1
|
Pymm P, Saunders PM, Anand S, MacLachlan BJ, Faoro C, Hitchen C, Rossjohn J, Brooks AG, Vivian JP. The Structural Basis for Recognition of Human Leukocyte Antigen Class I Molecules by the Pan-HLA Antibody W6/32. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:876-885. [PMID: 39093013 DOI: 10.4049/jimmunol.2400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The central immunological role of HLA class I (HLA-I) in presenting peptide Ags to cellular components of the immune system has been the focus of intense study for >60 y. A confounding factor in the study of HLA-I has been the extreme polymorphism of these molecules. The mAb W6/32 has been a fundamental reagent bypassing the issue of polymorphism by recognizing an epitope that is conserved across diverse HLA-I allotypes. However, despite the widespread use of W6/32, the epitope of this Ab has not been definitively mapped. In this study, we present the crystal structure of the Fab fragment of W6/32 in complex with peptide-HLA-B*27:05. W6/32 bound to HLA-B*27:05 beneath the Ag-binding groove, recognizing a discontinuous epitope comprised of the α1, α2, and α3 domains of HLA-I and β2-microglobulin. The epitope comprises a region of low polymorphism reflecting the pan-HLA-I nature of the binding. Notably, the W6/32 epitope neither overlaps the HLA-I binding sites of either T cell Ag receptors or killer cell Ig-like receptors. However, it does coincide with the binding sites for leukocyte Ig-like receptors and CD8 coreceptors. Consistent with this, the use of W6/32 to block the interaction of NK cells with HLA-I only weakly impaired inhibition mediated by KIR3DL1, but impacted HLA-LILR recognition.
Collapse
Affiliation(s)
- Phillip Pymm
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Sushma Anand
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Camilla Faoro
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Corinne Hitchen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022; 14:v14061144. [PMID: 35746616 PMCID: PMC9230063 DOI: 10.3390/v14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Immune homeostasis is achieved by balancing the activating and inhibitory signal transduction pathways mediated via cell surface receptors. Activation allows the host to mount an immune response to endogenous and exogenous antigens; suppressive modulation via inhibitory signaling protects the host from excessive inflammatory damage. The checkpoint regulation of myeloid cells during immune homeostasis raised their profile as important cellular targets for treating allergy, cancer and infectious disease. This review focuses on the structure and signaling of inhibitory receptors on myeloid cells, with particular attention placed on how the interplay between viruses and these receptors regulates antiviral immunity. The status of targeting inhibitory receptors on myeloid cells as a new therapeutic approach for antiviral treatment will be analyzed.
Collapse
|
4
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
5
|
Pymm P, Tenzer S, Wee E, Weimershaus M, Burgevin A, Kollnberger S, Gerstoft J, Josephs TM, Ladell K, McLaren JE, Appay V, Price DA, Fugger L, Bell JI, Schild H, van Endert P, Harkiolaki M, Iversen AKN. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection. Cell Rep 2022; 38:110449. [PMID: 35235807 PMCID: PMC9631117 DOI: 10.1016/j.celrep.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.
Collapse
Affiliation(s)
- Phillip Pymm
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Walter and Eliza Hall Institute of Medical Research, University of Melbourne, 1G Royalparade, Parkville, VIC 3052, Australia
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edmund Wee
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Victor Appay
- Institut National de la Santé et de la Recherche Médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Boulevard de l'Hopital, 75013 Paris, France; International Research Center of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Tenovus Building, CF14 4XN Cardiff, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK
| | - John I Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Maria Harkiolaki
- Structural Biology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
6
|
Al-Moussawy M, Abdelsamed HA, Lakkis FG. Immunoglobulin-like receptors and the generation of innate immune memory. Immunogenetics 2022; 74:179-195. [PMID: 35034136 PMCID: PMC10074160 DOI: 10.1007/s00251-021-01240-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Host immunity is classically divided into "innate" and "adaptive." While the former has always been regarded as the first, rapid, and antigen-nonspecific reaction to invading pathogens, the latter represents the more sophisticated and antigen-specific response that has the potential to persist and generate memory. Recent work however has challenged this dogma, where murine studies have successfully demonstrated the ability of innate immune cells (monocytes and macrophages) to acquire antigen-specific memory to allogeneic major histocompatibility complex (MHC) molecules. The immunoreceptors so far identified that mediate innate immune memory are the paired immunoglobulin-like receptors (PIRs) in mice, which are orthologous to human leukocyte immunoglobulin-like receptors (LILRs). These receptor families are mainly expressed by the myelomonocytic cell lineage, suggesting an important role in the innate immune response. In this review, we will discuss the role of immunoglobulin-like receptors in the development of innate immune memory across species.
Collapse
Affiliation(s)
- Mouhamad Al-Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
| | - Fadi G Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
7
|
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol 2021; 12:716289. [PMID: 34737739 PMCID: PMC8562567 DOI: 10.3389/fimmu.2021.716289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.
Collapse
Affiliation(s)
- Lisanne Storm
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Fan J, Li J, Han J, Zhang Y, Gu A, Song F, Duan J, Yin D, Wang L, Yi Y. Expression of leukocyte immunoglobulin-like receptor subfamily B expression on immune cells in hepatocellular carcinoma. Mol Immunol 2021; 136:82-97. [PMID: 34098344 DOI: 10.1016/j.molimm.2021.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a group of inhibitory receptors involved in innate immune mainly expressed on lymphoid and myelomonocytic cells. LILRB is proposed to serve as immune checkpoint like PD-1 and CTLA-4 for tumor treatment. We recently reported that the expression of LILRB2 in CD1c+ mDC from tumor tissue might suppress immune for HCC patients. However, the expression of all the LILRB family on other immune cells in peripheral blood and tumor microenvironment of HCC patients has not been systematically studied. METHODS The expression of LILRB family (LILRB1, LILRB2, LILRB3, LILRB4 and LILRB5) on immune cells, including granulocytes, NK cells, NKT cells, monocyte subsets, TAMs, B cells, γδ T cells, CD4+ T cells, CD8+ T cells and MDSC subsets, was analyzed by flow cytometry in the peripheral blood of 20 HCC patients and 20 healthy donors as well as in the tumor and tumor free tissues of 10 HCC patients. RESULTS LILRB1, LILRB2 and LILRB3 in granulocytes from peripheral blood were expressed increased in HCC patients compared with healthy donors. The expression of LILRB5 in NK cells and NKT cells from HCC blood were higher compared with healthy donors` blood. CD14+CD16+ monocyte subsets in blood of HCC patients expressed increased LILRB1 and LILRB4 than that in healthy donors. CD14+CD16- monocyte subsets in blood of HCC patients expressed increased LILRB3 than that in healthy donors. Compared to corresponding TFL, LILRB3, LILRB4 and LILRB5 were expressed enhanced in TAMs from HCC tumors. LILRB1 expressed on the B cells both in the blood and tumor had significantly increased compared with healthy donors or corresponding TFL. Different from peripheral blood, in the HCC microenvironment, CD4+ T cells expressed lower LILRB2, LILRB3 and LILRB4 than that from TFL and CD8+ T cells expressed decreased LILRB2. And γδ T cells expressed LILRB1 in HCC blood and microenvironment. Surprisingly, the percentage of LILRB1 expressed on MDSC from HCC peripheral blood and tumors was lower than that from healthy donors and corresponding TFL. CONCLUSIONS This is the first systemically examination of the LILRB family expression on a variety of immune cells from both peripheral blood and microenvironment in HCC patients. The specific increasing expression of LILRB on immune cells may regulate innate and adaptive immune and impact on HCC progression. Our findings justify further investigation of LILRB function in HCC.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Yufeng Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Yongxiang Yi
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China; Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| |
Collapse
|
10
|
Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, Lecuroux C, Bruhns P, Le Grand R, Beignon AS, Lambotte O, Favier B. Mass Cytometry Analysis Reveals Complex Cell-State Modifications of Blood Myeloid Cells During HIV Infection. Front Immunol 2019; 10:2677. [PMID: 31824485 PMCID: PMC6882910 DOI: 10.3389/fimmu.2019.02677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Dendritic cells (DC), which are involved in orchestrating early immune responses against pathogens, are dysregulated in their function by HIV infection. This dysregulation likely contributes to tip the balance toward viral persistence. Different DC subpopulations, including classical (cDCs) and plasmacytoid (pDCs) dendritic cells, are subjected to concomitant inflammatory and immunoregulatory events during HIV infection, which hampers the precise characterization of their regulation through classical approaches. Here, we carried out mass cytometry analysis of blood samples from early HIV-infected patients that were longitudinally collected before and after 1 year of effective combination antiretroviral therapy (cART). Blood samples from HIV controller patients who naturally control the infection were also included. Our data revealed that plasma HIV RNA level was positively associated with a loss of cDC and pDC subpopulations that display high expression of LILR immunomodulatory receptors. Conversely, specific monocyte populations co-expressing high levels of HLA-I, 3 immunomodulatory receptors, CD64, LILRA2, and LILRB4, and the restriction factor CD317 (also known as BST2/Tetherin), were more abundant in early HIV-infection. Finally, our analysis revealed that the blood of HIV controller patients contained in a higher abundance a particular subtype of CD1c+ cDCs, characterized by elevated co-expression of CD32b inhibitory receptor and HLA-DR antigen-presentation molecules. Overall, this study unravels the modifications induced in DC and monocyte subpopulations in different HIV+ conditions, and provides a better comprehension of the immune regulation/dysregulation mechanisms induced during this viral infection.
Collapse
Affiliation(s)
- Sixtine Coindre
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Lamine Alaoui
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Service de médecine interne et d'immunologie clinique, Hôpital Bicêtre, APHP, Le Kremlin Bicêtre, France.,INSERM U1018-Université Paris Sud, CESP (Centre for Research in Epidemiology and Population Health), Le Kremlin Bicêtre, France
| | - Camille Lecuroux
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.,Service de médecine interne et d'immunologie clinique, Hôpital Bicêtre, APHP, Le Kremlin Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Structures of the four Ig-like domain LILRB2 and the four-domain LILRB1 and HLA-G1 complex. Cell Mol Immunol 2019; 17:966-975. [PMID: 31273318 PMCID: PMC7609294 DOI: 10.1038/s41423-019-0258-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/14/2019] [Indexed: 11/29/2022] Open
Abstract
Leukocyte immunoglobulin (Ig)-like receptors (LILRs), also known as CD85 and immunoglobulin-like transcripts (ILTs), play pivotal roles in regulating immune responses. These receptors define an immune checkpoint that immune therapy can target. Through cis or trans interactions with human leukocyte antigen (HLA)-G, the two most abundantly expressed inhibitory LILRs, LILRB1, and LILRB2 (LILRB1/2, also known as CD85j/d and ILT2/4), are involved in immunotolerance in pregnancy and transplantation, autoimmune diseases, and immune evasion by tumors. Although the discrete domains of LILRB1/2 are clear, the assembly mode of the four extracellular Ig-like domains (D1, D2, D3, and D4) remains unknown. Previous data indicate that D1D2 is responsible for binding to HLA class I (HLA-I), but the roles of D3D4 are still unclear. Here, we determined the crystal structure of the four Ig-like domain LILRB2 and four-domain LILRB1 in complex with HLA-G1. The angles between adjacent domains and the staggered assembly of the four domains suggest limited flexibility and limited plasticity of the receptors during ligand binding. The complex structure of four-domain LILRB1 and HLA-G1 supports the model that D1D2 is responsible for HLA-I binding, while D3D4 acts as a scaffold. Accordingly, cis and trans binding models for HLA-I binding to LILRB1/2 are proposed. The geometries of LILRB1/2 in complex with dimeric and monomeric HLA-G1 suggest the accessibility of the dimeric receptor, which in turn, transduces more inhibitory signals. The assembly of LILRB1/2 and its binding to HLA-G1 could aid in the design of immune regulators and benefit immune interference.
Collapse
|
12
|
Kennedy PR, Barthen C, Williamson DJ, Davis DM. HLA-B and HLA-C Differ in Their Nanoscale Organization at Cell Surfaces. Front Immunol 2019; 10:61. [PMID: 30761133 PMCID: PMC6362897 DOI: 10.3389/fimmu.2019.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
The particular HLA class I variants an individual carries influences their resistance and susceptibility to a multitude of diseases. Expression level and variation in the peptide binding region correlates with, for example, a person's progression to AIDS after HIV infection. One factor which has not yet been addressed is whether or not different HLA class I proteins organize differently in the cell membrane on a nanoscale. Here, we examined the organization of three HLA-B allotypes (B*2705, B*5301, and B*5701) and two HLA-C allotypes (C*0602 and C*0702) in the membrane of 721.221 cells which otherwise lack expression of HLA-B or HLA-C. All these allotypes are ligands for the T cell receptor and leukocyte immunoglobulin-like receptors, but additionally, the HLA-B allotypes are ligands for the killer-cell immunoglobulin-like receptor family member KIR3DL1, HLA-C*0602 is a ligand for KIR2DL1, and HLA-C*0702 is a ligand for KIR2DL2/3. Using super-resolution microscopy, we found that both HLA-B and HLA-C formed more clusters and a greater proportion of HLA contributed to clusters, when expressed at lower levels. Thus, HLA class I organization is a covariate in genetic association studies of HLA class I expression level with disease progression. Surprisingly, we also found that HLA-C was more clustered than HLA-B when expression level was controlled. HLA-C consistently formed larger and more numerous clusters than HLA-B and a greater proportion of HLA-C contributed to clusters than for HLA-B. We also found that the organization of HLA class I proteins varied with cell type. T cells exhibited a particularly clustered organization of HLA class I while B cells expressed a more uniform distribution. In summary, HLA class I variants are organized differently in the cell surface membrane which may impact their functions.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Charlotte Barthen
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom.,Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - David J Williamson
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Daniel M Davis
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, Moran T, Flavell R, Aaronson S, Hu HM, Arase H, Ramanathan S, Flores R, Pan PY, Chen SH. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 2018; 128:5647-5662. [PMID: 30352428 DOI: 10.1172/jci97570] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated myeloid cells maintain immunosuppressive microenvironments within tumors. Identification of myeloid-specific receptors to modulate tumor-associated macrophage and myeloid-derived suppressor cell (MDSC) functions remains challenging. The leukocyte immunoglobulin-like receptor B (LILRB) family members are negative regulators of myeloid cell activation. We investigated how LILRB targeting could modulate tumor-associated myeloid cell function. LILRB2 antagonism inhibited receptor-mediated activation of SHP1/2 and enhanced proinflammatory responses. LILRB2 antagonism also inhibited AKT and STAT6 activation in the presence of M-CSF and IL-4. Transcriptome analysis revealed that LILRB2 antagonism altered genes involved in cell cytoskeleton remodeling, lipid/cholesterol metabolism, and endosomal sorting pathways, as well as changed differentiation gene networks associated with inflammatory myeloid cells as opposed to their alternatively activated phenotype. LILRB2 blockade effectively suppressed granulocytic MDSC and Treg infiltration and significantly promoted in vivo antitumor effects of T cell immune checkpoint inhibitors. Furthermore, LILRB2 blockade polarized tumor-infiltrating myeloid cells from non-small cell lung carcinoma tumor tissues toward an inflammatory phenotype. Our studies suggest that LILRB2 can potentially act as a myeloid immune checkpoint by reprogramming tumor-associated myeloid cells and provoking antitumor immunity.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | - Kyeongah Kang
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Jilu Zhang
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Richard Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Suresh Ramanathan
- Department of Thoracic Surgery, Mount Sinai Hospital, New York, New York, USA
| | - Raja Flores
- Department of Thoracic Surgery, Mount Sinai Hospital, New York, New York, USA.,Department of General Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ping-Ying Pan
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
14
|
Alaoui L, Palomino G, Zurawski S, Zurawski G, Coindre S, Dereuddre-Bosquet N, Lecuroux C, Goujard C, Vaslin B, Bourgeois C, Roques P, Le Grand R, Lambotte O, Favier B. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 2018; 75:1871-1887. [PMID: 29134249 PMCID: PMC11105587 DOI: 10.1007/s00018-017-2712-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.
Collapse
Affiliation(s)
- Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Gustavo Palomino
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Sandy Zurawski
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | | | - Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Pierre Roques
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France.
| |
Collapse
|
15
|
Lu N, Li Y, Zhang Z, Xing J, Sun Y, Yao S, Chen L. Human Semaphorin-4A drives Th2 responses by binding to receptor ILT-4. Nat Commun 2018; 9:742. [PMID: 29467366 PMCID: PMC5821868 DOI: 10.1038/s41467-018-03128-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/18/2018] [Indexed: 11/09/2022] Open
Abstract
Semaphorin-4A (Sema4A) has been implicated in the co-stimulation of T cells and drives Th1 immune responses by binding to the receptor T-cell immunoglobulin and mucin domain protein 2 (Tim-2) in mice. Here we show that human, but not murine, Sema4A is preferentially expressed on antigen-presenting cells, and co-stimulates CD4+ T-cell proliferation and drives Th2 responses. By employing two independent cloning strategies, we demonstrate that Immunoglobulin-like transcript 4 (ILT-4) is a receptor for human SEMA4A (hSEMA4A) on activated CD4+ T cells. We also find hSEMA4A to be highly expressed in human asthmatic lung tissue, implying its potential function in disease pathogenesis. Our study defines a different biological function of hSEMA4A from its murine homolog through its binding to the receptor of ILT-4 to co-stimulate CD4+T cells and regulate Th2 cells differentiation.
Collapse
Affiliation(s)
- Ning Lu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Immunology and Center for Cancer Immunology Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Ying Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqiang Zhang
- Department of Immunology and Center for Cancer Immunology Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.,Immunobiology and Transplant Research, Houston Methodist Hospital and Methodist Hospital Research Institute, Texas Medical Center, Houston, TX, 77030, USA
| | - Junji Xing
- Immunobiology and Transplant Research, Houston Methodist Hospital and Methodist Hospital Research Institute, Texas Medical Center, Houston, TX, 77030, USA
| | - Ying Sun
- Division of Asthma, Allergy and Lung Biology, MRC-Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, SE1 1YZ, UK.,Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sheng Yao
- Department of Immunobiology, Medicine and Dermatology, Cancer Immunology Program at Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06519, USA.,Oncology and Cellular Therapy, TopAlliance Biosciences, Rockville, MD, 20850, USA
| | - Lieping Chen
- Department of Immunobiology, Medicine and Dermatology, Cancer Immunology Program at Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
16
|
van der Touw W, Chen HM, Pan PY, Chen SH. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 2017. [PMID: 28638976 DOI: 10.1007/s00262-017-2023-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family comprises a set of paired immunomodulatory receptors expressed among human myeloid and lymphocyte cell populations. While six members of LILR subfamily A (LILRA) associate with membrane adaptors to signal via immunoreceptor tyrosine-based activating motifs (ITAM), LILR subfamily B (LILRB) members signal via multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). Ligand specificity of some LILR family members has been studied in detail, but new perspective into the immunoregulatory aspects of this receptor family in human myeloid cells has been limited. LILRB receptors and the murine ortholog, paired immunoglobulin-like receptor B (PIRB), have been shown to negatively regulate maturation pathways in myeloid cells including mast cells, neutrophils, dendritic cells, as well as B cells. Our laboratory further demonstrated in mouse models that PIRB regulated functional development of myeloid-derived suppressor cell and the formation of a tumor-permissive microenvironment. Based on observations from the literature and our own studies, our laboratory is focusing on how LILRs modulate immune homeostasis of human myeloid cells and how these pathways may be targeted in disease states. Integrity of this pathway in tumor microenvironments, for example, permits a myeloid phenotype that suppresses antitumor adaptive immunity. This review presents the evidence supporting a role of LILRs as myeloid cell regulators and ongoing efforts to understand the functional immunology surrounding this family.
Collapse
Affiliation(s)
- William van der Touw
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Zhang J, Mai S, Chen HM, Kang K, Li XC, Chen SH, Pan PY. Leukocyte immunoglobulin-like receptors in human diseases: an overview of their distribution, function, and potential application for immunotherapies. J Leukoc Biol 2017; 102:351-360. [PMID: 28351852 DOI: 10.1189/jlb.5mr1216-534r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 01/03/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a population of immature myeloid cells expanded and accumulated in tumor-bearing mice and in patients with cancer, have been shown to mediate immune suppression and to promote tumor progression, thereby, posing a major hurdle to the success of immune-activating cancer therapies. MDSCs, like their healthy counterparts, such as monocytes/macrophages and granulocytes, express an array of costimulatory and coinhibitory molecules as well as myeloid activators and inhibitory receptors, such as leukocyte immunoglobulin-like receptors (LILR) A and B. This review summarizes current findings on the LILR family members in various diseases, their potential roles in the pathogenesis, and possible strategies to revert or enhance the suppressive function of MDSCs for the benefit of patients by targeting LILRs.
Collapse
Affiliation(s)
- Jilu Zhang
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Sunny Mai
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Kyeongah Kang
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Xian Chang Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA.,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, New York, USA; and.,Department of General Surgery, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA; .,Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, New York, USA; and
| |
Collapse
|
18
|
MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape. Nat Struct Mol Biol 2017; 24:387-394. [PMID: 28218747 DOI: 10.1038/nsmb.3381] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex class I (MHC-I) molecules play a crucial role in immunity by capturing peptides for presentation to T cells and natural killer (NK) cells. The peptide termini are tethered within the MHC-I antigen-binding groove, but it is unknown whether other presentation modes occur. Here we show that 20% of the HLA-B*57:01 peptide repertoire comprises N-terminally extended sets characterized by a common motif at position 1 (P1) to P2. Structures of HLA-B*57:01 presenting N-terminally extended peptides, including the immunodominant HIV-1 Gag epitope TW10 (TSTLQEQIGW), showed that the N terminus protrudes from the peptide-binding groove. The common escape mutant TSNLQEQIGW bound HLA-B*57:01 canonically, adopting a dramatically different conformation than the TW10 peptide. This affected recognition by killer cell immunoglobulin-like receptor (KIR) 3DL1 expressed on NK cells. We thus define a previously uncharacterized feature of the human leukocyte antigen class I (HLA-I) immunopeptidome that has implications for viral immune escape. We further suggest that recognition of the HLA-B*57:01-TW10 epitope is governed by a 'molecular tension' between the adaptive and innate immune systems.
Collapse
|
19
|
Favier B. Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunol Rev 2016; 273:140-55. [DOI: 10.1111/imr.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit Favier
- CEA, DRF, IMETI, IMVA, UMR 1184, INSERM; Université Paris-Sud; IDMIT Infrastructure; Fontenay-aux-Roses France
| |
Collapse
|
20
|
Hudson LE, Allen RL. Leukocyte Ig-Like Receptors - A Model for MHC Class I Disease Associations. Front Immunol 2016; 7:281. [PMID: 27504110 PMCID: PMC4959025 DOI: 10.3389/fimmu.2016.00281] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023] Open
Abstract
MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system.
Collapse
Affiliation(s)
- Laura Emily Hudson
- Institute for Infection and Immunity, St George's, University of London , London , UK
| | - Rachel Louise Allen
- Institute for Infection and Immunity, St George's, University of London , London , UK
| |
Collapse
|
21
|
Sun X, Shi Y, Akahoshi T, Fujiwara M, Gatanaga H, Schönbach C, Kuse N, Appay V, Gao GF, Oka S, Takiguchi M. Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation. Cell Rep 2016; 15:2279-2291. [PMID: 27239036 DOI: 10.1016/j.celrep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level.
Collapse
Affiliation(s)
- Xiaoming Sun
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mamoru Fujiwara
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Christian Schönbach
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Victor Appay
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; INSERM, Unité Mixte de Recherche 1135, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre d'Immunologie et des Maladies Infectieuses-Paris, 75013 Paris, France
| | - George F Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
22
|
Trowsdale J, Jones DC, Barrow AD, Traherne JA. Surveillance of cell and tissue perturbation by receptors in the LRC. Immunol Rev 2016; 267:117-36. [PMID: 26284474 DOI: 10.1111/imr.12314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human leukocyte receptor complex (LRC) encompasses several sets of genes with a common evolutionary origin and which form a branch of the immunoglobulin superfamily (IgSF). Comparisons of LRC genes both within and between species calls for a high degree of plasticity. The drive for this unprecedented level of variation is not known, but it relates in part to interaction of several LRC products with polymorphic human leukocyte antigen (HLA) class I molecules. However, the range of other proposed ligands for LRC products indicates a dynamic set of receptors that have adapted to detect target molecules relating to numerous cellular pathways. Several receptors in the complex bind a molecular signature in collagenous ligands. Others detect a variety of motifs relating to pathogens in addition to cellular stress, attesting to the opportunistic versatility of LRC receptors.
Collapse
Affiliation(s)
- John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Des C Jones
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alexander D Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
23
|
Analysis of the Expression and Function of Immunoglobulin-Like Transcript 4 (ILT4, LILRB2) in Dendritic Cells from Patients with Systemic Lupus Erythematosus. J Immunol Res 2016; 2016:4163094. [PMID: 27057555 PMCID: PMC4779820 DOI: 10.1155/2016/4163094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 11/28/2022] Open
Abstract
Dendritic cells (DC) play an important role in the development and maintenance of immune tolerance. Although the inhibitory receptor ILT4/LILRB2 has been related with the tolerogenic phenotype of DC, the possible role of this receptor in the breakdown of DC tolerogenic function in systemic lupus erythematosus (SLE) has not been elucidated. In this study, we analyzed the expression and function of the inhibitory receptor ILT4 in DC from SLE patients. We found that the percentage of ILT4 positive plasmacytoid DC and myeloid DC is significantly diminished in SLE patients. Interestingly, ligation of ILT4 did not affect the maturation or immunogenic capability of DC in healthy controls. In contrast, in SLE patients we observed an inhibitory effect of ILT4 on the immunogenic capability of DC. ILT4 was shown not to have a crucial role in regulating the maturation and function of DC from healthy controls but is partially involved in the maturation process and immunogenic capability of DC from SLE patients, suggesting that other inhibitory receptors, involved in the regulation of DC tolerogenic function, may be impaired in this autoimmune disease.
Collapse
|
24
|
Hirayasu K, Arase H. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J Hum Genet 2015; 60:703-8. [PMID: 26040207 DOI: 10.1038/jhg.2015.64] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/03/2023]
Abstract
Human leukocyte immunoglobulin-like receptors (LILR) are a family of 11 functional genes encoding five activating (LILRA1, 2, 4-6), five inhibitory (LILRB1-5) and one soluble (LILRA3) form. The number of LILR genes is conserved among individuals, except for LILRA3 and LILRA6, which exhibit copy-number variations. The LILR genes are rapidly evolving and showing large interspecies differences, making it difficult to analyze the functions of LILR using an animal model. LILRs are expressed on various cells such as lymphoid and myeloid cells and the expression patterns are different from gene to gene. The LILR gene expression and polymorphisms have been reported to be associated with autoimmune and infectious diseases such as rheumatoid arthritis and cytomegalovirus infection. Although human leukocyte antigen (HLA) class I is a well-characterized ligand for some LILRs, non-HLA ligands have been increasingly identified in recent years. LILRs have diverse functions, including the regulation of inflammation, immune tolerance, cell differentiation and nervous system plasticity. This review focuses on the genetic and functional diversity of the LILR family.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisashi Arase
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Setiawan LC, Gijsbers EF, van Nuenen AC, Kootstra NA. Viral evolution in HLA-B27-restricted CTL epitopes in human immunodeficiency virus type 1-infected individuals. J Gen Virol 2015; 96:2372-2380. [PMID: 25872744 DOI: 10.1099/vir.0.000148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The HLA-B27 allele is over-represented among human immunodeficiency virus type 1-infected long-term non-progressors. In these patients, strong CTL responses targeting HLA-B27-restricted viral epitopes have been associated with long-term asymptomatic survival. Indeed, loss of control of viraemia in HLA-B27 patients has been associated with CTL escape at position 264 in the immunodominant KK10 epitope. This CTL escape mutation in the viral Gag protein has been associated with severe viral attenuation and may require the presence of compensatory mutations before emerging. Here, we studied sequence evolution within HLA-B27-restricted CTL epitopes in the viral Gag protein during the course of infection of seven HLA-B27-positive patients. Longitudinal gag sequences obtained at different time points around the time of AIDS diagnosis were obtained and analysed for the presence of mutations in epitopes restricted by HLA-B27, and for potential compensatory mutations. Sequence variations were observed in the HLA-B27-restricted CTL epitopes IK9 and DR11, and the immunodominant KK10 epitope. However, the presence of sequence variations in the HLA-B27-restricted CTL epitopes could not be associated with an increase in viraemia in the majority of the patients studied. Furthermore, we observed low genetic diversity in the gag region of the viral variants throughout the course of infection, which is indicative of low viral replication and corresponds to the low viral load observed in the HLA-B27-positive patients. These data indicated that control of viral replication can be maintained in HLA-B27-positive patients despite the emergence of viral mutations in HLA-B27-restricted epitopes.
Collapse
Affiliation(s)
- Laurentia C Setiawan
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther F Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Adrianus C van Nuenen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Differential characteristics of cytotoxic T lymphocytes restricted by the protective HLA alleles B*27 and B*57 in HIV-1 infection. J Acquir Immune Defic Syndr 2014; 67:236-45. [PMID: 25171732 DOI: 10.1097/qai.0000000000000324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE HLA-B*27 and B*57 are associated with relatively slow progression to AIDS. Mechanisms held responsible for this protective effect include the immunodominance and high magnitude, breadth, and affinity of the cytotoxic T lymphocytes (CTL) response restricted by these HLA molecules, as well as superior maintenance of CTL responses during HIV-1 disease progression. DESIGN We examined CTL responses from HIV-1-infected individuals restricted through protective and nonprotective HLA alleles within the same host, thereby excluding any effects of slow or rapid progression on the CTL response. RESULTS We found that neither immunodominance, nor high magnitude and breadth, nor affinity of the CTL response are general mechanisms of protection against disease progression. HLA-B*57-restricted CTL responses were of exceptionally high affinity and dominated the HLA-A*02-restricted CTL response in individuals coexpressing these HLA alleles. In contrast, HLA-B*27-restricted CTL responses were not of particularly high affinity and did not dominate the response in individuals coexpressing HLA-B*27 and HLA-A*02. Instead, in individuals expressing HLA-B*27, the CTL response restricted by nonprotective HLA alleles was significantly higher and broader, and of higher affinity than in individuals expressing these alleles without HLA-B*27. Although HLA-B*27 and B*57 are thought to target the most conserved parts of HIV, during disease progression, CTL responses restricted by HLA-B*27 and B*57 were lost at least as fast as CTL responses restricted by HLA-A*02. CONCLUSIONS Our data show that many of the mechanisms of CTL that are generally held responsible for slowing down HIV-1 disease progression hold for HLA-B*57 but do not hold for HLA-B*27.
Collapse
|
27
|
Pediatric HIV Long-Term Nonprogressors. Case Rep Infect Dis 2014; 2014:752312. [PMID: 25247098 PMCID: PMC4160607 DOI: 10.1155/2014/752312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/09/2014] [Indexed: 11/17/2022] Open
Abstract
Patients infected with HIV are best categorized along a continuum from rapid progressors to HIV long-term nonprogressors. Long-term nonprogressors (LTNPs) are those in which AIDS develop many years after being infected with HIV, often beyond the 10-year mark, and represent 15-20% of the HIV infected patients. Many of these patients are able to control their infection and maintain undetectable viral loads for long periods of time without antiretroviral therapy. After a comprehensive literature search, we found extensive data related to HIV LTNPs in the adult population; however, very limited data was available related to LTNPs within the pediatric population. We present a case of pediatric HIV LTNPs, perinatally infected patient with undetectable viral loads, despite never receiving ART. Although there are not many instances of LTNPs among children, this child may be one, though she had intermittent viremia. She has continued to manifest serologic evidence of infection, with yearly ELISA and western blot positive tests. Based on the viral fitness studies that were performed, this case exemplifies an adolescent LTNP.
Collapse
|
28
|
Susceptibility to CD8 T-cell-mediated killing influences the reservoir of latently HIV-1-infected CD4 T cells. J Acquir Immune Defic Syndr 2014; 65:1-9. [PMID: 23846565 DOI: 10.1097/qai.0b013e3182a1bc81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND HIV-1 establishes a lifelong infection in the human body, but host factors that influence viral persistence remain poorly understood. Cell-intrinsic characteristics of CD4 T cells, the main target cells for HIV-1, may affect the composition of the latent viral reservoir by altering the susceptibility to CD8 T-cell-mediated killing. RESULTS We observed that susceptibilities of CD4 T cells to CD8 T-cell-mediated killing, as determined in direct ex vivo assays, were significantly higher in persons with natural control of HIV-1 (elite controllers) than in individuals effectively treated with antiretroviral therapy. These differences were most pronounced in naive and in terminally differentiated CD4 T cells and corresponded to a reduced viral reservoir size in elite controllers. Interestingly, the highest susceptibility to CD8 T-cell-mediated killing and lowest reservoirs of cell-associated HIV-1 DNA was consistently observed in elite controllers expressing the protective HLA class I allele B57. CONCLUSIONS These data suggest that the functional responsiveness of host CD4 T cells to cytotoxic effects of HIV-1-specific CD8 T cells can contribute to shaping the structure and composition of the latently infected CD4 T-cell pool.
Collapse
|
29
|
Bashirova AA, Martin-Gayo E, Jones DC, Qi Y, Apps R, Gao X, Burke PS, Taylor CJ, Rogich J, Wolinsky S, Bream JH, Duggal P, Hussain S, Martinson J, Weintrob A, Kirk GD, Fellay J, Buchbinder SP, Goedert JJ, Deeks SG, Pereyra F, Trowsdale J, Lichterfeld M, Telenti A, Walker BD, Allen RL, Carrington M, Yu XG. LILRB2 interaction with HLA class I correlates with control of HIV-1 infection. PLoS Genet 2014; 10:e1004196. [PMID: 24603468 PMCID: PMC3945438 DOI: 10.1371/journal.pgen.1004196] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10(-2)). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10(-11)-10(-9)) and African (p = 10(-5)-10(-3)) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement.
Collapse
Affiliation(s)
- Arman A. Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Enrique Martin-Gayo
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Des C. Jones
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Richard Apps
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Patrick S. Burke
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Craig J. Taylor
- Tissue Typing Laboratories, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Jerome Rogich
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Steven Wolinsky
- Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Priya Duggal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Shehnaz Hussain
- Fielding School of Public Health, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Jeremy Martinson
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy Weintrob
- USU Infectious Disease Clinical Research Program, Bethesda, Maryland, United States of America
| | - Gregory D. Kirk
- Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Susan P. Buchbinder
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - James J. Goedert
- Division of Cancer Epidemiology & Genetics, NCI, Bethesda, Maryland, United States of America
| | - Steven G. Deeks
- University of California at San Francisco Medical School, San Francisco, California, United States of America
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - John Trowsdale
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Mathias Lichterfeld
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Amalio Telenti
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rachel L. Allen
- St George's Medical School, University of London, London, United Kingdom
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
HLA-B27-mediated protection in HIV and hepatitis C virus infection and pathogenesis in spondyloarthritis: two sides of the same coin? Curr Opin Rheumatol 2014; 25:426-33. [PMID: 23656712 DOI: 10.1097/bor.0b013e328362018f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW HLA-B27 is associated with low viral load and long-term nonprogression in HIV infection as well as spontaneous clearance of hepatitis C virus (HCV) infection. This review summarizes mechanisms that have been suggested to be involved in this protective effect of HLA-B27, and highlights possible lessons for the role of HLA-B27 in spondyloarthritis. RECENT FINDINGS Recent studies linked protection by HLA-B27 in HIV and HCV infection to virological mechanisms such as a complicated pathways of viral escape from immunodominant HLA-B27-restricted virus-specific CD8+ T-cell epitopes. In addition, several immunological mechanisms have been proposed, including CD8+ T-cell polyfunctionality and functional avidity, thymic selection of CD8+ T-cell precursors, specific T-cell receptor repertoires and clonotypes, efficient antigen processing, and evasion from regulatory T-cell-mediated suppression. SUMMARY Multiple virological and immunological mechanisms have been suggested to contribute to HLA-B27-mediated protection in HIV and HCV infection. Some of these mechanisms may also be involved in HLA-B27-associated pathogenesis in spondyloarthritis.
Collapse
|
31
|
Pohlmeyer CW, Buckheit RW, Siliciano RF, Blankson JN. CD8+ T cells from HLA-B*57 elite suppressors effectively suppress replication of HIV-1 escape mutants. Retrovirology 2013; 10:152. [PMID: 24330837 PMCID: PMC3878989 DOI: 10.1186/1742-4690-10-152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
Abstract
Background Elite Controllers or Suppressors (ES) are HIV-1 positive individuals who maintain plasma viral loads below the limit of detection of standard clinical assays without antiretroviral therapy. Multiple lines of evidence suggest that the control of viral replication in these patients is due to a strong and specific cytotoxic T lymphocyte (CTL) response. The ability of CD8+ T cells to control HIV-1 replication is believed to be impaired by the development of escape mutations. Surprisingly, viruses amplified from the plasma of ES have been shown to contain multiple escape mutations, and it is not clear how immunologic control is maintained in the face of virologic escape. Results We investigated the effect of escape mutations within HLA*B-57-restricted Gag epitopes on the CD8+ T cell mediated suppression of HIV-1 replication. Using site directed mutagenesis, we constructed six NL4-3 based viruses with canonical escape mutations in one to three HLA*B-57-restricted Gag epitopes. Interestingly, similar levels of CTL-mediated suppression of replication in autologous primary CD4+ T cells were observed for all of the escape mutants. Intracellular cytokine staining was performed in order to determine the mechanisms involved in the suppression of the escape variants. While low baseline CD8+ T cells responses to wild type and escape variant peptides were seen, stimulation of PBMC with either wild type or escape variant peptides resulted in increased IFN-γ and perforin expression. Conclusions These data presented demonstrate that CD8+ T cells from ES are capable of suppressing replication of virus harboring escape mutations in HLA-B*57-restricted Gag epitopes. Additionally, our data suggest that ES CD8+ T cells are capable of generating effective de novo responses to escape mutants.
Collapse
Affiliation(s)
| | | | | | - Joel N Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N, Broadway, BRB 880, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Marchesi M, Andersson E, Villabona L, Seliger B, Lundqvist A, Kiessling R, Masucci GV. HLA-dependent tumour development: a role for tumour associate macrophages? J Transl Med 2013; 11:247. [PMID: 24093459 PMCID: PMC3856519 DOI: 10.1186/1479-5876-11-247] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023] Open
Abstract
HLA abnormalities on tumour cells for immune escape have been widely described. In addition, cellular components of the tumour microenvironment, in particular myeloid derived suppressor cells (MDSC) and alternatively activated M2 tumour-associated macrophages (TAMs), are involved in tumour promotion, progression, angiogenesis and suppression of anti-tumour immunity. However, the role of HLA in these activities is poorly understood. This review details MHC class I characteristics and describes MHC class I receptors functions. This analysis established the basis for a reflection about the crosstalk among the tumour cells, the TAMs and the cells mediating an immune response.The tumour cells and TAMs exploit MHC class I molecules to modulate the surrounding immune cells. HLA A, B, C and G molecules down-regulate the macrophage myeloid activation through the interaction with the inhibitory LILRB receptors. HLA A, B, C are able to engage inhibitory KIR receptors negatively regulating the Natural Killer and cytotoxic T lymphocytes function while HLA-G induces the secretion of pro-angiogenic cytokines and chemokine thanks to an activator KIR receptor expressed by a minority of peripheral NK cells. The open conformer of classical MHC-I is able to interact with LILRA receptors described as being associated to the Th2-type cytokine response, triggering a condition for the M2 like TAM polarization. In addition, HLA-E antigens on the surface of the TAMs bind the inhibitory receptor CD94/NKG2A expressed by a subset of NK cells and activated cytotoxic T lymphocytes protecting from the cytolysis.Furthermore MHC class II expression by antigen presenting cells is finely regulated by factors provided with immunological capacities. Tumour-associated macrophages show an epigenetically controlled down-regulation of the MHC class II expression induced by the decoy receptor DcR3, a member of the TNFR, which further enhances the M2-like polarization. BAT3, a positive regulator of MHC class II expression in normal macrophages, seems to be secreted by TAMs, consequently lacking its intracellular function, it looks like acting as an immunosuppressive factor.In conclusion HLA could cover a considerable role in tumour-development orchestrated by tumour-associated macrophages.
Collapse
Affiliation(s)
- Maddalena Marchesi
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Roche Pharma, Basel, Switzerland
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Lisa Villabona
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Giuseppe V Masucci
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
33
|
Nam G, Shi Y, Ryu M, Wang Q, Song H, Liu J, Yan J, Qi J, Gao GF. Crystal structures of the two membrane-proximal Ig-like domains (D3D4) of LILRB1/B2: alternative models for their involvement in peptide-HLA binding. Protein Cell 2013; 4:761-70. [PMID: 23955630 DOI: 10.1007/s13238-013-3908-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022] Open
Abstract
Leukocyte immunoglobulin-like receptors (LILRs), also called CD85s, ILTs, or LIRs, are important mediators of immune activation and tolerance that contain tandem immunoglobulin (Ig)-like folds. There are 11 (in addition to two pseudogenes) LILRs in total, two with two Ig-like domains (D1D2) and the remaining nine with four Ig-like domains (D1D2D3D4). Thus far, the structural features of the D1D2 domains of LILR proteins are well defined, but no structures for the D3D4 domains have been reported. This is a very important field to be studied as it relates to the unknown functions of the D3D4 domains, as well as their relative orientation to the D1D2 domains on the cell surface. Here, we report the crystal structures of the D3D4 domains of both LILRB1 and LILRB2. The two Ig-like domains of both LILRB1-D3D4 and LILRB2-D3D4 are arranged at an acute angle (∼60°) to form a bent structure, resembling the structures of natural killer inhibitory receptors. Based on these two D3D4 domain structures and previously reported D1D2/HLA I complex structures, two alternative models of full-length (four Ig-like domains) LILR molecules bound to HLA I are proposed.
Collapse
Affiliation(s)
- Gol Nam
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Host genetic factors are a major contributing factor to the inter-individual variation observed in response to human immunodeficiency virus (HIV) infection and are linked to resistance to HIV infection among exposed individuals, as well as rate of disease progression and the likelihood of viral transmission. Of the genetic variants that have been shown to affect the natural history of HIV infection, the human leukocyte antigen (HLA) class I genes exhibit the strongest and most consistent association, underscoring a central role for CD8(+) T cells in resistance to the virus. HLA proteins play important roles in T-cell-mediated adaptive immunity by presenting immunodominant HIV epitopes to cytotoxic T lymphocytes (CTLs) and CD4(+) T cells. Genetic and functional data also indicate a function for HLA in natural killer cell-mediated innate immunity against HIV by interacting with killer cell immunoglobulin-like receptors (KIR). We review the HLA and KIR associations with HIV disease and discuss the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Zaunders J, van Bockel D. Innate and Adaptive Immunity in Long-Term Non-Progression in HIV Disease. Front Immunol 2013; 4:95. [PMID: 23630526 PMCID: PMC3633949 DOI: 10.3389/fimmu.2013.00095] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long-term non-progressors (LTNP) were identified after 10-15 years of the epidemic, and have been the subject of intense investigation ever since. In a small minority of cases, infection with nef/3'LTR deleted attenuated viral strains allowed control over viral replication. A common feature of LTNP is the readily detected proliferation of CD4 T-cells in vitro, in response to p24. In some cases, the responding CD4 T-cells have cytotoxic effector function and may target conserved p24 epitopes, similar to the CD8 T-cells described below. LTNP may also carry much lower HIV DNA burden in key CD4 subsets, presumably resulting from lower viral replication during primary infection. Some studies, but not others, suggest that LTNP have CD4 T-cells that are relatively resistant to HIV infection in vitro. One possible mechanism may involve up-regulation of the cell cycle regulator p21/waf in CD4 T-cells from LTNP. Delayed progression in Caucasian LTNP is also partly associated with heterozygosity of the Δ32 CCR5 allele, probably through decreased expression of CCR5 co-receptor on CD4 T-cells. However, in approximately half of Caucasian LTNP, two host genotypes, namely HLA-B57 and HLA-B27, are associated with viral control. Immunodominant CD8 T-cells from these individuals target epitopes in p24 that are highly conserved, and escape mutations have significant fitness costs to the virus. Furthermore, recent studies have suggested that these CD8 T-cells from LTNP, but not from HLA-B27 or HLA-B57 progressors, can cross-react with intermediate escape mutations, preventing full escape via compensatory mutations. Humoral immunity appears to play little part in LTNP subjects, since broadly neutralizing antibodies are rare, even amongst slow progressors. Recent genome-wide comparisons between LTNP and progressors have confirmed the HLA-B57, HLA-B27, and delta32 CCR5 allelic associations, plus indicated a role for HLA-C/KIR interactions, but have not revealed any new genotypes so far. Nevertheless, it is hoped that studying the mechanisms of intracellular restriction factors, such as the recently identified SAMHD1, will lead to a better understanding of non-progression.
Collapse
Affiliation(s)
- John Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital Darlinghurst, NSW, Australia
| | | |
Collapse
|
36
|
Larsson M, Shankar EM, Che KF, Saeidi A, Ellegård R, Barathan M, Velu V, Kamarulzaman A. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 2013; 10:31. [PMID: 23514593 PMCID: PMC3610157 DOI: 10.1186/1742-4690-10-31] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
Cellular immune responses play a crucial role in the control of viral replication in HIV-infected individuals. However, the virus succeeds in exploiting the immune system to its advantage and therefore, the host ultimately fails to control the virus leading to development of terminal AIDS. The virus adopts numerous evasion mechanisms to hijack the host immune system. We and others recently described the expression of inhibitory molecules on T cells as a contributing factor for suboptimal T-cell responses in HIV infection both in vitro and in vivo. The expression of these molecules that negatively impacts the normal functions of the host immune armory and the underlying signaling pathways associated with their enhanced expression need to be discussed. Targets to restrain the expression of these molecular markers of immune inhibition is likely to contribute to development of therapeutic interventions that augment the functionality of host immune cells leading to improved immune control of HIV infection. In this review, we focus on the functions of inhibitory molecules that are expressed or secreted following HIV infection such as BTLA, CTLA-4, CD160, IDO, KLRG1, LAG-3, LILRB1, PD-1, TRAIL, TIM-3, and regulatory cytokines, and highlight their significance in immune inhibition. We also highlight the ensemble of transcriptional factors such as BATF, BLIMP-1/PRDM1, FoxP3, DTX1 and molecular pathways that facilitate the recruitment and differentiation of suppressor T cells in response to HIV infection.
Collapse
Affiliation(s)
- Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58 185, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
A Molecular Basis for the Control of Preimmune Escape Variants by HIV-Specific CD8+ T Cells. Immunity 2013; 38:425-36. [DOI: 10.1016/j.immuni.2012.11.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022]
|
38
|
Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJM. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol 2013; 4:53. [PMID: 23450201 PMCID: PMC3584294 DOI: 10.3389/fimmu.2013.00053] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are central in maintaining the intricate balance between immunity and tolerance by orchestrating adaptive immune responses. Being the most potent antigen presenting cells, DCs are capable of educating naïve T cells into a wide variety of effector cells ranging from immunogenic CD4+ T helper cells and cytotoxic CD8+ T cells to tolerogenic regulatory T cells. This education is based on three fundamental signals. Signal I, which is mediated by antigen/major histocompatibility complexes binding to antigen-specific T cell receptors, guarantees antigen specificity. The co-stimulatory signal II, mediated by B7 family molecules, is crucial for the expansion of the antigen-specific T cells. The final step is T cell polarization by signal III, which is conveyed by DC-derived cytokines and determines the effector functions of the emerging T cell. Although co-stimulation is widely recognized to result from the engagement of T cell-derived CD28 with DC-expressed B7 molecules (CD80/CD86), other co-stimulatory pathways have been identified. These pathways can be divided into two groups based on their impact on primed T cells. Whereas pathways delivering activatory signals to T cells are termed co-stimulatory pathways, pathways delivering tolerogenic signals to T cells are termed co-inhibitory pathways. In this review, we discuss how the nature of DC-derived signal II determines the quality of ensuing T cell responses and eventually promoting either immunity or tolerance. A thorough understanding of this process is instrumental in determining the underlying mechanism of disorders demonstrating distorted immunity/tolerance balance, and would help innovating new therapeutic approaches for such disorders.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
39
|
Abstract
Natural killer (NK) cells are key components of innate immune responses, providing surveillance against cells undergoing tumorigenesis or infection, by viruses or internal pathogens. NK cells can directly eliminate compromised cells and regulate downstream responses of the innate and acquired immune systems through the release of immune modulators (cytokines, interferons). The importance of the role NK cells play in immune defense was demonstrated originally in herpes viral infections, usually mild or localized, which become severe and life threatening in NK-deficient patients . NK cell effector functions are governed by balancing opposing signals from a diverse array of activating and inhibitory receptors. Many NK receptors occur in paired activating and inhibitory isoforms and recognize major histocompatibility complex (MHC) class I proteins with varying degrees of peptide specificity. Structural studies have made considerable inroads into understanding the molecular mechanisms employed to broadly recognize multiple MHC ligands or specific pathogen-associated antigens and the strategies employed by viruses to thwart these defenses. Although many details of NK development, signaling, and integration remain mysterious, it is clear that NK receptors are key components of a system exquisitely tuned to sense any dysregulation in MHC class I expression, or the expression of certain viral antigens, resulting in the elimination of affected cells.
Collapse
Affiliation(s)
- Kathryn A Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
40
|
Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog 2012; 8:e1003042. [PMID: 23209413 PMCID: PMC3510254 DOI: 10.1371/journal.ppat.1003042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Collapse
|
41
|
Giles J, Shaw J, Piper C, Wong-Baeza I, McHugh K, Ridley A, Li D, Lenart I, Antoniou AN, DiGleria K, Kuroki K, Maenaka K, Bowness P, Kollnberger S. HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I. THE JOURNAL OF IMMUNOLOGY 2012; 188:6184-93. [PMID: 22593621 DOI: 10.4049/jimmunol.1102711] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with β(2)-microglobulin (β2m) and peptide and (β2m free) free H chain (FHC) forms including B27 dimers (termed B27(2)) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a K(D) of 5.3 ± 1.5 μM but did not bind B27 FHC. LILRB2 bound to B27(2) and B27 FHC and B27 heterotrimers with K(D)s of 2.5, 2.6, and 22 ± 6 μM, respectively. Domain exchange experiments showed that B27(2) bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with K(D)s of 15.0 ± 0.8 and 16.0 ± 2.0 μM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.
Collapse
Affiliation(s)
- Joanna Giles
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Akahoshi T, Chikata T, Tamura Y, Gatanaga H, Oka S, Takiguchi M. Selection and accumulation of an HIV-1 escape mutant by three types of HIV-1-specific cytotoxic T lymphocytes recognizing wild-type and/or escape mutant epitopes. J Virol 2012; 86:1971-81. [PMID: 22156528 PMCID: PMC3302409 DOI: 10.1128/jvi.06470-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/23/2011] [Indexed: 01/06/2023] Open
Abstract
It is known that cytotoxic T lymphocytes (CTLs) recognizing HIV-1 escape mutants are elicited in HIV-1-infected individuals, but their role in the control of HIV-1 replication remains unclear. We investigated the antiviral ability of CTLs recognizing the HLA-A*24:02-restricted Gag28 -36 (KYKLKHIVW) epitope and/or its escape mutant (KYRLKHIVW) elicited in the early and chronic phases of the infection. Wild-type (WT)-epitope-specific CTLs, as well as cross-reactive CTLs recognizing both WT and K30R (3R) epitopes, which were predominantly elicited at early and/or chronic phases in HLA-A*24:02(+) individuals infected with the WT virus, suppressed the replication of the WT virus but failed to suppress that of the 3R virus, indicating that the 3R virus was selected by these 2 types of CTLs. On the other hand, cross-reactive and 3R-specific CTLs, which were elicited in those infected with the 3R virus, did not suppress the replication of either WT or 3R virus, indicating that these CTLs did not contribute to the control of 3R virus replication. High accumulation of the 3R mutation was found in a Japanese population recently recruited. The selection and accumulation of this 3R mutation resulted from the antiviral ability of these Gag28-specific CTLs and high prevalence of HLA-A*24:02 in a Japanese population. The present study highlighted the mechanisms for the roles of cross-reactive and mutant-epitope-specific CTLs, as well as high accumulation of escape mutants, in an HIV-1-infected population.
Collapse
Affiliation(s)
| | | | - Yoshiko Tamura
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | |
Collapse
|
43
|
Huang J, Al-Mozaini M, Rogich J, Carrington MF, Seiss K, Pereyra F, Lichterfeld M, Yu XG. Systemic inhibition of myeloid dendritic cells by circulating HLA class I molecules in HIV-1 infection. Retrovirology 2012; 9:11. [PMID: 22289474 PMCID: PMC3308926 DOI: 10.1186/1742-4690-9-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/30/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND HIV-1 infection is associated with profound dysfunction of myeloid dendritic cells, for reasons that remain ill-defined. Soluble HLA class I molecules can have important inhibitory effects on T cells and NK cells, but may also contribute to reduced functional properties of professional antigen-presenting cells. Here, we investigated the expression of soluble HLA class I isoforms during HIV-1 infection and assessed their functional impact on antigen-presenting characteristics of dendritic cells. RESULTS Soluble HLA class I molecules were highly upregulated in progressive HIV-1 infection as determined by quantitative Western blots. This was associated with strong increases of intracellular expression of HLA class I isoforms in dendritic cells and monocytes. Using mixed lymphocyte reactions, we found that soluble HLA class I molecules effectively inhibited the antigen-presenting properties of dendritic cells, however, there was no significant influence of HLA class I molecules on the cytokine-secretion properties of these cells. The immunomodulatory effects of soluble HLA class I molecules were mediated by interactions with inhibitory myelomonocytic MHC class I receptors from the Leukocyte Immunoglobulin Like Receptor (LILR) family. CONCLUSIONS During progressive HIV-1 infection, soluble HLA class I molecules can contribute to systemic immune dysfunction by inhibiting the antigen-presenting properties of myeloid dendritic cells through interactions with inhibitory myelomonocytic HLA class I receptors.
Collapse
Affiliation(s)
- Jinghe Huang
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Host genetic variation is presently estimated to account for about one-fourth of the observed differences in control of HIV across infected individuals. Genome-wide association studies have confirmed that polymorphism within the HLA class I locus is the primary host genetic contributor to determining outcome after infection. Here we progress beyond the genetic associations alone to consider the functional explanations for these correlations. In this process, the complex and multidimensional effects of HLA molecules in viral disease become apparent.
Collapse
Affiliation(s)
- Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC–Frederick, Inc., NCI–Frederick, Frederick, Maryland 20882;
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114;
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114;
| |
Collapse
|
45
|
Lichterfeld M, Yu XG. The emerging role of leukocyte immunoglobulin-like receptors (LILRs) in HIV-1 infection. J Leukoc Biol 2011; 91:27-33. [PMID: 22028331 DOI: 10.1189/jlb.0811442] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
LILRs represent a group of immunomodulatory molecules that regulate the functional properties of professional APCs and influence immune activation in a variety of disease contexts. Many members of the LILR family recognize peptide/MHC class I complexes as their physiological ligands, and increasing evidence suggests that such interactions are prominently influenced by polymorphisms in HLA class I alleles or sequence variations in the presented antigenic peptides. Emerging data show that LILRs are involved in multiple, different aspects of HIV-1 disease pathogenesis and may critically influence spontaneous HIV-1 disease progression. Here, we review recent progress in understanding the role of LILR during HIV-1 infection by focusing on the dynamic interplay between LILR and HLA class I molecules in determining HIV-1 disease progression, the effects of HIV-1 mutational escape on LILR-mediated immune recognition, the contribution of LILR to HIV-1-associated immune dysfunction, and the unique expression patterns of LILR on circulating myeloid DCs from elite controllers, a small subset of HIV-1-infected patients with natural control of HIV-1 replication. Obtaining a more complete understanding of LILR-mediated immune regulation during HIV-1 infection may ultimately allow for improved strategies to treat or prevent HIV-1-associated disease manifestations.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
46
|
Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C. High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 2011; 85:9334-45. [PMID: 21752903 PMCID: PMC3165743 DOI: 10.1128/jvi.00460-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Nicole Frahm
- Fred Hutchinson Cancer Research Center/NIAID HIV Vaccine Trials Network (HVTN), Seattle, Washington
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Beatriz Mothe
- Lluita contra la Sida Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Badalona, Barcelona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kari L. Hartman
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Leah M. Henry
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Laura E. Ruff
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Christian Brander
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
47
|
Iglesias MC, Almeida JR, Fastenackels S, van Bockel DJ, Hashimoto M, Venturi V, Gostick E, Urrutia A, Wooldridge L, Clement M, Gras S, Wilmann PG, Autran B, Moris A, Rossjohn J, Davenport MP, Takiguchi M, Brander C, Douek DC, Kelleher AD, Price DA, Appay V. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood 2011; 118:2138-49. [PMID: 21734237 PMCID: PMC3162351 DOI: 10.1182/blood-2011-01-328781] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022] Open
Abstract
Mapping the precise determinants of T-cell efficacy against viruses in humans is a public health priority with crucial implications for vaccine design. To inform this effort, we performed a comprehensive analysis of the effective CD8(+) T-cell clonotypes that constitute responses specific for the HIV p24 Gag-derived KK10 epitope (KRWIILGLNK; residues 263-272) restricted by HLA-B*2705, which are known to confer superior control of viral replication in HIV-infected individuals. Particular KK10-specific CD8(+) T-cell clonotypes, characterized by TRBV4-3/TRBJ1-3 gene rearrangements, were found to be preferentially selected in vivo and shared between individuals. These "public" clonotypes exhibit high levels of TCR avidity and Ag sensitivity, which impart functional advantages and enable effective suppression of HIV replication. The early L(268)M mutation at position 6 of the KK10 epitope enables the virus to avoid recognition by these highly effective CD8(+) T-cell clonotypes. However, alternative clonotypes with variant reactivity provide flexibility within the overall KK10-specific response. These findings provide refined mechanistic insights into the workings of an effective CD8(+) T-cell response against HIV.
Collapse
Affiliation(s)
- Maria Candela Iglesias
- Inserm UMR S 945, Infections and Immunity, Université Pierre et Marie Curie-Paris 6, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Antoniou AN, Guiliano DB, Lenart I, Burn G, Powis SJ. The oxidative folding and misfolding of human leukocyte antigen-b27. Antioxid Redox Signal 2011; 15:669-84. [PMID: 21671754 DOI: 10.1089/ars.2010.3692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major histocompatibility complex class I molecule human leukocyte antigen (HLA)-B27 is strongly associated with a group of inflammatory arthritic disorders known as the spondyloarthropathies. Many autoimmune diseases exhibit associations with major histocompatibility complex molecules encoded within the class II locus with defined immune responses either mediated by T or B-lymphocytes. Despite the association being known for over 30 years, no defined immune response and target autoantigens have been characterized for the spondyloarthropathies. Thus, the mechanism and role of HLA-B27 in disease pathogenesis remains undetermined. One hypothesis that has recently received much attention has focused around the enhanced propensity for HLA-B27 to misfold and the increased tendency of the heavy chain to dimerize. The misfolding of HLA-B27 has been associated with its redox status and this is postulated to be involved in disease development. Here we discuss the impact of the redox status on HLA-B27 biosynthesis and function.
Collapse
Affiliation(s)
- Antony N Antoniou
- Division of Infection and Immunity/Centre of Rheumatology, Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Science, London, United Kingdom.
| | | | | | | | | |
Collapse
|
49
|
Wodarz D, Levy DN. Effect of multiple infection of cells on the evolutionary dynamics of HIV in vivo: implications for host adaptation mechanisms. Exp Biol Med (Maywood) 2011; 236:926-37. [DOI: 10.1258/ebm.2011.011062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics between human immunodeficiency virus type 1 and the immune system have been studied both experimentally and mathematically, exploring aspects of host adaptation and viral mechanisms to escape host control. The majority of this work, however, has been performed assuming that any cell can only be infected by one copy of the virus. In recent years, it has become clear that multiple copies of the virus can infect the same cell, a process we refer to as co-infection. Here, we review this topic and discuss how immune control of the infection and the ability of the virus to escape immune control is affected by co-infection.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall
- Department of Mathematics, University of California, Irvine, CA 92697
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| |
Collapse
|
50
|
Trowsdale J. The MHC, disease and selection. Immunol Lett 2011; 137:1-8. [PMID: 21262263 DOI: 10.1016/j.imlet.2011.01.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/24/2010] [Accepted: 01/05/2011] [Indexed: 01/22/2023]
Abstract
Given large sample sizes, whole genome screens are now able to identify even quite modest contributions of common human genetic variation to disease. These approaches, made possible by the development of high-throughput, dense SNP genotyping, find few associations stronger than those for the human MHC, in multigenic autoimmune conditions. They confirm earlier findings that the major variants affecting susceptibility and resistance to autoimmunity relate to MHC class I and class II genes. It is generally assumed, although there are few good examples, that selection for resistance to infection drives evolution of MHC variation. Many MHC-associated diseases may be the price paid for an effective immune response. Interestingly, the MHC appears to influence susceptibility to conditions unrelated to immunity, including some neuropathologies. The infectious history of the individual, conditioned by their MHC, may exert an indirect effect on these diseases, although there are hints of more direct involvement of MHC molecules in neuronal systems. Here I survey the variety of conditions associated with the MHC in relation to ideas that selection through disease resistance is dependent upon MHC variation, not only at the level of the individual, but also at the level of the population.
Collapse
Affiliation(s)
- John Trowsdale
- Department of Pathology, Tennis Court Road and CIMR, Addenbrookes Site, University of Cambridge, United Kingdom
| |
Collapse
|