1
|
Song S, Sun Y, Yu J. Causal relationship between 731 immune cells and the risk of diabetic nephropathy: a two‑sample bidirectional Mendelian randomization study. Ren Fail 2024; 46:2387208. [PMID: 39091101 PMCID: PMC11299454 DOI: 10.1080/0886022x.2024.2387208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Previous observational studies have indicated associations between various immune cells and diabetic nephropathy (DN). However, the causality remains unclear. We aimed to further evaluate the causal association between immune cells and DN using bidirectional two-sample Mendelian randomization (MR) analysis. METHOD The DN data were retrieved from the IEU OpenGWAS Project database, while the data for 731 immune cells were sourced from GWAS summary statistics by Orru ̀ et al. The investigation into the causal relationship between immune cells and DN employed the inverse variance weighted (IVW), weighted median (WME), and MR-Egger methods. The stability and reliability of the findings underwent evaluation through Cochran's Q test, MR-Egger intercept's P-value, MR-PRESSO, and Leave-One-Out (LOO) method. RESULT The IVW estimates suggested a positive causal effect of CD25 on IgD-CD38dim B cell, CD25 on naive-mature B cell, CD127 on granulocyte, SSC-A on HLA DR + Natural Killer, HLA DR on plasmacytoid Dendritic Cell, and HLA DR on Dendritic Cell on DN. Conversely, the abundance of Myeloid Dendritic Cell, CD62L- Dendritic Cell %Dendritic Cell, CD86+ myeloid Dendritic Cell %Dendritic Cell, CD14- CD16-, CX3CR1 on CD14- CD16-, and SSC-A on CD4+ T cell had negative causal effects on DN. However, after correcting the P value for significant causality results using the FDR method, it was concluded that only Myeloid Dendritic Cells had a causal relationship with DN (FDR-p = 0.041), while the other immune cells showed no significant association with DN, so their relationship was suggestive. The results were stable with no observed horizontal pleiotropy and heterogeneity. Reverse MR analysis indicated no causal relationship between DN and the increased risk of positively identified immune cells. CONCLUSION This study provides an initial insight into the genetic perspective of the causal relationship between immune cells and DN. It establishes a crucial theoretical foundation for future endeavors in precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Siyuan Song
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| | - Yuqing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
2
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Li JW, Wan RT, Liu QD, Xu HL, Chen Q. Causal association of immune cells and endometritis: a Mendelian randomization study. Sci Rep 2024; 14:24822. [PMID: 39438592 PMCID: PMC11496651 DOI: 10.1038/s41598-024-75827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Research exploring the link between immune cell profiles and the development of endometritis remains scant. This gap necessitates further study to decode the complex interrelations influencing this condition. In this analysis, we leveraged two-sample Mendelian randomization to examine the causal ties between the phenotypes of immune cells and the incidence of endometritis. Our evaluation hinged on data from 3757 participants hailing from Sardinia, focusing on a diverse array of 731 immune phenotypes, and cross-referenced with endometritis data sourced from the UK Biobank. To ensure rigor, we performed sensitivity analyses, utilized MR-Egger and MR-Presso to check for pleiotropy, and applied Cochran's Q test for assessing the heterogeneity of our findings. Our investigation identified numerous immune characteristics associated with endometritis. For certain immune traits, a lower risk of endometritis was observed, including: Absolute Counts of CD39 + CD4 + T cells, CD25 + CD39 + CD4 regulatory T cells, and CD25 + + CD8 + T cells; Absolute Counts of Switched Memory B cells; CD19 expression on IgD + CD38dim and Switched Memory B cells; CD20 expression on IgD + CD38- Unswitched Memory B cells; percentage of Switched Memory B cells among lymphocytes; CD16-CD56 expression on HLA DR + Natural Killer cells; percentage of CD11c + CD62L- monocytes; CD86 expression on monocytes; CCR2 expression on CD14 + CD16 + monocytes; and CD14 expression on Monocytic Myeloid-Derived Suppressor Cells, with Odds Ratios (ORs) between 0.413 and 0.703. On the contrary, increased risks of endometritis were linked with: the percentage of Effector Memory CD4 + T cells within the CD4 + T cell population; percentages of HLA DR + T cells and HLA DR + CD8 + T cells among T cells; CD4 expression on CD28 + CD4 + T cells; CD20 expression on CD20- CD38- B cells; percentage of IgD + CD24 + B cells within the B cell population; CD62L expression on CD62L + myeloid Dendritic Cells; and Absolute Counts of Plasmacytoid Dendritic Cells, with ORs from 1.473 to 2.677, indicating these traits potentially elevate the risk of developing endometritis. Our research delineates distinct causal links between specific immune cell phenotypes and endometritis, offering new perspectives that could contribute to the pinpointing of new therapeutic avenues for this condition.
Collapse
Affiliation(s)
- Jing-Wei Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, # No.54 Ji Chang Road, Guangzhou, 510405, Guangdong, China
| | - Ren-Tao Wan
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, # No.54 Ji Chang Road, Guangzhou, 510405, Guangdong, China
| | - Qing-Dong Liu
- Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Hong-Lin Xu
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, # No.54 Ji Chang Road, Guangzhou, 510405, Guangdong, China
| | - Qi Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
4
|
Li Y, Gunderson RC, Xu Z, Ai W, Shen F, Ye J, Xu B, Michie SA. Mucosal Addressin Cell Adhesion Molecule-1 Mediates T Cell Migration into Pancreas-Draining Lymph Nodes for Initiation of the Autoimmune Response in Type 1 Diabetes. Int J Mol Sci 2024; 25:11350. [PMID: 39518902 PMCID: PMC11545416 DOI: 10.3390/ijms252111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused by autoreactive T cell-mediated destruction of insulin-producing β cells in the pancreatic islets. Although naive autoreactive T cells are initially primed by islet antigens in pancreas-draining lymph nodes (pan-LNs), the adhesion molecules that recruit T cells into pan-LNs are unknown. We show that high endothelial venules in pan-LNs of young nonobese diabetic mice have a unique adhesion molecule profile that includes strong expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Anti-MAdCAM-1 antibody blocked more than 80% of the migration of naive autoreactive CD4+ T cells from blood vessels into pan-LNs. Transient blockade of MAdCAM-1 in young nonobese diabetic mice led to increased numbers of autoreactive regulatory CD4+ T cells in pan-LNs and pancreas and to long-lasting protection from T1D. These results indicate the importance of MAdCAM-1 in the development of T1D and suggest MAdCAM-1 as a potential therapeutic target for treating T1D.
Collapse
Affiliation(s)
- Yankui Li
- Department of Vascular Surgery, Tianjin Medical University Second Hospital, Tianjin 300211, China
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rachel C. Gunderson
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
| | - Zeyu Xu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Wenjia Ai
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fanru Shen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jiayu Ye
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Baohui Xu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara A. Michie
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
| |
Collapse
|
5
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
6
|
Kakabadse D, Chen D, Fishman S, Weinstein-Marom H, Davies J, Wen L, Gross G, Wong FS. Regulatory CD4 + T cells redirected against pathogenic CD8 + T cells protect NOD mice from development of autoimmune diabetes. Front Immunol 2024; 15:1463971. [PMID: 39351219 PMCID: PMC11439686 DOI: 10.3389/fimmu.2024.1463971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction In this study, we report a novel therapeutic approach redirecting antigen-specific CD4+ T cells recognizing a hybrid insulin peptide (BDC2.5 T cell receptor (TCR) transgenic CD4+ T cells) to attract and suppress islet-specific CD8+ T cells T cells in the non-obese diabetic (NOD) mouse model, and prevent the development of autoimmune diabetes. Methods Purified BDC2.5 CD4+ T cells were induced to differentiate into regulatory T cells (Tregs). The Tregs were then electroporated with mRNA encoding chimeric human β2 microglobulin (hβ2m) covalently linked to insulin B chain amino acids 15-23 (designated INS-eTreg) or islet-specific glucose-6-phosphatase related protein (IGRP) peptide 206-214 (designated IGRP-eTreg). Immunoregulatory functions of these engineered regulatory T cells (eTregs) were tested by in vitro assays and in vivo co-transfer experiments with β-cell-antigen-specific CD8+ T cells in NOD.Scid mice or by adoptive transfer into young, pre-diabetic NOD mice. Results These eTregs were phenotyped by flow cytometry, and shown to have high expression of FoxP3, as well as other markers of Treg function, including IL-10. They suppressed polyclonal CD4+ T cells and antigen-specific CD8+ T cells (recognizing insulin or IGRP), decreasing proliferation and increasing exhaustion and regulatory markers in vitro. In vivo, eTregs reduced diabetes development in co-transfer experiments with pathogenic antigen-specific CD8+ T cells (INS-CD8+ or IGRP-CD8+ cells) into NOD.Scid mice. Finally, when the eTreg were injected into young NOD mice, they reduced insulitis and prevented spontaneous diabetes in the recipient mice. Conclusion Our results suggest a novel therapeutic strategy to protect NOD mice by targeting antigen-specific cytotoxic CD8+ T cells, using redirected antigen-specific CD4+ Treg cells, to suppress autoimmune diabetes. This may suggest an innovative therapy for protection of people at risk of development of type 1 diabetes.
Collapse
Affiliation(s)
- Dimitri Kakabadse
- Diabetes Research Group, Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dawei Chen
- Diabetes Research Group, Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sigal Fishman
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel
| | - Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Joanne Davies
- Diabetes Research Group, Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gideon Gross
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Grebinoski S, Pieklo G, Zhang Q, Visperas A, Cui J, Goulet J, Xiao H, Brunazzi EA, Cardello C, Herrada AA, Das J, Workman CJ, Vignali DAA. Regulatory T Cell Insufficiency in Autoimmune Diabetes Is Driven by Selective Loss of Neuropilin-1 on Intraislet Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:779-794. [PMID: 39109924 PMCID: PMC11371503 DOI: 10.4049/jimmunol.2300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/08/2024] [Indexed: 09/05/2024]
Abstract
Approaches to reverse or limit regulatory T cell (Treg) insufficiency are of great interest for development of immunotherapeutic treatments for autoimmune patients, including type 1 diabetes. Treg insufficiency is heavily implicated in the progression of autoimmune diabetes in the NOD mouse model and is characterized by defects in Treg numbers, development, and/or function. Utilizing a Treg-centric screen, we show that intraislet Tregs have a uniquely dysfunctional phenotype, hallmarked by an almost complete lack of neuropilin-1 (Nrp1), a cell surface receptor required to maintain Treg stability. Intraislet Nrp1- Tregs exhibit hallmark features of fragility, including reduced suppressive capacity, decreased CD73 and Helios, and increased Rorγt and Tbet. Intraislet Nrp1- Tregs also exhibit decreased Foxp3 expression on a per cell basis, suggesting that Nrp1 may also be required for long-term Treg stability. Mechanistically, Treg-restricted augmentation of Nrp1 expression limited the onset of autoimmune diabetes in NOD mice suggesting that Nrp1 critically impacts intraislet Treg function. Transcriptional analysis showed that Nrp1 restoration led to an increase in markers and pathways of TCR signaling, survival, and suppression, and when Nrp1 protein expression is examined by cellular indexing of transcriptomes and epitopes by sequencing, significant differences were observed between Nrp1+ and Nrp1- Tregs in all tissues, particularly in markers of Treg fragility. This translated into substantive differences between Nrp1+ and Nrp1- Tregs that afforded the former with a competitive advantage in the islets. Taken together, these data suggest that maintenance of Nrp1 expression and signaling on Tregs limits diabetes onset and may serve as a strategy to combat Treg insufficiency in autoimmune disease.
Collapse
Affiliation(s)
- Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Gwenyth Pieklo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Anabelle Visperas
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Jordana Goulet
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hanxi Xiao
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Andrés A Herrada
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jishnu Das
- CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh PA
| |
Collapse
|
8
|
Cui Y, David M, Bouchareychas L, Rouquier S, Sajuthi S, Ayrault M, Navarin C, Lara G, Lafon A, Saviane G, Boulakirba S, Menardi A, Demory A, Frikeche J, de la Forest Divonne Beghelli S, Lu HH, Dumont C, Abel T, Fenard D, de la Rosa M, Gertner-Dardenne J. IL23R-specific CAR Tregs for the treatment of Crohn's disease. J Crohns Colitis 2024:jjae135. [PMID: 39252592 DOI: 10.1093/ecco-jcc/jjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn's disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, Interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. METHODS Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. RESULTS Our study showed that IL23R-CAR displayed negligible tonic signalling and strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. CONCLUSIONS Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.
Collapse
Affiliation(s)
- Yue Cui
- Research, Sangamo Therapeutics, Valbonne, France
| | - Marion David
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | - Gregory Lara
- Research, Sangamo Therapeutics, Valbonne, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | | | | | | | - Tobias Abel
- Research, Sangamo Therapeutics, Valbonne, France
| | - David Fenard
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | |
Collapse
|
9
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
10
|
Alhosseini MN, Ebadi P, Karimi MH, Migliorati G, Cari L, Nocentini G, Heidari M, Soleimanian S. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: A review of the strengths and limitations. Transpl Immunol 2024; 85:102069. [PMID: 38844002 DOI: 10.1016/j.trim.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/17/2024]
Abstract
In the last decade, cell therapies have revolutionized the treatment of some diseases, earning the definition of being the "third pillar" of therapeutics. In particular, the infusion of regulatory T cells (Tregs) is explored for the prevention and control of autoimmune reactions and acute/chronic allograft rejection. Such an approach represents a promising new treatment for autoimmune diseases to recover an immunotolerance against autoantigens, and to prevent an immune response to alloantigens. The efficacy of the in vitro expanded polyclonal and antigen-specific Treg infusion in the treatment of a large number of autoimmune diseases has been extensively demonstrated in mouse models. Similarly, experimental work documented the efficacy of Treg infusions to prevent acute and chronic allograft rejections. The Treg therapy has shown encouraging results in the control of type 1 diabetes (T1D) as well as Crohn's disease, systemic lupus erythematosus, autoimmune hepatitis and delaying graft rejection in clinical trials. However, the best method for Treg expansion and the advantages and pitfalls with the different types of Tregs are not fully understood in terms of how these therapeutic treatments can be applied in the clinical setting. This review provides an up-to-date overview of Treg infusion-based treatments in autoimmune diseases and allograft transplantation, the current technical challenges, and the highlights and disadvantages of this therapeutic approaches."
Collapse
Affiliation(s)
| | - Padideh Ebadi
- Islamic Azad University, Department of Biochemistry, Kazerun, Iran
| | | | - Graziella Migliorati
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Luigi Cari
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Giuseppe Nocentini
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Tuomela K, Levings MK. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024; 67:611-622. [PMID: 38236408 DOI: 10.1007/s00125-023-06076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024]
Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
12
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
13
|
Ma X, Cao L, Raneri M, Wang H, Cao Q, Zhao Y, Bediaga NG, Naselli G, Harrison LC, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 2023; 8:e162978. [PMID: 37874660 PMCID: PMC10795828 DOI: 10.1172/jci.insight.162978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Martina Raneri
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yuanfei Zhao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Naiara G. Bediaga
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne J. Hawthorne
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
15
|
Kinney SM, Ortaleza K, Won SY, Licht BJM, Sefton MV. Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials 2023; 301:122265. [PMID: 37586232 DOI: 10.1016/j.biomaterials.2023.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing β cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific β-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of β-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Sean M Kinney
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Canada
| | | | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
16
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J Clin Invest 2023; 133:e168601. [PMID: 37561596 PMCID: PMC10503798 DOI: 10.1172/jci168601] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vivian Fung
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine M. Wardell
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yixin Chen
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Alexander J. Dwyer
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew E. Weno
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Nubia Silva
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jason S. Mitchell
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Paul C. Orban
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Bruce Verchere
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian T. Fife
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan K. Levings
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Insulin B peptide-MHC class II-specific chimeric antigen receptor-Tregs prevent autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529737. [PMID: 36865264 PMCID: PMC9980092 DOI: 10.1101/2023.02.23.529737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Vivian Fung
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christine M. Wardell
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexander J. Dwyer
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew E. Weno
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nubia Silva
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul C. Orban
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - C. Bruce Verchere
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Brian T. Fife
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan K. Levings
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Marshall G, Cserny J, Wang CW, Looney B, Posgai AL, Bacher R, Keselowsky B, Brusko TM. Biomaterials-based nanoparticles conjugated to regulatory T cells provide a modular system for localized delivery of pharmacotherapeutic agents. J Biomed Mater Res A 2023; 111:185-197. [PMID: 36082558 PMCID: PMC9742177 DOI: 10.1002/jbm.a.37442] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) presents with two therapeutic challenges: the need to correct underlying autoimmunity and restore β-cell mass. We harnessed the unique capacity of regulatory T cells (Tregs) and the T cell receptor (TCR) to direct tolerance induction along with tissue-localized delivery of therapeutic agents to restore endogenous β-cell function. Specifically, we designed a combinatorial therapy involving biomaterials-based poly(lactic-co-glycolic acid) nanoparticles co-loaded with the Treg growth factor, IL-2, and the β-cell regenerative agent, harmine (a tyrosine-regulated kinase 1A [DYRK1A] inhibitor), conjugated to the surface of Tregs. We observed continuous elution of IL-2 and harmine from nanoparticles for at least 7 days in vitro. When conjugated to primary human Tregs, IL-2 nanoparticles provided sufficient IL-2 receptor signaling to support STAT5 phosphorylation for sustained phenotypic stability and viability in culture. Inclusion of poly-L-lysine (PLL) during nanoparticle-cell coupling dramatically increased conjugation efficiency, providing sufficient IL-2 to support in vitro proliferation of IL-2-dependent CTLL-2 cells and primary murine Tregs. In 12-week-old female non-obese diabetic mice, adoptive transfer of IL-2/harmine nanoparticle-conjugated NOD.BDC2.5 Tregs, which express an islet antigen-specific TCR, significantly prevented diabetes demonstrating preserved in vivo viability. These data provide the preclinical basis to develop a biomaterials-optimized cellular therapy to restore immune tolerance and promote β-cell proliferation in T1D through receptor-targeted drug delivery within pancreatic islets.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | | | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Rhonda Bacher
- Department of Biostatistics, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL 32601, USA
| | - Todd M. Brusko
- Inspira Therapeutics, Inc., Alachua, FL 32615, USA,Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Correspondence to: Todd M. Brusko, PhD, Department of Pathology, University of Florida, College of Medicine, Box 100275, 1600 SW Archer Road, Gainesville, FL 32610; (352) 273-9255; Fax (352) 273-9339;
| |
Collapse
|
20
|
Thone MN, Chung JY, Ingato D, Lugin ML, Kwon YJ. Cell-free, Dendritic Cell-mimicking Extracellular Blebs for Molecularly Controlled Vaccination. ADVANCED THERAPEUTICS 2023; 6:2200125. [PMID: 36733607 PMCID: PMC9888466 DOI: 10.1002/adtp.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DCs) are prime targets for vaccination and immunotherapy. However, limited control over antigen presentation at a desired maturation status in these plastic materials remains a fundamental challenge in efficiently orchestrating a controlled immune response. DC-derived extracellular vesicles (EVs) can overcome some of these issues, but have significant production challenges. Herein, we employ a unique chemically-induced method for production of DC-derived extracellular blebs (DC-EBs) that overcome the barriers of DC and DC-derived EV vaccines. DC-EBs are molecular snapshots of DCs in time, cell-like particles with fixed stimulatory profiles for controlled immune signalling. DC-EBs were produced an order of magnitude more quickly and efficiently than conventional EVs and displayed stable structural integrity and antigen presentation compared to live DCs. Multi-omic analysis confirmed DC-EBs are majorly pure plasma membrane vesicles that are homogeneous at the single-vesicle level, critical for safe and effective vaccination. Immature vs. mature molecular profiles on DC-EBs exhibited molecularly modulated immune responses compared to live DCs, improving remission and survival of tumor-challenged mice via generation of antigen-specific T cells. For the first time, DC-EBs make their case for use in vaccines and for their potential in modulating other immune responses, potentially in combination with other immunotherapeutics.
Collapse
Affiliation(s)
- Melissa N. Thone
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Dominique Ingato
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States
| | - Margaret L. Lugin
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States
| | - Young Jik Kwon
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States
| |
Collapse
|
21
|
Jing Z, Li Y, Ma Y, Zhang X, Liang X, Zhang X. Leverage biomaterials to modulate immunity for type 1 diabetes. Front Immunol 2022; 13:997287. [PMID: 36405706 PMCID: PMC9667795 DOI: 10.3389/fimmu.2022.997287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2024] Open
Abstract
The pathogeny of type 1 diabetes (T1D) is mainly provoked by the β-cell loss due to the autoimmune attack. Critically, autoreactive T cells firsthand attack β-cell in islet, that results in the deficiency of insulin in bloodstream and ultimately leads to hyperglycemia. Hence, modulating immunity to conserve residual β-cell is a desirable way to treat new-onset T1D. However, systemic immunosuppression makes patients at risk of organ damage, infection, even cancers. Biomaterials can be leveraged to achieve targeted immunomodulation, which can reduce the toxic side effects of immunosuppressants. In this review, we discuss the recent advances in harness of biomaterials to immunomodulate immunity for T1D. We investigate nanotechnology in targeting delivery of immunosuppressant, biological macromolecule for β-cell specific autoreactive T cell regulation. We also explore the biomaterials for developing vaccines and facilitate immunosuppressive cells to restore immune tolerance in pancreas.
Collapse
Affiliation(s)
- Zhangyan Jing
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozhou Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Yang SJ, Singh AK, Drow T, Tappen T, Honaker Y, Barahmand-Pour-Whitman F, Linsley PS, Cerosaletti K, Mauk K, Xiang Y, Smith J, Mortensen E, Cook PJ, Sommer K, Khan I, Liggitt D, Rawlings DJ, Buckner JH. Pancreatic islet-specific engineered T regs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci Transl Med 2022; 14:eabn1716. [PMID: 36197963 DOI: 10.1126/scitranslmed.abn1716] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adoptive transfer of regulatory T cells (Tregs) is therapeutic in type 1 diabetes (T1D) mouse models. Tregs that are specific for pancreatic islets are more potent than polyclonal Tregs in preventing disease. However, the frequency of antigen-specific natural Tregs is extremely low, and ex vivo expansion may destabilize Tregs, leading to an effector phenotype. Here, we generated durable, antigen-specific engineered Tregs (EngTregs) from primary human CD4+ T cells by combining FOXP3 homology-directed repair editing and lentiviral T cell receptor (TCR) delivery. Using TCRs derived from clonally expanded CD4+ T cells isolated from patients with T1D, we generated islet-specific EngTregs that suppressed effector T cell (Teff) proliferation and cytokine production. EngTregs suppressed Teffs recognizing the same islet antigen in addition to bystander Teffs recognizing other islet antigens through production of soluble mediators and both direct and indirect mechanisms. Adoptively transferred murine islet-specific EngTregs homed to the pancreas and blocked diabetes triggered by islet-specific Teffs or diabetogenic polyclonal Teffs in recipient mice. These data demonstrate the potential of antigen-specific EngTregs as a targeted therapy for preventing T1D.
Collapse
Affiliation(s)
- Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Akhilesh K Singh
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Tori Tappen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Fariba Barahmand-Pour-Whitman
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Kelsey Mauk
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Yufei Xiang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Jessica Smith
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Emma Mortensen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Peter J Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Iram Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98101, USA.,Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.,Department of Immunology, University of Washington, Seattle, WA 98101, USA.,Department of Medicine, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
23
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
24
|
Wesley JD, Pagni PP, Bergholdt R, Kreiner FF, von Herrath M. Induction of antigenic immune tolerance to delay type 1 diabetes - challenges for clinical translation. Curr Opin Endocrinol Diabetes Obes 2022; 29:379-385. [PMID: 35776831 DOI: 10.1097/med.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Dissect the field of antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D), highlighting the major barriers currently blocking clinical translation. RECENT FINDINGS ASIT remains a promising approach in T1D to re-establish the proper balance in the immune system to avoid the autoimmune-mediated attack or destruction of beta-cells in the pancreas. Despite some encouraging preclinical results, ASIT has not yet successfully translated into clinical utility, predominantly due to the lack of validated and clinically useful biomarkers. SUMMARY To restore immune tolerance towards self-antigens, ASIT aims to establish a favourable balance between T effector cells and T regulatory cells. Whilst most ASITs, including systemic or oral administration of relevant antigens, have appeared safe in T1D, meaningful and durable preservation of functional beta-cell mass has not been proven clinically. Development, including clinical translation, remains negatively impacted by lack of predictive biomarkers with confirmed correlation between assay readout and clinical outcomes. To be able to address the high unmet medical need in T1D, we propose continued reinforced research to identify such biomarkers, as well efforts to ensure alignment in terms of trial design and conduct.
Collapse
Affiliation(s)
- Johnna D Wesley
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | - Philippe P Pagni
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | - Regine Bergholdt
- Type 1 Diabetes & Functional Insulins, Clinical Drug Development
| | | | - Matthias von Herrath
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
- Type 1 Diabetes Center, The La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
25
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
26
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
27
|
Arjomandnejad M, Kopec AL, Keeler AM. CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines 2022; 10:287. [PMID: 35203496 PMCID: PMC8869296 DOI: 10.3390/biomedicines10020287] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Regulatory T cells are critical for maintaining immune tolerance. Recent studies have confirmed their therapeutic suppressive potential to modulate immune responses in organ transplant and autoimmune diseases. However, the unknown and nonspecific antigen recognition of polyclonal Tregs has impaired their therapeutic potency in initial clinical findings. To address this limitation, antigen specificity can be conferred to Tregs by engineering the expression of transgenic T-cell receptor (TCR) or chimeric antigen receptor (CAR). In contrast to TCR Tregs, CAR Tregs are major histocompatibility complex (MHC) independent and less dependent on interleukin-2 (IL-2). Furthermore, CAR Tregs maintain Treg phenotype and function, home to the target tissue and show enhanced suppressive efficacy compared to polyclonal Tregs. Additional development of engineered CAR Tregs is needed to increase Tregs' suppressive function and stability, prevent CAR Treg exhaustion, and assess their safety profile. Further understanding of Tregs therapeutic potential will be necessary before moving to broader clinical applications. Here, we summarize recent studies utilizing CAR Tregs in modulating immune responses in autoimmune diseases, transplantation, and gene therapy and future clinical applications.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
| | - Acadia L. Kopec
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
28
|
Hussain A, Rafeeq H, Munir N, Jabeen Z, Afsheen N, Rehman KU, Bilal M, Iqbal HMN. Dendritic Cell-Targeted Therapies to Treat Neurological Disorders. Mol Neurobiol 2022; 59:603-619. [PMID: 34743292 DOI: 10.1007/s12035-021-02622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the immune system's highly specialized antigen-presenting cells. When DCs are sluggish and mature, self-antigen presentation results in tolerance; however, when pathogen-associated molecular patterns stimulate mature DCs, antigen presentation results in the development of antigen-specific immunity. DCs have been identified in various vital organs of mammals (e.g., the skin, heart, lungs, intestines, and spleen), but the brain has long been thought to be devoid of DCs in the absence of neuroinflammation. However, neuroinflammation is becoming more recognized as a factor in a variety of brain illnesses. DCs are present in the brain parenchyma in trace amounts under healthy circumstances, but their numbers rise during neuroinflammation. New therapeutics are being developed that can reduce dendritic cell immunogenicity by inhibiting pro-inflammatory cytokine production and T cell co-stimulatory pathways. Additionally, innovative ways of regulating dendritic cell growth and differentiation and harnessing their tolerogenic capability are being explored. Herein, we described the function of dendritic cells in neurological disorders and discussed the potential for future therapeutic techniques that target dendritic cells and dendritic cell-related targets in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nimra Munir
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Khalil Ur Rehman
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
29
|
Lindsay RS, Whitesell JC, Dew KE, Rodriguez E, Sandor AM, Tracy D, Yannacone SF, Basta BN, Jacobelli J, Friedman RS. MERTK on mononuclear phagocytes regulates T cell antigen recognition at autoimmune and tumor sites. J Exp Med 2021; 218:e20200464. [PMID: 34415994 PMCID: PMC8383814 DOI: 10.1084/jem.20200464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.
Collapse
Affiliation(s)
- Robin S. Lindsay
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Jennifer C. Whitesell
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| | - Kristen E. Dew
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Erika Rodriguez
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| | - Adam M. Sandor
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Dayna Tracy
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Seth F. Yannacone
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | | | - Jordan Jacobelli
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| | - Rachel S. Friedman
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Barbara Davis Center for Diabetes, Aurora, CO
| |
Collapse
|
30
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
31
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
32
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular carcinoma based on TCGA data. Aging (Albany NY) 2021; 13:11257-11280. [PMID: 33820866 PMCID: PMC8109113 DOI: 10.18632/aging.202811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
In order to explore the prognosis of tumor mutation burden (TMB) and the relationship with tumor infiltrating immune cells in hepatocellular carcinoma (HCC), we downloaded somatic mutation data and transcriptome profiles of 376 HCC patients from The Cancer Genome Atlas (TCGA) cohort. We divided the samples into high-TMB and low-TMB groups. A higher TMB level indicated improved overall survival (OS) and was associated with early pathological stages. One hundred and nine differentially expressed genes (DEGs) were identified in HCC. Moreover, based on four hub TMB-related signatures, we constructed a TMB Prognostic model (TMBPM) that possessed good predictive value with area under curve (AUC) of 0.701. HCC patients with higher TMBPM scores showed worse OS outcomes (p < 0.0001). Moreover, DCs subsets not only revealed higher infiltrating abundance in the high-TMB group, but also correlated with worse OS and hazard risk for high-TMB patients in HCC. Meanwhile, CD8+ T cells and B cells were associated with improved survival outcomes. In sum, high TMB indicates good prognosis for HCC and promotes HCC immune infiltration. Hence, DCs and the four hub TMB-related signatures can be used for predicting the prognosis in HCC as supplements to TMB.
Collapse
|
34
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
35
|
Volfson-Sedletsky V, Jones A, Hernandez-Escalante J, Dooms H. Emerging Therapeutic Strategies to Restore Regulatory T Cell Control of Islet Autoimmunity in Type 1 Diabetes. Front Immunol 2021; 12:635767. [PMID: 33815387 PMCID: PMC8015774 DOI: 10.3389/fimmu.2021.635767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Despite many decades of investigation uncovering the autoimmune mechanisms underlying Type 1 Diabetes (T1D), translating these findings into effective therapeutics has proven extremely challenging. T1D is caused by autoreactive T cells that become inappropriately activated and kill the β cells in the pancreas, resulting in insulin insufficiency and hyperglycemia. A large body of evidence supports the idea that the unchecked activation and expansion of autoreactive T cells in T1D is due to defects in immunosuppressive regulatory T cells (Tregs) that are critical for maintaining peripheral tolerance to islet autoantigens. Hence, repairing these Treg deficiencies is a much sought-after strategy to treat the disease. To accomplish this goal in the most precise, effective and safest way possible, restored Treg functions will need to be targeted towards suppressing the autoantigen-specific immune responses only and/or be localized in the pancreas. Here we review the most recent developments in designing Treg therapies that go beyond broad activation or expansion of non-specific polyclonal Treg populations. We focus on two cutting-edge strategies namely ex vivo generation of optimized Tregs for re-introduction in T1D patients vs direct in situ stimulation and restoration of endogenous Treg function.
Collapse
Affiliation(s)
- Victoria Volfson-Sedletsky
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Albert Jones
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Jaileene Hernandez-Escalante
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Hans Dooms
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
36
|
Opstelten R, Amsen D. Separating the wheat from the chaff: Making sense of Treg heterogeneity for better adoptive cellular therapy. Immunol Lett 2021; 239:96-112. [PMID: 33676975 DOI: 10.1016/j.imlet.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Regulatory T (Treg) cells are essential for immunological tolerance and can be used to suppress unwanted or excessive immune responses through adoptive cellular therapy. It is increasingly clear that many subsets of Treg cells exist, which have different functions and reside in different locations. Treg cell therapies may benefit from tailoring the selected subset to the tissue that must be protected as well as to characteristics of the immune response that must be suppressed, but little attention is given to this topic in current therapies. Here, we will discuss how three major axes of heterogeneity can be discerned among the Treg cell population, which determine function and lineage fidelity. A first axis relates to the developmental route, as Treg cells can be generated from immature T cells in the thymus or from already mature Tconv cells in the immunological periphery. Heterogeneity furthermore stems from activation history (naïve or effector) and location (lymphoid or peripheral tissues). Each of these axes bestows specific properties on Treg cells, which are further refined by additional processes leading to yet further variation. A critical aspect impacting on Treg cell heterogeneity is TCR specificity, which determines when and where Treg cells are generated as well as where they exhibit their effector functions. We will discuss the implications of this heterogeneity and the role of the TCR for the design of next generation adoptive cellular therapy with Treg cells.
Collapse
Affiliation(s)
- Rianne Opstelten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Regulatory T Cells for the Induction of Transplantation Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33523454 DOI: 10.1007/978-981-15-6407-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Organ transplantation is the optimal treatment for terminal and irreversible organ failure. Achieving transplantation tolerance has long been the ultimate goal in the field of transplantation. Regulatory T cell (Treg)-based therapy is a promising novel approach for inducing donor organ-specific tolerance. Tregs play critical roles in the maintenance of immune homeostasis and self-tolerance, by promoting transplantation tolerance through a variety of mechanisms on different target cells, including anti-inflammatory cytokine production, induction of apoptosis, disruption of metabolic pathways, and mutual interaction with dendritic cells. The continued success of Treg-based therapy in the clinical setting is critically dependent on preclinical studies that support its translational potential. However, although some initial clinical trials of adoptive Treg therapy have successively demonstrated safety and efficacy for immunosuppressant minimization and transplantation tolerance induction, most Treg-based hematopoietic stem cell and solid organ clinical trials are still in their infancy. These clinical trials have not only focused on safety and efficacy but also included optimization and standardization protocols of good manufacturing practice regarding cell isolation, expansion, dosing, timing, specificity, quality control, concomitant immunosuppressants, and post-administration monitoring. We herein report a brief introduction of Tregs, including their phenotypic and functional characterization, and focus on the clinical translation of Treg-based therapeutic applications in the setting of transplantation.
Collapse
|
38
|
Bassin EJ, Piganelli JD, Little SR. Auto-antigen and Immunomodulatory Agent-Based Approaches for Antigen-Specific Tolerance in NOD Mice. Curr Diab Rep 2021; 21:9. [PMID: 33547977 DOI: 10.1007/s11892-021-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.
Collapse
Affiliation(s)
- Ethan J Bassin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jon D Piganelli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, 6125 Rangos Research Center, Pittsburgh, PA, 15224, USA.
| | - Steven R Little
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Martin A, Daris M, Johnston JA, Cui J. HLA-A*02:01-directed chimeric antigen receptor/forkhead box P3-engineered CD4+ T cells adopt a regulatory phenotype and suppress established graft-versus-host disease. Cytotherapy 2020; 23:131-136. [PMID: 33309258 DOI: 10.1016/j.jcyt.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS To investigate the feasibility of using CD4 + T cells genetically modified to express an allo-HLA directed CAR and FOXP3 to suppress T cell proliferation and cytokine secretion in GvHD. METHODS Human CD4+ T cells from A*02:01 negative donors were transduced to express A*02 CAR and FOXP3 and co-cultured in mixed lymphocyte reaction assays to demonstrate T cell suppression. A*02- CAR/FOXP CD4+ T cells were then injected into mice engrafted with allogeneic T cells in a GvHD mouse model. RESULTS CD4+ T cells genetically modified to express allo-HLA-directed CAR and FOXP3 proliferate rapidly, downregulate CD127 and interferon-γ, express high CD25 and Helios and convert to a stable antigen-dependent suppressive phenotype. In mixed lymphocyte reaction assays, these cells potently suppressed T-cell proliferation and secreted IL-10. In a graft-versus-host disease model, A*02-CAR/FOXP3 CD4+ T cells outperformed polyclonal Tregs by reducing liver and lung inflammation, inhibiting pro-inflammatory cytokine production and limiting grafted CD3+ T-cell expansion. CONCLUSIONS CD4 + T cells expressing allo-antigen directed HLA-specific CAR and FOXP3 act as potent, specific and stable suppressors of inflammation that out-perform their Treg counterparts both in vitro and in vivo.
Collapse
Affiliation(s)
- Aaron Martin
- A2 Biotherapeutics Inc., Agoura Hills, California, USA
| | - Mark Daris
- A2 Biotherapeutics Inc., Agoura Hills, California, USA
| | | | - Jiajia Cui
- A2 Biotherapeutics Inc., Agoura Hills, California, USA
| |
Collapse
|
40
|
Fritsche E, Volk HD, Reinke P, Abou-El-Enein M. Toward an Optimized Process for Clinical Manufacturing of CAR-Treg Cell Therapy. Trends Biotechnol 2020; 38:1099-1112. [DOI: 10.1016/j.tibtech.2019.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
|
41
|
Fu RY, Chen AC, Lyle MJ, Chen CY, Liu CL, Miao CH. CD4 + T cells engineered with FVIII-CAR and murine Foxp3 suppress anti-factor VIII immune responses in hemophilia a mice. Cell Immunol 2020; 358:104216. [PMID: 32987195 DOI: 10.1016/j.cellimm.2020.104216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Although protein replacement therapy provides effective treatment for hemophilia A patients, about a third of severe patients develop neutralizing inhibitor antibodies to factor VIII. Adoptive transfer of regulatory T cells (Tregs) has shown promise in treating unwanted immune responses. In previous studies, transferred polyclonal Tregs ameliorated the anti-factor VIII immune responses in hemophilia A mice. In addition, factor VIII-primed Tregs demonstrated increased suppressive function. However, antigen-specific Tregs are a small fraction of the total lymphocyte population. To generate large numbers of factor VIII-specific Tregs, the more abundant murine primary CD4+ T cells were lentivirally transduced ex vivo to express Foxp3 and a chimeric antigen receptor specific to factor VIII (F8CAR). Transduced cells significantly inhibited the proliferation of factor VIII-specific effector T cells in suppression assays. To monitor the suppressive function of the transduced chimeric antigen receptor expressing T cells in vivo, engineered CD4+CD25+Foxp3+F8CAR-Tregs were sorted and adoptively transferred into hemophilia A mice that are treated with hydrodynamically injected factor VIII plasmid. Mice receiving engineered F8CAR-Tregs showed maintenance of factor VIII clotting activity and did not develop anti-factor VIII inhibitors, while control CD4+T cell or PBS recipient mice developed inhibitors and had a sharp decrease in factor VIII activity. These results show that CD4+ cells lentivirally transduced to express Foxp3 and F8CAR can promote factor VIII tolerance in a murine model. With further development and testing, this approach could potentially be applied to human hemophilia patients.
Collapse
Affiliation(s)
- Richard Y Fu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Alex C Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Meghan J Lyle
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chun-Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chao Lien Liu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Rana J, Biswas M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol 2020; 356:104193. [PMID: 32823038 DOI: 10.1016/j.cellimm.2020.104193] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune equilibrium by suppressing immune responses through various multistep contact dependent and independent mechanisms. Cellular therapy using polyclonal Tregs in transplantation and autoimmune diseases has shown promise in preclinical models and clinical trials. Although novel approaches have been developed to improve specificity and efficacy of antigen specific Treg based therapies, widespread application is currently restricted. To date, design-based approaches to improve the potency and persistence of engineered chimeric antigen receptor (CAR) Tregs are limited. Here, we describe currently available Treg based therapies, their advantages and limitations for implementation in clinical studies. We also examine various strategies for improving CAR T cell design that can potentially be applied to CAR Tregs, such as identifying co-stimulatory signalling domains that enhance suppressive ability, determining optimal scFv affinity/avidity, and co-expression of accessory molecules. Finally, we discuss the importance of tailoring CAR Treg design to suit the individual disease.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
43
|
Honaker Y, Hubbard N, Xiang Y, Fisher L, Hagin D, Sommer K, Song Y, Yang SJ, Lopez C, Tappen T, Dam EM, Khan I, Hale M, Buckner JH, Scharenberg AM, Torgerson TR, Rawlings DJ. Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci Transl Med 2020; 12:12/546/eaay6422. [DOI: 10.1126/scitranslmed.aay6422] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Thymic regulatory T cells (tTregs) are potent inhibitors of autoreactive immune responses, and loss of tTreg function results in fatal autoimmune disease. Defects in tTreg number or function are also implicated in multiple autoimmune diseases, leading to growing interest in use of Treg as cell therapies to establish immune tolerance. Because tTregs are present at low numbers in circulating blood and may be challenging to purify and expand and also inherently defective in some subjects, we designed an alternative strategy to create autologous Treg-like cells from bulk CD4+ T cells. We used homology-directed repair (HDR)–based gene editing to enforce expression of FOXP3, the master transcription factor for tTreg. Targeted insertion of a robust enhancer/promoter proximal to the first coding exon bypassed epigenetic silencing, permitting stable and robust expression of endogenous FOXP3. HDR-edited T cells, edTregs, manifested a transcriptional program leading to sustained expression of canonical markers and suppressive activity of tTreg. Both human and murine edTregs mediated immunosuppression in vivo in models of inflammatory disease. Further, this engineering strategy permitted generation of antigen-specific edTreg with robust in vitro and in vivo functional activity. Last, edTreg could be enriched and expanded at scale using clinically relevant methods. Together, these findings suggest that edTreg production may permit broad future clinical application.
Collapse
Affiliation(s)
- Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Nicholas Hubbard
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yufei Xiang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Logan Fisher
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yumei Song
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Christina Lopez
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Tori Tappen
- Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Iram Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jane H. Buckner
- Benaroya Research Institute, Seattle, WA 98101, USA
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - Andrew M. Scharenberg
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Troy R. Torgerson
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
44
|
Opstelten R, de Kivit S, Slot MC, van den Biggelaar M, Iwaszkiewicz-Grześ D, Gliwiński M, Scott AM, Blom B, Trzonkowski P, Borst J, Cuadrado E, Amsen D. GPA33: A Marker to Identify Stable Human Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3139-3148. [DOI: 10.4049/jimmunol.1901250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
|
45
|
Loretelli C, Assi E, Seelam AJ, Ben Nasr M, Fiorina P. Cell therapy for type 1 diabetes. Expert Opin Biol Ther 2020; 20:887-897. [PMID: 32299257 DOI: 10.1080/14712598.2020.1748596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a lifelong condition resulting from autoimmune destruction of insulin-producing β-cells. Islet or whole-pancreas transplantation is limited by the shortage of donors and need for chronic immune suppression. Novel strategies are needed to prevent β-cell loss and to rescue production of endogenous insulin. AREAS COVERED This review covers the latest advances in cell-based therapies for the treatment and prevention of T1D. Topics include adoptive transfer of cells with increased immunoregulatory potential for β-cell protection, and β-cell replacement strategies such as generation of insulin-producing β-like cells from unlimited sources. EXPERT OPINION Cell therapy provides an opportunity to prevent or reverse T1D. Adoptive transfer of autologous cells having enhanced immunomodulatory properties can suppress autoimmunity and preserve β-cells. Such therapies have been made possible by a combination of genome-editing techniques and transplantation of tolerogenic cells. In-vitro modified autologous hematopoietic stem cells and tolerogenic dendritic cells may protect endogenous and newly generated β-cells from a patient's autoimmune response without hampering immune surveillance for infectious agents and malignant cellular transformations. However, methods to generate cells that meet quality and safety standards for clinical applications require further refinement.
Collapse
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School , Boston, MA, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School , Boston, MA, USA.,Division of Endocrinology, ASST Fatebenefratelli-Sacco , Milan, Italy
| |
Collapse
|
46
|
Smith BM, Lyle MJ, Chen AC, Miao CH. Antigen-specific in vitro expansion of factor VIII-specific regulatory T cells induces tolerance in hemophilia A mice. J Thromb Haemost 2020; 18:328-340. [PMID: 31609041 PMCID: PMC6994379 DOI: 10.1111/jth.14659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Following protein replacement therapy, one-third of severe hemophilia A patients develop antibodies to factor VIII (FVIII), which also hinders the efficacy of gene therapy. Regulatory T cells (Tregs) have a naturally suppressive function that potentially reduces the immune response to FVIII therapy. Furthermore, antigen-specific Tregs are functionally much more potent than polyclonal cells. Adoptive transfer of antigen-specific Tregs can effectively suppress anti-FVIII antibody responses. OBJECTIVE Develop a clinically feasible protocol to enrich and expand Tregs specific to FVIII for suppressing anti-FVIII immune responses. METHODS Regulatory T cells are isolated from FVIII-sensitized mice, sorted on CD25high markers, and expanded specifically with FVIII, antigen-presenting cells, and interleukin 2 (IL 2). Subsequently, Tregs are further cultured with anti-CD3/anti-CD28 beads, anti-Crry antibodies, and IL 2 to achieve 10-fold to 20-fold expansion. Expanded Tregs are characterized and tested for their suppressive activity in vitro and in vivo. RESULTS In vitro FVIII-specific suppressive assays indicate that FVIII specifically expanded Tregs are more suppressive than non-specifically expanded and naive Tregs. Adoptive transfer of expanded Tregs into HemA mice showed that FVIII-specifically expanded Tregs are significantly more potent in suppressing anti-FVIII immune responses in FVIII plasmid-treated HemA mice. Moreover, the FVIII-specific immune tolerance is maintained after a secondary challenge with FVIII plasmid. CONCLUSIONS Our results demonstrate that the FVIII-specific sensitization and expansion protocol yields more potent Tregs to suppress anti-FVIII antibody responses and induce long-term tolerance to FVIII, increasing the potential for adoptive Treg cell therapy to modulate anti-FVIII immune responses.
Collapse
Affiliation(s)
- Bryn M Smith
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - Meghan J Lyle
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - Alex C Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
47
|
Malviya M, Saoudi A, Bauer J, Fillatreau S, Liblau R. Treatment of experimental autoimmune encephalomyelitis with engineered bi-specific Foxp3+ regulatory CD4+ T cells. J Autoimmun 2020; 108:102401. [PMID: 31948790 DOI: 10.1016/j.jaut.2020.102401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/01/2020] [Indexed: 12/22/2022]
Abstract
The use of autoantigen-specific regulatory T cells (Tregs) as a cellular therapy for autoimmune diseases is appealing. However, it is challenging to isolate and expand large quantity of Tregs expressing disease-relevant T-cell receptors (TCR). To overcome this problem, we used an approach aiming at redirecting the specificity of polyclonal Tregs through autoreactive TCR gene transfer technology. In this study, we examined whether Tregs engineered through retroviral transduction to express a TCR cross-reactive to two CNS autoantigens, myelin oligodendrocyte glycoprotein (MOG) and neurofilament-medium (NF-M), had a superior protective efficacy compared with Tregs expressing a MOG mono-specific TCR. We observed that engineered Tregs (engTregs) exhibited in vitro regulatory effects related to the antigenic specificity of the introduced TCR, and commensurate in potency with the avidity of the transduced TCR. In experimental autoimmune encephalomyelitis (EAE), adoptively transferred engTregs proliferated, and migrated to the CNS, while retaining FoxP3 expression. EngTregs expressing MOG/NF-M cross-reactive TCR had superior protective properties over engTregs expressing MOG-specific TCR in MOG-induced EAE. Remarkably, MOG/NF-M bi-specific TCR-engTregs also improved recovery from EAE induced by an unrelated CNS autoantigen, proteolipid protein (PLP). This study underlines the benefit of using TCRs cross-reacting towards multiple autoantigens, compared with mono-reactive TCR, for the generation of engTregs affording protection from autoimmune disease in adoptive cell therapy.
Collapse
Affiliation(s)
- Manish Malviya
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090, Austria
| | - Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, 75993, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
48
|
Trinath J, Bayry J. Current trends with FOXP3 + regulatory T cell immunotherapy to contest autoimmunity and inflammation. Immunotherapy 2019; 11:755-758. [PMID: 31094264 DOI: 10.2217/imt-2019-0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jamma Trinath
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani-Hyderabad, Hyderabad 500078, Telangana, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75006, France
| |
Collapse
|
49
|
Zhang XX, Qiao YC, Li W, Zou X, Chen YL, Shen J, Liao QY, Zhang QJ, He L, Zhao HL. Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes. Immunol Res 2019; 66:179-186. [PMID: 28983871 DOI: 10.1007/s12026-017-8956-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoimmune diabetes is a disorder of immune homeostasis that leads to targeted insulin-secreting islet β cell destruction characterized by insulitis. Human amylin (hA) is an important neuroendocrine hormone co-secreted with insulin by pancreatic β cells. Here, we report hA immune-modulatory action through inducing regulatory T cells. We ex vivo-treated human peripheral blood mononuclear cells (hPBMCs) with hA for 24 h and counted CD4+Foxp3+ regulatory T cells (Treg) using flow cytometry. Diabetic status was monitored and splenic Treg were measured in non-obese diabetic (NOD) male mice. NOD mice were intraperitoneally injected once daily with hA (n = 25) or solvent for control (n = 25) for 7 months continuously. Spleen tissues were collected at the end of intervention and processed for flow cytometry and Western blot. We found a 2.9-fold (p < 0.05) increase of CD4+Foxp3+ Treg in hPBMCs treated with 10 nmol/L hA compared with negative control. Incidence of diabetes in hA-treated NOD mice decreased 44% (p = 0.045) in the 6th month and 57% (p = 0.0002) in the 7th month. Meanwhile, the hA treatment induced a 1.5-fold increase of CD4+Foxp3+ Treg from mouse splenocytes (p = 0.0013). Expression of transforming growth factor-β (TGF-β) and toll-like receptor-4 (TLR-4) were upregulated in hA-treated mice. Human amylin might protect against autoimmune diabetes via the induction of CD4+Foxp3+ Treg, which suggests a novel approach to improve autoimmune conditions.
Collapse
Affiliation(s)
- Xiao-Xi Zhang
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Yong-Chao Qiao
- Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wan Li
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Xia Zou
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Yin-Ling Chen
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Jian Shen
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Qin-Yuan Liao
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Qiu-Jin Zhang
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Lan He
- Department of Microbiology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Hai-Lu Zhao
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China. .,Department of Immunology, Guilin Medical University, Guilin, Guangxi, 541004, China.
| |
Collapse
|
50
|
Akkaya B, Oya Y, Akkaya M, Al Souz J, Holstein AH, Kamenyeva O, Kabat J, Matsumura R, Dorward DW, Glass DD, Shevach EM. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat Immunol 2019; 20:218-231. [PMID: 30643268 PMCID: PMC6402611 DOI: 10.1038/s41590-018-0280-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023]
Abstract
T regulatory cells (Tregs) can activate multiple suppressive mechanisms in vitro upon activation via the T cell receptor resulting in antigen-independent suppression. However, it remains unclear whether similar pathways operate in vivo. Here, we found that antigen-specific Tregs activated by dendritic cells (DCs) pulsed with two antigens suppressed Tnaive specific for both cognate and non-cognate antigens in vitro, but only suppressed Tnaive specific for cognate antigen in vivo. Antigen-specific Tregs formed strong interactions with DC resulting in selective inhibition of the binding of Tnaive to cognate antigen, yet allowing bystander Tnaive access. Strong binding resulted in removal of the cognate peptide-MHCII (pMHCII) from the DC surface reducing the capacity of the DC to present antigen. The enhanced binding of Tregs to DC coupled with their capacity to deplete pMHCII represents a novel pathway for Treg-mediated suppression and may be a mechanism by which Tregs maintain immune homeostasis.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Yoshihiro Oya
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Rheumatology, Allergy & Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - Munir Akkaya
- Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jafar Al Souz
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amanda H Holstein
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy & Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - David W Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Labs, Hamilton, MT, USA
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Rapa Therapeutics, Rockville, MD, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|