1
|
Tskhakaia I, Gonzalez Moret Y, Palmer A, Lema D, Musri MC, Tsibadze N, Lau A. Contraceptives or Hormone Replacement Therapy and Associations with Autoimmune Conditions: Exploring Effects of Estrogen Analog Supplementation. ACR Open Rheumatol 2025; 7:e11774. [PMID: 39658932 PMCID: PMC11707263 DOI: 10.1002/acr2.11774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the impact of estrogen and progesterone analog supplementation on the development of autoimmune conditions. METHODS This retrospective observational study used data from the TriNetX network, which comprised over 100 million patients from 89 health care organizations. We compared patients exposed to estrogen and progesterone analogs to those exposed to progesterone-only therapy, using 1:1 propensity score matching based on age, ethnicity, and additional criteria. The primary outcomes were incidences of various autoimmune conditions. RESULTS We included 3,338,925 patients in the group who received estrogen and progesterone and 2,090,758 patients in the group who received progesterone only. Prematching, the group who received combined therapy showed increased risks for Sjögren disease (risk ratio [RR] 1.46), rheumatoid arthritis (RR 1.1), and other autoimmune conditions. Postmatching, significant associations persisted for most conditions, with increased risks for systemic sclerosis, systemic lupus erythematosus, giant cell arteritis, Behcet disease, psoriatic arthritis, reactive arthritis, and ankylosing spondylitis. The group who received combination therapy appeared to have lower risks of developing antiphospholipid syndrome (RR 0.7). CONCLUSION Combined estrogen and progesterone therapy is associated with an increased risk of several autoimmune conditions. The role of estrogen, despite its protective effects against some conditions, underscores the complex interplay of sex hormones in autoimmunity. Further prospective studies are needed to elucidate underlying mechanisms and evaluate causality.
Collapse
Affiliation(s)
| | | | | | - Diego Lema
- Jefferson Einstein HospitalPhiladelphiaPennsylvania
| | - M. Carolina Musri
- Johns Hopkins Bayview Medical Center and Johns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreMaryland
| | | | - Arthur Lau
- Jefferson Einstein HospitalPhiladelphiaPennsylvania
| |
Collapse
|
2
|
Subramani K, Huang HS, Chen PC, Ding DC, Chu TY. Ovulation sources ROS to confer mutagenic activities on the TP53 gene in the fallopian tube epithelium. Neoplasia 2025; 59:101085. [PMID: 39637685 DOI: 10.1016/j.neo.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination. METHODS The mutagenic activity of FF toward premalignant and malignant FTE cells was determined using the hypoxanthine phosphoribosyl transferase (HPRT) mutation assay with or without AID knockdown. The sequential activation of AID, including expressional induction, nuclear localization, DNA binding, and deamination, was determined. AID inducers in FF were identified, and the times of action and signaling pathways were determined. RESULTS FF induced AID activation and de novo FTE cell mutagenesis in two waves of activity in accordance with post-ovulation FF exposure. The ERK-mediated early activity started at 2 min and peaked at 45 min, and the NF-κB-mediated late activity started at 6 h and peaked at 8.5 h after exposure. ROS, TNF-α, and estradiol, which are abundant in FF, all induced the two activities, while all activities were abolished by antioxidant cotreatment. AID physically bound to and biochemically deaminated the TP53 gene, regardless of known mutational hotspots. It did not act on other prevalent tumor-suppressor genes of HGSC. CONCLUSION This study revealed the ROS-dependent AID-mediated mutagenic activity of the ovulatory FF. The results filled up the missing link between ovulation and the initial TP53 mutation and invited a strategy of antioxidation in prevention of HGSC.
Collapse
Affiliation(s)
- Kanchana Subramani
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC.
| |
Collapse
|
3
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
4
|
Tchalla EYI, Betadpur A, Khalil AY, Bhalla M, Bou Ghanem EN. Sex-based difference in immune responses and efficacy of the pneumococcal conjugate vaccine. J Leukoc Biol 2024; 117:qiae177. [PMID: 39141715 PMCID: PMC11684992 DOI: 10.1093/jleuko/qiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024] Open
Abstract
Vaccine-mediated protection and susceptibility to Streptococcus pneumoniae (pneumococcus) infections are influenced by biological sex. The incidence of invasive pneumococcal disease remains higher in males compared to females even after the introduction of the pneumococcal conjugate vaccine. However, sex-based differences in the immune response to this conjugate vaccine remain unexplored. To investigate those differences, we vaccinated adult male and female mice with pneumococcal conjugate vaccine and assessed cellular and humoral immune responses. Compared to females, male mice displayed lower levels of T follicular helper cells, germinal center B cells, and plasmablasts, which are all required for antibody production following vaccination. This was linked to lower IgG and IgM levels against pneumococci and lower isotype switching to IgG3 in vaccinated males. Due to lower antibody levels, sera of vaccinated male mice had lower efficacy in several anti-pneumococcal functions, including neutralization of bacterial binding to pulmonary epithelial cells as well as direct cytotoxicity against S. pneumoniae. Importantly, while the vaccine was highly protective in females, vaccinated males succumbed to infection more readily and were more susceptible to both lung-localized infection and systemic spread following S. pneumoniae challenge. These findings identify sex-based differences in immune responses to pneumococcal conjugate vaccine that can inform future vaccine strategies.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Anagha Betadpur
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Andrew Y Khalil
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| |
Collapse
|
5
|
Quach TC, Miglis MG, Tian L, Bonilla H, Yang PC, Grossman L, Paleru A, Xin V, Tiwari A, Shafer RW, Geng LN. Post-COVID-19 Vaccination and Long COVID: Insights from Patient-Reported Data. Vaccines (Basel) 2024; 12:1427. [PMID: 39772087 PMCID: PMC11728565 DOI: 10.3390/vaccines12121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION COVID-19 vaccinations reduce the severity and number of symptoms for acute SARS-CoV-2 infections and may reduce the risk of developing Long COVID, also known as post-acute sequelae of SARS-CoV-2 (PASC). Limited and heterogenous data exist on how these vaccinations received after COVID-19 infection might impact the symptoms and trajectory of PASC, once persistent symptoms have developed. METHODS We investigated the association of post-COVID-19 vaccination with any SARS-CoV-2 vaccine(s) on PASC symptoms in two independent cohorts: a retrospective chart review of self-reported data from patients (n = 128) with PASC seen in the Stanford PASC Clinic between May 2021 and May 2022 and a 2023 multinational survey assessment of individuals with PASC (n = 484). FINDINGS Within the PASC Clinic patient cohort (n = 128), 58.6% (n = 75) were female, and 41.4% (n = 53) were male; 50% (n = 64) were white, and 38.3% (n = 49) were non-white. A total of 60.2% (n = 77) of PASC Clinic patients reported no change in their PASC symptoms after vaccination, 17.2% (n = 22) reported improved symptoms, and 22.7% (n = 29) reported worsened symptoms. In the multinational survey cohort (n = 484), 380 were from the U.S., and 104 were from outside the U.S.; 88.4% (n = 428) were female, and 11.6% (n = 56) were male; and 88.8% (n = 430) were white, and 11.2% (n = 54) were non-white. The distribution of survey self-reported vaccine effects on PASC symptoms was 20.2% worsened (n = 98), 60.5% no effect (n = 293), and 19.2% improved (n = 93). In both cohorts, demographic features, including age, sex, and race/ethnicity, were not significantly associated with post-vaccination PASC symptom changes. There was also a non-significant difference in the median dates of COVID-19 infection among the different outcomes. BMI was significant for symptom improvement (p = 0.026) in the PASC Clinic cohort, while a history of booster doses was significant for symptom improvement (p < 0.001) in the survey cohort. CONCLUSIONS Most individuals with PASC did not report significant changes in their overall PASC symptoms following COVID-19 vaccinations received after PASC onset. Further research is needed to better understand the relationship between COVID-19 vaccinations and PASC.
Collapse
Affiliation(s)
- Tom C. Quach
- Stanford University School of Medicine, Stanford, CA 94305, USA; (T.C.Q.)
| | - Mitchell G. Miglis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Phillip C. Yang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren Grossman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amogha Paleru
- Stanford University School of Medicine, Stanford, CA 94305, USA; (T.C.Q.)
| | - Vincent Xin
- Stanford University School of Medicine, Stanford, CA 94305, USA; (T.C.Q.)
| | - Anushri Tiwari
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert W. Shafer
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linda N. Geng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Liu JC, Zeng Q, Duan YG, Yeung WSB, Li RHW, Ng EHY, Cheung KW, Zhang Q, Chiu PCN. B cells: roles in physiology and pathology of pregnancy. Front Immunol 2024; 15:1456171. [PMID: 39434884 PMCID: PMC11491347 DOI: 10.3389/fimmu.2024.1456171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
B cells constitute a diverse and adaptable immune cell population with functions that can vary according to the environment and circumstances. The involvement of B cells in pregnancy, as well as the associated molecular pathways, has yet to be investigated. This review consolidates current knowledge on B cell activities and regulation during pregnancy, with a particular focus on the roles of various B cell subsets and the effects of B cell-derived factors on pregnancy outcomes. Moreover, the review examines the significance of B cell-associated autoantibodies, cytokines, and signaling pathways in relation to pregnancy complications such as pregnancy loss, preeclampsia, and preterm birth.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qunxiong Zeng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Fairweather D, Beetler DJ, McCabe EJ, Lieberman SM. Mechanisms underlying sex differences in autoimmunity. J Clin Invest 2024; 134:e180076. [PMID: 39286970 PMCID: PMC11405048 DOI: 10.1172/jci180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott M Lieberman
- Division of Rheumatology, Allergy, and Immunology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Chupp DP, Rivera CE, Zhou Y, Xu Y, Ramsey PS, Xu Z, Zan H, Casali P. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat Immunol 2024; 25:1489-1506. [PMID: 38918608 PMCID: PMC11291283 DOI: 10.1038/s41590-024-01880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Humanized mice are limited in terms of modeling human immunity, particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated, genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells, followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system, including marginal zone B cells, germinal center B cells, follicular helper T cells and neutrophils, and develop well-formed lymph nodes and intestinal lymphoid tissue, including Peyer's patches, and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses, entailing somatic hypermutation, class-switch recombination, and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination, THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain, with blood incretion of human cytokines, including APRIL, BAFF, TGF-β, IL-4 and IFN-γ, all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses, THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel P Chupp
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Invivyd, Waltham, MA, USA
| | - Carlos E Rivera
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yulai Zhou
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yijiang Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Patrick S Ramsey
- Department of Obstetrics & Gynecology, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Zhenming Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Hong Zan
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Prellis Biologics, Berkeley, CA, USA
| | - Paolo Casali
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Long School of Medicine, San Antonio, TX, USA.
| |
Collapse
|
9
|
Logel SN, Maru J, Whitehead J, Brady C, Walch A, Lasarev M, Rehm JL, Millington K. Higher Rates of Certain Autoimmune Diseases in Transgender and Gender Diverse Youth. Transgend Health 2024; 9:197-204. [PMID: 39109261 PMCID: PMC11299103 DOI: 10.1089/trgh.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Purpose The objective of this study is to determine the prevalence of certain autoimmune diseases in transgender and gender diverse (TGD) youth. Methods A multicenter, retrospective analysis was conducted from January 2013 to January 2019 of youth ≤26 years of age with concurrent diagnoses of gender dysphoria (GD) and at least one of the studied autoimmune diseases. Prevalence rates were calculated and compared to previously reported rates. Statistical significance was determined using second generation p-values as pooled estimates of prevalence rates across study sites compared to a range of rates reported in the literature. Results During the study period, 128 of 3812 (3.4%) youth evaluated for GD had a concurrent diagnosis of at least one of the studied autoimmune diseases. Three autoimmune diseases had prevalence rates significantly higher than those previously documented in the literature (second generation p-value=0.000): type 1 diabetes mellitus (112.8/10,000, 95% confidence interval [CI]: 83.8-151.8), systemic lupus erythematosus (13.1/10,000, 95% CI: 5.5-31.5), and Graves' disease (12.3/10,000, 95% CI: 4.0-38.4). Conclusion There is an increased prevalence of certain autoimmune diseases in youth who identify as TGD presenting for subspecialty care. Limitations such as retrospective study design, selection bias, and reliance on electronic medical records make it difficult to draw wide-reaching conclusions about these findings. This study highlights the need for more research to delineate the impacts of unrecognized or untreated GD on autoimmune disease development and control.
Collapse
Affiliation(s)
- Santhi N Logel
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Johsias Maru
- Division of Pediatric Endocrinology, Department of Pediatrics, Benioff Children's Hospitals, University of California San Francisco, San Francisco, California, USA
| | - Jax Whitehead
- Division of Endocrinology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cassandra Brady
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt University, Nashville, Tennessee, USA
| | - Abby Walch
- Division of Pediatric Endocrinology, Department of Pediatrics, Benioff Children's Hospitals, University of California San Francisco, San Francisco, California, USA
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jennifer L Rehm
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kate Millington
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol 2024; 15:1385501. [PMID: 38680484 PMCID: PMC11045971 DOI: 10.3389/fimmu.2024.1385501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The development of B cells into antibody-secreting plasma cells is central to the adaptive immune system as they induce protective and specific antibody responses against invading pathogens. Various studies have shown that, during this process, hormones can play important roles in the lymphopoiesis, activation, proliferation, and differentiation of B cells, and depending on the signal given by the receptor of each hormone, they can have a positive or negative effect. In autoimmune diseases, hormonal deregulation has been reported to be related to the survival, activation and/or differentiation of autoreactive clones of B cells, thus promoting the development of autoimmunity. Clinical manifestations of autoimmune diseases have been associated with estrogens, prolactin (PRL), and growth hormone (GH) levels. However, androgens, such as testosterone and progesterone (P4), could have a protective effect. The objective of this review is to highlight the links between different hormones and the immune response mediated by B cells in the etiopathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected provide insights into the role of hormones in the cellular, molecular and/or epigenetic mechanisms that modulate the B-cell response in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico
| |
Collapse
|
11
|
Mori M, Doi T, Murata M, Moriyama Y, Akino K, Moriyama T, Maekawa T, Doi N. Impact of Nutritional Status on Antibody Titer After Booster mRNA COVID-19 Vaccine Among Elderly Adults in Japan. J Infect Dis 2024; 229:1035-1040. [PMID: 37962870 DOI: 10.1093/infdis/jiad495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Published studies on mRNA coronavirus disease 2019 (COVID-19) vaccine effects focus on younger individuals, comprising the majority of the workforce. Studies in elderly adults are sparse. METHODS In total, 107 subjects were recruited (median age 78; interquartile range [IQR], 58.5-90.5; range, 35-105 years). Factors associated with antibody titer after the third mRNA COVID-19 vaccination were compared between 49 elderly (age ≥80; median, 94; IQR, 86-97; range, 80-105 years) and 58 younger (age ≤79; median, 61; IQR, 46-71; range, 35-79 years) adults. RESULTS Among body mass index (BMI) categories, the group of underweight elderly adults had a lower antibody titer compared to those with normal weight (P < .01 after 1, 3, and 5 months). Elderly adults were less likely to maintain effective antibody titer (≥4160 AU/mL) compared to younger adults: 76% versus 98%, P < .001 after 1 month, and 45% versus 78%, P < .001 after 3 months. Elderly adults who maintained effective antibody titer for 5 months had a higher BMI (22.9 kg/m2 vs 20.1 kg/m2, P = .02), and were less likely to have underweight BMI (0% vs 31%, P = .02) compared to the subjects who failed to maintain effective antibody titer. CONCLUSIONS These results highlight the impact of nutritional status and the deleterious effect of underweight BMI on antibody titer and its maintenance among elderly adults following booster mRNA COVID-19 vaccination.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Internal Medicine, Sasebo Memorial Hospital, Nagasaki, Japan
| | - Takashi Doi
- Department of Rehabilitation, Yourouikuseikai, Nagasaki, Japan
| | - Miho Murata
- Department of Nursing, Yourouikuseikai, Nagasaki, Japan
| | | | | | | | - Takafumi Maekawa
- Department of Surgery, Sasebo Memorial Hospital, Nagasaki, Japan
- Department of Surgery, Fukuoka Central Hospital, Fukuoka, Japan
| | - Nobumasa Doi
- Department of Internal Medicine, Yourouikuseikai, Nagasaki, Japan
| |
Collapse
|
12
|
Dhakal S, Park HS, Seddu K, Lee JS, Creisher PS, Seibert B, Davis KM, Hernandez IR, Maul RW, Klein SL. Estradiol mediates greater germinal center responses to influenza vaccination in female than male mice. mBio 2024; 15:e0032624. [PMID: 38441028 PMCID: PMC11005424 DOI: 10.1128/mbio.00326-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Adult females of reproductive age develop greater antibody responses to inactivated influenza vaccines (IIV) than males. How sex, age, and sex steroid concentrations impact B cells and durability of IIV-induced immunity and protection over 4 months post-vaccination (mpv) was analyzed. Vaccinated adult females had greater germinal center B cell and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, regardless of sex, had reduced B cell frequencies, less durable antibody responses, and inferior protection after challenge than adult mice, which correlated with diminished estradiol among aged females. To confirm that greater IIV-induced immunity was caused by sex hormones, four core genotype (FCG) mice were used, in which the testes-determining gene, Sry, was deleted from chromosome Y (ChrY) and transferred to Chr3 to separate gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish that lower estradiol concentrations cause diminished immunity, adult and aged females received either a placebo or estradiol replacement therapy prior to IIV. Estradiol replacement significantly increased IIV-induced antibody responses and reduced morbidity after the H1N1 challenge among aged females. These data highlight that estradiol is a targetable mechanism mediating greater humoral immunity following vaccination among adult females.IMPORTANCEFemales of reproductive ages develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection against influenza were mediated by estradiol signaling in B cells. Using diverse mouse models ranging from advanced-age mice to transgenic mice that separate sex steroids from sex chromosome complement, those mice with greater concentrations of estradiol consistently had greater numbers of antibody-producing B cells in lymphoid tissue, higher antiviral antibody titers, and greater protection against live influenza virus challenge. Treatment of aged female mice with estradiol enhanced vaccine-induced immunity and protection against disease, suggesting that estradiol signaling in B cells is critical for improved vaccine outcomes in females.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John S. Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brittany Seibert
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Isabella R. Hernandez
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Nicolini A, Ferrari P, Silvestri R, Gemignani F. The breast cancer tumor microenvironment and precision medicine: immunogenicity and conditions favoring response to immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:14-24. [PMID: 39036381 PMCID: PMC11256721 DOI: 10.1016/j.jncc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 07/23/2024] Open
Abstract
Some main recent researches that have dissected tumor microenvironment (TME) by imaging mass cytometry (IMC) in different subtypes of primary breast cancer samples were considered. The many phenotypic variants, clusters of epithelial tumor and immune cells, their structural features as well as the main genetic aberrations, sub-clonal heterogeneity and their systematic classification also have been examined. Mutational evolution has been assessed in primary and metastatic breast cancer samples. Overall, based on these findings the current concept of precision medicine is questioned and challenged by alternative therapeutic strategies. In the last two decades, immunotherapy as a powerful and harmless tool to fight cancer has received huge attention. Thus, the tumor immune microenvironment (TIME) composition, its prognostic role for clinical course as well as a novel definition of immunogenicity in breast cancer are proposed. Investigational clinical trials carried out by us and other findings suggest that G0-G1 state induced in endocrine-dependent metastatic breast cancer is more suitable for successful immune manipulation. Residual micro-metastatic disease seems to be another specific condition that can significantly favor the immune response in breast and other solid tumors.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
14
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. Risks and outcomes of pregnancy in neuromyelitis optica spectrum disorder: A comprehensive review. Autoimmun Rev 2024; 23:103499. [PMID: 38061621 DOI: 10.1016/j.autrev.2023.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 04/30/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare central nervous system autoimmune disease. Aquaporin-4 antibody (AQP4-IgG) is present in over 75% of cases and criteria also exist for the diagnosis of seronegative NMOSD. AQP4-IgG NMOSD has a strong female predominance (9:1 ratio), with a median onset age of 40 years. Pregnancy in those with NMOSD is therefore an important topic. Fecundity in NMOSD is likely impaired, and for females who conceive, obstetric complications including miscarriages and pre-eclampsia are significantly higher in NMOSD compared to the general population and in related conditions such as multiple sclerosis (MS). In contrast to MS, NMOSD disease activity does not subside during pregnancy. Also, relapse risk substantially rises above pre-pregnancy rates in the early postpartum period. In view of the evolving landscape of NMOSD, we provide a contemporary update of the impacts of pregnancy in NMOSD.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Safitri IA, Sugijo Y, Puspasari F, Masduki FF, Ihsanawati, Giri-Rachman EA, Artarini AA, Tan MI, Natalia D. Immunogenicity studies of recombinant RBD SARS-CoV-2 as a COVID-19 vaccine candidate produced in Escherichia coli. Vaccine X 2024; 16:100443. [PMID: 38304876 PMCID: PMC10832452 DOI: 10.1016/j.jvacx.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 -related global COVID-19 pandemic has been impacting millions of people since its outbreak in 2020. COVID-19 vaccination has proven highly efficient in reducing illness severity and preventing infection-related fatalities. The World Health Organization has granted emergency use approval to multiple, including protein subunit technology-based, COVID-19 vaccines. Foreseeably, additional COVID-19 subunit vaccine development would be essential to meet the accessible and growing demand for effective vaccines, especially for Low-Middle-Income Countries (LMIC). The SARS-CoV-2 spike protein receptor binding domain (RBD), as the primary target for neutralizing antibodies, holds significant potential for future COVID-19 subunit vaccine development. In this study, we developed a recombinant Escherichia coli-expressed RBD (rRBD) as a vaccine candidate and evaluated its immunogenicity and preliminary toxicity in BALB/c mice. The rRBD induced humoral immune response from day 7 post-vaccination and, following the booster doses, the IgG levels increased dramatically in mice. Interestingly, our vaccine candidate also significantly induced cellular immune response, indicated by the incrased IFN-ɣ-producing cell numbers. We observed no adverse effect or local reactogenicity either in control or treated mice. Taken together, our discoveries could potentially support efficient and cost-effective vaccine antigen production, from which LMICs could particularly benefit.
Collapse
Affiliation(s)
- Intan Aghniya Safitri
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
| | - Yovin Sugijo
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Fernita Puspasari
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Fifi Fitriyah Masduki
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Ihsanawati
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Aluicia Anita Artarini
- Pharmaceutical Biotechnology Laboratory, Pharmaceutics Department, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Marselina Irasonia Tan
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Dessy Natalia
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
16
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
Yuk JS, Seo YS, Im YH, Kim JH. Menopausal hormone therapy and risk of seropositive rheumatoid arthritis: A nationwide cohort study in Korea. Semin Arthritis Rheum 2023; 63:152280. [PMID: 37857046 DOI: 10.1016/j.semarthrit.2023.152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES This retrospective cohort study aimed to investigate the impact of menopausal hormone therapy (MHT) on the incidence of rheumatoid arthritis (RA) in postmenopausal women and to examine the effects of each specific MHT drug. METHODS In this Korean population-based cohort study, 452,124 women aged > 40 years who consulted a healthcare provider for menopause were evaluated from January 1, 2011, to December 31, 2014. After propensity score matching, 138,991 pairs were included in the MHT and non-MHT groups. Participants were followed up until December 31, 2020. RA was defined according to the International Classification of Diseases, 10th edition, limited to seropositive RA (M05). RESULTS RA developed in 567 (0.4 %) of the 138,424 patients in the MHT group. The RA risk in the MHT group was not significantly increased compared with that of controls (hazard ratio [HR] 1.12, 95 % confidence interval [CI] 0.998-1.256). However, MHT use for ≤ 3 years was associated with an increased risk of RA (HR 1.277, 95 % CI 1.127-1.447). When estrogen/progestogen was used, the HR was 1.24 (95 % CI 1.05-1.46), whereas when tibolone was used, the HR was 1.33 (95 % CI 1.13-1.57). CONCLUSION The use of MHT did not show a significant impact on the development of RA in postmenopausal women. However, a subanalysis that specifically examined the duration of MHT revealed a noteworthy increase in the risk of RA during the initial 3 years of MHT use.
Collapse
Affiliation(s)
- Jin-Sung Yuk
- Department of Obstetrics and Gynecology, School of Medicine, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Yong-Soo Seo
- Department of Obstetrics and Gynecology, School of Medicine, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Yo Han Im
- Department of Internal Medicine, Chungbuk National University Hospital, 776, 1 Sunhwan-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea
| | - Ji Hyoun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, 776, 1 Sunhwan-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea.
| |
Collapse
|
18
|
Dhakal S, Park HS, Seddu K, Lee J, Creisher PS, Davis KM, Hernandez IR, Maul RW, Klein SL. Estradiol Mediates Greater Germinal Center Responses to Influenza Vaccination in Female than Male Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568847. [PMID: 38077071 PMCID: PMC10705292 DOI: 10.1101/2023.11.27.568847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Adult females of reproductive ages develop greater antibody responses to inactivated influenza vaccine (IIV) than males. How sex, age, and sex steroid changes impact B cells and durability of IIV-induced immunity and protection over 4-months post-vaccination (mpv) was analyzed. Vaccinated adult females had greater germinal center (GC) B cell and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, regardless of sex, had reduced B cell frequencies, less durable antibody responses, and inferior protection after challenge than adult mice, which correlated with diminished estradiol among aged females. To confirm that greater IIV-induced immunity was caused by sex hormones, four core genotype (FCG) mice were used, in which the testes determining gene, Sry, was deleted from ChrY and transferred to Chr3, to separate gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish that lower estradiol concentrations cause diminished immunity, adult and aged females received either a placebo or estradiol replacement therapy prior to IIV. Estradiol replacement significantly increased IIV-induced antibody responses and reduced morbidity after the H1N1 challenge among aged females. These data highlight that estradiol is a targetable mechanism mediating greater humoral immunity following vaccination among adult females.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Isabella R. Hernandez
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Mori M, Yokoyama A, Shichida A, Sasuga K, Maekawa T, Moriyama T. Impact of sex and age on vaccine-related side effects and their progression after booster mRNA COVID-19 vaccine. Sci Rep 2023; 13:19328. [PMID: 37935801 PMCID: PMC10630308 DOI: 10.1038/s41598-023-46823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
In mRNA COVID-19 vaccination, side effects after the first and second dose have been well reported. However, studies about side effects after booster vaccine are sparse. 272 healthcare workers who received the third mRNA COVID-19 vaccine were recruited, and impact of sex, age, and symptoms on the side effect progression was statistically analyzed. Females and younger adults had a higher frequencies of general fatigue, headache, joint pain, chills and axillary pain compared to males and elderly adults, respectively. In longitudinal analysis, prolonged time to recovery from side effects was found among females and younger adults. Finally, between the third and second dose vaccinations, 52% of subjects had a longer duration of side effects following the third vaccine compared to the second, and joint pain was the culprit symptom related to the prolonged duration of side effects. Following the second vaccine dose, 25% of subjects had a longer duration of side effects and asthma and ear fullness, which exacerbated the underlying allergic condition, and COVID arm symptom were the culprit symptoms. These highlight the impact of sex, age, and culprit symptoms on the progress of side effects following the booster mRNA COVID-19 vaccine.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Internal Medicine, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan.
| | - Aiko Yokoyama
- Regional medical cooperation office, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| | - Ayami Shichida
- Medical Administration Division, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| | - Kimiko Sasuga
- Department of Medical Information, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| | - Takafumi Maekawa
- Department of Surgery, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
- Department of Surgery, Fukuoka Central Hospital, Fukuoka, Fukuoka, 810-0022, Japan
| | - Tadayoshi Moriyama
- Department of Neurosurgery, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| |
Collapse
|
21
|
Kopp CR, Prasad CB, Naidu S, Sharma V, Misra DP, Agarwal V, Sharma A. Overlap syndrome of anti-aquaporin-4 positive neuromyelitis optica spectrum disorder and systemic lupus erythematosus: A systematic review of individual patient data. Lupus 2023; 32:1164-1172. [PMID: 37487596 DOI: 10.1177/09612033231191180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
BACKGROUND Neurological involvement can occur in systemic lupus erythematosus (SLE) due to co-existing neuromyelitis optica spectrum disorder (NMOSD). The symptoms can mimic those of neuropsychiatric manifestations of SLE. Pathogenic anti-aquaporin-4 (AQP4) antibodies, commonly found in NMOSD, are responsible for the neuroinflammatory response and secondary demyelinating lesions. These anti-AQP4 antibodies can be the drivers of neuroinflammatory process in SLE patients, which is distinct from the immunopathogenesis seen in traditional neuropsychiatric SLE. The clinical course is often a relapsing one and is managed differently. In this review, we describe and outline the clinical course and outcomes of AQP4+ NMOSD/SLE overlap cases. METHODS To investigate the co-existence of SLE with AQP4+NMOSD, we conducted a systematic review of individual patient data from case reports and case series reported in major databases. The study extracted clinic-demographic features, imaging and laboratory profiles, treatment approaches, and outcomes of these patients. Inclusion criteria for the review required patients to have positivity for AQP4 or NMO in the blood and/or cerebrospinal fluid (CSF) and exhibit at least one manifestation of both NMOSD and SLE. RESULTS In this overlap between SLE and AQP4+NMOSD, a high female preponderance was observed, with 42 out of 46 patients (91.3%) being female. Nearly half of the NMOSD cases (47.8%) had onset after lupus, with a median of 5 years between the two diagnoses. Hematological manifestations were seen in the majority of patients (63%), as well as longitudinally extensive transverse myelitis (87%), and brainstem involvement on imaging (29.6%). Cerebrospinal fluid analysis showed a dominantly lymphocytic pleocytosis, with oligoclonal bands being reported scarcely. Although cyclophosphamide was the most common steroid sparing agent used for maintenance, robust evidence for both efficacy and safety in AQP4+NMOSD is available for mycophenolate mofetil, azathioprine, and rituximab. The majority of reported cases showed a relapsing course, while one patient had a monophasic course. CONCLUSION AQP4+NMOSD in SLE patients is a relapsing and neurologically disabling disorder that can mimic neuropsychiatric manifestations, frequently occurs after the onset of lupus or may predate, responds to immunosuppressants, and necessitates indefinite treatment.
Collapse
Affiliation(s)
- Chirag Rajkumar Kopp
- Clinical Immunology and Rheumatology Division, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandra Bhushan Prasad
- Clinical Immunology and Rheumatology Division, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shankar Naidu
- Clinical Immunology and Rheumatology Division, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Sharma
- Department of Adult Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vikas Agarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Division, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
23
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
24
|
Rane JK, Frankell AM, Weeden CE, Swanton C. Clonal Evolution in Healthy and Premalignant Tissues: Implications for Early Cancer Interception Strategies. Cancer Prev Res (Phila) 2023; 16:369-378. [PMID: 36930945 PMCID: PMC7614725 DOI: 10.1158/1940-6207.capr-22-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Histologically normal human tissues accumulate significant mutational burden with age. The extent and spectra of mutagenesis are comparable both in rapidly proliferating and post-mitotic tissues and in stem cells compared with their differentiated progeny. Some of these mutations provide increased fitness, giving rise to clones which, at times, can replace the entire surface area of tissues. Compared with cancer, somatic mutations in histologically normal tissues are primarily single-nucleotide variations. Interestingly though, the presence of these mutations and positive clonal selection in isolation remains a poor indicator of potential future cancer transformation in solid tissues. Common clonally expanded mutations in histologically normal tissues also do not always represent the most frequent early mutations in cancers of corresponding tissues, indicating differences in selection pressures. Preliminary evidence implies that stroma and immune system co-evolve with age, which may impact selection dynamics. In this review, we will explore the mutational landscape of histologically normal and premalignant human somatic tissues in detail and discuss cell-intrinsic and environmental factors that can determine the fate of positively selected mutations within them. Precisely pinpointing these determinants of cancer transformation would aid development of early cancer interventional and prevention strategies.
Collapse
Affiliation(s)
- Jayant K. Rane
- University College London Cancer Institute, London, UK
- Department of Clinical Oncology, University College London Hospitals, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alexander M. Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare E. Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| |
Collapse
|
25
|
Campochiaro C, Hoffmann-Vold AM, Avouac J, Henes J, de Vries-Bouwstra J, Smith V, Siegert E, Airò P, Oksel F, Pellerito R, Vanthuyne M, Pozzi MR, Inanc M, Sibilia J, Gabrielli A, Distler O, Allanore Y. Sex influence on outcomes of patients with systemic sclerosis-associated interstitial lung disease: a EUSTAR database analysis. Rheumatology (Oxford) 2023; 62:2483-2491. [PMID: 36413079 DOI: 10.1093/rheumatology/keac660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Interstitial lung disease (ILD) is the leading cause of morbidity and mortality in systemic sclerosis (SSc) patients. We aimed to investigate the impact of sex on SSc-ILD. METHODS EUSTAR SSc patients with radiologically confirmed ILD and available percentage predicted forced vital capacity (%pFVC) were included. Demographics and disease features were recorded. A change in %pFVC over 12 months (s.d. 6) (cohort 1) was classified into stable (≤4%), mild (5-9%) and large progression (≥10%). In those with 2-year longitudinal %pFVC (cohort 2), the %pFVC change at each 12-month (s.d. 6) interval was calculated. Logistic regression analyses [odds ratio (OR) and 95% CI] and Cox proportional hazards models adjusted for age and %pFVC were applied. RESULTS A total of 1136 male and 5253 female SSc-ILD patients were identified. Males were significantly younger, had a shorter disease duration, had a higher prevalence of CRP elevation and frequently had diffuse cutaneous involvement. In cohort 1 (1655 females and 390 males), a higher percentage of males had stable ILD (74.4% vs 69.4%, P = 0.056). In multivariable analysis, disease duration and %pFVC [OR 0.99 (95% CI 0.98, 0.99) and OR 0.97 (95% CI 0.95, 0.99), respectively] in males and age, %pFVC and anti-centromere [OR 1.02 (95% CI 1.00, 1.04), OR 0.97 (95% CI 0.96, 0.98) and OR 0.39 (95% CI 0.245, 0.63), respectively] in females were associated with large progression. The 1-year mortality rate was higher in males (5.1% vs 2.5%, P = 0.013). In cohort 2 (849 females and 209 males), a higher percentage of females showed periods of large progression (11.7% vs 7.7%, P = 0.023), the percentage of patients with none, one or two periods of worsening was not different. The overall death rate was 30.9% for males and 20.4% in females (P < 0.001). In the survival analysis, male sex was a predictor of mortality [OR 1.95 (95% CI 1.66, 2.28)]. CONCLUSIONS Male SSc-ILD patients have a poorer prognosis and sex-specific predictors exist in SSc-ILD.
Collapse
Affiliation(s)
- Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Jerome Avouac
- Service de Rheumatologie, Cochin Hospital, APHP, Universite Paris Descartes, Paris, France
| | - Jörg Henes
- Centre for Interdisciplinary Clinical Immunology, Rheumatology and Auto-Inflammatory Diseases and Department of Internal Medicine II (Haematology, Oncology, Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | | | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Paolo Airò
- Rheumatology and Clinical Immunology Department, Spedali Civili, Brescia, Italy
| | - Fahrettin Oksel
- Department of Internal Medicine, Division of Rheumatology, Ege University, Faculty of Medicine, Izmir, Turkey
| | | | - Marie Vanthuyne
- Department of Rheumatology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Murat Inanc
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jean Sibilia
- Service de Rheumatologie, RESO: Centre de Reference des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpital De Hautepierre, Strasbourg, France
| | - Armando Gabrielli
- Department of Clinical and Molecular Sciences, Universita' Politecnica Delle Marche, Ancona, Italy
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yannick Allanore
- Service de Rheumatologie, Cochin Hospital, APHP, Universite Paris Descartes, Paris, France
| |
Collapse
|
26
|
Harden S, Tan TY, Ku CW, Zhou J, Chen Q, Chan JKY, Brosens J, Lee YH. Peritoneal autoantibody profiling identifies p53 as an autoantibody target in endometriosis. Fertil Steril 2023; 120:176-187. [PMID: 36828054 DOI: 10.1016/j.fertnstert.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To map the peritoneal autoantibody (AAb) landscape in women with endometriosis. DESIGN Case-control laboratory study. SETTING Academic medical and research units. PATIENT(S) Women who presented with or without endometriosis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Using native-conformation and citrullinated modified protein arrays, proteome-wide analysis of AAbs against 1,623 proteins were profiled in peritoneal fluids (PFs) of 25 women with endometriosis and 25 women without endometriosis. RESULT(S) In women with endometriosis, the median number of AAbs detected was 4, including AAbs that targeted autoantigens involved in implantation, B-cell activation/development, and aberrant migration and mitogenicity. Forty-six percent of women with endometriosis have ≥5 peritoneal AAbs. Conversely, in women without endometriosis, the median number of detected AAbs was 1. Autoantibodies recognizing tumor suppressor protein p53 were the most commonly detected AAbs, being present in 35% of women with endometriosis, and p53 AAb was associated with a monocyte/macrophage-like PF cytokine signature. Further investigation of the global reactivity of AAbs against citrullinated PF antigens by peptidylarginine deiminase enzymes 1, 2, and 6 revealed anticitrullinated p53 as the only AAb target elevated and citrullinated by all 3 peptidylarginine deiminase isotypes. Furthermore, unsupervised hierarchical clustering and integrative pathway analysis revealed that 60% of women with endometriosis-associated infertility were positive for AAbs, which are involved in platelet-derived growth factor, transforming growth factor-β, RAC1/PAK1/p38/MMP2 signaling, LAT2/NTAL/LAB-mediated calcium mobilization, and integrin-mediated cell adhesion. CONCLUSION(S) Together, our data identify peritoneal autoimmunity in a significant subset of women with endometriosis, with implications on infertility and disease pathophysiology. In these patients, p53 was identified as the most frequent PF AAb target, which was present in both the native and citrullinated forms.
Collapse
Affiliation(s)
- Sarah Harden
- Critical Analytics for Manufacturing Precision Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tse Yeun Tan
- Department of Reproductive Medicine, KKH, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wai Ku
- Department of Reproductive Medicine, KKH, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jieliang Zhou
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KKH, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, United Kingdom; Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Precision Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore; KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
27
|
Gliniewicz K, Kluźniak W, Wokołorczyk D, Huzarski T, Stempa K, Rudnicka H, Jakubowska A, Szwiec M, Jarkiewicz-Tretyn J, Naczk M, Kluz T, Dębniak T, Gronwald J, Lubiński J, Narod SA, Akbari MR, Cybulski C. The APOBEC3B c.783delG Truncating Mutation Is Not Associated with an Increased Risk of Breast Cancer in the Polish Population. Genes (Basel) 2023; 14:1329. [PMID: 37510234 PMCID: PMC10379723 DOI: 10.3390/genes14071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The APOBEC3B gene belongs to a cluster of DNA-editing enzymes on chromosome 22 and encodes an activation-induced cytidine deaminase. A large deletion of APOBEC3B was associated with increased breast cancer risk, but the evidence is inconclusive. To investigate whether or not APOBEC3B is a breast cancer susceptibility gene, we sequenced this gene in 617 Polish patients with hereditary breast cancer. We detected a single recurrent truncating mutation (c.783delG, p.Val262Phefs) in four of the 617 (0.65%) hereditary cases by sequencing. We then genotyped an additional 12,484 women with unselected breast cancer and 3740 cancer-free women for the c.783delG mutation. The APOBEC3B c.783delG allele was detected in 60 (0.48%) unselected cases and 19 (0.51%) controls (OR = 0.95, 95% CI 0.56-1.59, p = 0.94). The allele was present in 8 of 1968 (0.41%) familial breast cancer patients from unselected cases (OR = 0.80, 95% CI 0.35-1.83, p = 0.74). Clinical characteristics of breast tumors in carriers of the APOBEC3B mutation and non-carriers were similar. No cancer type was more frequent in the relatives of mutation carriers than in those of non-carriers. We conclude the APOBEC3B deleterious mutation p.Val262Phefs does not confer breast cancer risk. These data do not support the hypothesis that APOBEC3B is a breast cancer susceptibility gene.
Collapse
Affiliation(s)
- Katarzyna Gliniewicz
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Tomasz Huzarski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Helena Rudnicka
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | | | - Mariusz Naczk
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Institute of Medical, Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland;
| | - Tadeusz Dębniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| | - Steven A. Narod
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5S 1B2, Canada; (S.A.N.); (M.R.A.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Mohammad R. Akbari
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5S 1B2, Canada; (S.A.N.); (M.R.A.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.G.); (W.K.); (D.W.); (T.H.); (K.S.); (H.R.); (A.J.); (T.D.); (J.G.); (J.L.)
| |
Collapse
|
28
|
Nakai M, Yokoyama D, Sato T, Sato R, Kojima C, Shimosawa T. Variation in antibody titers determined by Abbott and Roche Elecsys SARS-CoV-2 assays in vaccinated healthcare workers. Heliyon 2023; 9:e16547. [PMID: 37235203 PMCID: PMC10201891 DOI: 10.1016/j.heliyon.2023.e16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2-specific antibody measurement is important for evaluating COVID-19 vaccine efficacy. We quantified and compared anti-spike (S) antibodies using different commercial immunoassays. We tested serum samples from 70 SARS-CoV-2-naive health care workers 2 weeks after vaccination with a single dose of BNT162b2, 2 and 4 weeks, and 3 months after the second dose of BNT162b2. The following quantitative assays were used: Roche Elecsys Anti-SARS-CoV-2 S (Roche-S), Abbott SARS-CoV-2 IgG II Quant [Abbott-IgG(S)], and Abbott SARS-CoV-2 IgM (Abbott-IgM). All samples tested positive for Roche-S and Abbott-IgG antibodies after the second dose, with 83.6% Abbott-IgM positive rate. Roche-S and Abbott-IgG(S) correlated significantly in all samples (r = 0.920, p < 0.0001), and the Roche-S and Abbott-IgG(S) assay showed a strong correlation with each other at each time point after vaccination. Roche-S and Abbott-IgG(S) antibody titers were correlated with age; their rate of decline was age-dependent in males but not in females. Abbott-IgG(S) antibody titers decreased from 2 weeks after the second dose. Roche-S antibody titers peaked 2 weeks after the second dose in 76.2% of the participants; the titers recovered 3 months post-vaccination after declining at week 4 in 40.7% of the participants. The concordance between Roche-S and Abbott-IgG(S) antibody titers over time was 47.5%. Most participants presented significantly high Roche-S and Abbott-IgG(S) antibody titers after immunization. Some measurements were inconsistent with titer changes between these assays, possibly because of differences in the immunoglobulin-specificity of the kits.
Collapse
Affiliation(s)
- Miku Nakai
- Department of Clinical Laboratory, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Daisuke Yokoyama
- Department of Clinical Laboratory, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tomoaki Sato
- Department of Clinical Laboratory, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Ryohei Sato
- Department of Clinical Laboratory, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Chiari Kojima
- Department of Clinical Laboratory, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
29
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
30
|
Anesi N, Miquel CH, Laffont S, Guéry JC. The Influence of Sex Hormones and X Chromosome in Immune Responses. Curr Top Microbiol Immunol 2023; 441:21-59. [PMID: 37695424 DOI: 10.1007/978-3-031-35139-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections and cancers. Cellular targets and molecular pathways underlying sexual dimorphism in immunity have started to emerge and appeared multifactorial. It became increasingly clear that sex-linked biological factors have important impact on the development, tissue maintenance and effector function acquisition of distinct immune cell populations, thereby regulating multiple layers of innate or adaptive immunity through distinct mechanisms. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in susceptibility to autoimmune diseases and allergies, and the sex-biased responses in natural immunity and cancer.
Collapse
Affiliation(s)
- Nina Anesi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France.
- INSERM UMR1291, Centre Hospitalier Universitaire Purpan, Place du Dr. Baylac, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
31
|
Mori M, Yokoyama A, Shichida A, Sasuga K, Maekawa T, Moriyama T. Impact of Sex and Age on mRNA COVID-19 Vaccine-Related Side Effects in Japan. Microbiol Spectr 2022; 10:e0130922. [PMID: 36314943 PMCID: PMC9769945 DOI: 10.1128/spectrum.01309-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
mRNA COVID-19 vaccination was initiated worldwide in late 2020, and its efficacy has been well reported. However, studies about vaccine-related side effects are sparse. A total of 262 health care workers who received mRNA COVID-19 vaccine BNT162b2 were recruited, and their vaccine-related side effects were investigated. Impact of sex and age on the side effects was statistically analyzed. A higher number of vaccine-related side effects among females versus males was identified (median 3 versus 2, P < 0.05, after the first dose, and 5 versus 2.5, P < 0.01, after the second dose). General fatigue, headache, chills, and fever were the culprit adverse symptoms. In multivariate analysis, females had an increasing number of side effects after receiving their first (B = 0.7; 95% confidence interval [CI], 0.2 to 1.2) and second (B = 1.5; 95% CI, 0.7 to 2.2) vaccine doses compared to that of males. In age analysis, the older group (≥60 years old) had a lower number of side effects than the younger group (B = -0.5 with a 95% CI of -1.1 to -0.02 after the first vaccine dose, and B = -2.1 with a 95% CI of -2.9 to -1.2 after the second vaccine dose). Additionally, prolonged time to recovery was found among females (P = 0.003 after the first dose; P = 0.008 after the second dose). Specifically, symptoms of general fatigue, headache, itching, swelling at the injection site, and dizziness were the culprit symptoms affecting recovery time. Several cutaneous and membranous symptoms, including "COVID arm," were identified among females. These results highlight the impact of sex and age on side effects from mRNA COVID-19 vaccine and will aid in creating a safer vaccine. IMPORTANCE We demonstrate sex- and age-related impact on mRNA COVID-19 vaccine-related side effects, with a higher number and frequency of side effects and prolonged time to recovery in females compared to males and negative correlation between age and vaccine-related side effects. Identification of unique age- and sex-specific adverse symptoms will provide the opportunity to better understand the nature of sex- and age-associated immunological differences and develop safer and more efficacious vaccines.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Internal Medicine, Sasebo Memorial Hospital, Sasebo, Nagasaki, Japan
| | - Aiko Yokoyama
- Regional Medical Cooperation Office, Sasebo Memorial Hospital, Sasebo, Nagasaki, Japan
| | - Ayami Shichida
- Medical Administration Division, Sasebo Memorial Hospital, Sasebo, Nagasaki, Japan
| | - Kimiko Sasuga
- Department of Medical Information, Sasebo Memorial Hospital, Sasebo, Nagasaki, Japan
| | - Takafumi Maekawa
- Department of Surgery, Sasebo Memorial Hospital, Sasebo, Nagasaki, Japan
- Department of Surgery, Fukuoka Central Hospital, Fukuoka, Fukuoka, Japan
| | - Tadayoshi Moriyama
- Department of Neurosurgery, Sasebo Memorial Hospital, Sasebo, Nagasaki, Japan
| |
Collapse
|
32
|
He F, Furones AR, Landegren N, Fuxe J, Sarhan D. Sex dimorphism in the tumor microenvironment - From bench to bedside and back. Semin Cancer Biol 2022; 86:166-179. [PMID: 35278635 DOI: 10.1016/j.semcancer.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023]
Abstract
Cancer represents a significant cause of death and suffering in both the developed and developing countries. Key underlying issues in the mortality of cancer are delayed diagnosis and resistance to treatments. However, improvements in biomarkers represent one important step that can be taken for alleviating the suffering caused by malignancy. Precision-based medicine is promising for revolutionizing diagnostic and treatment strategies for cancer patients worldwide. Contemporary methods, including various omics and systems biology approaches, as well as advanced digital imaging and artificial intelligence, allow more accurate assessment of tumor characteristics at the patient level. As a result, treatment strategies can be specifically tailored and adapted for individual and/or groups of patients that carry certain tumor characteristics. This includes immunotherapy, which is based on characterization of the immunosuppressive tumor microenvironment (TME) and, more specifically, the presence and activity of immune cell subsets. Unfortunately, while it is increasingly clear that gender strongly affects immune regulation and response, there is a knowledge gap concerning differences in sex-specific immune responses and how these contribute to the immunosuppressive TME and the response to immunotherapy. In fact, sex dimorphism is poorly understood in cancer progression and is typically ignored in current clinical practice. In this review, we aim to survey the available literature and highlight the existing knowledge gap in order to encourage further studies that would contribute to understanding both gender-biased immunosuppression in the TME and the driver of tumor progression towards invasive and metastatic disease. The review highlights the need to include sex optimized/genderized medicine as a new concept in future medicine cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Fei He
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Department of Urology, First affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Rodgers Furones
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Tumor Immunology Department, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Nils Landegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden; Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
33
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Chromatin modifiers – Coordinators of estrogen action. Biomed Pharmacother 2022; 153:113548. [DOI: 10.1016/j.biopha.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
|
35
|
Ursin RL, Dhakal S, Liu H, Jayaraman S, Park HS, Powell HR, Sherer ML, Littlefield KE, Fink AL, Ma Z, Mueller AL, Chen AP, Seddu K, Woldetsadik YA, Gearhart PJ, Larman HB, Maul RW, Pekosz A, Klein SL. Greater Breadth of Vaccine-Induced Immunity in Females than Males Is Mediated by Increased Antibody Diversity in Germinal Center B Cells. mBio 2022; 13:e0183922. [PMID: 35856618 PMCID: PMC9426573 DOI: 10.1128/mbio.01839-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.
Collapse
Affiliation(s)
- Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sahana Jayaraman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Harrison R. Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten E. Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zexu Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alice L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison P. Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yishak A. Woldetsadik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Ho JQ, Sepand MR, Bigdelou B, Shekarian T, Esfandyarpour R, Chauhan P, Serpooshan V, Beura LK, Hutter G, Zanganeh S. The immune response to COVID-19: Does sex matter? Immunology 2022; 166:429-443. [PMID: 35470422 PMCID: PMC9111683 DOI: 10.1111/imm.13487] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented challenges worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and has a complex interaction with the immune system, including growing evidence of sex-specific differences in the immune response. Sex-disaggregated analyses of epidemiological data indicate that males experience more severe symptoms and suffer higher mortality from COVID-19 than females. Many behavioural risk factors and biological factors may contribute to the different immune response. This review examines the immune response to SARS-CoV-2 infection in the context of sex, with emphasis on potential biological mechanisms explaining differences in clinical outcomes. Understanding sex differences in the pathophysiology of SARS-CoV-2 infection will help promote the development of specific strategies to manage the disease.
Collapse
Affiliation(s)
- Jim Q. Ho
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Mohammad Reza Sepand
- Department of BioengineeringUniversity of Massachusetts DartmouthDartmouthMassachusettsUSA
| | - Banafsheh Bigdelou
- Department of BioengineeringUniversity of Massachusetts DartmouthDartmouthMassachusettsUSA
| | - Tala Shekarian
- Department of NeurosurgeryUniversity Hospital BaselBaselSwitzerland
| | - Rahim Esfandyarpour
- Department of Electrical EngineeringUniversity of California IrvineIrvineCaliforniaUSA
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCaliforniaUSA
| | - Prashant Chauhan
- Laboratory of Functional Biology of Protists, Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lalit K. Beura
- Department of Molecular Microbiology and ImmunologyBrown UniversityProvidenceRhode IslandUSA
| | - Gregor Hutter
- Department of NeurosurgeryUniversity Hospital BaselBaselSwitzerland
| | - Steven Zanganeh
- Department of BioengineeringUniversity of Massachusetts DartmouthDartmouthMassachusettsUSA
| |
Collapse
|
37
|
Raine C, Giles I. What is the impact of sex hormones on the pathogenesis of rheumatoid arthritis? Front Med (Lausanne) 2022; 9:909879. [PMID: 35935802 PMCID: PMC9354962 DOI: 10.3389/fmed.2022.909879] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease and has a female predominance of around 3:1. The relationship between sex hormones and RA has been of great interest to researchers ever since Philip Hench's observations in the 1930's regarding spontaneous disease amelioration in pregnancy. Extensive basic scientific work has demonstrated the immunomodulatory actions of sex hormones but this therapeutic potential has not to date resulted in successful clinical trials in RA. Epidemiological data regarding both endogenous and exogenous hormonal factors are inconsistent, but declining estrogen and/or progesterone levels in the menopause and post-partum appear to increase the risk and severity of RA. This review assimilates basic scientific, epidemiological and clinical trial data to provide an overview of the current understanding of the relationship between sex hormones and RA, focusing on estrogen, progesterone and androgens.
Collapse
|
38
|
Peckham H, Webb K, Rosser EC, Butler G, Ciurtin C. Gender-Diverse Inclusion in Immunological Research: Benefits to Science and Health. Front Med (Lausanne) 2022; 9:909789. [PMID: 35911383 PMCID: PMC9329564 DOI: 10.3389/fmed.2022.909789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023] Open
Abstract
The differences between male and female immune systems are an under-researched field, ripe for discovery. This is evidenced by the stark sex biases seen in autoimmunity and infectious disease. Both the sex hormones (oestrogen and testosterone), as well as the sex chromosomes have been demonstrated to impact immune responses, in multiple ways. Historical shortcomings in reporting basic and clinical scientific findings in a sex-disaggregated manner have led not only to limited discovery of disease aetiology, but to potential inaccuracies in the estimation of the effects of diseases or interventions on females and gender-diverse groups. Here we propose not only that research subjects should include both cis-gender men and cis-gender women, but also transgender and gender-diverse people alongside them. The known interaction between the hormonal milieu and the sex chromosomes is inseparable in cis-gender human research, without the confounders of puberty and age. By inclusion of those pursuing hormonal affirmation of their gender identity- the individual and interactive investigation of hormones and chromosomes is permitted. Not only does this allow for a fine-tuned dissection of these individual effects, but it allows for discovery that is both pertinent and relevant to a far wider portion of the population. There is an unmet need for detailed treatment follow-up of the transgender community- little is known of the potential benefits and risks of hormonal supplementation on the immune system, nor indeed on many other health and disease outcomes. Our research team has pioneered the inclusion of gender-diverse persons in our basic research in adolescent autoimmune rheumatic diseases. We review here the many avenues that remain unexplored, and suggest ways in which other groups and teams can broaden their horizons and invest in a future for medicine that is both fruitful and inclusive.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Centre for Rheumatology Research, University College London (UCL), London, United Kingdom
| | - Kate Webb
- Department of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth C. Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Centre for Rheumatology Research, University College London (UCL), London, United Kingdom
| | - Gary Butler
- Department of Paediatric and Adolescent Endocrinology, University College London Hospital (UCLH) and Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gender Identity Development Service (GIDS), Tavistock and Portman NHS Foundation Trust, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Centre for Rheumatology Research, University College London (UCL), London, United Kingdom
| |
Collapse
|
39
|
Rojas F, Parra ER, Wistuba II, Haymaker C, Solis Soto LM. Pathological Response and Immune Biomarker Assessment in Non-Small-Cell Lung Carcinoma Receiving Neoadjuvant Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:cancers14112775. [PMID: 35681755 PMCID: PMC9179283 DOI: 10.3390/cancers14112775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Recently, the U.S. Food and Drug Administration (FDA) approved neoadjuvant immunotherapy plus chemotherapy for the treatment of resectable non-small-cell lung carcinoma (NSCLC) due to the clinical benefits reported in several clinical trials. In these settings, the pathological assessment of the tumor bed to quantify a pathological response has been used as a surrogate method of clinical benefit to neoadjuvant therapy. In addition, several clinical trials are including the assessment of tissue-, blood-, or host-based biomarkers to predict therapy response and to monitor the response to neoadjuvant treatment. In this manuscript, we provide an overview of current recommendations for the evaluation of pathological response and describe potential biomarkers used in clinical trials of neoadjuvant immunotherapy in resectable NSCLC. Abstract Lung cancer is the leading cause of cancer incidence and mortality worldwide. Adjuvant and neoadjuvant chemotherapy have been used in the perioperative setting of non-small-cell carcinoma (NSCLC); however, the five-year survival rate only improves by about 5%. Neoadjuvant treatment with immune checkpoint inhibitors (ICIs) has become significant due to improved survival in advanced NSCLC patients treated with immunotherapy agents. The assessment of pathology response has been proposed as a surrogate indicator of the benefits of neaodjuvant therapy. An outline of recommendations has been published by the International Association for the Study of Lung Cancer (IASLC) for the evaluation of pathologic response (PR). However, recent studies indicate that evaluations of immune-related changes are distinct in surgical resected samples from patients treated with immunotherapy. Several clinical trials of neoadjuvant immunotherapy in resectable NSCLC have included the study of biomarkers that can predict the response of therapy and monitor the response to treatment. In this review, we provide relevant information on the current recommendations of the assessment of pathological responses in surgical resected NSCLC tumors treated with neoadjuvant immunotherapy, and we describe current and potential biomarkers to predict the benefits of neoadjuvant immunotherapy in patients with resectable NSCLC.
Collapse
|
40
|
Ucciferri CC, Dunn SE. Effect of puberty on the immune system: Relevance to multiple sclerosis. Front Pediatr 2022; 10:1059083. [PMID: 36533239 PMCID: PMC9755749 DOI: 10.3389/fped.2022.1059083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Puberty is a dynamic period marked by changing levels of sex hormones, the development of secondary sexual characteristics and reproductive maturity. This period has profound effects on various organ systems, including the immune system. The critical changes that occur in the immune system during pubertal onset have been shown to have implications for autoimmune conditions, including Multiple Sclerosis (MS). MS is rare prior to puberty but can manifest in children after puberty. This disease also has a clear female preponderance that only arises following pubertal onset, highlighting a potential role for sex hormones in autoimmunity. Early onset of puberty has also been shown to be a risk factor for MS. The purpose of this review is to overview the evidence that puberty regulates MS susceptibility and disease activity. Given that there is a paucity of studies that directly evaluate the effects of puberty on the immune system, we also discuss how the immune system is different in children and mice of pre- vs. post-pubertal ages and describe how gonadal hormones may regulate these immune mechanisms. We present evidence that puberty enhances the expression of co-stimulatory molecules and cytokine production by type 2 dendritic cells (DC2s) and plasmacytoid dendritic cells (pDCs), increases T helper 1 (Th1), Th17, and T follicular helper immunity, and promotes immunoglobulin (Ig)G antibody production. Overall, this review highlights how the immune system undergoes a functional maturation during puberty, which has the potential to explain the higher prevalence of MS and other autoimmune diseases seen in adolescence.
Collapse
Affiliation(s)
- Carmen C Ucciferri
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Shannon E Dunn
- Department of Immunology, The University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
41
|
Abstract
The ongoing COVID-19 pandemic has increased awareness about sex-specific differences in immunity and outcomes following SARS-CoV-2 infection. Strong evidence of a male bias in COVID-19 disease severity is hypothesized to be mediated by sex differential immune responses against SARS-CoV-2. This hypothesis is based on data from other viral infections, including influenza viruses, HIV, hepatitis viruses, and others that have demonstrated sex-specific immunity to viral infections. Although males are more susceptible to most viral infections, females possess immunological features that render them more vulnerable to distinct immune-related disease outcomes. Both sex chromosome complement and related genes as well as sex steroids play important roles in mediating the development of sex differences in immunity to viral infections.
Collapse
Affiliation(s)
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
42
|
Activation-induced cytidine deaminase is a possible regulator of cross-talk between oocytes and granulosa cells through GDF-9 and SCF feedback system. Sci Rep 2021; 11:3833. [PMID: 33589683 PMCID: PMC7884688 DOI: 10.1038/s41598-021-83529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID, Aicda) is a master gene regulating class switching of immunoglobulin genes. In this study, we investigated the significance of AID expression in the ovary. Immunohistological study and RT-PCR showed that AID was expressed in murine granulosa cells and oocytes. However, using the Aicda-Cre/Rosa-tdRFP reporter mouse, its transcriptional history in oocytes was not detected, suggesting that AID mRNA in oocytes has an exogenous origin. Microarray and qPCR validation revealed that mRNA expressions of growth differentiation factor-9 (GDF-9) in oocytes and stem cell factor (SCF) in granulosa cells were significantly decreased in AID-knockout mice compared with wild-type mice. A 6-h incubation of primary granuloma cells markedly reduced AID expression, whereas it was maintained by recombinant GDF-9. In contrast, SCF expression was induced by more than threefold, whereas GDF-9 completely inhibited its increase. In the presence of GDF-9, knockdown of AID by siRNA further decreased SCF expression. However, in AID-suppressed granulosa cells and ovarian tissues of AID-knockout mice, there were no differences in the methylation of SCF and GDF-9. These findings suggest that AID is a novel candidate that regulates cross-talk between oocytes and granulosa cells through a GDF-9 and SCF feedback system, probably in a methylation-independent manner.
Collapse
|
43
|
Tomasović A, Stanzer D, Krešimir Svetec I, Svetec Miklenić M. SARS-Cov2 S Protein Features Potential Estrogen Binding Site. Food Technol Biotechnol 2021; 59:24-30. [PMID: 34084077 PMCID: PMC8157085 DOI: 10.17113/ftb.59.01.21.6820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Research background During the current SARS-CoV2 pandemic, as well as earlier SARS and MERS epidemics, it has been observed that COVID19-positive women on average tend to have milder symptoms and lower fatality rates than men. There is a number of differences between the sexes known to contribute to different immune responses and severity of the disease, one being the effect of estrogen via estrogen receptor signalling. We wondered if estrogen might also affect the SARS-CoV2 more directly, perhaps by binding to the surface glycoprotein (S protein), thus possibly reducing its infectivity. Experimental approach To assess whether there is a possibility for estrogen binding on the SARS-CoV2 S protein, we used BLAST and HHpred to compare protein sequences of S protein and human estrogen receptor β, while 3D structures of a potential estrogen binding site and an active site of estrogen receptor β were visualized and compared using PyMOL. Results and conclusions By comparing the sequence of SARS-CoV2 S protein with the human estrogen receptor β, we identified a potential estrogen binding site on S protein and further determined that it also shares notable similarities with the active site of ER β when observed in 3D structure of their respective proteins. As a control, SARS-CoV2 S protein was compared with the human androgen receptor, and no such similarities were found. The potential estrogen binding site is part of coronavirus S2 superfamily domain, which is involved in host-virus membrane fusion during infection and appears to be conserved throughout the Coronaviridae family. Novelty and scientific contribution This preliminary communication shows that SARS-CoV2 S protein features a potential estrogen binding site. Hopefully, this will prompt a more comprehensive study on the possibilities of estrogen binding on the S protein and the effect this might confer on the virus infectivity.
Collapse
Affiliation(s)
- Ante Tomasović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Stanzer
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marina Svetec Miklenić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 2020. [PMID: 33298944 DOI: 10.1038/s41467-020-19741-6.pmid:33298944;pmcid:pmc7726563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Anecdotal evidence suggests that Coronavirus disease 2019 (COVID-19), caused by the coronavirus SARS-CoV-2, exhibits differences in morbidity and mortality between sexes. Here, we present a meta-analysis of 3,111,714 reported global cases to demonstrate that, whilst there is no difference in the proportion of males and females with confirmed COVID-19, male patients have almost three times the odds of requiring intensive treatment unit (ITU) admission (OR = 2.84; 95% CI = 2.06, 3.92) and higher odds of death (OR = 1.39; 95% CI = 1.31, 1.47) compared to females. With few exceptions, the sex bias observed in COVID-19 is a worldwide phenomenon. An appreciation of how sex is influencing COVID-19 outcomes will have important implications for clinical management and mitigation strategies for this disease.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Charles Raine
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Kate Webb
- Department of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- The Francis Crick Institute, Crick African Network, London, UK.
| | - Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
45
|
Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 2020. [PMID: 33298944 DOI: 10.1038/s41467‐020‐19741‐6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anecdotal evidence suggests that Coronavirus disease 2019 (COVID-19), caused by the coronavirus SARS-CoV-2, exhibits differences in morbidity and mortality between sexes. Here, we present a meta-analysis of 3,111,714 reported global cases to demonstrate that, whilst there is no difference in the proportion of males and females with confirmed COVID-19, male patients have almost three times the odds of requiring intensive treatment unit (ITU) admission (OR = 2.84; 95% CI = 2.06, 3.92) and higher odds of death (OR = 1.39; 95% CI = 1.31, 1.47) compared to females. With few exceptions, the sex bias observed in COVID-19 is a worldwide phenomenon. An appreciation of how sex is influencing COVID-19 outcomes will have important implications for clinical management and mitigation strategies for this disease.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.,Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.,Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Charles Raine
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.,Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.,Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.,Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.,Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Kate Webb
- Department of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa. .,The Francis Crick Institute, Crick African Network, London, UK.
| | - Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK. .,Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK. .,NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
46
|
Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 2020; 11:6317. [PMID: 33298944 PMCID: PMC7726563 DOI: 10.1038/s41467-020-19741-6] [Citation(s) in RCA: 886] [Impact Index Per Article: 177.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Anecdotal evidence suggests that Coronavirus disease 2019 (COVID-19), caused by the coronavirus SARS-CoV-2, exhibits differences in morbidity and mortality between sexes. Here, we present a meta-analysis of 3,111,714 reported global cases to demonstrate that, whilst there is no difference in the proportion of males and females with confirmed COVID-19, male patients have almost three times the odds of requiring intensive treatment unit (ITU) admission (OR = 2.84; 95% CI = 2.06, 3.92) and higher odds of death (OR = 1.39; 95% CI = 1.31, 1.47) compared to females. With few exceptions, the sex bias observed in COVID-19 is a worldwide phenomenon. An appreciation of how sex is influencing COVID-19 outcomes will have important implications for clinical management and mitigation strategies for this disease.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Charles Raine
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Kate Webb
- Department of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- The Francis Crick Institute, Crick African Network, London, UK.
| | - Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK.
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
47
|
Pugh-Bernard A, Kenyon KL. Mini-review: CREATE-ive use of primary literature in the science classroom. Neurosci Lett 2020; 742:135532. [PMID: 33248160 DOI: 10.1016/j.neulet.2020.135532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
CREATE (Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment) is a pedagogical approach for teaching and learning science through the rigorous analysis of primary scientific literature. This mini-review focuses on the tools, assignments, and in-class activities by which this strategy immerses students in the process of science and further challenges students to embody the intellectual activities of actual scientists. We highlight the innovative ways in which CREATE pedagogy encourages students to think deeply about science. Applying this strategy has been shown to promote student gains in cognitive and affective behaviors while also fostering the development of science process skills. Herein we also provide a case study of CREATE implementation, which provides a detailed perspective on the realities of teaching with this strategy. Finally, we offer insights gained through the study of this pedagogy at different types of institutions, courses and student populations to demonstrate how CREATE can be broadly applied in STEM education.
Collapse
Affiliation(s)
- Aimee Pugh-Bernard
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristy L Kenyon
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA.
| |
Collapse
|
48
|
Increased estrogen to androgen ratio enhances immunoglobulin levels and impairs B cell function in male mice. Sci Rep 2020; 10:18334. [PMID: 33110090 PMCID: PMC7591566 DOI: 10.1038/s41598-020-75059-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Sex steroids, such as estrogens and androgens, are important regulators of the humoral immune response. Studies in female mice have demonstrated that alteration of circulating estrogen concentration regulates antibody-mediated immunity. As males have normally little endogenous estrogen, we hypothesized that in males high estrogens and low androgens affect the immune system and enhance the allergic inflammatory response. Here, we studied transgenic male mice expressing human aromatase (AROM+). These animals have a high circulating estrogen to androgen ratio (E/A), causing female traits such as gynecomastia. We found that AROM+ male mice had significantly higher plasma immunoglobulin levels, particularly IgE. Flow cytometry analyses of splenocytes revealed changes in mature/immature B cell ratio together with a transcriptional upregulation of the Igh locus. Furthermore, higher proliferation rate and increased IgE synthesis after IgE class-switching was found. Subsequently, we utilized an ovalbumin airway challenge model to test the allergic response in AROM+ male mice. In line with above observations, an increase in IgE levels was measured, albeit no impact on immune cell infiltration into the lungs was detected. Together, our findings suggest that high circulating E/A in males significantly alters B cell function without any significant enhancement in allergic inflammation.
Collapse
|
49
|
Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat Rev Rheumatol 2020; 16:628-644. [PMID: 33009519 DOI: 10.1038/s41584-020-0503-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
In autoimmune rheumatic diseases, oestrogens can stimulate certain immune responses (including effects on B cells and innate immunity), but can also have dose-related anti-inflammatory effects on T cells, macrophages and other immune cells. By contrast, androgens and progesterone have predominantly immunosuppressive and anti-inflammatory effects. Hormone replacement therapies and oral contraception (and also pregnancy) enhance or decrease the severity of autoimmune rheumatic diseases at a genetic or epigenetic level. Serum androgen concentrations are often low in men and in women with autoimmune rheumatic diseases, suggesting that androgen-like compounds might be a promising therapeutic approach. However, androgen-to-oestrogen conversion (known as intracrinology) is enhanced in inflamed tissues, such as those present in patients with autoimmune rheumatic diseases. In addition, it is becoming evident that the gut microbiota differs between the sexes (known as the microgenderome) and leads to sex-dependent genetic and epigenetic changes in gastrointestinal inflammation, systemic immunity and, potentially, susceptibility to autoimmune or inflammatory rheumatic diseases. Future clinical research needs to focus on the therapeutic use of androgens and progestins or their downstream signalling cascades and on new oestrogenic compounds such as tissue-selective oestrogen complex to modulate altered immune responses.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine DIMI, University of Genova, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
50
|
Jones BG, Penkert RR, Surman SL, Sealy RE, Hurwitz JL. Nuclear Receptors, Ligands and the Mammalian B Cell. Int J Mol Sci 2020; 21:E4997. [PMID: 32679815 PMCID: PMC7404052 DOI: 10.3390/ijms21144997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Questions concerning the influences of nuclear receptors and their ligands on mammalian B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including estrogen and vitamins, on immunoglobulin production and protection from infectious diseases. We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward inert- and self-antigens.
Collapse
Affiliation(s)
- Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|