1
|
Tominari T, Matsumoto C, Tanaka Y, Shimizu K, Takatoya M, Sugasaki M, Karouji K, Kasuga U, Miyaura C, Miyata S, Itoh Y, Hirata M, Inada M. Roles of Toll-like Receptor Signaling in Inflammatory Bone Resorption. BIOLOGY 2024; 13:692. [PMID: 39336119 PMCID: PMC11429252 DOI: 10.3390/biology13090692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors expressed in immune cells, including neutrophils, macrophages, and dendritic cells. Microbe-associated molecular patterns, including bacterial components, membranes, nucleic acids, and flagella are recognized by TLRs in inflammatory immune responses. Periodontal disease is an inflammatory disease known to cause local infections associated with gingival inflammation, subsequently leading to alveolar bone resorption. Prostaglandin E2 (PGE2) is a key mediator of TLR-induced inflammatory bone resorption. We previously reported that membrane-bound PGE synthase (mPGES-1)-deficient mice failed to induce bone resorption by lipopolysaccharide (LPS), a major pathogenic factor involved in periodontal bone resorption. Further experiments exploring specific pathogen-promoting osteoclast differentiation revealed that various TLR ligands induced osteoclast differentiation in a co-culture model. The ligands for TLR2/1, TLR2/6, TLR3, and TLR5, as well as TLR4, induce osteoclast differentiation associated with the production of PGE2 and the receptor activator of nuclear factor-kappa B ligand (RANKL), an inevitable inducer of osteoclast differentiation in osteoblasts. In vivo, local injection of TLR ligands, including TLR2/1, TLR2/6, and TLR3, resulted in severe alveolar bone resorption. This review summarizes the latest findings on TLR-mediated osteoclast differentiation and bone resorption in inflammatory diseases, such as periodontal diseases.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Yuki Tanaka
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Kensuke Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaru Takatoya
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Moe Sugasaki
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Kento Karouji
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Urara Kasuga
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Shinji Miyata
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
| | - Yoshifumi Itoh
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
| |
Collapse
|
2
|
Man SM, Kanneganti TD. Innate immune sensing of cell death in disease and therapeutics. Nat Cell Biol 2024; 26:1420-1433. [PMID: 39223376 DOI: 10.1038/s41556-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
3
|
Kunka Á, Lisztes E, Bohács J, Racskó M, Kelemen B, Kovalecz G, Tóth ED, Hegedűs C, Bágyi K, Marincsák R, Tóth BI. TRPA1 up-regulation mediates oxidative stress in a pulpitis model in vitro. Br J Pharmacol 2024; 181:3246-3262. [PMID: 38744683 DOI: 10.1111/bph.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.
Collapse
Affiliation(s)
- Árpád Kunka
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Bohács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kelemen
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Kovalecz
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Etelka D Tóth
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kinga Bágyi
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Rita Marincsák
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Najem MY, Rys RN, Laurance S, Bertin FR, Gourdou-Latyszenok V, Gourhant L, Le Gall L, Le Corre R, Couturaud F, Blostein MD, Lemarié CA. Extracellular RNA Induces Neutrophil Recruitment Via Toll-Like Receptor 3 During Venous Thrombosis After Vascular Injury. J Am Heart Assoc 2024; 13:e034492. [PMID: 39028040 DOI: 10.1161/jaha.124.034492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.
Collapse
Affiliation(s)
| | - Ryan N Rys
- Lady Davis Institute for Medical Research Montréal Québec Canada
| | - Sandrine Laurance
- Lady Davis Institute for Medical Research Montréal Québec Canada
- INSERM, BIGR, Université de Paris and Université des Antilles Paris France
| | - François-René Bertin
- Lady Davis Institute for Medical Research Montréal Québec Canada
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
| | | | | | | | | | - Francis Couturaud
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
| | - Mark D Blostein
- Lady Davis Institute for Medical Research Montréal Québec Canada
- Department of Medicine Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montréal Québec Canada
| | - Catherine A Lemarié
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
- Lady Davis Institute for Medical Research Montréal Québec Canada
| |
Collapse
|
5
|
Idowu M, Taiwo G, Sidney T, Treon E, Leal Y, Ologunagba D, Eichie F, Pech-Cervantes A, Ogunade IM. Effects of rumen-bypass protein supplement on growth performance, hepatic mitochondrial protein complexes, and hepatic immune gene expression of beef steers with divergent residual feed intake. PLoS One 2024; 19:e0293718. [PMID: 38959213 PMCID: PMC11221652 DOI: 10.1371/journal.pone.0293718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 07/05/2024] Open
Abstract
We investigated the impact of a rumen-bypass protein (RBP) supplement on growth performance, plasma and urinary N (UN) concentration, hepatic mitochondrial protein complexes, and hepatic mRNA expression of immune genes of beef steers with negative or positive residual feed intake (RFI) phenotype. Forty crossbred beef steers with an average body weight (BW) of 492 ± 36 kg were subjected to a generalized randomized block design over a 42-day experimental period. This study followed a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) RFI classification (low-RFI (-2.12 kg/d) vs. high-RFI (2.02 kg/d), and 2) rumen-bypass protein supplement: RBP supplement (RBP; 227 g/steer/d) vs. control diet (CON; 0 g/d), resulting in four distinct treatments: LRFI-CON (n = 10), LRFI-RBP (n = 10), HRFI-CON (n = 10), and HRFI-RBP (n = 10). The RBP supplement (84% crude protein) is a mixture of hydrolyzed feather meal, porcine blood meal, and DL-methionine hydroxy analogue. The beef steers were stratified by BW, randomly assigned to treatments, and housed in four pens (1 treatment/pen) equipped with two GrowSafe feed bunks each to measure individual dry mater intake (DMI). Body weight was measured every 7 d. Liver tissue samples were collected on d 42 from all the beef steers. These samples were used for mRNA expression analysis of 16 immune-related genes and for evaluating the mitochondrial protein complexes I - V. No significant effects due to RBP supplementation or RFI × RBP interactions (P > 0.05) were observed for average daily gain (ADG) and DMI. However, compared to high-RFI steers, low-RFI steers showed a trend towards reduced DMI (12.9 vs. 13.6 kg/d; P = 0.07) but ADG was similar for the two RFI groups. Regardless of RFI status, supplemental RBP increased blood urea nitrogen (BUN) (P = 0.01), with a lower BUN concentration in low-RFI steers compared to high-RFI ones. A tendency for interaction (P = 0.07) between RFI and RBP was detected for the UN concentrations; feeding the dietary RBP increased the UN concentration in high-RFI beef steers (209 vs. 124 mM), whereas the concentration was lower than that of the CON group for low-RFI beef steers (86 vs. 131 mM). Interactions of RBP and RFI were observed (P ≤ 0.05) for mitochondrial activities of complexes IV, V, and mRNA expressions of some immune genes such as TLR2, TLR3, and IL23A. In conclusion, while RBP supplementation did not alter growth performance, its observed effects on hepatic immune gene expression, mitochondrial protein complexes, BUN, and UN depended on the beef steers' RFI phenotype. Therefore, the RFI status of beef steers should be considered in future studies evaluating the effects of dietary protein supplements.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Treon
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Yarahy Leal
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Deborah Ologunagba
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Francisca Eichie
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Andres Pech-Cervantes
- Division of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
6
|
Ertel A, Anderegg U, Franz S, Saalbach A. Dermal White Adipose Tissue-Derived Il-33 Regulates Il-4/13 Expression in Myeloid Cells during Inflammation. J Invest Dermatol 2024:S0022-202X(24)01862-1. [PMID: 38909842 DOI: 10.1016/j.jid.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Effective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT. Therefore, we investigated the impact of dWAT in the control of an acute skin inflammation. Skin inflammation triggers the activation of dWAT. In turn, soluble mediators of activated dWAT stimulate the expression of numerous genes controlling skin inflammation, including the T helper 2 cell cytokines Il4 and Il13, in myeloid cells in vitro. Consistently, myeloid cells isolated from inflamed skin showed a significant upregulation of Il-4/13 expression compared with those isolated from healthy skin. Mechanistically, we demonstrate that IL-33 released from activated dWAT is responsible for IL-4/13 stimulation in myeloid cells. Interestingly, obesity attenuates IL-33 secretion in dWAT during inflammation, resulting in decreased Il-4 and Il-13 expressions in myeloid cells. Our data reveal an IL-33-IL-4/13 signaling cascade initiated from dWAT in a T helper 2-independent context of inflammation that may contribute to limitation of inflammation. This cascade seems to be disturbed in individuals with obesity with prolonged inflammation.
Collapse
Affiliation(s)
- Anastasia Ertel
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
7
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
8
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
9
|
Mao K, Wang J, Xie Q, Yang YG, Shen S, Sun T, Wang J. Cationic nanoparticles-based approaches for immune tolerance induction in vivo. J Control Release 2024; 366:425-447. [PMID: 38154540 DOI: 10.1016/j.jconrel.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The development of autoimmune diseases and the rejection of transplanted organs are primarily caused by an exaggerated immune response to autoantigens or graft antigens. Achieving immune tolerance is crucial for the effective treatment of these conditions. However, traditional therapies often have limited therapeutic efficacy and can result in systemic toxic effects. The emergence of nanomedicine offers a promising avenue for addressing immune-related diseases. Among the various nanoparticle formulations, cationic nanoparticles have demonstrated significant potential in inducing immune tolerance. In this review, we provide an overview of the underlying mechanism of autoimmune disease and organ transplantation rejection. We then highlight the recent advancements and advantages of utilizing cationic nanoparticles for inducing immune tolerance in the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Qianyue Xie
- Huafu International Department, Affiliated High School of South China Normal University, Guangzhou, Guangdong, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovatiion Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
11
|
Zmonarski SC, Banasik M, Żabińska M, Gołębiowski T, Zmonarska JM, Krajewska M. Toll-Like Receptor 3 mRNA Expression of Peripheral Blood Mononuclear Cells Identifies Kidney Recipients with Potential for Improved Graft Performance. Ann Transplant 2023; 28:e941266. [PMID: 38013407 PMCID: PMC10693178 DOI: 10.12659/aot.941266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 expression is detected both on the cell membrane and in endosomes of peripheral blood mononuclear cells (PBMC). Our goal in this study was to determine to what extent a single, baseline measurement of non-stimulated PBMC TLR3-mRNA can be related to baseline GFR (b-GFR) and post-follow-up-GFR (F-up-GFR) of a kidney transplant (KT) and baseline immunosuppression. MATERIAL AND METHODS In non-stimulated PBMC we investigated averaged mRNA expression of Toll-like receptor 3. A total of 133 patients were enrolled; the median of months after KT surgery was 11.4, with median F-up at 21.3 months. A favorable course (FCF) was determined if F-up-eGFR improved. An unfavorable course (UCF) was determined if F-up-eGFR was lower at the end of the observation. RESULTS The highest TLR3-mRNA expression was at b-GFR grade 3b; it was moderately higher at b-GFR grade 3a, and marginally higher at b-GFR grades 1+2. Most of the FCF group had b-GFR grade 3b, less frequent obesity, more effective immunosuppression, and much higher TLR3-mRNA (59% of cases were in the high-TLR3 area). Both delayed graft function (DGF) and TLR3-mRNA range below the median for the entire KT cohort (low-TLR3 area) had a negative association with b-GFR. The UCF group had more frequent DGFs and obesity, less effective immunosuppression, and lower TLR3-mRNA. CONCLUSIONS In patients with GFR grade 3, high levels of TLR3-mRNA are associated with improved graft efficacy. In patients with impaired graft function, low TLR3- mRNA expression reduces the likelihood of improved renal graft function.
Collapse
Affiliation(s)
- Sławomir C. Zmonarski
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Wrocław, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Wrocław, Poland
| | - Marcelina Żabińska
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Gołębiowski
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Wrocław, Poland
| | | | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
12
|
Hwang S, Sung DK, Kim YE, Yang M, Ahn SY, Sung SI, Chang YS. Mesenchymal Stromal Cells Primed by Toll-like Receptors 3 and 4 Enhanced Anti-Inflammatory Effects against LPS-Induced Macrophages via Extracellular Vesicles. Int J Mol Sci 2023; 24:16264. [PMID: 38003458 PMCID: PMC10670946 DOI: 10.3390/ijms242216264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)' immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.
Collapse
Affiliation(s)
- Sein Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
13
|
Hu J, Liu R, Yang Z, Pan X, Li Y, Gong Y, Guo D. Praeruptorin A inhibits the activation of NF-κB pathway and the expressions of inflammatory factors in poly (I:C)-induced RAW264.7 cells. Chem Biol Drug Des 2023; 102:1110-1120. [PMID: 37500542 DOI: 10.1111/cbdd.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1β, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 μM slightly affected cell viability, while PA at 6 and 7 μM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1β, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.
Collapse
Affiliation(s)
- Jiayan Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Roujun Liu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zhouxin Yang
- Laboratory of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Xinyu Pan
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuanjing Li
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yanghui Gong
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Dongyang Guo
- School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou, China
| |
Collapse
|
14
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Vasiljevic T, Tarle M, Hat K, Luksic I, Mikulandra M, Busson P, Matijevic Glavan T. Necrotic Cells from Head and Neck Carcinomas Release Biomolecules That Are Activating Toll-like Receptor 3. Int J Mol Sci 2023; 24:15269. [PMID: 37894949 PMCID: PMC10607619 DOI: 10.3390/ijms242015269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Tumor necrosis is a recurrent characteristic of head and neck squamous cell carcinomas (HNSCCs). There is a need for more investigations on the influence of biomolecules released by these necrotic foci in the HNSCC tumor microenvironment. It is suspected that a fraction of the biomolecules released by necrotic cells are damage-associated molecular patterns (DAMPs), which are known to be natural endogenous ligands of Toll-like receptors (TLRs), including, among others, proteins and nucleic acids. However, there has been no direct demonstration that biomolecules released by HNSCC necrotic cells can activate TLRs. Our aim was to investigate whether some of these molecules could behave as agonists of the TLR3, either in vitro or in vivo. We chose a functional approach based on reporter cell exhibiting artificial TLR3 expression and downstream release of secreted alkaline phosphatase. The production of biomolecules activating TLR3 was first investigated in vitro using three HNSCC cell lines subjected to various pronecrotic stimuli (external irradiation, serum starvation, hypoxia and oxidative stress). TLR3 agonists were also investigated in necrotic tumor fluids from five oral cancer patients and three mouse tumor grafts. The release of biomolecules activating TLR3 was demonstrated for all three HNSCC cell lines. External irradiation was the most consistently efficient stimulus, and corresponding TLR3 agonists were conveyed in extracellular vesicles. TLR3-stimulating activity was detected in the fluids from all five patients and three mouse tumor grafts. In most cases, this activity was greatly reduced by RNAse pretreatment or TLR3 blocking antibodies. Our data indicate that TLR3 agonists are consistently present in necrotic fluids from HNSCC cells and mainly made of dsRNA fragments. These endogenous agonists may induce TLR3, which might lead to a protumorigenic effect. Regarding methodological aspects, our study demonstrates that direct investigations-including functional testing-can be performed on necrotic fluids from patient tumors.
Collapse
Affiliation(s)
- Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Dubrava University Hospital, School of Medicine, University of Zagreb, Gojko Šušak Avenue 6, 10000 Zagreb, Croatia; (M.T.)
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Koraljka Hat
- Department of Maxillofacial Surgery, Dubrava University Hospital, School of Medicine, University of Zagreb, Gojko Šušak Avenue 6, 10000 Zagreb, Croatia; (M.T.)
| | - Ivica Luksic
- Department of Maxillofacial Surgery, Dubrava University Hospital, School of Medicine, University of Zagreb, Gojko Šušak Avenue 6, 10000 Zagreb, Croatia; (M.T.)
| | - Martina Mikulandra
- Division of Oncology and Radiotherapy, University Hospital for Tumors, Sestre Milosrdnice University Hospital Center, Vinogradska Cesta 29, 10000 Zagreb, Croatia
| | - Pierre Busson
- CNRS-UMR 9018-METSY, Gustave Roussy Institute, Université Paris-Saclay, 39 rue Camille Desmoulins, 94805 Villejuif CEDEX, France
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
17
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
18
|
Gunnarsdottir FB, Briem O, Lindgren AY, Källberg E, Andersen C, Grenthe R, Rosenqvist C, Millrud CR, Wallgren M, Viklund H, Bexell D, Johansson ME, Hedenfalk I, Hagerling C, Leandersson K. Breast cancer associated CD169 + macrophages possess broad immunosuppressive functions but enhance antibody secretion by activated B cells. Front Immunol 2023; 14:1180209. [PMID: 37404831 PMCID: PMC10315498 DOI: 10.3389/fimmu.2023.1180209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
CD169+ resident macrophages in lymph nodes of breast cancer patients are for unknown reasons associated with a beneficial prognosis. This contrasts CD169+ macrophages present in primary breast tumors (CD169+ TAMs), that correlate with a worse prognosis. We recently showed that these CD169+ TAMs were associated with tertiary lymphoid structures (TLSs) and Tregs in breast cancer. Here, we show that CD169+ TAMs can be monocyte-derived and express a unique mediator profile characterized by type I IFNs, CXCL10, PGE2 and inhibitory co-receptor expression pattern. The CD169+ monocyte-derived macrophages (CD169+ Mo-M) possessed an immunosuppressive function in vitro inhibiting NK, T and B cell proliferation, but enhanced antibody and IL6 secretion in activated B cells. Our findings indicate that CD169+ Mo-M in the primary breast tumor microenvironment are linked to both immunosuppression and TLS functions, with implications for future targeted Mo-M therapy.
Collapse
Affiliation(s)
- Frida Björk Gunnarsdottir
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Oscar Briem
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Aida Yifter Lindgren
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Eva Källberg
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Cajsa Andersen
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Robert Grenthe
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Cassandra Rosenqvist
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Camilla Rydberg Millrud
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mika Wallgren
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Hannah Viklund
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Daniel Bexell
- Translational Cancer Research, TCR, Medicon Village, Lund University, Lund, Sweden
| | - Martin E. Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| |
Collapse
|
19
|
Lei YQ, Wan YT, Liang GT, Huang YH, Dong P, Luo SD, Zhang WJ, Liu WF, Liu KX, Zhang XY. Extracellular RNAs/TLR3 signaling contributes to acute intestinal injury induced by intestinal ischemia reperfusion in mice. Biochim Biophys Acta Mol Basis Dis 2023:166790. [PMID: 37336369 DOI: 10.1016/j.bbadis.2023.166790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Toll-like receptor 3 (TLR3), one pattern recognition receptor activated by viral and endogenous RNA, has been recently reported to regulate ischemia/reperfusion (I/R) injury in various organs. However, the role of TLR3 in the development of intestinal I/R injury remains unclear. The aim of this study is to evaluate the effects of extracellular RNAs/TLR3 signaling in intestinal I/R injury. An intestinal I/R injury model was established with superior mesenteric artery occlusion both in wild-type and TLR3 knockout (KO, -/-) mice, and MODE-K cells were subjected to hypoxia/reoxygenation (H/R) to mimic the I/R model in vivo. Extracellular RNAs (exRNAs), especially double-stranded RNAs (dsRNAs) co-localized with TLR3, were significantly increased both in vitro and in vivo. Compared with wild-type mice, TLR3 knockout obviously attenuated intestinal I/R injury. Both TLR3/dsRNA complex inhibitor and TLR3 siRNA administration reduced TLR3 expressions and subsequently inhibited intestinal inflammatory cytokine production and apoptosis. In conclusion, exRNAs/TLR3 signaling is a key mechanism that regulates intestinal I/R injury in adult mice, and the TLR3/dsRNA complex inhibitor can be an effective approach for attenuating intestinal I/R-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Yu-Qiong Lei
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Tong Wan
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, China
| | - Guang-Tao Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Hao Huang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Si-Dan Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xi-Yang Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Gawali B, Sridharan V, Krager KJ, Boerma M, Pawar SA. TLR4-A Pertinent Player in Radiation-Induced Heart Disease? Genes (Basel) 2023; 14:genes14051002. [PMID: 37239362 DOI: 10.3390/genes14051002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The heart is one of the organs that is sensitive to developing delayed adverse effects of ionizing radiation (IR) exposure. Radiation-induced heart disease (RIHD) occurs in cancer patients and cancer survivors, as a side effect of radiation therapy of the chest, with manifestation several years post-radiotherapy. Moreover, the continued threat of nuclear bombs or terrorist attacks puts deployed military service members at risk of exposure to total or partial body irradiation. Individuals who survive acute injury from IR will experience delayed adverse effects that include fibrosis and chronic dysfunction of organ systems such as the heart within months to years after radiation exposure. Toll-like receptor 4 (TLR4) is an innate immune receptor that is implicated in several cardiovascular diseases. Studies in preclinical models have established the role of TLR4 as a driver of inflammation and associated cardiac fibrosis and dysfunction using transgenic models. This review explores the relevance of the TLR4 signaling pathway in radiation-induced inflammation and oxidative stress in acute as well as late effects on the heart tissue and the potential for the development of TLR4 inhibitors as a therapeutic target to treat or alleviate RIHD.
Collapse
Affiliation(s)
- Basveshwar Gawali
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kimberly J Krager
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Snehalata A Pawar
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8: A molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. Semin Immunol 2023; 66:101712. [PMID: 36753974 DOI: 10.1016/j.smim.2023.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.
Collapse
Affiliation(s)
- Francesca R Mariotti
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Garlanda
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
22
|
Utilizing chemotherapy-induced tumor RNA nanoparticles to improve cancer chemoimmunotherapy. Acta Biomater 2023; 158:698-707. [PMID: 36563773 DOI: 10.1016/j.actbio.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Chemotherapy has become a popular combination strategy to improve the response rate of immunotherapy since certain chemotherapeutic drugs kill tumor cells by an immunogenic cell death (ICD) pathway, which activates antitumor immune responses. Unfortunately, the synergistic effect of chemoimmunotherapy can be impaired due to the toxicities of chemotherapeutic agent-induced lymphatic depletion and immunosuppression. In this study, we present an approach to improve immunotherapy by using tumor RNA nanoparticles (RNA-NPs) where RNA is directly extracted from chemotherapy-treated cancer cells and then condensed by protamine via electrostatic interactions to form complexes. Such RNA-NPs can be effectively taken up by dendritic cells (DCs) in the draining lymph nodes after subcutaneous injection. Compared with noninduced tumor RNA nanoparticles (N-RNA-NPs), chemotherapy-induced tumor RNA nanoparticles (C-RNA-NPs) can significantly promote DC maturation and stimulate a stronger immune response against established CT-26 colon carcinoma. Besides, C-RNA-NPs can improve the efficacy of immune checkpoint blockade (ICB) therapy by facilitating the infiltration of intratumoral T cells and increasing the ratio of CD8+ T cells to regulatory T cells (Tregs). More importantly, the synergistic effect of chemoimmunotherapy is also enhanced by treatment with C-RNA-NPs. STATEMENT OF SIGNIFICANCE: Although immune checkpoint blockade therapy has been demonstrated to be effective in some advanced cancers, the low response rate has significantly limited its clinical application. To address this issue, a new strategy for improving cancer immunotherapy using chemotherapy-induced tumor RNA nanoparticles (C-RNA-NPs) is developed in this work. The proposed C-RNA-NPs could be captured by dendritic cells, which were then stimulated to the maturation status to initiate an anticancer immune response. Furthermore, the response rate to immunotherapy was significantly increased by promoting intratumoral T-cell infiltration and elevating the intratumoral ratio of CD8+ T cells to regulatory T cells after treatment with C-RNA-NPs. Therefore, C-RNA-NPs have the potential to improve cancer immunotherapy.
Collapse
|
23
|
Ban Y, Yoshida Y, Aziza Y, Kinoshita S, Sotozono C. Strengthening of the barrier function in human telomerase reverse transcription (hTERT) immortalized corneal and conjunctival epithelium by double-stranded RNA. Exp Eye Res 2023; 227:109357. [PMID: 36572167 DOI: 10.1016/j.exer.2022.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
To investigate the response to polyinosinic:polycytidylic acid [poly(I:C)], a double-stranded RNA Toll-like receptor 3 agonist that mimics viral infection, in the barrier function of two established human telomerase reverse transcriptase-immortalized cell lines, termed HCLE for the human corneal-limbal epithelial line and HCjE for the human conjunctival-epithelial line. In this study, HCLE and HCjE cells were used to evaluate the underlying mechanism of epithelial-cell barrier function regulation. Briefly, HCLE and HCjE cells were first cultured on 12-well Transwell® (Corning®) filter-plates, and reverse transcription-polymerase chain reaction, western blotting, and immunohistochemical examinations were then performed to assess tight junction (TJ)-related protein expression and cellular distribution. Next, the barrier function of the cells was measured via transepithelial electrical resistance (TEER) and paracellular molecular flux. The cells were then stimulated with poly(I:C) and the TEER and TJ-related protein expressions were analyzed. Similar to that in in vivo epithelium, the expression of claudin (CLDN) subtypes CLDN-1, -4, and -7 was observed in the HCLE and HCjE cells, and the barrier function in the HCLE cells was tighter than that in the HCjE cells. Post stimulation with poly(I:C), TEER of the HCLE and HCjE cells increased in a dose- and time-dependent manner, the production of TJ-related protein mRNA and CLDN-4 protein were elevated, and the barrier function of the HCLE and HCjE cells increased, thus possibly indicating that the increased barrier function is a defense mechanism against viral infection.
Collapse
Affiliation(s)
- Yuriko Ban
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Ophthalmology, Kyoto Chubu Medical Center, Nantan, Japan.
| | - Yusuke Yoshida
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yulia Aziza
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Oak ASW, Cotsarelis G. Wound-Induced Hair Neogenesis: A Portal to the Development of New Therapies for Hair Loss and Wound Regeneration. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041239. [PMID: 36123030 PMCID: PMC9899649 DOI: 10.1101/cshperspect.a041239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult mammals retain the remarkable ability to regenerate hair follicles after wounding. Wound-induced hair neogenesis (WIHN) in many ways recapitulates embryogenesis. The origin of the stem cells that give rise to a nascent hair follicle after wounding and the role of mesenchymal cells and signaling pathways responsible for this regenerative phenomenon are slowly being elucidated. WIHN provides a potential therapeutic window for manipulating cell fate by the introduction of factors during the wound healing process to enhance hair follicle formation.
Collapse
Affiliation(s)
- Allen S W Oak
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
25
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
26
|
Liu Z, Wan R, Bai H, Wang J. Damage-associated molecular patterns and sensing receptors based molecular subtypes in malignant pleural mesothelioma and implications for immunotherapy. Front Immunol 2023; 14:1104560. [PMID: 37033966 PMCID: PMC10079989 DOI: 10.3389/fimmu.2023.1104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives Malignant pleural mesothelioma (MPM) is characterized as an incredibly aggressive form of cancer with a dismal diagnosis and a dearth of specific biomarkers and therapeutic options. For MPM patients, the effectiveness of immunotherapy may be influenced by damage-associated molecular pattern (DAMP)-induced immunogenic cell death (ICD).The objective of this work is to create a molecular profile associated with DAMPs to categorize MPM patients and predict their prognosis and response to immunotherapy. Methods The RNA-seq of 397 patients (263 patients with clinical data, 57.2% male, 73.0% over 60 yrs.) were gathered from eight public datasets as a training cohort to identify the DAMPs-associated subgroups of MPMs using K-means analysis. Three validation cohorts of patients or murine were established from TCGA and GEO databases. Comparisons were made across each subtype's immune status, gene mutations, survival prognosis, and predicted response to therapy. Results Based on the DAMPs gene expression, MPMs were categorized into two subtypes: the nuclear DAMPs subtype, which is classified by the upregulation of immune-suppressed pathways, and the inflammatory DAMPs subtype, which is distinguished by the enrichment of proinflammatory cytokine signaling. The inflammatory DAMPs subgroup had a better prognosis, while the nuclear DAMPs subgroup exhibited a worse outcome. In validation cohorts, the subtyping system was effectively verified. We further identified the genetic differences between the two DAMPs subtypes. It was projected that the inflammatory DAMPs subtype will respond to immunotherapy more favorably, suggesting that the developed clustering method may be implemented to predict the effectiveness of immunotherapy. Conclusion We constructed a subtyping model based on ICD-associated DAMPs in MPM, which might serve as a signature to gauge the outcomes of immune checkpoint blockades. Our research may aid in the development of innovative immunomodulators as well as the advancement of precision immunotherapy for MPM.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Payet CA, You A, Fayet OM, Hemery E, Truffault F, Bondet V, Duffy D, Michel F, Fadel E, Guihaire J, Demeret S, Berrih-Aknin S, Le Panse R. Central Role of Macrophages and Nucleic Acid Release in Myasthenia Gravis Thymus. Ann Neurol 2022; 93:643-654. [PMID: 36571580 DOI: 10.1002/ana.26590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is a neuromuscular disease mediated by antibodies against the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG and is characterized by a type I interferon (IFN) signature linked to IFN-β. We investigated if AChR-MG was characterized by an IFN-I signature in the blood, and further investigated the chronic thymic IFN-I signature. METHODS Serum levels of IFN-β and IFN-α subtypes, and mRNA expression for IFN-I subtypes and IFN-stimulated genes in peripheral mononuclear blood cells (PBMCs) were analyzed. The contribution of endogenous nucleic acids in thymic expression of IFN-I subtypes was investigated in human thymic epithelial cell cultures and the mouse thymus. By immunohistochemistry, thymic CD68+ and CD163+ macrophages were analyzed in AChR-MG. To investigate the impact of a decrease in thymic macrophages, mice were treated with an anti-CSF1R antibody. RESULTS No IFN-I signature was observed in the periphery emphasizing that the IFN-I signature is restricted to the MG thymus. Molecules mimicking endogenous dsDNA signalization (Poly(dA:dT) and 2'3'-cGAMP), or dexamethasone-induced necrotic thymocytes increased IFN-β and α-AChR expression by thymic epithelial cells, and in the mouse thymus. A significant decrease in thymic macrophages was demonstrated in AChR-MG. In mice, a decrease in thymic macrophages led to an increase of necrotic thymocytes associated with IFN-β and α-AChR expression. INTERPRETATION These results suggest that the decrease of thymic macrophages in AChR-MG impairs the elimination of apoptotic thymocytes favoring the release of endogenous nucleic acids from necrotic thymocytes. In this inflammatory context, thymic epithelial cells may overexpress IFN-β, which specifically induces α-AChR, resulting in self-sensitization and thymic changes leading to AChR-MG. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Axel You
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Edouard Hemery
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Frederique Truffault
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédérique Michel
- Cytokine signaling unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Sophie Demeret
- Department of Neurology, Neuro Intensive Care Unit, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| |
Collapse
|
28
|
Sun C, Cai D, Chen SY. ADAR1 promotes systemic sclerosis via modulating classic macrophage activation. Front Immunol 2022; 13:1051254. [PMID: 36532023 PMCID: PMC9751044 DOI: 10.3389/fimmu.2022.1051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction As a multisystem autoimmune disorder disease, systemic sclerosis (SSc) is characterized by inflammation and fibrosis in the skin and other internal organs. However, mechanisms underlying the inflammatory response that drives the development of SSc remain largely unknown. Methods ADAR1 heterozygous knockout (AD1+/-) mice and myeloid-specific ADAR1 knockout mice were used to determine the function of ADAR1 in SSc. Histopathological analyses and western blot confirmed the role of ADAR1 in bleomycin-induced increased skin and lung fibrosis. Results In this study, we discover that adenosine deaminase acting on RNA (ADAR1), a deaminase converting adenosine to inosine (i.e., RNA editing) in RNA, is abundantly expressed in macrophages in the early stage of bleomycin-induced SSc. Importantly, ADAR1 is essential for SSc formation and indispensable for classical macrophage activation because ADAR1 deficiency in macrophages significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammation mediator inducible NO synthase (iNOS) and IL-1β in macrophages. Mechanistically, deletion of ADAR1 blocks macrophage activation through diminishing NF-κB signaling. Discussion Our studies reveal that ADAR1 promotes macrophage activation in the onset of SSc. Thus, targeting ADAR1 could be a potential novel therapeutic strategy for treating sclerosis formation.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
29
|
Dondalska A, Axberg Pålsson S, Spetz AL. Is There a Role for Immunoregulatory and Antiviral Oligonucleotides Acting in the Extracellular Space? A Review and Hypothesis. Int J Mol Sci 2022; 23:ijms232314593. [PMID: 36498932 PMCID: PMC9735517 DOI: 10.3390/ijms232314593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we link approved and emerging nucleic acid-based therapies with the expanding universe of small non-coding RNAs (sncRNAs) and the innate immune responses that sense oligonucleotides taken up into endosomes. The Toll-like receptors (TLRs) 3, 7, 8, and 9 are located in endosomes and can detect nucleic acids taken up through endocytic routes. These receptors are key triggers in the defense against viruses and/or bacterial infections, yet they also constitute an Achilles heel towards the discrimination between self- and pathogenic nucleic acids. The compartmentalization of nucleic acids and the activity of nucleases are key components in avoiding autoimmune reactions against nucleic acids, but we still lack knowledge on the plethora of nucleic acids that might be released into the extracellular space upon infections, inflammation, and other stress responses involving increased cell death. We review recent findings that a set of single-stranded oligonucleotides (length of 25-40 nucleotides (nt)) can temporarily block ligands destined for endosomes expressing TLRs in human monocyte-derived dendritic cells. We discuss knowledge gaps and highlight the existence of a pool of RNA with an approximate length of 30-40 nt that may still have unappreciated regulatory functions in physiology and in the defense against viruses as gatekeepers of endosomal uptake through certain routes.
Collapse
|
30
|
Toll-Like Receptor 3 (TLR3) Is Engaged in the Intracellular Survival of the Protozoan Parasite Leishmania (Leishmania) amazonensis. Infect Immun 2022; 90:e0032422. [PMID: 35993771 PMCID: PMC9476911 DOI: 10.1128/iai.00324-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Leishmania (L.) amazonensis infects and replicates inside host macrophages due to subversion of the innate host cell response. In the present study, we demonstrate that TLR3 is required for the intracellular growth of L. (L.) amazonensis. We observed restricted intracellular infection of TLR3-/- mouse macrophages, reduced levels of IFN1β and IL-10, and increased levels of IL-12 upon L. (L.) amazonensis infection, compared with their wild-type counterparts. Accordingly, in vivo infection of TLR3-/- mice with L. (L.) amazonensis displayed a significant reduction in lesion size. Leishmania (L.) amazonensis infection induced TLR3 proteolytic cleavage, which is a process required for TLR3 signaling. The chemical inhibition of TLR3 cleavage or infection by CPB-deficient mutant L. (L.) mexicana resulted in reduced parasite load and restricted the expression of IFN1β and IL-10. Furthermore, we show that the dsRNA sensor molecule PKR (dsRNA-activated protein kinase) cooperates with TLR3 signaling to potentiate the expression of IL-10 and IFN1β and parasite survival. Altogether, our results show that TLR3 signaling is engaged during L. (L.) amazonensis infection and this component of innate immunity modulates the host cell response.
Collapse
|
31
|
Giuliani KTK, Grivei A, Nag P, Wang X, Rist M, Kildey K, Law B, Ng MS, Wilkinson R, Ungerer J, Forbes JM, Healy H, Kassianos AJ. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c + dendritic cells. Cell Death Dis 2022; 13:739. [PMID: 36030251 PMCID: PMC9420140 DOI: 10.1038/s41419-022-05191-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Inflammasomes are multiprotein platforms responsible for the release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Mouse studies have identified inflammasome activation within dendritic cells (DC) as pivotal for driving tubulointerstitial fibrosis and inflammation, the hallmarks of chronic kidney disease (CKD). However, translation of this work to human CKD remains limited. Here, we examined the complex tubular cell death pathways mediating inflammasome activation in human kidney DC and, thus, CKD progression. Ex vivo patient-derived proximal tubular epithelial cells (PTEC) cultured under hypoxic (1% O2) conditions modelling the CKD microenvironment showed characteristics of ferroptotic cell death, including mitochondrial dysfunction, reductions in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and increases in lipid peroxidation by-product 4-hydroxynonenal (4-HNE) compared with normoxic PTEC. The addition of ferroptosis inhibitor, ferrostatin-1, significantly reduced hypoxic PTEC death. Human CD1c+ DC activated in the presence of hypoxic PTEC displayed significantly increased production of inflammasome-dependent cytokines IL-1β and IL-18. Treatment of co-cultures with VX-765 (caspase-1/4 inhibitor) and MCC950 (NLRP3 inflammasome inhibitor) significantly attenuated IL-1β/IL-18 levels, supporting an NLRP3 inflammasome-dependent DC response. In line with these in vitro findings, in situ immunolabelling of human fibrotic kidney tissue revealed a significant accumulation of tubulointerstitial CD1c+ DC containing active inflammasome (ASC) specks adjacent to ferroptotic PTEC. These data establish ferroptosis as the primary pattern of PTEC necrosis under the hypoxic conditions of CKD. Moreover, this study identifies NLRP3 inflammasome signalling driven by complex tubulointerstitial PTEC-DC interactions as a key checkpoint for therapeutic targeting in human CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Anca Grivei
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Purba Nag
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Xiangju Wang
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Melissa Rist
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Katrina Kildey
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Becker Law
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Monica S. Ng
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Institute of Molecular Biosciences, University of Queensland, Brisbane, QLD Australia ,grid.412744.00000 0004 0380 2017Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD Australia
| | - Ray Wilkinson
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Jacobus Ungerer
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Josephine M. Forbes
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Mater Research Institute, University of Queensland, Brisbane, QLD Australia
| | - Helen Healy
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Andrew J. Kassianos
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
32
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
33
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN. Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 2022; 70:607-623. [PMID: 35608723 DOI: 10.1007/s12026-022-09290-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nimrah Komal
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Ali Mujtaba
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
35
|
Xie B, Luo A. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Front Cell Dev Biol 2022; 10:903781. [PMID: 35557952 PMCID: PMC9089908 DOI: 10.3389/fcell.2022.903781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.
Collapse
Affiliation(s)
- Bingteng Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| |
Collapse
|
36
|
Toll-like receptor 3 activation promotes joint degeneration in osteoarthritis. Cell Death Dis 2022; 13:224. [PMID: 35277480 PMCID: PMC8917184 DOI: 10.1038/s41419-022-04680-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
Osteoarthritis (OA) is characterized by cartilage degradation that is induced by inflammation. Sterile inflammation can be caused by damage-associated molecular patterns that are released by chondrocytes and activate pattern recognition receptors. We evaluate the role of toll-like receptor-3-activating RNA in the pathogenesis of OA. Toll-like receptor 3 (TLR3) was detected by semiquantitative reverse transcriptase PCR, western blotting and microscopy. Rhodamine-labelled poly(I:C) was used to image uptake in chondrocytes and full-thickness cartilage. The production of IFNβ in chondrocytes after stimulation with poly(I:C) as well as in the synovial fluid of OA patients was measured using ELISA. Chondrocyte apoptosis was chemically induced using staurosporine. Immunohistochemistry was performed to examine TLR3 expression and apoptosis in human and murine OA cartilage. RNA in synovial fluid was quantified by RiboGreen assay. Destabilisation of the medial meniscus was performed in TLR3−/− and wildtype mice. OA was assessed after eight weeks using OARSI score. TLR3 expression was confirmed by western blot and RT-PCR. Poly(I:C) was internalised by chondrocytes as well as cartilage and caused an increase of IFNβ production in murine (11.46 ± 11.63 (wo) to 108.7 ± 25.53 pg/ml; N = 6) and human chondrocytes (1.88 ± 0.32 (wo) to 737.6 ± 130.5 pg/ml; N = 3; p < 0.001). OA cartilage showed significantly more TLR3-positive (KL0 = 0.22 ± 0.24; KL4 = 6.02 ± 6.75; N ≥ 15) and apoptotic chondrocytes (KL0 = 0.6 ± 1.02; KL4 = 9.78 ± 7.79; N ≥ 12) than healthy cartilage (p < 0.001). Staurosporine-induced chondrocyte apoptosis causes a dose-dependent RNA release (0 ng/ml = 1090 ± 39.1 ng/ml; 1000 ng/ml=2014 ± 160 ng/ml; N = 4; p < 0.001). Human OA synovial fluid contained increased concentrations of RNA (KL0-2 = 3408 ± 1129 ng/ml; KL4 = 4870 ± 1612ng/ml; N ≥ 7; p < 0.05) and IFNβ (KL0-2 = 41.95 ± 92.94 ng/ml; KL3 = 1181 ± 1865ng/ml; N ≥ 8; p < 0.05). TLR3−/− mice showed reduced cartilage degradation eight weeks after OA induction (OARSI WT = 5.5 ± 0.04; TLR3−/− = 3.75 ± 1.04; N ≥ 6) which was accompanied by gradually decreasing levels of TUNEL-positive cells (WT = 34.87 ± 24.10; TLR3−/ = 19.64 ± 7.89) resulting in decreased IFNβ expression (WT = 12.57 ± 5.43; TLR3−/− = 6.09 ± 2.07) in cartilage (p < 0.05). The release of RNA by apoptotic chondrocytes thus activating TLR3 signalling is one possible way of perpetuating inflammatory cartilage changes. The inhibition of TLR3 could be a possible therapeutic target for OA treatment.
Collapse
|
37
|
Moghoofei M, Mostafaei S, Kondori N, Armstrong ME, Babaei F. Bacterial and viral coinfection in idiopathic pulmonary fibrosis patients: the prevalence and possible role in disease progression. BMC Pulm Med 2022; 22:60. [PMID: 35148733 PMCID: PMC8832419 DOI: 10.1186/s12890-022-01853-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial pneumonia of unknown aetiology with a mean survival rate of less than 3 years. No previous studies have been performed on the role of co-infection (viral and bacterial infection) in the pathogenesis and progression of IPF. In this study, we investigated the role of viral/bacterial infection and coinfection and their possible association with pathogenesis and progression of IPF. Methods We investigated the prevalence and impact of bacterial and viral coinfection in IPF patients (n = 67) in the context of pulmonary function (FVC, FEV1 and DLCO), disease status and mortality risk. Using principal component analysis (PCA), we also investigated the relationship between distribution of bacterial and viral co-infection in the IPF cohort. Results Of the 67 samples, 17.9% samples were positive for viral infection, 10.4% samples were positive for bacterial infection and 59.7% samples were positive coinfection. We demonstrated that IPF patients who were co-infected had a significantly increased risk of mortality compared (p = 0.031) with IPF patients who were non-infected [Hazard ratio: 8.12; 95% CI 1.3–26.9]. Conclusion In this study, we report for the first time that IPF patients who were coinfected with bacterial and viral infection have significantly decreased FVC and DLCO (% predicted). Besides, the results demonstrated the increased AE-IPF, increased incidence of death and risk of mortality in infected/coinfected patients compared to non-infected IPF patients.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shayan Mostafaei
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Nasim Kondori
- Department of Pediatrics, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Michelle E Armstrong
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
39
|
McElroy AN, Invernizzi R, Laskowska JW, O'Neill A, Doroudian M, Moghoofei M, Mostafaei S, Li F, Przybylski AA, O'Dwyer DN, Bowie AG, Fallon PG, Maher TM, Hogaboam CM, Molyneaux PL, Hirani N, Armstrong ME, Donnelly SC. Candidate Role for Toll-like Receptor 3 L412F Polymorphism and Infection in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 205:550-562. [DOI: 10.1164/rccm.202010-3880oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Rachele Invernizzi
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Joanna W. Laskowska
- Trinity College Dublin School of Medicine, 155276, Clinical Medicine, Dublin, Ireland
| | - Andrew O'Neill
- University of Dublin Trinity College, 8809, Medicine, Dublin, Ireland
| | | | - Mohsen Moghoofei
- Kermanshah University of Medical Sciences, 48464, Department of Microbiology, Faculty of Medicine, Kermanshah, Iran (the Islamic Republic of)
| | - Shayan Mostafaei
- Kermanshah University of Medical Sciences, 48464, Department of Biostatistics, Kermanshah, Iran (the Islamic Republic of)
| | - Feng Li
- University of Edinburgh MRC Centre for Inflammation Research, 47954, Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - Alexander A. Przybylski
- University of Edinburgh MRC Centre for Inflammation Research, 47954, Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - David N O'Dwyer
- University of Michigan Hospital, 166144, Internal Medicine, Ann Arbor, Michigan, United States
| | - Andrew G. Bowie
- University of Dublin Trinity College, 8809, School of Biochemistry and Immunology, Dublin 2, Ireland
| | | | - Toby M. Maher
- Imperial College London - Royal Brompton Campus, 152930, London, United Kingdom of Great Britain and Northern Ireland
| | - Cory M Hogaboam
- Cedars Sinai Medical Center, Department of Medicine, Los Angeles, California, United States
| | - Philip L Molyneaux
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Nik Hirani
- The University of Edinburgh, 3124, Center for Inflammation Research, Edinburgh, United Kingdom of Great Britain and Northern Ireland
- NHS Lothian, 3129, Respiratory Medicine, Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | | | | |
Collapse
|
40
|
Bhagat S, Biswas I, Alam MI, Khan M, Khan GA. Key role of Extracellular RNA in hypoxic stress induced myocardial injury. PLoS One 2021; 16:e0260835. [PMID: 34882718 PMCID: PMC8659422 DOI: 10.1371/journal.pone.0260835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Myocardial infarction (MI), atherosclerosis and other inflammatory and ischemic cardiovascular diseases (CVDs) have a very high mortality rate and limited therapeutic options. Although the diagnosis is based on markers such as cardiac Troponin-T (cTrop-T), the mechanism of cTrop-T upregulation and release is relatively obscure. In the present study, we have investigated the mechanism of cTrop-T release during acute hypoxia (AH) in a mice model by ELISA & immunohistochemistry. Our study showed that AH exposure significantly induces the expression and release of sterile inflammatory as well as MI markers in a time-dependent manner. We further demonstrated that activation of TLR3 (mediated by eRNA) by AH exposure in mice induced cTrop-T release and Poly I:C (TLR3 agonist) also induced cTrop-T release, but the pre-treatment of TLR3 immuno-neutralizing antibody or silencing of Tlr3 gene or RNaseA treatment two hrs before AH exposure, significantly abrogated AH-induced Caspase 3 activity as well as cTrop-T release. Our immunohistochemistry and Masson Trichrome (MT) staining studies further established the progression of myocardial injury by collagen accumulation, endothelial cell and leukocyte activation and adhesion in myocardial tissue which was abrogated significantly by pre-treatment of RNaseA 2 hrs before AH exposure. These data indicate that AH induced cTrop-T release is mediated via the eRNA-TLR3-Caspase 3 pathway.
Collapse
Affiliation(s)
- Saumya Bhagat
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, New Delhi, India
| | - Indranil Biswas
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, New Delhi, India
| | - Md Iqbal Alam
- Department of Physiology, HIMSAR, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | | | - Gausal A. Khan
- Department of Physiology & Physiotherapy, College of Medicine, Nursing & Health Sciences, Fiji National University, Suva, Fiji Islands
| |
Collapse
|
41
|
Chen F, Zou L, Williams B, Chao W. Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxid Redox Signal 2021; 35:1324-1339. [PMID: 33588628 PMCID: PMC8817700 DOI: 10.1089/ars.2021.0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Sepsis is a critical clinical syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. Despite decades of intensive research, sepsis remains a leading cause of in-hospital mortality with few specific treatments. Recent Advances: Toll-like receptors (TLRs) are a part of the innate immune system and play an important role in host defense against invading pathogens such as bacteria, virus, and fungi. Using a combination of genetically modified animal models and pharmacological agents, numerous preclinical studies during the past two decades have demonstrated that dysregulated TLR signaling may contribute to sepsis pathogenesis. However, many clinical trials targeting inflammation and innate immunity such as TLR4 have yielded mixed results. Critical Issues: Here we review various TLRs and the specific molecules these TLRs sense-both the pathogen-associated and host-derived stress molecules, and their converging signaling pathways. We critically analyze preclinical investigations into the role of TLRs in animal sepsis, the complexity of targeting TLRs for sepsis intervention, and the disappointing clinical trials of the TLR4 antagonist eritoran. Future Directions: Future sepsis treatments will depend on better understanding the complex biological mechanisms of sepsis pathogenesis, the high heterogeneity of septic humans as defined by clinical presentations and unique immunological biomarkers, and improved stratifications for targeted interventions.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brittney Williams
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
43
|
Pallazola AM, Rao JX, Mengistu DT, Morcos MS, Toma MS, Stolberg VR, Tretyakova A, McCloskey L, Curtis JL, Freeman CM. Human lung cDC1 drive increased perforin-mediated NK cytotoxicity in Chronic Obstructive Pulmonary Disease. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1183-L1193. [PMID: 34704847 PMCID: PMC8715029 DOI: 10.1152/ajplung.00322.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In chronic obstructive pulmonary disease (COPD), lung natural killer cells (NKs) lyse autologous lung epithelial cells in vitro, but underlying mechanisms and their relationship to epithelial cell apoptosis in vivo are undefined. Although this cytolytic capacity of lung NKs depends on priming by dendritic cells (DC), whether priming correlates with DC maturation or is limited to a specific DC subset are also unknown. We recruited ever-smokers (≥10 pack-years) (n=96) undergoing clinically-indicated lung resections. We analyzed lung NKs for cytotoxic molecule transcripts and for cytotoxicity, which we correlated with in situ detection of activated Caspase-3/7+ airway epithelial cells. To investigate DC priming, we measured lung DC expression of CCR2, CCR7, and CX3CR1, and co-cultured peripheral blood NKs with autologous lung DC, either matured using LPS (non-obstructed smokers) or separated into conventional DC type-1 (cDC1) versus cDC type-2 (cDC2) (COPD). Lung NKs in COPD expressed more perforin (p<0.02) and granzyme B (p<0.03) transcripts; inhibiting perforin blocked in vitro killing by lung NKs. Cytotoxicity in vitro correlated significantly (Sr=0.68, p=0.0043) with numbers of apoptotic epithelial cells per airway. In non-obstructed smokers, LPS-induced maturation enhanced DC-mediated priming of blood NKs, reflected by greater epithelial cell death. Although CCR7 expression was greater in COPD in both cDC1 (p<0.03) and cDC2 (p=0.009), only lung cDC1 primed NK killing. Thus, rather than being intrinsic to those with COPD, NK priming is a capacity of human lung DC that is inducible by recognition of bacterial (and possibly other) danger signals and restricted to the cDC1 subset.
Collapse
Affiliation(s)
- Alexander M Pallazola
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Jessica X Rao
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Dawit T Mengistu
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Maria S Morcos
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Mariam S Toma
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Valerie R Stolberg
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Alexandra Tretyakova
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States
| | - Jeffrey L Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States.,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States.,Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Christine M Freeman
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School and Michigan Medicine, Ann Arbor, MI, United States.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States.,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Wier E, Asada M, Wang G, Alphonse MP, Li A, Hintelmann C, Sweren E, Youn C, Pielstick B, Ortines R, Lyu C, Daskam M, Miller LS, Archer NK, Garza LA. Neutrophil extracellular traps impair regeneration. J Cell Mol Med 2021; 25:10008-10019. [PMID: 34623736 PMCID: PMC8572775 DOI: 10.1111/jcmm.16896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Fibrosis is a major health burden across diseases and organs. To remedy this, we study wound‐induced hair follicle neogenesis (WIHN) as a model of non‐fibrotic healing that recapitulates embryogenesis for de novo hair follicle morphogenesis after wounding. We previously demonstrated that TLR3 promotes WIHN through binding wound‐associated dsRNA, the source of which is still unclear. Here, we find that multiple distinct contexts of high WIHN all show a strong neutrophil signature. Given the correlation between neutrophil infiltration and endogenous dsRNA release, we hypothesized that neutrophil extracellular traps (NETs) likely release nuclear spliceosomal U1 dsRNA and modulate WIHN. However, rather than enhance regeneration, we find mature neutrophils inhibit WIHN such that mice with mature neutrophil depletion exhibit higher WIHN. Similarly, Pad4 null mice, which are defective in NET production, show augmented WIHN. Finally, using single‐cell RNA sequencing, we identify a dramatic increase in mature and activated neutrophils in the wound beds of low regenerating Tlr3−/− mice. Taken together, these results demonstrate that although mature neutrophils are stimulated by a common pro‐regenerative cue, their presence and NETs hinder regeneration.
Collapse
Affiliation(s)
- Eric Wier
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mayumi Asada
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chase Hintelmann
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan Sweren
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brittany Pielstick
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chenyi Lyu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maria Daskam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Immunology, Janssen Research and Development, Spring House, PA, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Zhao J, Huang X, Mcleod P, Jiang J, Liu W, Haig A, Jevnikar AM, Jiang Z, Zhang ZX. Toll-like receptor 3 is an endogenous sensor of cell death and a potential target for induction of long-term cardiac transplant survival. Am J Transplant 2021; 21:3268-3279. [PMID: 33784431 DOI: 10.1111/ajt.16584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023]
Abstract
Inflammation posttransplant is directly linked to cell death programs including apoptosis and necrosis. Cell death leads to the release of cellular contents which can promote inflammation. Targeting of these pathways should be an effective strategy to prevent transplant rejection. Toll-like receptor 3 (TLR3) is emerging as a major endogenous sensor of inflammation. In this study, we assessed the role of TLR3 on cell death and transplant rejection. We showed that TLR3 is highly expressed on mouse microvascular endothelial cell (ECs) and the endothelium of cardiac grafts. We demonstrated that TLR3 interacting with dsRNA or self-RNA triggered apoptosis and necroptosis in ECs. Interestingly, TLR3-induced necroptosis led mitochondrial damage. Inhibition of the mitochondrial membrane permeability molecule Cyclophilin D prevented necroptosis in ECs. In vivo, endothelium damage and activities of caspase-3 and mixed lineage kinase domain-like protein were inhibited in TLR3-/- cardiac grafts compared with C57BL/6 grafts posttransplant (n = 5, p < .001). Importantly, TLR3-/- cardiac grafts had prolonged survival in allogeneic BALB/c mice (mean survival = 121 ± 67 vs. 31 ± 6 days of C57BL/6 grafts, n = 7, p = .002). In summary, our study suggests that TLR3 is an important cell death inducer in ECs and cardiac grafts and thus a potential therapeutic target in preventing cardiac transplant rejection.
Collapse
Affiliation(s)
- Jiangqi Zhao
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China.,Department of Pathology, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplantation Studies, London, ON, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London, ON, Canada
| | - Patrick Mcleod
- Matthew Mailing Centre for Translational Transplantation Studies, London, ON, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London, ON, Canada.,Multi-Organ Transplant Program, London Health Sciences Centre, London, ON, Canada
| | - Winnie Liu
- Department of Pathology, Western University, London, ON, Canada
| | - Aaron Haig
- Department of Pathology, Western University, London, ON, Canada
| | - Anthony M Jevnikar
- Matthew Mailing Centre for Translational Transplantation Studies, London, ON, Canada.,Multi-Organ Transplant Program, London Health Sciences Centre, London, ON, Canada.,Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhu-Xu Zhang
- Department of Pathology, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplantation Studies, London, ON, Canada.,Multi-Organ Transplant Program, London Health Sciences Centre, London, ON, Canada.,Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
46
|
Gao D, Ciancanelli MJ, Zhang P, Harschnitz O, Bondet V, Hasek M, Chen J, Mu X, Itan Y, Cobat A, Sancho-Shimizu V, Bigio B, Lorenzo L, Ciceri G, McAlpine J, Anguiano E, Jouanguy E, Chaussabel D, Meyts I, Diamond MS, Abel L, Hur S, Smith GA, Notarangelo L, Duffy D, Studer L, Casanova JL, Zhang SY. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J Clin Invest 2021; 131:134529. [PMID: 33393505 DOI: 10.1172/jci134529] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/β induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-β protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-β secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-β immunity.
Collapse
Affiliation(s)
- Daxing Gao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Department of General Surgery, The First Affiliated Hospital of USTC, and.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Turnstone Biologics, New York, New York, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Vincent Bondet
- Translational Immunology Laboratory, Pasteur Institute, Paris, France
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Gabriele Ciceri
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Jessica McAlpine
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Esperanza Anguiano
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM U899, Dallas, Texas, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Damien Chaussabel
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM U899, Dallas, Texas, USA.,Benaroya Research Institute, Seattle, Washington, USA.,Sidra Medicine, Doha, Qatar
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Darragh Duffy
- Translational Immunology Laboratory, Pasteur Institute, Paris, France
| | - Lorenz Studer
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| |
Collapse
|
47
|
Vandestadt C, Vanwalleghem GC, Khabooshan MA, Douek AM, Castillo HA, Li M, Schulze K, Don E, Stamatis SA, Ratnadiwakara M, Änkö ML, Scott EK, Kaslin J. RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 2021; 56:2364-2380.e8. [PMID: 34428400 DOI: 10.1016/j.devcel.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Tissue regeneration and functional restoration after injury are considered as stem- and progenitor-cell-driven processes. In the central nervous system, stem cell-driven repair is slow and problematic because function needs to be restored rapidly for vital tasks. In highly regenerative vertebrates, such as zebrafish, functional recovery is rapid, suggesting a capability for fast cell production and functional integration. Surprisingly, we found that migration of dormant "precursor neurons" to the injury site pioneers functional circuit regeneration after spinal cord injury and controls the subsequent stem-cell-driven repair response. Thus, the precursor neurons make do before the stem cells make new. Furthermore, RNA released from the dying or damaged cells at the site of injury acts as a signal to attract precursor neurons for repair. Taken together, our data demonstrate an unanticipated role of neuronal migration and RNA as drivers of neural repair.
Collapse
Affiliation(s)
- Celia Vandestadt
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Gilles C Vanwalleghem
- The Queensland Brain Institute, the University of Queensland, St. Lucia, QLD, Australia
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Alon M Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Hozana Andrade Castillo
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia; Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas CEP 13083-100, Brazil
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Keith Schulze
- Monash Micro Imaging, Monash University, Monash University, Clayton, VIC 3800, Australia
| | - Emily Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | | | - Madara Ratnadiwakara
- Centre for Reproductive Health and Center for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Center for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ethan K Scott
- The Queensland Brain Institute, the University of Queensland, St. Lucia, QLD, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia.
| |
Collapse
|
48
|
Oxidative Stress and Mitochondrial Damage in Dry Age-Related Macular Degeneration Like NFE2L2/PGC-1α -/- Mouse Model Evoke Complement Component C5a Independent of C3. BIOLOGY 2021; 10:biology10070622. [PMID: 34356477 PMCID: PMC8301195 DOI: 10.3390/biology10070622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation.
Collapse
|
49
|
Molecular Basis for the Activation of Human Innate Immune Response by the Flagellin Derived from Plant-Pathogenic Bacterium, Acidovorax avenae. Int J Mol Sci 2021; 22:ijms22136920. [PMID: 34203170 PMCID: PMC8268093 DOI: 10.3390/ijms22136920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1β, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.
Collapse
|
50
|
Gollmann-Tepeköylü C, Graber M, Pölzl L, Nägele F, Moling R, Esser H, Summerer B, Mellitzer V, Ebner S, Hirsch J, Schäfer G, Hackl H, Cardini B, Oberhuber R, Primavesi F, Öfner D, Bonaros N, Troppmair J, Grimm M, Schneeberger S, Holfeld J, Resch T. Toll-like receptor 3 mediates ischaemia/reperfusion injury after cardiac transplantation. Eur J Cardiothorac Surg 2021; 57:826-835. [PMID: 32040169 DOI: 10.1093/ejcts/ezz383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Ischaemia and subsequent reperfusion during heart transplantation inevitably result in donor organ injury. Toll-like receptor (TLR)-3 is a pattern recognition receptor activated by viral and endogenous RNA released by injured cells. We hypothesized that ischaemia/reperfusion injury (IRI) leads to RNA release with subsequent TLR3 activation in transplanted hearts. METHODS Human endothelial cells were subjected to IRI and treated with TLR3 agonist polyinosinic-polycytidylic acid or a TLR3/double-stranded RNA complex inhibitor. TLR3 activation was analysed using reporter cells. Gene expression profiles were evaluated via next-generation sequencing. Neutrophil adhesion was assessed in vitro. Syngeneic heart transplantation of wild-type or Tlr3-/- mice was performed following 9 h of cold ischaemia. Hearts were analysed for inflammatory gene expression, cardiac damage, apoptosis and infiltrating leucocytes. RESULTS IRI resulted in RNA release with subsequent activation of TLR3. Treatment with a TLR3 inhibitor abrogated the inflammatory response upon IRI. In parallel, TLR3 stimulation caused activation of the inflammasome. Endothelial IRI resulted in TLR3-dependent adhesion of neutrophils. Tlr3-/- animals showed reduced intragraft and splenic messenger ribonucleic acid (mRNA) expression of proinflammatory cytokines, resulting in decreased myocardial damage, apoptosis and infiltrating cells. Tlr3 deficiency protected from cardiac damage, apoptosis and leucocyte infiltration after cardiac transplantation. CONCLUSIONS We uncover the release of RNA by injured cells with subsequent activation of TLR3 as a crucial pathomechanism of IRI. Our data indicate that TLR3 represents a novel target in the prevention of IRI in solid organ transplantation.
Collapse
Affiliation(s)
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rafael Moling
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bianca Summerer
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Vanessa Mellitzer
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|