1
|
Borelli A, Santamaria JC, Zamit C, Apert C, Chevallier J, Pierre P, Argüello RJ, Spinelli L, Irla M. Lymphotoxin limits Foxp3 + regulatory T cell development from Foxp3 lo precursors via IL-4 signaling. Nat Commun 2024; 15:6976. [PMID: 39143070 PMCID: PMC11324892 DOI: 10.1038/s41467-024-51164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Treg) are critical players of immune tolerance that develop in the thymus via two distinct developmental pathways involving CD25+Foxp3- and CD25-Foxp3lo precursors. However, the mechanisms regulating the recently identified Foxp3lo precursor pathway remain unclear. Here, we find that the membrane-bound lymphotoxin α1β2 (LTα1β2) heterocomplex is upregulated during Treg development upon TCR/CD28 and IL-2 stimulation. We show that Lta expression limits the maturational development of Treg from Foxp3lo precursors by regulating their proliferation, survival, and metabolic profile. Transgenic reporter mice and transcriptomic analyses further reveal that medullary thymic epithelial cells (mTEC) constitute an unexpected source of IL-4. We demonstrate that LTα1β2-lymphotoxin β receptor-mediated interactions with mTEC limit Treg development by down-regulating IL-4 expression in mTEC. Collectively, our findings identify the lymphotoxin axis as the first inhibitory checkpoint of thymic Treg development that fine-tunes the Foxp3lo Treg precursor pathway by limiting IL-4 availability.
Collapse
Affiliation(s)
- Alexia Borelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Jérémy C Santamaria
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Cloé Zamit
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Cécile Apert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-University Toulouse III, Toulouse, France
- Microenvironment & Immunity Unit, Institut Pasteur, Paris, France
| | - Jessica Chevallier
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Philippe Pierre
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Lionel Spinelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
2
|
Pacella I, Pinzon Grimaldos A, Rossi A, Tucci G, Zagaglioni M, Potenza E, Pinna V, Rotella I, Cammarata I, Cancila V, Belmonte B, Tripodo C, Pietropaolo G, Di Censo C, Sciumè G, Licursi V, Peruzzi G, Antonucci Y, Campello S, Guerrieri F, Iebba V, Prota R, Di Chiara M, Terrin G, De Peppo V, Grazi GL, Barnaba V, Piconese S. Iron capture through CD71 drives perinatal and tumor-associated Treg expansion. JCI Insight 2024; 9:e167967. [PMID: 38954474 PMCID: PMC11383606 DOI: 10.1172/jci.insight.167967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Besides suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knockout neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and is related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.
Collapse
Affiliation(s)
- Ilenia Pacella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Rossi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Tucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Zagaglioni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Potenza
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Pinna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ivano Rotella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | | | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Centre for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ylenia Antonucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Centre of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Valerio Iebba
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Rita Prota
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Maria Di Chiara
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Valerio De Peppo
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Grazi
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Barnaba
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
3
|
Rau CN, Severin ME, Lee PW, Deffenbaugh JL, Liu Y, Murphy SP, Petersen-Cherubini CL, Lovett-Racke AE. MicroRNAs targeting TGF-β signaling exacerbate central nervous system autoimmunity by disrupting regulatory T cell development and function. Eur J Immunol 2024; 54:e2350548. [PMID: 38634287 PMCID: PMC11156541 DOI: 10.1002/eji.202350548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Transforming growth factor beta (TGF-β) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-β signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-β signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-β-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-β-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-β signaling may restore immune homeostasis in MS patients.
Collapse
Affiliation(s)
- Christina N Rau
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Mary E Severin
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Joshua L Deffenbaugh
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Shawn P Murphy
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Su R, Zhang T, Wang H, Yan G, Wu R, Zhang X, Gao C, Li X, Wang C. New sights of low dose IL-2: Restoration of immune homeostasis for viral infection. Immunology 2024; 171:324-338. [PMID: 37985960 DOI: 10.1111/imm.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Gaofei Yan
- Second department, Hamony Long Stomatological Hospital, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Zhao Y, Nicholson L, Wang H, Qian YW, Hawthorne WJ, Jimenez-Vera E, Gloss BS, Lai J, Thomas A, Chew YV, Burns H, Zhang GY, Wang YM, Rogers NM, Zheng G, Yi S, Alexander SI, O’Connell PJ, Hu M. Intragraft memory-like CD127hiCD4+Foxp3+ Tregs maintain transplant tolerance. JCI Insight 2024; 9:e169119. [PMID: 38516885 PMCID: PMC11063946 DOI: 10.1172/jci.insight.169119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag-/- hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.
Collapse
Affiliation(s)
| | | | - Hannah Wang
- Centre for Transplant and Renal Research and
| | - Yi Wen Qian
- Centre for Transplant and Renal Research and
| | | | | | - Brian S. Gloss
- Scientific Platforms, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Joey Lai
- Scientific Platforms, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | | | - Yi Vee Chew
- Centre for Transplant and Renal Research and
| | | | - Geoff Y. Zhang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research and
- Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Shounan Yi
- Centre for Transplant and Renal Research and
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | | | - Min Hu
- Centre for Transplant and Renal Research and
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
LeGuern C, Markmann JF. Regulatory CD4 + T cells: permanent or temporary suppressors of immunity. Front Immunol 2024; 15:1293892. [PMID: 38404584 PMCID: PMC10890821 DOI: 10.3389/fimmu.2024.1293892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Affiliation(s)
- Christian LeGuern
- Center for Transplantation Sciences, Massachusetts General Brigham, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
8
|
Lyu H, Yuan G, Liu X, Wang X, Geng S, Xia T, Zhou X, Li Y, Hu X, Shi Y. Sustained store-operated calcium entry utilizing activated chromatin state leads to instability in iTregs. eLife 2023; 12:RP88874. [PMID: 38055613 PMCID: PMC10699804 DOI: 10.7554/elife.88874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Thymus-originated tTregs and in vitro induced iTregs are subsets of regulatory T cells. While they share the capacity of immune suppression, their stabilities are different, with iTregs losing their phenotype upon stimulation or under inflammatory milieu. Epigenetic differences, particularly methylation state of Foxp3 CNS2 region, provide an explanation for this shift. Whether additional regulations, including cellular signaling, could directly lead phenotypical instability requires further analysis. Here, we show that upon TCR (T cell receptor) triggering, SOCE (store-operated calcium entry) and NFAT (nuclear factor of activated T cells) nuclear translocation are blunted in tTregs, yet fully operational in iTregs, similar to Tconvs. On the other hand, tTregs show minimal changes in their chromatin accessibility upon activation, in contrast to iTregs that demonstrate an activated chromatin state with highly accessible T cell activation and inflammation related genes. Assisted by several cofactors, NFAT driven by strong SOCE signaling in iTregs preferentially binds to primed-opened T helper (TH) genes, resulting in their activation normally observed only in Tconv activation, ultimately leads to instability. Conversely, suppression of SOCE in iTregs can partially rescue their phenotype. Thus, our study adds two new layers, cellular signaling and chromatin accessibility, of understanding in Treg stability, and may provide a path for better clinical applications of Treg cell therapy.
Collapse
Affiliation(s)
- Huiyun Lyu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
| | - Guohua Yuan
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xinyi Liu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaobo Wang
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shuang Geng
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| | - Tie Xia
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xuyu Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yinqing Li
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Yan Shi
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
9
|
Sun H, Lee HS, Kim SHJ, Fernandes de Lima M, Gingras AR, Du Q, McLaughlin W, Ablack J, Lopez-Ramirez MA, Lagarrigue F, Fan Z, Chang JT, VanDyke D, Spangler JB, Ginsberg MH. IL-2 can signal via chemokine receptors to promote regulatory T cells' suppressive function. Cell Rep 2023; 42:112996. [PMID: 37598341 PMCID: PMC10564087 DOI: 10.1016/j.celrep.2023.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.
Collapse
Affiliation(s)
- Hao Sun
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ho-Sup Lee
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah Hyun-Ji Kim
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | | | - Qinyi Du
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Wilma McLaughlin
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jailail Ablack
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miguel A Lopez-Ramirez
- University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, La Jolla, CA, USA
| | | | - Zhichao Fan
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - John T Chang
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark H Ginsberg
- University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
10
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
Yang J, Zou M, Chu X, Floess S, Li Y, Delacher M, Huehn J. Inflammatory perturbations in early life long-lastingly shape the transcriptome and TCR repertoire of the first wave of regulatory T cells. Front Immunol 2022; 13:991671. [PMID: 36119090 PMCID: PMC9471859 DOI: 10.3389/fimmu.2022.991671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The first wave of Foxp3+ regulatory T cells (Tregs) generated in neonates is critical for the life-long prevention of autoimmunity. Although it is widely accepted that neonates are highly susceptible to infections, the impact of neonatal infections on this first wave of Tregs is completely unknown. Here, we challenged newborn Treg fate-mapping mice (Foxp3eGFPCreERT2xROSA26STOP-eYFP) with the Toll-like receptor (TLR) agonists LPS and poly I:C to mimic inflammatory perturbations upon neonatal bacterial or viral infections, respectively, and subsequently administrated tamoxifen during the first 8 days of life to selectively label the first wave of Tregs. Neonatally-tagged Tregs preferentially accumulated in non-lymphoid tissues (NLTs) when compared to secondary lymphoid organs (SLOs) irrespective of the treatment. One week post challenge, no differences in the frequency and phenotypes of neonatally-tagged Tregs were observed between challenged mice and untreated controls. However, upon aging, a decreased frequency of neonatally-tagged Tregs in both NLTs and SLOs was detected in challenged mice when compared to untreated controls. This decrease became significant 12 weeks post challenge, with no signs of altered Foxp3 stability. Remarkably, this late decrease in the frequency of neonatally-tagged Tregs only occurred when newborns were challenged, as treating 8-days-old mice with TLR agonists did not result in long-lasting alterations of the first wave of Tregs. Combined single-cell T cell receptor (TCR)-seq and RNA-seq revealed that neonatal inflammatory perturbations drastically diminished TCR diversity and long-lastingly altered the transcriptome of neonatally-tagged Tregs, exemplified by lower expression of Tigit, Foxp3, and Il2ra. Together, our data demonstrate that a single, transient encounter with a pathogen in early life can have long-lasting consequences for the first wave of Tregs, which might affect immunological tolerance, prevention of autoimmunity, and other non-canonical functions of tissue-resident Tregs in adulthood.
Collapse
Affiliation(s)
- Juhao Yang
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, China Innovation Center of Roche, Shanghai, China
| | - Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xiaojing Chu
- Department Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yang Li
- Department Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- *Correspondence: Jochen Huehn,
| |
Collapse
|
12
|
Zhang J, Zou Y, Chen L, Xu Q, Wang Y, Xie M, Liu X, Zhao J, Wang CY. Regulatory T Cells, a Viable Target Against Airway Allergic Inflammatory Responses in Asthma. Front Immunol 2022; 13:902318. [PMID: 35757774 PMCID: PMC9226301 DOI: 10.3389/fimmu.2022.902318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a multifactorial disorder characterized by the airway chronic inflammation, hyper-responsiveness (AHR), remodeling, and reversible obstruction. Although asthma is known as a heterogeneous group of diseases with various clinical manifestations, recent studies suggest that more than half of the clinical cases are ‘‘T helper type 2 (Th2)-high’’ type, whose pathogenesis is driven by Th2 responses to an inhaled allergen from the environmental exposures. The intensity and duration of inflammatory responses to inhaled allergens largely depend on the balance between effector and regulatory cells, but many questions regarding the mechanisms by which the relative magnitudes of these opposing forces are remained unanswered. Regulatory T cells (Tregs), which comprise diverse subtypes with suppressive function, have long been attracted extensive attention owing to their capability to limit the development and progression of allergic diseases. In this review we seek to update the recent advances that support an essential role for Tregs in the induction of allergen tolerance and attenuation of asthma progression once allergic airway inflammation established. We also discuss the current concepts about Treg induction and Treg-expressed mediators relevant to controlling asthma, and the therapies designed based on these novel insights against asthma in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Wang C, Daley SR. How Thymocyte Deletion in the Cortex May Curtail Antigen-Specific T-Regulatory Cell Development in the Medulla. Front Immunol 2022; 13:892498. [PMID: 35693793 PMCID: PMC9176388 DOI: 10.3389/fimmu.2022.892498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cell responses to self-antigens are pivotal for immunological self-tolerance. Activation of Foxp3– T-conventional (T-conv) cells can precipitate autoimmune disease, whereas activation of Foxp3+ T-regulatory (T-reg) cells is essential to prevent autoimmune disease. This distinction indicates the importance of the thymus in controlling the differentiation of self-reactive CD4+ T cells. Thymocytes and thymic antigen-presenting cells (APC) depend on each other for normal maturation and differentiation. In this Hypothesis and Theory article, we propose this mutual dependence dictates which self-antigens induce T-reg cell development in the thymic medulla. We postulate self-reactive CD4+ CD8– thymocytes deliver signals that stabilize and amplify the presentation of their cognate self-antigen by APC in the thymic medulla, thereby seeding a niche for the development of T-reg cells specific for the same self-antigen. By limiting the number of antigen-specific CD4+ thymocytes in the medulla, thymocyte deletion in the cortex may impede the formation of medullary T-reg niches containing certain self-antigens. Susceptibility to autoimmune disease may arise from cortical deletion creating a “hole” in the self-antigen repertoire recognized by T-reg cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Charaix J, Borelli A, Santamaria JC, Chasson L, Giraud M, Sergé A, Irla M. Recirculating Foxp3 + regulatory T cells are restimulated in the thymus under Aire control. Cell Mol Life Sci 2022; 79:355. [PMID: 35678896 PMCID: PMC11071703 DOI: 10.1007/s00018-022-04328-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Thymically-derived Foxp3+ regulatory T cells (Treg) critically control immunological tolerance. These cells are generated in the medulla through high affinity interactions with medullary thymic epithelial cells (mTEC) expressing the Autoimmune regulator (Aire). Recent advances have revealed that thymic Treg contain not only developing but also recirculating cells from the periphery. Although Aire is implicated in the generation of Foxp3+ Treg, its role in the biology of recirculating Treg remains elusive. Here, we show that Aire regulates the suppressive signature of recirculating Treg independently of the remodeling of the medullary 3D organization throughout life where Treg reside. Accordingly, the adoptive transfer of peripheral Foxp3+ Treg in AireKO recipients led to an impaired suppressive signature upon their entry into the thymus. Furthermore, recirculating Treg from AireKO mice failed to attenuate the severity of multiorgan autoimmunity, demonstrating that their suppressive function is altered. Using bone marrow chimeras, we reveal that mTEC-specific expression of Aire controls the suppressive signature of recirculating Treg. Finally, mature mTEC lacking Aire were inefficient in stimulating peripheral Treg both in polyclonal and antigen-specific co-culture assays. Overall, this study demonstrates that Aire confers to mTEC the ability to restimulate recirculating Treg, unravelling a novel function for this master regulator in Treg biology.
Collapse
Affiliation(s)
- Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Alexia Borelli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Jérémy C Santamaria
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Matthieu Giraud
- Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, 44000, Nantes, France
| | - Arnauld Sergé
- Turing Centre for Living Systems, Laboratoire adhésion inflammation (LAI), CNRS, INSERM, Aix-Marseille University, 13288, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
15
|
Hall BM, Verma ND, Tran GT, Hodgkinson SJ. Transplant Tolerance, Not Only Clonal Deletion. Front Immunol 2022; 13:810798. [PMID: 35529847 PMCID: PMC9069565 DOI: 10.3389/fimmu.2022.810798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The quest to understand how allogeneic transplanted tissue is not rejected and how tolerance is induced led to fundamental concepts in immunology. First, we review the research that led to the Clonal Deletion theory in the late 1950s that has since dominated the field of immunology and transplantation. At that time many basic mechanisms of immune response were unknown, including the role of lymphocytes and T cells in rejection. These original observations are reassessed by considering T regulatory cells that are produced by thymus of neonates to prevent autoimmunity. Second, we review "operational tolerance" induced in adult rodents and larger animals such as pigs. This can occur spontaneously especially with liver allografts, but also can develop after short courses of a variety of rejection inhibiting therapies. Over time these animals develop alloantigen specific tolerance to the graft but retain the capacity to reject third-party grafts. These animals have a "split tolerance" as peripheral lymphocytes from these animals respond to donor alloantigen in graft versus host assays and in mixed lymphocyte cultures, indicating there is no clonal deletion. Investigation of this phenomenon excludes many mechanisms, including anti-donor antibody blocking rejection as well as anti-idiotypic responses mediated by antibody or T cells. This split tolerance is transferred to a second immune-depleted host by T cells that retain the capacity to effect rejection of third-party grafts by the same host. Third, we review research on alloantigen specific inhibitory T cells that led to the first identification of the CD4+CD25+T regulatory cell. The key role of T cell derived cytokines, other than IL-2, in promoting survival and expansion of antigen specific T regulatory cells that mediate transplant tolerance is reviewed. The precise methods for inducing and diagnosing operational tolerance remain to be defined, but antigen specific T regulatory cells are key mediators.
Collapse
Affiliation(s)
- Bruce M. Hall
- Immune Tolerance Laboratory, School of Medicine, University of New South Wales (UNSW) Sydney, Ingham Institute, and Renal Service and Multiple Sclerosis Clinic, Liverpool Hospital, Liverpool, NSW, Australia
| | | | | | | |
Collapse
|
16
|
Tang M, Jia F, Nan F, Zuo F, Yuan Z, Zhang D. Role of Cytokines in Thymic Regulatory T Cell Generation: Overview and Updates. Front Immunol 2022; 13:883560. [PMID: 35432378 PMCID: PMC9008509 DOI: 10.3389/fimmu.2022.883560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
CD4+CD25+Foxp3+ Regulatory (Treg) T cells are mainly generated within the thymus. However, the mechanism of thymic Treg cell (tTreg cell) generation remains to be fully revealed. Although the functions of TCR/CD28 co-stimulation have been widely accepted, the functions of cytokines in the generation of tTreg cells remain highly controversial. In this review, we summarize the existing studies on cytokine regulation of tTreg cell generation. By integrating the key findings of cytokines in tTreg cell generation, we have concluded that four members of γc family cytokines (IL-2, IL-4, IL-7 and IL-15), transforming growth factor β (TGF-β), and three members of TNF superfamily cytokines (GITRL, OX40L and TNF-α) play vitally important roles in regulating tTreg cell generation. We also point out all disputed points and highlight critical scientific questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Mei Tang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fuya Jia
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fengqiong Zuo
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
18
|
Hoft SG, Noto CN, DiPaolo RJ. Two Distinct Etiologies of Gastric Cancer: Infection and Autoimmunity. Front Cell Dev Biol 2021; 9:752346. [PMID: 34900999 PMCID: PMC8661534 DOI: 10.3389/fcell.2021.752346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of mortality worldwide. The risk of developing gastric adenocarcinoma, which comprises >90% of gastric cancers, is multifactorial, but most associated with Helicobacter pylori infection. Autoimmune gastritis is a chronic autoinflammatory syndrome where self-reactive immune cells are activated by gastric epithelial cell autoantigens. This cause of gastritis is more so associated with the development of neuroendocrine tumors. However, in both autoimmune and infection-induced gastritis, high risk metaplastic lesions develop within the gastric mucosa. This warrants concern for carcinogenesis in both inflammatory settings. There are many similarities and differences in disease progression between these two etiologies of chronic gastritis. Both diseases have an increased risk of gastric adenocarcinoma development, but each have their own unique comorbidities. Autoimmune gastritis is a primary cause of pernicious anemia, whereas chronic infection typically causes gastrointestinal ulceration. Both immune responses are driven by T cells, primarily CD4+ T cells of the IFN-γ producing, Th1 phenotype. Neutrophilic infiltrates help clear H. pylori infection, but neutrophils are not necessarily recruited in the autoimmune setting. There have also been hypotheses that infection with H. pylori initiates autoimmune gastritis, but the literature is far from definitive with evidence of infection-independent autoimmune gastric disease. Gastric cancer incidence is increasing among young women in the United States, a population at higher risk of developing autoimmune disease, and H. pylori infection rates are falling. Therefore, a better understanding of these two chronic inflammatory diseases is needed to identify their roles in initiating gastric cancer.
Collapse
Affiliation(s)
- Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Pyle CJ, Labeur-Iurman L, Groves HT, Puttur F, Lloyd CM, Tregoning JS, Harker JA. Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity. J Exp Med 2021; 218:e20201555. [PMID: 34665220 PMCID: PMC8529914 DOI: 10.1084/jem.20201555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023] Open
Abstract
T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life.
Collapse
Affiliation(s)
- Chloe J. Pyle
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Lucia Labeur-Iurman
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Helen T. Groves
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - James A. Harker
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| |
Collapse
|
20
|
Haftmann C, Zwicky P, Ingelfinger F, Mair F, Floess S, Riedel R, Durek P, Spalinger MR, Friebel E, Leung BP, Lutz M, Puertas N, Amorim A, Schärli S, Becher B, Kisielow J, Waisman A, Mashreghi MF, Huehn J, Becher B. Protection against autoimmunity is driven by thymic epithelial cell-mediated regulation of T reg development. Sci Immunol 2021; 6:eabf3111. [PMID: 34797691 DOI: 10.1126/sciimmunol.abf3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB–inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell–dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.
Collapse
Affiliation(s)
- Claudia Haftmann
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Florian Mair
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Division of Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stefan Floess
- Helmholtz Centre for Infection Research, Experimental Immunology, Braunschweig, Germany
| | - René Riedel
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Marianne R Spalinger
- Universitätsspital, Klinik für Gastroenterologie und Hepatologie, Zürich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Brian P Leung
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA, USA
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Nicole Puertas
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Amorim
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Stefanie Schärli
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Benedict Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
- Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Huehn
- Helmholtz Centre for Infection Research, Experimental Immunology, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Galindo-Albarrán A, Castan S, Santamaria JC, Joffre OP, Haegeman B, Romagnoli P, van Meerwijk JPM. The Repertoire of Newly Developing Regulatory T Cells in the Type 1 Diabetes-Prone NOD Mouse Is Very Diverse. Diabetes 2021; 70:1729-1737. [PMID: 34035042 DOI: 10.2337/db20-1072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022]
Abstract
Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen specificity of Treg plays an important role in their in vivo activity. We therefore assessed the diversity of the T-cell receptors (TCRs) for antigen expressed by Treg newly developed in the thymus of autoimmune type 1 diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that use of the TCRα and TCRβ variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRα and TCRβ chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type 1 diabetes in the NOD mouse.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thymus Gland/immunology
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Ariel Galindo-Albarrán
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
- Station d'Écologie Théorique et Expérimentale, CNRS-Université Paul Sabatier (UPS), Moulis, France
| | - Sarah Castan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Jérémy C Santamaria
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Olivier P Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Bart Haegeman
- Station d'Écologie Théorique et Expérimentale, CNRS-Université Paul Sabatier (UPS), Moulis, France
| | - Paola Romagnoli
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Joost P M van Meerwijk
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
22
|
Dikiy S, Li J, Bai L, Jiang M, Janke L, Zong X, Hao X, Hoyos B, Wang ZM, Xu B, Fan Y, Rudensky AY, Feng Y. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 2021; 54:931-946.e11. [PMID: 33838102 PMCID: PMC8317508 DOI: 10.1016/j.immuni.2021.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023]
Abstract
Activation of the STAT5 transcription factor downstream of the Interleukin-2 receptor (IL-2R) induces expression of Foxp3, a critical step in the differentiation of regulatory T (Treg) cells. Due to the pleiotropic effects of IL-2R signaling, it is unclear how STAT5 acts directly on the Foxp3 locus to promote its expression. Here, we report that IL-2 - STAT5 signaling converged on an enhancer (CNS0) during Foxp3 induction. CNS0 facilitated the IL-2 dependent CD25+Foxp3- precursor to Treg cell transition in the thymus. Its deficiency resulted in impaired Treg cell generation in neonates, which was partially mitigated with age. While the thymic Treg cell paucity caused by CNS0 deficiency did not result in autoimmunity on its own, it exacerbated autoimmune manifestations caused by disruption of the Aire gene. Thus, CNS0 enhancer activity ensures robust Treg cell differentiation early in postnatal life and cooperatively with other tolerance mechanisms minimizes autoimmunity.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Jun Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lu Bai
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Menglin Jiang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinying Zong
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaolei Hao
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beatrice Hoyos
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
23
|
Nolan LS, Mihi B, Agrawal P, Gong Q, Rimer JM, Bidani SS, Gale SE, Goree M, Hu E, Lanik WE, Huang E, Bando JK, Liu V, Lewis AN, Bustos A, Hodzic Z, Laury ML, Good M. Indole-3-Carbinol-Dependent Aryl Hydrocarbon Receptor Signaling Attenuates the Inflammatory Response in Experimental Necrotizing Enterocolitis. Immunohorizons 2021; 5:193-209. [PMID: 33906960 PMCID: PMC8173979 DOI: 10.4049/immunohorizons.2100018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Necrotizing enterocolitis (NEC) causes significant morbidity and mortality in premature infants; therefore, the identification of therapeutic and preventative strategies against NEC remains a high priority. The ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) is well known to contribute to the regulation of intestinal microbial communities and amelioration of intestinal inflammation. However, the role of AhR signaling in NEC is unclear. Experimental NEC was induced in 4-d-old wild-type mice or mice lacking AhR expression in the intestinal epithelial cells or AhR expression in CD11c+ cells (AhRΔCD11c) by subjecting animals to twice daily hypoxic stress and gavage feeding with formula supplemented with LPS and enteric bacteria. During NEC, compared with wild-type mice treated with vehicle, littermates treated with an AhR proligand, indole-3-carbinol, had reduced expression of Il1b and Marco, a scavenger receptor that mediates dendritic cell activation and the recognition and clearance of bacterial pathogens by macrophages. Furthermore, indole-3-carbinol treatment led to the downregulation of genes involved in cytokine and chemokine, as revealed by pathway enrichment analysis. AhR expression in the intestinal epithelial cells and their cre-negative mouse littermates were similarly susceptible to experimental NEC, whereas AhRΔCD11c mice with NEC exhibited heightened inflammatory responses compared with their cre-negative mouse littermates. In seeking to determine the mechanisms involved in this increased inflammatory response, we identified the Tim-4- monocyte-dependent subset of macrophages as increased in AhRΔCD11c mice compared with their cre-negative littermates. Taken together, these findings demonstrate the potential for AhR ligands as a novel immunotherapeutic approach to the management of this devastating disease.
Collapse
Affiliation(s)
- Lila S Nolan
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Belgacem Mihi
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Qingqing Gong
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jamie M Rimer
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Shay S Bidani
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sarah E Gale
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Martin Goree
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elise Hu
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Wyatt E Lanik
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth Huang
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Victoria Liu
- Washington University in St. Louis, St. Louis, MO
| | - Angela N Lewis
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Aiza Bustos
- Washington University in St. Louis, St. Louis, MO
| | - Zerina Hodzic
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA; and
| | - Marie L Laury
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Misty Good
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
24
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
25
|
Horkova V, Drobek A, Mueller D, Gubser C, Niederlova V, Wyss L, King CG, Zehn D, Stepanek O. Dynamics of the Coreceptor-LCK Interactions during T Cell Development Shape the Self-Reactivity of Peripheral CD4 and CD8 T Cells. Cell Rep 2021; 30:1504-1514.e7. [PMID: 32023465 PMCID: PMC7003063 DOI: 10.1016/j.celrep.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Overtly self-reactive T cells are removed during thymic selection. However, it has been recently established that T cell self-reactivity promotes protective immune responses. Apparently, the level of self-reactivity of mature T cells must be tightly balanced. Our mathematical model and experimental data show that the dynamic regulation of CD4- and CD8-LCK coupling establish the self-reactivity of the peripheral T cell pool. The stoichiometry of the interaction between CD8 and LCK, but not between CD4 and LCK, substantially increases upon T cell maturation. As a result, peripheral CD8+ T cells are more self-reactive than CD4+ T cells. The different levels of self-reactivity of mature CD8+ and CD4+ T cells likely reflect the unique roles of these subsets in immunity. These results indicate that the evolutionary selection pressure tuned the CD4-LCK and CD8-LCK stoichiometries, as they represent the unique parts of the proximal T cell receptor (TCR) signaling pathway, which differ between CD4+ and CD8+ T cells. Coupling of CD8-LCK but not CD4-LCK increases upon T cell maturation Dynamics of coreceptor-LCK coupling stoichiometry establish T cell self-reactivity CD8+ T cells are more self-reactive than CD4+ T cells
Collapse
Affiliation(s)
- Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Daniel Mueller
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Celine Gubser
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland; Peter Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Lena Wyss
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland; Institute for Immunology, Biomedical Center (BMC) Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Carolyn G King
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| |
Collapse
|
26
|
Sun H, Lagarrigue F, Wang H, Fan Z, Lopez-Ramirez MA, Chang JT, Ginsberg MH. Distinct integrin activation pathways for effector and regulatory T cell trafficking and function. J Exp Med 2021; 218:e20201524. [PMID: 33104169 PMCID: PMC7590511 DOI: 10.1084/jem.20201524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Integrin activation mediates lymphocyte trafficking and immune functions. Conventional T cell (Tconv cell) integrin activation requires Rap1-interacting adaptor molecule (RIAM). Here, we report that Apbb1ip-/- (RIAM-null) mice are protected from spontaneous colitis due to IL-10 deficiency, a model of inflammatory bowel disease (IBD). Protection is ascribable to reduced accumulation and homing of Tconv cells in gut-associated lymphoid tissue (GALT). Surprisingly, there are abundant RIAM-null regulatory T cells (T reg cells) in the GALT. RIAM-null T reg cells exhibit normal homing to GALT and lymph nodes due to preserved activation of integrins αLβ2, α4β1, and α4β7. Similar to Tconv cells, T reg cell integrin activation and immune function require Rap1; however, lamellipodin (Raph1), a RIAM paralogue, compensates for RIAM deficiency. Thus, in contrast to Tconv cells, RIAM is dispensable for T reg cell integrin activation and suppressive function. In consequence, inhibition of RIAM can inhibit spontaneous Tconv cell-mediated autoimmune colitis while preserving T reg cell trafficking and function.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | | | - John T. Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
27
|
Generation of Transgenic Fluorescent Reporter Lines for Studying Hematopoietic Development in the Mouse. Methods Mol Biol 2021; 2224:153-182. [PMID: 33606214 DOI: 10.1007/978-1-0716-1008-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hematopoiesis in the mouse and other mammals occurs in several waves and arises from distinct anatomic sites. Transgenic mice expressing fluorescent reporter proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to more restricted progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and describe methods for confirming and analyzing transgene expression in the hematopoietic tissues of the embryo, fetus, and postnatal/adult animal.
Collapse
|
28
|
Sadeqi Nezhad M, Seifalian A, Bagheri N, Yaghoubi S, Karimi MH, Adbollahpour-Alitappeh M. Chimeric Antigen Receptor Based Therapy as a Potential Approach in Autoimmune Diseases: How Close Are We to the Treatment? Front Immunol 2020; 11:603237. [PMID: 33324420 PMCID: PMC7727445 DOI: 10.3389/fimmu.2020.603237] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite significant breakthroughs in understanding of immunological and physiological features of autoimmune diseases, there is currently no specific therapeutic option with prolonged remission. Cell-based therapy using engineered-T cells has attracted tremendous attention as a practical treatment for autoimmune diseases. Genetically modified-T cells armed with chimeric antigen receptors (CARs) attack autoreactive immune cells such as B cells or antibody-secreting plasma cells. CARs can further guide the effector and regulatory T cells (Tregs) to the autoimmune milieu to traffic, proliferate, and exert suppressive functions. The genetically modified-T cells with artificial receptors are a promising option to suppress autoimmune manifestation and autoinflammatory events. Interestingly, CAR-T cells are modified to a new chimeric auto-antibody receptor T (CAAR-T) cell. This cell, with its specific-antigen, recognizes and binds to the target autoantibodies expressing autoreactive cells and, subsequently, destroy them. Preclinical studies of CAR-T cells demonstrated satisfactory outcomes against autoimmune diseases. However, the lack of target autoantigens remains one of the pivotal problems in the field of CAR-T cells. CAR-based therapy has to pass several hurdles, including stability, durability, trafficking, safety, effectiveness, manufacturing, and persistence, to enter clinical use. The primary goal of this review was to shed light on CAR-T immunotherapy, CAAR-T cell therapy, and CAR-Treg cell therapy in patients with immune system diseases.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Department of Clinical Laboratory Science, Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Gorgan, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | | |
Collapse
|
29
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
30
|
van der Veeken J, Glasner A, Zhong Y, Hu W, Wang ZM, Bou-Puerto R, Charbonnier LM, Chatila TA, Leslie CS, Rudensky AY. The Transcription Factor Foxp3 Shapes Regulatory T Cell Identity by Tuning the Activity of trans-Acting Intermediaries. Immunity 2020; 53:971-984.e5. [PMID: 33176163 DOI: 10.1016/j.immuni.2020.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Regulatory T (Treg) cell identity is defined by the lineage-specifying transcription factor (TF) Foxp3. Here we examined mechanisms of Foxp3 function by leveraging naturally occurring genetic variation in wild-derived inbred mice, which enables the identification of DNA sequence motifs driving epigenetic features. Chromatin accessibility, TF binding, and gene expression patterns in resting and activated subsets of Treg cells, conventional CD4 T cells, and cells expressing a Foxp3 reporter null allele revealed that the majority of Foxp3-dependent changes occurred at sites not bound by Foxp3. Chromatin accessibility of these indirect Foxp3 targets depended on the presence of DNA binding motifs for other TFs, including TCF1. Foxp3 expression correlated with decreased TCF1 and reduced accessibility of TCF1-bound chromatin regions. Deleting one copy of the Tcf7 gene recapitulated Foxp3-dependent negative regulation of chromatin accessibility. Thus, Foxp3 defines Treg cell identity in a largely indirect manner by fine-tuning the activity of other major chromatin remodeling TFs such as TCF1.
Collapse
Affiliation(s)
- Joris van der Veeken
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ariella Glasner
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Hu
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Regina Bou-Puerto
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Demeyer A, Driege Y, Skordos I, Coudenys J, Lemeire K, Elewaut D, Staal J, Beyaert R. Long-Term MALT1 Inhibition in Adult Mice Without Severe Systemic Autoimmunity. iScience 2020; 23:101557. [PMID: 33083726 PMCID: PMC7522757 DOI: 10.1016/j.isci.2020.101557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
The protease MALT1 is a key regulator of NF-κB signaling and a novel therapeutic target in autoimmunity and cancer. Initial enthusiasm supported by preclinical results with MALT1 inhibitors was tempered by studies showing that germline MALT1 protease inactivation in mice results in reduced regulatory T cells and lethal multi-organ inflammation due to expansion of IFN-γ-producing T cells. However, we show that long-term MALT1 inactivation, starting in adulthood, is not associated with severe systemic inflammation, despite reduced regulatory T cells. In contrast, IL-2-, TNF-, and IFN-γ-producing CD4+ T cells were strongly reduced. Limited formation of tertiary lymphoid structures was detectable in lungs and stomach, which did not affect overall health. Our data illustrate that MALT1 inhibition in prenatal or adult life has a different outcome and that long-term MALT1 inhibition in adulthood is not associated with severe side effects. Inducible MALT1 inactivation for up to 6 months in the absence of severe toxicity MALT1 inactivation in adult mice decreases Tregs without effector T cell activation Long-term MALT1 inactivation results in tertiary lymphoid structure formation MALT1 inhibition in prenatal or adult life has a different outcome
Collapse
Affiliation(s)
- Annelies Demeyer
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Ioannis Skordos
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Julie Coudenys
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Dirk Elewaut
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| |
Collapse
|
32
|
Van Belkum M, Mendoza Alvarez L, Neu J. Preterm neonatal immunology at the intestinal interface. Cell Mol Life Sci 2020; 77:1209-1227. [PMID: 31576423 PMCID: PMC11105006 DOI: 10.1007/s00018-019-03316-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Fetal and neonatal development represents a critical window for setting a path toward health throughout life. In this review, we focus on intestinal immunity, how it develops, and its implications for subsequent neonatal diseases. We discuss maternal nutritional and environmental exposures that dictate outcomes for the developing fetus. Although still controversial, there is evidence in support of an in utero microbiome. Specific well-intentioned and routine applications of antibiotics, steroids, and surgical interventions implemented before, during, and after birth skew the neonate towards pro-inflammatory dysbiosis. Shortly after birth, a consortium of maternal and environmentally derived bacteria, through cross-talk with the developing host immune system, takes center stage in developing or disrupting immune homeostasis at the intestinal interface. We also examine subsequent immunological cross-talks, which involve neonatal myeloid and lymphoid responses, and their potential impacts on health and disease such as necrotizing enterocolitis and sepsis, especially critical disease entities for the infant born preterm.
Collapse
Affiliation(s)
- Max Van Belkum
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lybil Mendoza Alvarez
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
33
|
Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21072356. [PMID: 32235291 PMCID: PMC7177531 DOI: 10.3390/ijms21072356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.
Collapse
|
34
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
35
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
36
|
Vanhanen R, Leskinen K, Mattila IP, Saavalainen P, Arstila TP. Epigenetic and transcriptional analysis supports human regulatory T cell commitment at the CD4+CD8+ thymocyte stage. Cell Immunol 2019; 347:104026. [PMID: 31843201 DOI: 10.1016/j.cellimm.2019.104026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
The natural CD25+ FOXP3+ regulatory T cell (Treg) population is generated as a distinct lineage in the thymus, but the details of Treg development in humans remain unclear, and the timing of Treg commitment is also contested. Here we have analyzed the emergence of CD25+ cells at the CD4+CD8+ double positive (DP) stage in the human thymus. We show that these cells share T cell receptor repertoire with CD25+ CD4 single-positive thymocytes, believed to be committed Tregs. They already have a fully demethylated FOXP3 enhancer region and thus display stable expression of FOXP3 and the associated Treg phenotype. Transcriptome analysis also grouped the DP CD25+ and CD4 CD25+ thymocytes apart from the CD25- subsets. Together with earlier studies, our data are consistent with human Treg commitment already at the DP thymocyte stage. We suggest that the most important antigens and signals necessary for human Treg differentiation may be found in the thymic cortex.
Collapse
Affiliation(s)
- Reetta Vanhanen
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
| | - Katarzyna Leskinen
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland; Medicum, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
37
|
Sun H, Kuk W, Rivera-Nieves J, Lopez-Ramirez MA, Eckmann L, Ginsberg MH. β7 Integrin Inhibition Can Increase Intestinal Inflammation by Impairing Homing of CD25 hiFoxP3 + Regulatory T Cells. Cell Mol Gastroenterol Hepatol 2019; 9:369-385. [PMID: 31707128 PMCID: PMC7016000 DOI: 10.1016/j.jcmgh.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Integrin α4β7 mediates lymphocyte trafficking to the gut and gut-associated lymphoid tissues, a process critical for recruitment of effector lymphocytes from the circulation to the gut mucosa in inflammatory bowel disease (IBD) and murine models of intestinal inflammation. Antibody blockade of β7 integrins generally is efficacious in IBD; however, some patients fail to respond, and a few patients can experience exacerbations. This study examined the effects of loss of β7 integrin function in murine models of IBD. METHODS In a mouse IBD model caused by lack of interleukin 10, a cytokine important in CD25hiFoxP3+ regulatory T cell (Treg) function, genetic deletion of β7 integrin or antibody blockade of α4β7-mucosal addressin cell adhesion molecule-1 interaction paradoxically exacerbated colitis. RESULTS Loss of β7 impaired the capacity of Tregs homing to the gut and therefore suppress intestinal inflammation in an adoptive T-cell transfer model; however, the intrinsic suppressive function of β7-deficient Tregs remained intact, indicating that the β7 deficiency selectively impacts gut homing. Deletion of β7 integrin did not worsen colitis in an acute dextran sodium sulfate model in which Treg number and function were normal. CONCLUSIONS In Integrin subunit beta (Itgb)7-/-Il10-/- mice, loss of β7-dependent Treg homing to gut-associated lymphoid tissues combined with loss of intrinsic Treg function exacerbated intestinal inflammation. These results suggest that IBD patients with reduced CD25hiFoxP3+ Treg numbers or function or lack of interleukin 10 could be at risk for failure of α4β7 blocking therapy.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Wun Kuk
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, California
| | | | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
38
|
Zhang P, Liu RT, Du T, Yang CL, Liu YD, Ge MR, Zhang M, Li XL, Li H, Dou YC, Duan RS. Exosomes derived from statin-modified bone marrow dendritic cells increase thymus-derived natural regulatory T cells in experimental autoimmune myasthenia gravis. J Neuroinflammation 2019; 16:202. [PMID: 31679515 PMCID: PMC6825716 DOI: 10.1186/s12974-019-1587-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex). METHODS We evaluated the effects of exosomes on surface co-stimulation markers and Aire expression of different kinds of thymic stromal cells, including cTEC, mTEC, and tDCs, in EAMG rats. The isolated exosomes were examined by western blot and DLS. Immunofluorescence was used to track the exosomes in the thymus. Flow cytometry and western blot were used to analyze the expression of co-stimulatory molecules and Aire in vivo and in vitro. RESULTS We confirmed the effects of statin-Dex in inducing Foxp3+ nTreg cells and found that both statin-Dex and DMSO-Dex could upregulate CD40 but only statin-Dex increased Aire expression in thymic stromal cells in vivo. Furthermore, we found that the role of statin-Dex and DMSO-Dex in the induction of Foxp3+ nTreg cells was dependent on epithelial cells in vitro. CONCLUSIONS We demonstrated that statin-Dex increased expression of Aire in the thymus, which may further promote the Foxp3 expression in the thymus. These findings may provide a new strategy for the treatment of myasthenia gravis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Yu-Dong Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355 People’s Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 People’s Republic of China
| |
Collapse
|
39
|
Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2031-2041. [PMID: 31591259 PMCID: PMC6910132 DOI: 10.4049/jimmunol.1900662] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Development of a comprehensive regulatory T (Treg) cell compartment in the thymus is required to maintain immune homeostasis and prevent autoimmunity. In this study, we review cellular and molecular determinants of Treg cell development in the thymus. We focus on the evidence for a self-antigen-focused Treg cell repertoire as well as the APCs responsible for presenting self-antigens to developing thymocytes. We also cover the contribution of different cytokines to thymic Treg development and the cellular populations that produce these cytokines. Finally, we update the originally proposed "two-step" model of thymic Treg differentiation by incorporating new evidence demonstrating that Treg cells develop from two Treg progenitor populations and discuss the functional importance of Treg cells generated via either progenitor pathway.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Louisa E Sjaastad
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
40
|
Zhang Z, Zhou X. Foxp3 Instability Helps tTregs Distinguish Self and Non-self. Front Immunol 2019; 10:2226. [PMID: 31608056 PMCID: PMC6769115 DOI: 10.3389/fimmu.2019.02226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) are small subsets of CD4 T cells that play a central role in the controlling of immune tolerance. Tregs are either generated in the thymus (tTregs) or the periphery (pTregs), and both express the master transcription factor Foxp3. Stable expression of Foxp3 is important for the maintenance of Tregs identity and their suppressive function. Similar to conventional T cells, Tregs can recognize both self- and non-self-antigens, and TCR engagement leads to Treg activation and the generation of effector Tregs. Emerging shreds of evidence suggest Tregs are not always stable, even fully committed mature tTregs, and can lose foxp3 expression and programming to effector-like T cells. In this review, we summarize recent findings in Treg instability and the intrinsic and extrinsic mechanisms in controlling the Foxp3 expression. Finally, we propose a new hypothesis that Foxp3 instability might help tTregs distinguish between self and non-self-antigens.
Collapse
Affiliation(s)
- Zhongmei Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Koizumi SI, Ishikawa H. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells. Cells 2019; 8:E939. [PMID: 31434282 PMCID: PMC6721668 DOI: 10.3390/cells8080939] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells, which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in terms of their ability to localize to specific tissues and suppress particular types of immune responses. Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors that are activated by antigens and cytokines. In this article, we review the current understanding of the transcriptional regulation of differentiation and function of eTreg cells.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
42
|
A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3 + T reg cell development. Nat Immunol 2019; 20:1046-1058. [PMID: 31209405 DOI: 10.1038/s41590-019-0414-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
The neonatal thymus generates Foxp3+ regulatory T (tTreg) cells that are critical in controlling immune homeostasis and preventing multiorgan autoimmunity. The role of antigen specificity on neonatal tTreg cell selection is unresolved. Here we identify 17 self-peptides recognized by neonatal tTreg cells, and reveal ligand specificity patterns that include self-antigens presented in an age- and inflammation-dependent manner. Fate-mapping studies of neonatal peptidyl arginine deiminase type IV (Padi4)-specific thymocytes reveal disparate fate choices. Neonatal thymocytes expressing T cell receptors that engage IAb-Padi4 with moderate dwell times within a conventional docking orientation are exported as tTreg cells. In contrast, Padi4-specific T cell receptors with short dwell times are expressed on CD4+ T cells, while long dwell times induce negative selection. Temporally, Padi4-specific thymocytes are subject to a developmental stage-specific change in negative selection, which precludes tTreg cell development. Thus, a temporal switch in negative selection and ligand binding kinetics constrains the neonatal tTreg selection window.
Collapse
|
43
|
Daley SR, Koay HF, Dobbs K, Bosticardo M, Wirasinha RC, Pala F, Castagnoli R, Rowe JH, Ott de Bruin LM, Keles S, Lee YN, Somech R, Holland SM, Delmonte OM, Draper D, Maxwell S, Niemela J, Stoddard J, Rosenzweig SD, Poliani PL, Capo V, Villa A, Godfrey DI, Notarangelo LD. Cysteine and hydrophobic residues in CDR3 serve as distinct T-cell self-reactivity indices. J Allergy Clin Immunol 2019; 144:333-336. [PMID: 31053347 DOI: 10.1016/j.jaci.2019.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jared H Rowe
- Division of Hematology-Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass
| | - Lisa M Ott de Bruin
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yu Nee Lee
- Immunology Service, Edmond and Lily Safra Children's Hospital Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Immunology Service, Edmond and Lily Safra Children's Hospital Sheba Medical Center, Tel Hashomer, Israel
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Debbie Draper
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sandra Maxwell
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
44
|
Regulatory T cells limit unconventional memory to preserve the capacity to mount protective CD8 memory responses to pathogens. Proc Natl Acad Sci U S A 2019; 116:9969-9978. [PMID: 31036644 DOI: 10.1073/pnas.1818327116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunological memory exists so that following infection an expanded population of pathogen-specific lymphocytes can rapidly and efficiently control infection in the case of reexposure. However, in the case of CD8+ T lymphocytes, a population of unconventional CD44+CD122+ virtual memory T cells (TVM) has been described that possesses many, though not all, features of "true memory" T cells, without the requirement of first encountering cognate antigen. Here, we demonstrate a role for regulatory T cell-mediated restraint of TVM at least in part through limiting IL-15 trans-presentation by CD11b+ dendritic cells. Further, we show that keeping TVM in check ensures development of functional, antigen-specific "true" memory phenotype CD8+ T cells that can assist in pathogen control upon reexposure.
Collapse
|
45
|
LKB1 expressed in dendritic cells governs the development and expansion of thymus-derived regulatory T cells. Cell Res 2019; 29:406-419. [PMID: 30940876 DOI: 10.1038/s41422-019-0161-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/08/2019] [Indexed: 01/06/2023] Open
Abstract
Liver Kinase B1 (LKB1) plays a key role in cellular metabolism by controlling AMPK activation. However, its function in dendritic cell (DC) biology has not been addressed. Here, we find that LKB1 functions as a critical brake on DC immunogenicity, and when lost, leads to reduced mitochondrial fitness and increased maturation, migration, and T cell priming of peripheral DCs. Concurrently, loss of LKB1 in DCs enhances their capacity to promote output of regulatory T cells (Tregs) from the thymus, which dominates the outcome of peripheral immune responses, as suggested by increased resistance to asthma and higher susceptibility to cancer in CD11cΔLKB1 mice. Mechanistically, we find that loss of LKB1 specifically primes thymic CD11b+ DCs to facilitate thymic Treg development and expansion, which is independent from AMPK signalling, but dependent on mTOR and enhanced phospholipase C β1-driven CD86 expression. Together, our results identify LKB1 as a critical regulator of DC-driven effector T cell and Treg responses both in the periphery and the thymus.
Collapse
|
46
|
Sharabi A, Li H, Kasper IR, Pan W, Meidan E, Tsokos MG, Moulton VR, Tsokos GC. PP2A enables IL-2 signaling by preserving IL-2Rβ chain expression during Treg development. JCI Insight 2019; 5:126294. [PMID: 30912768 PMCID: PMC6538314 DOI: 10.1172/jci.insight.126294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/19/2019] [Indexed: 01/09/2023] Open
Abstract
Tregs require IL-2 signaling for signal transducer and activator of transcription 5 (STAT5)-mediated induction of Foxp3. While phosphatase 2A (PP2A) is a negative regulator of IL-2 production in effector T cells and Tregs do not produce IL-2, it is not known whether PP2A controls IL-2 signaling in Tregs. To address the role of PP2A in IL-2 signaling in Tregs we studied mice engineered to lack PP2A in all Foxp3-expressing cells. We report that PP2A is required to enable Foxp3 expression and to maintain sufficient numbers of Tregs in the thymus. We show for the first time that PP2A prevents the selective loss of surface IL-2Rβ and preserves IL-2R signaling potency in Tregs. The loss of IL-2Rβ in thymus- and spleen-derived Tregs that lack PP2A is due to increased sheddase activity. Pan-sheddase or selective A disintegrin and metalloproteinase 10 (ADAM10) inhibition, like forced expression of IL-2Rβ in PP2A-deficient Tregs restored IL-2Rβ expression and signaling. Thus, PP2A restrains the sheddase activity of ADAM10 in Treg cells to prevent the cleavage of IL-2Rβ from the cell surface to enable competent IL-2R signaling which is essential for Tregs development and homeostasis.
Collapse
Affiliation(s)
- Amir Sharabi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology, Campus Beilinson, The Rabin Medical Center, Petach Tikva, Israel
- Department of Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hao Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac R. Kasper
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenliang Pan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Esra Meidan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria G. Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vaishali R. Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George C. Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Autophagy in regulatory T cells: A double-edged sword in disease settings. Mol Immunol 2019; 109:43-50. [PMID: 30852245 DOI: 10.1016/j.molimm.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic process that directs cytoplasmic proteins, organelles and microbes to lysosomes for degradation. It not only represents an essential cell-intrinsic mechanism to protect against internal and external stresses but also shapes both innate and adaptive immunity. Regulatory T cells (Tregs) are a developmentally and functionally distinct T cell subpopulation engaged in sustaining immunological self-tolerance and homeostasis. There is compelling evidence that autophagy is actively regulated in Tregs and serves as a central signal-dependent controller for Tregs by restraining excessive apoptotic and metabolic activities. In this review, we discuss how autophagy modulates the stability and functionality of Tregs in different disease settings, and provide a perspective on how manipulation of autophagy enables better control of immune response by targeting the generation of Tregs and the maintenance of their stability.
Collapse
|
48
|
Walker TL, Schallenberg S, Rund N, Grönnert L, Rust R, Kretschmer K, Kempermann G. T Lymphocytes Contribute to the Control of Baseline Neural Precursor Cell Proliferation but Not the Exercise-Induced Up-Regulation of Adult Hippocampal Neurogenesis. Front Immunol 2018; 9:2856. [PMID: 30619254 PMCID: PMC6297802 DOI: 10.3389/fimmu.2018.02856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Cross-talk between the peripheral immune system and the central nervous system is important for physiological brain health. T cells are required to maintain normal baseline levels of neural precursor proliferation in the hippocampus of adult mice. We show here that neither T cells, B cells, natural killer cells nor natural killer T cells are required for the increase in hippocampal precursor proliferation that occurs in response to physical exercise. In addition, we demonstrate that a subpopulation of T cells, regulatory T cells, is not involved in maintaining baseline levels of neural precursor proliferation. Even when applied at supraphysiological numbers, populations of both naive and stimulated lymphocytes had no effect on hippocampal precursor proliferation in vitro. In addition, physical activity had no effect on peripheral immune cells in terms of distribution in the bone marrow, lymph nodes or spleen, activation state or chemokine receptor (CXCR4 and CCR9) expression. Together these results suggest that lymphocytes are not involved in translating the peripheral effects of exercise to the neurogenic niche in the hippocampus and further support the idea that the exercise-induced regulation of adult neurogenesis is mechanistically distinct from its baseline control.
Collapse
Affiliation(s)
- Tara L Walker
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Sonja Schallenberg
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Lisa Grönnert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Ruslan Rust
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
49
|
Toker A, Nguyen LT, Stone SC, Yang SYC, Katz SR, Shaw PA, Clarke BA, Ghazarian D, Al-Habeeb A, Easson A, Leong WL, McCready DR, Reedijk M, Guidos CJ, Pugh TJ, Bernardini MQ, Ohashi PS. Regulatory T Cells in Ovarian Cancer Are Characterized by a Highly Activated Phenotype Distinct from that in Melanoma. Clin Cancer Res 2018; 24:5685-5696. [PMID: 30065096 DOI: 10.1158/1078-0432.ccr-18-0554] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/18/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Regulatory T (Treg) cells expressing the transcription factor FOXP3 are essential for the maintenance of immunologic self-tolerance but play a detrimental role in most cancers due to their ability to suppress antitumor immunity. The phenotype of human circulating Treg cells has been extensively studied, but less is known about tumor-infiltrating Treg cells. We studied the phenotype and function of tumor-infiltrating Treg cells in ovarian cancer and melanoma to identify potential Treg cell-associated molecules that can be targeted by tumor immunotherapies.Experimental Design: The phenotype of intratumoral and circulating Treg cells was analyzed by multicolor flow cytometry, mass cytometry, RNA-seq, and functional assays.Results: Treg cells isolated from ovarian tumors displayed a distinct cell surface phenotype with increased expression of a number of receptors associated with TCR engagement, including PD-1, 4-1BB, and ICOS. Higher PD-1 and 4-1BB expression was associated with increased responsiveness to further TCR stimulation and increased suppressive capacity, respectively. Transcriptomic and mass cytometry analyses revealed the presence of Treg cell subpopulations and further supported a highly activated state specifically in ovarian tumors. In comparison, Treg cells infiltrating melanomas displayed lower FOXP3, PD-1, 4-1BB, and ICOS expression and were less potent suppressors of CD8 T-cell proliferation.Conclusions: The highly activated phenotype of ovarian tumor-infiltrating Treg cells may be a key component of an immunosuppressive tumor microenvironment. Receptors that are expressed by tumor-infiltrating Treg cells could be exploited for the design of novel combination tumor immunotherapies. Clin Cancer Res; 24(22); 5685-96. ©2018 AACR.
Collapse
Affiliation(s)
- Aras Toker
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linh T Nguyen
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Simone C Stone
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S Y Cindy Yang
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Rachel Katz
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Patricia A Shaw
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ayman Al-Habeeb
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Easson
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Wey L Leong
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - David R McCready
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Michael Reedijk
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
|