D, Ising M, Holsboer F, Lucae S. RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl Psychiatry 2015; 5:e538. [PMID: 25826113 PMCID: PMC4429173 DOI: 10.1038/tp.2015.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
Response to antidepressant treatment is highly variable with some patients responding within a few weeks, whereas others have to wait for months until the onset of clinical effects. Gene expression profiling may be a tool to identify markers of antidepressant treatment response and new potential drug targets. In a first step, we selected 12 male, age- and severity-matched pairs of remitters and nonresponders, and analyzed expression profiles in peripheral blood at admission and after 2 and 5 weeks of treatment using Illumina expression arrays. We identified 127 transcripts significantly associated with treatment response with a minimal P-value of 9.41 × 10(-)(4) (false discovery rate-corrected). Analysis of selected transcripts in an independent replication sample of 142 depressed inpatients confirmed that lower expression of retinoid-related orphan receptor alpha (RORa, P=6.23 × 10(-4)), germinal center expressed transcript 2 (GCET2, P=2.08 × 10(-2)) and chitinase 3-like protein 2 (CHI3L2, P=4.45 × 10(-2)) on admission were associated with beneficial treatment response. In addition, leukocyte-specific protein 1 (LSP1) significantly decreased after 5 weeks of treatment in responders (P=2.91 × 10(-2)). Additional genetic, in vivo stress responsitivity data and murine gene expression findings corroborate our finding of RORa as a transcriptional marker of antidepressant response. In summary, using a genome-wide transcriptomics approach and subsequent validation studies, we identified several transcripts including the circadian gene transcript RORa that may serve as biomarkers indicating antidepressant treatment response.
Collapse
Affiliation(s)
- J M Hennings
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany,Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. E-mail:
| | - M Uhr
- Core Unit Biobanking and Molecular Biology, Max Planck Institute of Psychiatry, Munich, Germany
| | - T Klengel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - P Weber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - B Pütz
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Emeritus scientific member, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Lucae
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
38
|
Maxeiner S, Shi N, Schalla C, Aydin G, Hoss M, Vogel S, Zenke M, Sechi AS. Crucial role for the LSP1-myosin1e bimolecular complex in the regulation of Fcγ receptor-driven phagocytosis. Mol Biol Cell 2015; 26:1652-64. [PMID: 25717183 PMCID: PMC4436777 DOI: 10.1091/mbc.e14-05-1005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
The actin cytoskeleton is fundamental for the innate immune process of phagocytosis. This study shows that LSP1 plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–mediated phagocytosis and that its interactions with myosin1e and actin are crucial for the efficiency of this actin-driven process. Actin cytoskeleton remodeling is fundamental for Fcγ receptor–driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcγ receptor–mediated phagocytosis, where it displays the same spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcγ receptor–mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1–myosin1e and LSP1–actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1–myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–driven phagocytosis.
Collapse
Affiliation(s)
- Sebastian Maxeiner
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Nian Shi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Guelcan Aydin
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Applied Ecology, D-52074 Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-52074 Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Antonio S Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| |
Collapse
|
39
|
Koral K, Paranjpe S, Bowen WC, Mars W, Luo J, Michalopoulos GK. Leukocyte-specific protein 1: a novel regulator of hepatocellular proliferation and migration deleted in human hepatocellular carcinoma. Hepatology 2015; 61:537-47. [PMID: 25234543 PMCID: PMC4303494 DOI: 10.1002/hep.27444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/14/2014] [Indexed: 01/18/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the most commonly diagnosed form of liver cancer with high morbidity and mortality. Copy number variation (CNV) analysis of human HCC revealed that leukocyte-specific protein 1 (LSP1) had the highest number of cases with CNV. LSP1, a F-actin-binding protein, is expressed in hematopoietic cells and interacts with kinase suppressor of Ras (KSR), a scaffold for the extracellular signal-related kinase/mitogen-activated protein kinase pathway. Expression of LSP1 in liver, and its role in normal hepatocellular function and carcinogenesis, remains unknown. Therefore, LSP1 messenger RNA and protein levels were analyzed in normal hepatocytes in culture, rat liver following partial hepatectomy (PHx), and hepatoma cell lines. In culture and after PHx, LSP1 increased after the termination of hepatocyte proliferation. To investigate LSP1 function in HCC, short hairpin RNA was utilized to stably knock down LSP1 expression in the JM1 rat hepatoma cell line. Loss of LSP1 in JM1 cells resulted in dramatic up-regulation of cyclin D1 and phosphorylated ERK2, increased cell proliferation, and migration. Coimmunoprecipitation and immunofluorescence analysis displayed an interaction and colocalization between LSP1, KSR, and F-actin in JM1 cells and liver during regeneration. Conversely, expression of LSP1 in the JM2 rat hepatoma cell line led to decreased proliferation. Enhanced expression of LSP1 in mouse hepatocytes during liver regeneration after injection of an LSP1 expression plasmid also led to decreased hepatocyte proliferation. CONCLUSION LSP1 is expressed in normal hepatocytes and liver after PHx after termination of proliferation. In rat hepatoma cell lines and mouse liver in vivo, LSP1 functions as a negative regulator of proliferation and migration. Given the high frequency of LSP1 CNV in human HCC, LSP1 may be a novel target for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kelly Koral
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Shirish Paranjpe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - William C. Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Wendy Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
40
|
Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J. TGF-β1-Induced Epithelial-Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells. Front Oncol 2015; 5:3. [PMID: 25674539 PMCID: PMC4306317 DOI: 10.3389/fonc.2015.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Breast cancer progression toward metastatic disease is linked to re-activation of epithelial–mesenchymal transition (EMT), a latent developmental process. Breast cancer cells undergoing EMT lose epithelial characteristics and gain the capacity to invade the surrounding tissue and migrate away from the primary tumor. However, less is known about the possible role of EMT in providing cancer cells with properties that allow them to traffic to distant sites. Given the fact that pro-metastatic cancer cells share a unique capacity with immune cells to traffic in-and-out of blood and lymphatic vessels we hypothesized that tumor cells undergoing EMT may acquire properties of immune cells. To study this, we performed gene-profiling analysis of mouse mammary EpRas tumor cells that had been allowed to adopt an EMT program after long-term treatment with TGF-β1 for 2 weeks. As expected, EMT cells acquired traits of mesenchymal cell differentiation and migration. However, in addition, we found another cluster of induced genes, which was specifically enriched in monocyte-derived macrophages, mast cells, and myeloid dendritic cells, but less in other types of immune cells. Further studies revealed that this monocyte/macrophage gene cluster was enriched in human breast cancer cell lines displaying an EMT or a Basal B profile, and in human breast tumors with EMT and undifferentiated (ER−/PR−) characteristics. The results identify an EMT-induced monocyte/macrophage gene cluster, which may play a role in breast cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Joel Johansson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| | - Vedrana Tabor
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| | - Anna Wikell
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku , Turku , Finland
| | - Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| |
Collapse
|
41
|
Lelkes E, Headley MB, Thornton EE, Looney MR, Krummel MF. The spatiotemporal cellular dynamics of lung immunity. Trends Immunol 2014; 35:379-86. [PMID: 24974157 DOI: 10.1016/j.it.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
The lung is a complex structure that is interdigitated with immune cells. Understanding the 4D process of normal and defective lung function and immunity has been a centuries-old problem. Challenges intrinsic to the lung have limited adequate microscopic evaluation of its cellular dynamics in real time, until recently. Because of emerging technologies, we now recognize alveolar-to-airway transport of inhaled antigen. We understand the nature of neutrophil entry during lung injury and are learning more about cellular interactions during inflammatory states. Insights are also accumulating in lung development and the metastatic niche of the lung. Here we assess the developing technology of lung imaging, its merits for studies of pathophysiology and areas where further advances are needed.
Collapse
Affiliation(s)
- Efrat Lelkes
- Department of Pediatrics, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA; Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA
| | - Mark B Headley
- Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA
| | - Emily E Thornton
- Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA
| | - Mark R Looney
- Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, HSE 1355A, San Francisco, CA 94143-0511, USA
| | - Matthew F Krummel
- Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA.
| |
Collapse
|
42
|
Su Y, Qadri SM, Hossain M, Wu L, Liu L. Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochem Pharmacol 2013; 86:1762-74. [PMID: 24144633 DOI: 10.1016/j.bcp.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
Elevated levels of the glycolysis metabolite methylglyoxal (MG) have been implicated in impaired leukocyte-endothelial interactions and vascular complications in diabetes, putative mechanisms of which remain elusive. Uncoupling of endothelial nitric oxide synthase (eNOS) was shown to be involved in endothelial dysfunction in diabetes. Whether MG contributes to these effects has not been elucidated. By using intravital microscopy in vivo, we demonstrate that MG-triggered reduction in leukocyte rolling velocity and increases in rolling flux, adhesion, emigration and microvascular permeability were significantly abated by scavenging reactive oxygen species (ROS). In murine cremaster muscle, MG treatment reduced tetrahydrobiopterin (BH4)/total biopterin ratio, increased arginase expression and stimulated ROS and superoxide production. The latter was significantly blunted by ROS scavengers Tempol (300μM) or MnTBAP (300μM), by BH4 supplementation (100μM) or by NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 20μM). In these tissues and cultured murine and human primary endothelial cells, MG increased eNOS monomerization and decreased BH4/total biopterin ratio, effects that were significantly mitigated by supplementation of BH4 or its precursor sepiapterin but not by L-NAME or tetrahydroneopterin, indicative of MG-triggered eNOS uncoupling. MG treatment further decreased the expression of guanosine triphosphate cyclohydrolase I in murine primary endothelial cells. MG-induced leukocyte recruitment was significantly attenuated by supplementation of BH4 or sepiapterin or suppression of superoxide by L-NAME confirming the role of eNOS uncoupling in MG-elicited leukocyte recruitment. Together, our study uncovers eNOS uncoupling as a pivotal mechanism in MG-induced oxidative stress, microvascular hyperpermeability and leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
43
|
P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci 2013; 33:14878-88. [PMID: 24027287 DOI: 10.1523/jneurosci.1329-13.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sickness behaviors, such as fatigue, mood alterations, and cognitive dysfunction, which result from changes in central neurotransmission, are prevalent in systemic inflammatory diseases and greatly impact patient quality of life. Although, microglia (resident cerebral immune cells) and cytokines (e.g., TNFα) are associated with changes in central neurotransmission, the link between peripheral organ inflammation, circulating cytokine signaling, and microglial activation remains poorly understood. Here we demonstrate, using cerebral intravital microscopy, that in response to liver inflammation, there is increased monocyte specific rolling and adhesion along cerebral endothelial cells (CECs). Peripheral TNFα-TNFR1 signaling and the adhesion molecule P-selectin are central mediators of these monocyte-CEC adhesive interactions which were found to be closely associated with microglial activation, decreased central neural excitability and sickness behavior development. Similar monocyte-CEC adhesive interactions were also observed in another mouse model of peripheral organ inflammation (i.e., 2,4-dinitrobenzene sulfonic acid-induced colitis). Our observations provide a clear link between peripheral organ inflammation and cerebral changes that impact behavior, which can potentially allow for novel therapeutic interventions in patients with systemic inflammatory diseases.
Collapse
|
44
|
Kovářová D, Plachý J, Kosla J, Trejbalová K, Čermák V, Hejnar J. Downregulation of HOPX Controls Metastatic Behavior in Sarcoma Cells and Identifies Genes Associated with Metastasis. Mol Cancer Res 2013; 11:1235-47. [DOI: 10.1158/1541-7786.mcr-12-0687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Wong CHY, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013; 14:785-92. [PMID: 23770641 PMCID: PMC4972575 DOI: 10.1038/ni.2631] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/25/2013] [Indexed: 12/13/2022]
Abstract
Using intravital imaging of the liver, we unveil a collaborative role for platelets with Kupffer cells (KCs) in eradicating bloodborne bacterial infections. Under basal conditions, platelets via glycoprotein Ib (GPIb) formed transient “touch-and-go” interactions with von Willebrand factor (vWF) constitutively expressed on KCs. Bacteria, such as Bacillus cereus and Methicillin-resistant Staphylococcus aureus (MRSA), were rapidly caught by KCs and triggered platelets to switch from “touch-and-go” to sustained GPIIb-mediated adhesion on the KC surface to encase the bacterium. Infected GpIbα−/− mice demonstrated increased endothelial and KC damage, leading to increased fluid leakage, significant polycythemia and rapid mortality. This study identifies a novel surveillance mechanism of intravascular macrophage by platelets that rapidly converts to a critical host response against bloodborne bacteria.
Collapse
Affiliation(s)
- Connie H Y Wong
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
46
|
Pharmacological inhibition of p38 mitogen-activated protein kinases affects KC/CXCL1-induced intraluminal crawling, transendothelial migration, and chemotaxis of neutrophils in vivo. Mediators Inflamm 2013; 2013:290565. [PMID: 23533303 PMCID: PMC3603207 DOI: 10.1155/2013/290565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/15/2013] [Accepted: 01/29/2013] [Indexed: 01/26/2023] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) signalling is critical in the pathophysiology of a variety of inflammatory processes. Leukocyte recruitment to the site of inflammation is a multistep process governed by specific signalling cascades. After adhesion in the lumen, many leukocytes crawl to optimal sites at endothelial junctions and transmigrate to extravascular tissue in a Mac-1-dependent manner. The signalling mechanisms that regulate postadhesion steps of intraluminal crawling, transmigration, and chemotaxis in tissue remain incompletely understood. The present study explored the effect of p38 MAPK inhibitor SB203580 on various parameters of neutrophil recruitment triggered by chemokine KC (CXCL1) gradient. Neutrophil-endothelial interactions in microvasculature of murine cremaster muscle were determined using intravital microscopy and time-lapsed video analysis. SB203580 (100 nM) did not change leukocyte rolling but significantly attenuated neutrophil adhesion, emigration, and transmigration and impaired the initiation of neutrophil crawling and transmigration. In response to KC chemotactic gradient, SB203580 significantly reduced the velocity of migration and chemotaxis index of neutrophils in tissue. The upregulation of Mac-1 expression in neutrophils stimulated by KC was significantly blunted by SB203580 in vitro. Collectively, our findings demonstrate that pharmacological suppression of p38 MAPK significantly impairs multiple steps of neutrophil recruitment in vivo.
Collapse
|
47
|
Hossain M, Qadri SM, Su Y, Liu L. ICAM-1-mediated leukocyte adhesion is critical for the activation of endothelial LSP1. Am J Physiol Cell Physiol 2013; 304:C895-904. [PMID: 23447036 DOI: 10.1152/ajpcell.00297.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leukocyte-endothelial interaction triggers signaling events in endothelial cells prior to transendothelial migration of leukocytes. Leukocyte-specific protein 1 (LSP1), expressed in endothelial cells, plays a pivotal role in regulating subsequent recruitment steps following leukocyte adhesion. In neutrophils, LSP1 is activated by phosphorylation of its serine residues by molecules downstream of p38 MAPK and PKC. Whether leukocyte adhesion to endothelial cells is required for endothelial LSP1 activation remains elusive. In addition, discrepancies in the functions of endothelial and leukocyte LSP1 in leukocyte adhesion prevail. We demonstrate that adhesion of wild-type (Lsp1(+/+)) neutrophils to LSP1-deficient (Lsp1(-/-)) endothelial cells was significantly reduced compared with adhesion to Lsp1(+/+) endothelial cells. Immunoblotting revealed increased phosphorylated endothelial LSP1 in the presence of adherent Lsp1(-/-) neutrophils [stimulated by macrophage inflammatory protein-2 (CXCL2), TNF-α, or thapsigargin], but not cytokine or chemokine alone. Pharmacological inhibition of p38 MAPK by SB-203580 (10 μM) significantly blunted the phosphorylation of endothelial LSP1. Functionally blocking endothelial ICAM-1 or neutrophil β2-integrins diminished neutrophil adhesion and phosphorylation of endothelial LSP1. The engagement of endothelial ICAM-1 cross-linking, which mimics leukocyte adhesion, resulted in phosphorylation of endothelial LSP1. In neutrophil-depleted Lsp1(+/+) mice, administration of ICAM-1 cross-linking antibody resulted in increased phosphorylation of LSP1 and p38 MAPK in TNF-α-stimulated cremaster muscle. In conclusion, endothelial LSP1 participates in leukocyte adhesion in vitro, and leukocyte adhesion through ICAM-1 fosters the activation of endothelial LSP1, an effect at least partially mediated by the activation of p38 MAPK. Endothelial LSP1, in contrast to neutrophil LSP1, is not phosphorylated by cytokine or chemokine stimulation alone.
Collapse
Affiliation(s)
- Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
48
|
Küppers V, Vestweber D, Schulte D. Locking endothelial junctions blocks leukocyte extravasation, but not in all tissues. Tissue Barriers 2013; 1:e23805. [PMID: 24665379 PMCID: PMC3879176 DOI: 10.4161/tisb.23805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022] Open
Abstract
The passage of leukocytes across the blood vessel wall is a fundamental event in the inflammatory response. During the last decades, there has been significant progress in understanding the molecular mechanisms involved in leukocyte transmigration. However, it is still a matter of debate whether leukocytes migrate paracellularly or transcellularly through an endothelial cell layer. We could recently show that a VE-cadherin-α-catenin fusion protein locks endothelial junctions in the skin and strongly reduces leukocyte diapedesis in lung, skin and cremaster, establishing the paracellular route as the major transmigration pathway in these tissues. However, the homing of naïve lymphocytes into lymph nodes and extravasation of neutrophils in the inflamed peritoneum were not affected by VE-cadherin-α-catenin. This unexpected heterogeneity of the diapedesis process in different tissues as well as the complexity and dynamics of the cadherin-catenin complex in regulating endothelial junctions will be discussed.
Collapse
|
49
|
Prasad A, Kuzontkoski PM, Shrivastava A, Zhu W, Li DY, Groopman JE. Slit2N/Robo1 inhibit HIV-gp120-induced migration and podosome formation in immature dendritic cells by sequestering LSP1 and WASp. PLoS One 2012; 7:e48854. [PMID: 23119100 PMCID: PMC3485365 DOI: 10.1371/journal.pone.0048854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022] Open
Abstract
Cell-mediated transmission and dissemination of sexually-acquired human immunodeficiency virus 1 (HIV-1) in the host involves the migration of immature dendritic cells (iDCs). iDCs migrate in response to the HIV-1 envelope protein, gp120, and inhibiting such migration may limit the mucosal transmission of HIV-1. In this study, we elucidated the mechanism of HIV-1-gp120-induced transendothelial migration of iDCs. We found that gp120 enhanced the binding of Wiskott-Aldrich Syndrome protein (WASp) and the Actin-Related Protein 2/3 (Arp2/3) complex with β-actin, an interaction essential for the proper formation of podosomes, specialized adhesion structures required for the migration of iDCs through different tissues. We further identified Leukocyte-Specific Protein 1 (LSP1) as a novel component of the WASp-Arp2/3-β-actin complex. Pretreating iDCs with an active fragment of the secretory glycoprotein Slit2 (Slit2N) inhibited HIV-1-gp120-mediated migration and podosome formation, by inducing the cognate receptor Roundabout 1 (Robo1) to bind to and sequester WASp and LSP1 from β-actin. Slit2N treatment also inhibited Src signaling and the activation of several downstream molecules, including Rac1, Pyk2, paxillin, and CDC42, a major regulator of podosome formation. Taken together, our results support a novel mechanism by which Slit2/Robo1 may inhibit the HIV-1-gp120-induced migration of iDCs, thereby restricting dissemination of HIV-1 from mucosal surfaces in the host.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula M. Kuzontkoski
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weiquan Zhu
- Department of Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Department of Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
50
|
Su Y, Lei X, Wu L, Liu L. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal. Immunology 2012; 137:65-79. [PMID: 22681228 DOI: 10.1111/j.1365-2567.2012.03608.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4.0-5.5 hr, with 84-92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|