1
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Akatsu C, Naito-Matsui Y, Abdu-Allah HHM, Imamura A, Long W, Ishida H, Takematsu H, Tsubata T. Neu5Gc-mediated high-affinity interaction is dispensable for CD22 cis-ligands to regulate B cell signaling. J Biol Chem 2024; 300:107630. [PMID: 39098526 PMCID: PMC11407986 DOI: 10.1016/j.jbc.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
CD22 (also known as Siglec-2) is an inhibitory receptor expressed in B cells. CD22 specifically recognizes α2,6 sialic acid and interacts with α2,6 sialylated membrane proteins expressed on the same cell (cis-ligands) and those derived from outside of the cell (trans-ligands). Previously, CD22 cis-ligands were shown to regulate the activity of CD22, thereby regulating both BCR ligation-induced signaling and low-level "tonic" signaling in the absence of BCR ligation that regulates the survival and differentiation of B cells. Mouse CD22 prefers Neu5Gc to Neu5Ac thereby binding to α2,6-linked Neu5Gc with high affinity. Although human CD22 binds to a distinct α2,6 sialylated glycan with high affinity, expression of high-affinity ligands is regulated in a conserved and stringent manner. However, how high- versus low-affinity CD22 ligands regulate B cells is poorly understood. Here we demonstrate that the interaction of CD22 with the endogenous ligands enhances BCR ligation-induced signaling but reduces tonic signaling in Cmah-/- mouse B cells deficient in Neu5Gc as well as wild-type B cells. Moreover, Cmah-/- B cells do not show alterations in the phenotypes correlated to tonic signaling. These results indicate that low-affinity interaction of the CD22 cis-ligands with CD22 is sufficient for the regulation of B cell signaling, and suggest that expression of high-affinity CD22 ligands might be involved in the regulation of B cells by competing for the binding of CD22 with exogenous trans-ligands of CD22.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Naito-Matsui
- Department of Molecular Cell Biology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Akihiro Imamura
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Wang Long
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
3
|
Rapp PB, Baccile JA, Galimidi RP, Vielmetter J. Engineering Antigen-Specific Tolerance to an Artificial Protein Hydrogel. ACS Biomater Sci Eng 2024; 10:2188-2199. [PMID: 38479351 DOI: 10.1021/acsbiomaterials.3c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.
Collapse
Affiliation(s)
- Peter B Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
5
|
Lee S, Ko Y, Lee HW, Oh WJ, Hong HG, Ariyaratne D, Im SJ, Kim TJ. Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance. Cell Mol Immunol 2024; 21:393-408. [PMID: 38424169 PMCID: PMC10978899 DOI: 10.1038/s41423-024-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/27/2023] [Indexed: 03/02/2024] Open
Abstract
Marginal zone (MZ) B cells, which are splenic innate-like B cells that rapidly secrete antibodies (Abs) against blood-borne pathogens, are composed of heterogeneous subpopulations. Here, we showed that MZ B cells can be divided into two distinct subpopulations according to their CD80 expression levels. CD80high MZ B cells exhibited greater Ab-producing, proliferative, and IL-10-secreting capacities than did CD80low MZ B cells. Notably, CD80high MZ B cells survived 2-Gy whole-body irradiation, whereas CD80low MZ B cells were depleted by irradiation and then repleted with one month after irradiation. Depletion of CD80low MZ B cells led to accelerated development of type II collagen (CII)-induced arthritis upon immunization with bovine CII. CD80high MZ B cells exhibited higher expression of genes involved in proliferation, plasma cell differentiation, and the antioxidant response. CD80high MZ B cells expressed more autoreactive B cell receptors (BCRs) that recognized double-stranded DNA or CII, expressed more immunoglobulin heavy chain sequences with shorter complementarity-determining region 3 sequences, and included more clonotypes with no N-nucleotides or with B-1a BCR sequences than CD80low MZ B cells. Adoptive transfer experiments showed that CD21+CD23+ transitional 2 MZ precursors preferentially generated CD80low MZ B cells and that a proportion of CD80low MZ B cells were converted into CD80high MZ B cells; in contrast, CD80high MZ B cells stably remained CD80high MZ B cells. In summary, MZ B cells can be divided into two subpopulations according to their CD80 expression levels, Ab-producing capacity, radioresistance, and autoreactivity, and these findings may suggest a hierarchical composition of MZ B cells with differential stability and BCR specificity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeunjung Ko
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun Woo Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Won Joon Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dinuka Ariyaratne
- Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Krimpenfort LT, Degn SE, Heesters BA. The follicular dendritic cell: At the germinal center of autoimmunity? Cell Rep 2024; 43:113869. [PMID: 38431843 DOI: 10.1016/j.celrep.2024.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
Autoimmune diseases strain healthcare systems worldwide as their incidence rises, and current treatments put patients at risk for infections. An increased understanding of autoimmune diseases is required to develop targeted therapies that do not impair normal immune function. Many autoimmune diseases present with autoantibodies, which drive local or systemic inflammation. This indicates the presence of autoreactive B cells that have escaped tolerance. An important step in the development of autoreactive B cells is the germinal center (GC) reaction, where they undergo affinity maturation toward cognate self-antigen. Follicular dendritic cells (FDCs) perform the essential task of antigen presentation to B cells during the affinity maturation process. However, in recent years, it has become clear that FDCs play a much more active role in regulation of GC processes. Here, we evaluate the biology of FDCs in the context of autoimmune disease, with the goal of informing future therapeutic strategies.
Collapse
Affiliation(s)
- Luc T Krimpenfort
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Balthasar A Heesters
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
8
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
10
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
11
|
Apley KD, Griffith AS, Downes GM, Ross P, Farrell MP, Kendall P, Berkland CJ. CD22L Conjugation to Insulin Attenuates Insulin-Specific B Cell Activation. Bioconjug Chem 2023; 34:2077-2088. [PMID: 37883211 PMCID: PMC11034786 DOI: 10.1021/acs.bioconjchem.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Pancreatic islet-reactive B lymphocytes promote Type 1 diabetes (T1D) by presenting an antigen to islet-destructive T cells. Teplizumab, an anti-CD3 monoclonal, delays T1D onset in patients at risk, but additional therapies are needed to prevent the disease entirely. Therefore, bifunctional molecules were designed to selectively inhibit T1D-promoting anti-insulin B cells by conjugating a ligand for the B cell inhibitory receptor CD22 (i.e., CD22L) to insulin, which permit these molecules to concomitantly bind to anti-insulin B cell receptors (BCRs) and CD22. Two prototypes were synthesized: 2:2 insulin-CD22L conjugate on a 4-arm PEG backbone, and 1:1 insulin-CD22L direct conjugate. Transgenic mice (125TgSD) expressing anti-insulin BCRs provided cells for in vitro testing. Cells were cultured with constructs for 3 days, then assessed by flow cytometry. Duplicate wells with anti-CD40 simulated T cell help. A 2-insulin 4-arm PEG control caused robust proliferation and activation-induced CD86 upregulation. Anti-CD40 further boosted these effects. This may indicate that BCR-cross-linking occurs when antigens are tethered by the PEG backbone as soluble insulin alone has no effect. Addition of CD22L via the 2:2 insulin-CD22L conjugate restored B cell properties to that of controls without an additional beneficial effect. In contrast, the 1:1 insulin-CD22L direct conjugate significantly reduced anti-insulin B cell proliferation in the presence of anti-CD40. CD22L alone had no effect, and the constructs did not affect the WT B cells. Thus, multivalent antigen constructs tend to activate anti-insulin B cells, while monomeric antigen-CD22L conjugates reduce B cell activation in response to simulated T cell help and reduce pathogenic B cell numbers without harming normal cells. Therefore, monomeric antigen-CD22L conjugates warrant futher study and may be promising candidates for preclinical trials to prevent T1D without inducing immunodeficiency.
Collapse
Affiliation(s)
- Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Amber S Griffith
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Grant M Downes
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Patrick Ross
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Peggy Kendall
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
13
|
Tsubata T. The ligand interactions of B cell Siglecs are involved in the prevention of autoimmunity to sialylated self-antigens and in the quality control of signaling-competent B cells. Int Immunol 2023; 35:461-473. [PMID: 37504378 DOI: 10.1093/intimm/dxad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of membrane molecules that recognize sialic acid. Most of them are inhibitory receptors that inhibit immune-cell activation by recognizing sialic acid as a self-motif. Human B cells express CD22 (also known as Siglec-2), Siglec-5, Siglec-6 and Siglec-10 whereas mouse B cells express CD22 and Siglec-G (ortholog of human Siglec-10). Siglecs recognize both sialylated molecules expressed on the same cell (cis-ligands) and those expressed by other cells (trans-ligands). In Guillain-Barré syndrome (GBS), antibody production to gangliosides (which are sialic acid-containing glycolipids) expressed by neurons plays a pathogenic role. A Siglec-10 variant deficient in recognition of gangliosides is genetically associated with GBS, suggesting that Siglec-10 induces self-tolerance to gangliosides by recognizing gangliosides as trans-ligands. Recognition of the BCR as a cis-ligand by Siglec-G and CD22 suppresses BCR signaling in B-1 cells and conventional B cells, respectively. This signal suppression prevents excess expansion of B-1 cells and is involved in the quality control of signaling-competent B cells by setting a threshold for tonic signaling during B cell development. CD22 recognizes other cis-ligands including CD22 and β7 integrin. Interaction of CD22 with other CD22 molecules induces CD22 clustering that suppresses CD22-mediated signal inhibition upon BCR ligation, and interaction with β7 integrin maintains its function in the gut-homing of B cells. Taken together, interactions of B cell Siglecs with multiple trans- and cis-ligands play important roles in B cell homeostasis and immune responses.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
14
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
15
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
16
|
Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14:1188838. [PMID: 37575234 PMCID: PMC10415207 DOI: 10.3389/fimmu.2023.1188838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
The immune system is strictly regulated by glycosylation through the addition of highly diverse and dynamically changing sugar structures (glycans) to the majority of immune cell receptors. Although knowledge in the field of glycoimmunology is still limited, numerous studies point to the key role of glycosylation in maintaining homeostasis, but also in reflecting its disruption. Changes in oligosaccharide patterns can lead to impairment of both innate and acquired immune responses, with important implications in the pathogenesis of diseases, including autoimmunity. B cells appear to be unique within the immune system, since they exhibit both innate and adaptive immune activity. B cell surface is rich in glycosylated proteins and lectins which recognise glycosylated ligands on other cells. Glycans are important in the development, selection, and maturation of B cells. Changes in sialylation and fucosylation of cell surface proteins affect B cell signal transduction through BCRs, CD22 inhibitory coreceptor and Siglec-G. Plasmocytes, as the final stage of B cell differentiation, produce and secrete immunoglobulins (Igs), of which IgGs are the most abundant N-glycosylated proteins in human serum with the conserved N-glycosylation site at Asn297. N-oligosaccharide composition of the IgG Fc region affects its secretion, structure, half-life and effector functions (ADCC, CDC). IgG N-glycosylation undergoes little change during homeostasis, and may gradually be modified with age and during ongoing inflammatory processes. Hyperactivated B lymphocytes secrete autoreactive antibodies responsible for the development of autoimmunity. The altered profile of IgG N-glycans contributes to disease progression and remission and is sensitive to the application of therapeutic substances and immunosuppressive agents. In this review, we focus on the role of N-glycans in B-cell biology and IgG activity, the rearrangement of IgG oligosaccharides in aging, autoimmunity and immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
17
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
18
|
Holborough-Kerkvliet MD, Kroos S, de Wetering RV, Toes REM. Addressing the key issue: Antigen-specific targeting of B cells in autoimmune diseases. Immunol Lett 2023:S0165-2478(23)00075-5. [PMID: 37209914 DOI: 10.1016/j.imlet.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Autoimmune diseases are heterogeneous pathologies characterized by a breakdown of immunological tolerance to self, resulting in a chronic and aberrant immune response to self-antigens. The scope and extent of affected tissues can vary greatly per autoimmune disease and can involve multiple organs and tissue types. The pathogenesis of most autoimmune diseases remains unknown but it is widely accepted that a complex interplay between (autoreactive) B and T cells in the context of breached immunological tolerance drives autoimmune pathology. The importance of B cells in autoimmune disease is exemplified by the successful use of B cell targeting therapies in the clinic. For example, Rituximab, a depleting anti-CD20 antibody, has shown favorable results in reducing the signs and symptoms of multiple autoimmune diseases, including Rheumatoid Arthritis, Anti-Neutrophil Cytoplasmic Antibody associated vasculitis and Multiple Sclerosis. However, Rituximab depletes the entire B cell repertoire, leaving patients susceptible to (latent) infections. Therefore, multiple ways to target autoreactive cells in an antigen-specific manner are currently under investigation. In this review, we will lay out the current state of antigen-specific B cell inhibiting or depleting therapies in the context of autoimmune diseases.
Collapse
Affiliation(s)
| | - Sanne Kroos
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Renee van de Wetering
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
19
|
Brzezicka KA, Paulson JC. Impact of Siglecs on autoimmune diseases. Mol Aspects Med 2023; 90:101140. [PMID: 36055802 PMCID: PMC9905255 DOI: 10.1016/j.mam.2022.101140] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
20
|
Targeting CD22 on memory B cells to induce tolerance to peanut allergens. J Allergy Clin Immunol 2022; 150:1476-1485.e4. [PMID: 35839842 PMCID: PMC9813968 DOI: 10.1016/j.jaci.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.
Collapse
|
21
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
23
|
Ton Tran HT, Li C, Chakraberty R, Cairo CW. NEU1 and NEU3 enzymes alter CD22 organization on B cells. BIOPHYSICAL REPORTS 2022; 2:100064. [PMID: 36425332 PMCID: PMC9680808 DOI: 10.1016/j.bpr.2022.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
The B cell membrane expresses sialic-acid-binding immunoglobulin-like lectins, also called Siglecs, that are important for modulating immune response. Siglecs have interactions with sialoglycoproteins found on the same membrane (cis-ligands) that result in homotypic and heterotypic receptor clusters. The regulation and organization of these clusters, and their effect on cell activation, is not clearly understood. We investigated the role of human neuraminidase enzymes NEU1 and NEU3 on the clustering of CD22 on B cells using confocal microscopy. We observed that native NEU1 and NEU3 activity influence the cluster size of CD22. Using single-particle tracking, we observed that NEU3 activity increased the lateral mobility of CD22, which was in contrast to the effect of exogenous bacterial NEU enzymes. Moreover, we show that native NEU1 and NEU3 activity influenced cellular Ca2+ levels, supporting a role for these enzymes in regulating B cell activation. Our results establish a role for native NEU activity in modulating CD22 organization and function on B cells.
Collapse
Affiliation(s)
- Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
24
|
Prescher H, Schweizer A, Frank M, Kuhfeldt E, Ring J, Nitschke L. Targeting Human CD22/Siglec-2 with Dimeric Sialosides as Novel Oligosaccharide Mimetics. J Med Chem 2022; 65:10588-10610. [PMID: 35881556 DOI: 10.1021/acs.jmedchem.2c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant interest in the development of high-affinity ligands for Siglecs exists due to the various therapeutically relevant functions of these proteins. Here, we report a new strategy to develop and design Siglec ligands as disialyl-oligosaccharide mimetics exemplified on Siglec-2 (CD22). We report insights into development of dimeric ligands with high affinity and avidity to cell surface-expressed CD22, assay development, tool compounds, structure activity relationships, and biological data on calcium flux regulation in B-cells. The binding modes of selected ligands have been modeled based on state-of-the-art molecular dynamics simulations on the microsecond timescale, providing detailed views on ligand binding and opening a new perspective on drug design efforts for Siglecs. High-avidity dimeric ligands containing a linker opening the way towards bispecifics are presented as well.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Martin Frank
- Biognos AB, Generatorsgatan 1, 40274 Göteborg, Sweden
| | | | - Julia Ring
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Sialic acids on B cells are crucial for their survival and provide protection against apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2201129119. [PMID: 35696562 PMCID: PMC9231502 DOI: 10.1073/pnas.2201129119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways.
Collapse
|
26
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
27
|
Srivastava A, Arlian BM, Pang L, Kishimoto TK, Paulson JC. Tolerogenic Nanoparticles Impacting B and T Lymphocyte Responses Delay Autoimmune Arthritis in K/BxN Mice. ACS Chem Biol 2021; 16:1985-1993. [PMID: 34037371 PMCID: PMC8526371 DOI: 10.1021/acschembio.1c00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current treatments for unwanted antibody responses largely rely on immunosuppressive drugs compromising overall immunity. New approaches to achieve antigen-specific tolerance are desirable to avoid unwanted side effects. Several nanoparticle-based approaches that utilize different mechanisms to tolerize the B or T cell arms of the humoral immune response have shown promise for induction of antigen-specific tolerance, raising the possibility that they could work synergistically if combined. Earlier we showed that Siglec-engaging tolerance-inducing antigenic liposomes (STALs) that display both an antigen (Ag) and glycan ligands of the inhibitory co-receptor CD22 (CD22L) lead to robust antigen-specific B cell tolerance to protein antigens in naive mice. In another approach, administration of free Ag with poly(lactic-co-glycolic acid)-rapamycin nanoparticles (PLGA-R) induced robust antigen-specific tolerance through production of regulatory T cells. Here we illustrate that coadministration of STALs together with PLGA-R to naive mice induced more robust tolerance to multiple antigen challenges than either nanoparticle alone. Moreover, in K/BxN mice that develop spontaneous autoimmune arthritis to the self-antigen glucose-6-phosphate-isomerase (GPI), co-delivery of GPI-LP-CD22L and PLGA-R delayed onset of disease and in some mice prevented the disease indefinitely. The results show synergy between B cell-tolerizing STALs and T cell-tolerizing PLGA-R and the potential to induce tolerance in early stage autoimmune disease.
Collapse
Affiliation(s)
- Amrita Srivastava
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Britni M. Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lijuan Pang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Lünemann JD, von Gunten S, Neumann H. Targeting sialylation to treat central nervous system diseases. Trends Pharmacol Sci 2021; 42:998-1008. [PMID: 34607695 DOI: 10.1016/j.tips.2021.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/03/2023]
Abstract
Sialic acid-binding immunoglobulin-type lectins (SIGLECs) are membrane receptors that are preferentially expressed on immune cells and recognize sialylated proteins, lipids, and RNA. Sialic acids and signaling through SIGLECs are increasingly recognized for their essential roles in immune system homeostasis as well as nervous system development, plasticity, and repair. Dysregulated sialylation and SIGLEC dysfunctions contribute to several chronic diseases of the central nervous system (CNS) in which current therapeutic options are very limited. While only a few therapies targeting SIGLECs are currently being tested in clinical trials, the area emerged as one of the most dynamic and active fields in glycobiology and drug development. This review highlights recent insights into sialic acid and SIGLEC function in CNS pathologies and illustrates opportunities and challenges for the development of sialic acid-based and SIGLEC-targeted therapies for neurological diseases.
Collapse
Affiliation(s)
- Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | | | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Aktar N, Chen T, Moudud A, Xu S, Zhou X. Tolerogenic vehicles of antigens in the antigen-specific immunotherapy for autoimmunity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Xiao N, Zhu X, Li K, Chen Y, Liu X, Xu B, Lei M, Xu J, Sun HC. Blocking siglec-10 hi tumor-associated macrophages improves anti-tumor immunity and enhances immunotherapy for hepatocellular carcinoma. Exp Hematol Oncol 2021; 10:36. [PMID: 34112250 PMCID: PMC8191104 DOI: 10.1186/s40164-021-00230-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) promote key processes in the modulation of tumor microenvironment (TME). However, the clinical significance of heterogeneous subpopulations of TAMs in hepatocellular carcinoma (HCC) remains unknown. METHODS HCC tissues from Zhongshan Hospital and data from The Cancer Genome Atlas were obtained and analyzed. Immunohistochemistry and flow cytometry were performed to detect the characteristics of sialic acid-binding immunoglobulin-like lectin 10high (Siglec-10hi) TAMs and explore their impact on the TME of HCC. The effect of Siglec-10 blockade was evaluated in vitro based on fresh human tumor tissues. RESULTS Our data revealed that Siglec-10 was abundant in a large proportion of HCC specimens and prominently distributed on macrophages. Kaplan-Meier curves and Cox regression analysis showed that intratumoral Siglec-10+ cell enrichment was associated with unfavorable prognosis in patients with HCC. Notably, multiple anti-inflammatory cytokines and inhibitory receptors were enriched in Siglec-10hi TAMs. RNA sequencing data also revealed that numerous M2-like signaling pathways were significantly upregulated in Siglec-10hi TAMs. High infiltration of Siglec-10hi TAMs was associated with impaired CD8+ T cell function in HCC. Of note, blocking Siglec-10 with the competitive binding antibody Siglec-10 Fc led to decreased expression of immunosuppressive molecules and increased the cytotoxic effects of CD8+ T cells against HCC cells. Moreover, blocking Siglec-10 promoted the anti-tumor efficacy of the programmed cell death protein 1 (PD-1) inhibitor pembrolizumab. CONCLUSIONS Siglec-10hi TAMs are associated with immune suppression in the TME, and indicate poor prognosis in patients with HCC. Targeting Siglec-10hi TAMs may serve as a promising immunotherapy approach for HCC.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiaodong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Kangshuai Li
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuefeng Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ming Lei
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.
| |
Collapse
|
31
|
Bayat M, Asemani Y, Mohammadi MR, Sanaei M, Namvarpour M, Eftekhari R. An overview of some potential immunotherapeutic options against COVID-19. Int Immunopharmacol 2021; 95:107516. [PMID: 33765610 PMCID: PMC7908848 DOI: 10.1016/j.intimp.2021.107516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
After the advent of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in the late 2019, the resulting severe and pernicious syndrome (COVID-19) immediately was deployed all around the world. To date, despite relentless efforts to control the disease by drug repurposing, there is no approved specific therapy for COVID-19. Given the role of innate and acquired immune components in the control and elimination of viral infections and inflammatory mutilations during SARS-CoV2 pathogenesis, immunotherapeutic strategies appear to be beneficent. Passive immunotherapies such as convalescent plasma, which has received much attention especially in severe cases, as well as suppressing inflammatory cytokines, interferon administration, inhibition of kinases and complement cascade, virus neutralization with key engineered products, cell-based therapies, immunomodulators and anti-inflammatory drugs are among the key immunotherapeutic approaches to deal with COVID-19, which is discussed in this review. Also, details of leading COVID-19 vaccine candidates as the most potent immunotherapy have been provided. However, despite salient improvements, there is still a lack of completely assured vaccines for universal application. Therefore, adopting proper immunotherapies according to the cytokine pattern and involved immune responses, alongside engineered biologics specially ACE2-Fc to curb SARS-CoV2 infection until achieving a tailored vaccine is probably the best strategy to better manage this pandemic. Therefore, gaining knowledge about the mechanism of action, potential targets, as well as the effectiveness of immune-based approaches to confront COVID-19 in the form of a well-ordered review study is highly momentous.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sanaei
- Department of Environmental, Polymer and Organic Chemistry, School of Chemistry, Damghan University, Damghan, Iran
| | - Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Science and services, Yazd, Iran
| | - Reyhaneh Eftekhari
- Department of Microbiology, Faculty of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
32
|
Lennon CS, Cao H, Hall AM, Vickers MA, Barker RN. The red blood cell as a novel regulator of human B-cell activation. Immunology 2021; 163:436-447. [PMID: 33728669 PMCID: PMC8274151 DOI: 10.1111/imm.13327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Non‐immune cells are increasingly recognized as important in regulating immunity, but the role of red blood cells (RBC) remains relatively unexplored, despite their abundance in the circulation and a cell surface rich in potential ligands. Here, we determine whether RBC influence the activation state of human B cells. Separation of RBC from peripheral blood mononuclear cells increased B‐cell expression of HLA‐DR/DP/DQ, whilst reconstitution reduced the levels of B‐cell activation markers HLA‐DR/DP/DQ, CD86, CD69 and CD40, as well as decreasing proliferative responses and IgM secretion. Inhibition of B cells required contact with RBC and was abrogated by either removal of sialic acids from RBC or blocking the corresponding lectin receptor CD22 on B cells. Chronic lymphocytic leukaemia B cells express low levels of CD22 and were less susceptible to inhibition by RBC, which may contribute to their activated phenotype. Taken together, the results identify a novel mechanism that may suppress inappropriate responsiveness of healthy B cells whilst circulating in the bloodstream.
Collapse
Affiliation(s)
| | - Huan Cao
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew M Hall
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mark A Vickers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Robert N Barker
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
33
|
Qelliny MR, Shimizu T, Elsadek NE, Emam SE, Takata H, Fathalla ZMA, Hussein AK, Khaled KA, Ando H, Ishima Y, Ishida T. Incorporating Gangliosides into PEGylated Cationic Liposomes that Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice. Mol Pharm 2021; 18:2406-2415. [PMID: 33896187 DOI: 10.1021/acs.molpharmaceut.1c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.
Collapse
Affiliation(s)
- Milad Reda Qelliny
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Zeinab M A Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
34
|
Park DD, Chen J, Kudelka MR, Jia N, Haller CA, Kosaraju R, Premji AM, Galizzi M, Nairn AV, Moremen KW, Cummings RD, Chaikof EL. Resident and elicited murine macrophages differ in expression of their glycomes and glycan-binding proteins. Cell Chem Biol 2021; 28:567-582.e4. [PMID: 33378651 PMCID: PMC8052306 DOI: 10.1016/j.chembiol.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
The pleiotropic functions of macrophages in immune defense, tissue repair, and maintenance of tissue homeostasis are supported by the heterogeneity in macrophage sub-populations that differ both in ontogeny and polarization. Although glycans and glycan-binding proteins (GBPs) are integral to macrophage function and may contribute to macrophage diversity, little is known about the factors governing their expression. Here, we provide a resource for characterizing the N-/O-glycomes of various murine peritoneal macrophage sub-populations, demonstrating that glycosylation primarily reflects developmental origin and, to a lesser degree, cellular polarization. Furthermore, comparative analysis of GBP-coding genes in resident and elicited macrophages indicated that GBP expression is consistent with specialized macrophage functions and correlates with specific types of displayed glycans. An integrated, semi-quantitative approach was used to confirm distinct expression patterns of glycans and their binding proteins across different macrophages. The data suggest that regulation of glycan-protein complexes may be central to macrophage residence and recruitment.
Collapse
Affiliation(s)
- Diane D Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Revanth Kosaraju
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alykhan M Premji
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Liu Q, Wang X, Liu X, Liao YP, Chang CH, Mei KC, Jiang J, Tseng S, Gochman G, Huang M, Thatcher Z, Li J, Allen SD, Lucido L, Xia T, Nel AE. Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. ACS NANO 2021; 15:1608-1626. [PMID: 33351586 PMCID: PMC7943028 DOI: 10.1021/acsnano.0c09206] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The targeting of natural tolerogenic liver sinusoidal endothelial cells (LSEC) by nanoparticles (NPs), decorated with a stabilin receptor ligand, is capable of generating regulatory T-cells (Tregs), which can suppress antigen-specific immune responses, including to ovalbumin (OVA), a possible food allergen. In this regard, we have previously demonstrated that OVA-encapsulating poly(lactic-co-glycolic acid) (PLGA) nanoparticles eliminate allergic airway inflammation in OVA-sensitized mice, prophylactically and therapeutically. A competing approach is a nanocarrier platform that incorporates pharmaceutical agents interfering in mTOR (rapamycin) or NF-κB (curcumin) pathways, with the ability to induce a tolerogenic state in nontargeted antigen-presenting cells system-wide. First, we compared OVA-encapsulating, LSEC-targeting tolerogenic nanoparticles (TNPs) with nontargeted NPs incorporating curcumin and rapamycin (Rapa) in a murine eosinophilic airway inflammation model, which is Treg-sensitive. This demonstrated roughly similar tolerogenic effects on allergic airway inflammation by stabilin-targeting NPOVAversus nontargeted NPs delivering OVA plus Rapa. Reduction in eosinophilic inflammation and TH2-mediated immune responses in the lung was accompanied by increased Foxp3+ Treg recruitment and TGF-β production in both platforms. As OVA incorporates IgE-binding as well as non-IgE-binding epitopes, the next experiment explored the possibility of obtaining immune tolerance by non-anaphylactic T-cell epitopes. This was accomplished by incorporating OVA323-339 and OVA257-264 epitopes in liver-targeting NPs to assess the prophylactic and therapeutic impact on allergic inflammation in transgenic OT-II mice. Importantly, we demonstrated that the major histocompatibility complex (MHC)-II binding (former) but not the MHC-I binding (latter) epitope interfered in allergic airway inflammation, improving TNPOVA efficacy. The epitope-specific effect was transduced by TGF-β-producing Tregs. In the final phase of experimentation, we used an OVA-induced anaphylaxis model to demonstrate that targeted delivery of OVA and its MHC-II epitope could significantly suppress the anaphylaxis symptom score, mast cell release, and the late-phase inflammatory response. In summary, these results demonstrate comparable efficacy of LSEC-targeting versus pharmaceutical PLGA nanoparticles, as well as the ability of T-cell epitopes to achieve response outcomes similar to those of the intact allergens.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Shannon Tseng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Grant Gochman
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Marissa Huang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zoe Thatcher
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sean D. Allen
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Luke Lucido
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding author ;
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding author ;
| |
Collapse
|
36
|
Therapeutic Targeting of Autoreactive B Cells: Why, How, and When? Biomedicines 2021; 9:biomedicines9010083. [PMID: 33467130 PMCID: PMC7829839 DOI: 10.3390/biomedicines9010083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes play critical roles in the development of autoimmunity, acting as autoantibody manufacturers, antigen-presenting cells, and producers of cytokines. Pan-B cell depletion has demonstrated efficacy in treatment of many autoimmune disorders, but carries with it an unfavorable safety profile due to global immune suppression. Hence, attention has turned to the potential of autoantigen-specific B cell targeted therapies, which would deplete or silence pathogenic self-antigen-reactive cells while sparing B cells needed for immune defense. Here, we discuss the antigen-specific B cell-targeted approaches that are under development or are under consideration, that could be employed to allow for more precise therapy in the treatment of autoimmunity. Lastly, we discuss some of the challenges associated with antigen-specific B cell targeting that may impact their clinical applicability.
Collapse
|
37
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
38
|
Abdu-Allah HHM, Wu SC, Lin CH, Tseng YY. Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. Eur J Med Chem 2020; 208:112707. [PMID: 32942185 DOI: 10.1016/j.ejmech.2020.112707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Ligand 1 was the first reported example of monomeric high-affinity synthetic CD22 ligand that regulated B cell activation in vitro, augmented antibody production and regulated immune responses in mice. Replacing O-glycoside linkage of 1 by nitrogen of triazole by click reaction afforded compounds which are as potent as the parent compound. The synthesis of the new compounds is straightforward with fewer synthetic steps and higher yield. Such a strategy provided stable ligand that can bind avidly and can be conjugated to drugs for B-cell targeting or multimeric formation. The new compounds were screened for their affinity to CD22, using surface plasmon resonance (SPR). Compound 12 was obtained as a bioisosteric analogue and an anomerically stable imitation of 1. It was, also, screened for MAG to test for selectivity and analyzed by molecular docking and dynamic simulation to explore the potential binding modes and source of selectivity within CD22. Our results could enable the development of small molecule drug capable of modulating the activity of CD22 in autoimmune diseases and malignancies derived from B-cells.
Collapse
Affiliation(s)
- Hajjaj H M Abdu-Allah
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Yao Tseng
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| |
Collapse
|
39
|
Turner JS, Benet ZL, Grigorova IL. Signals 1, 2 and B cell fate or: Where, when and for how long? Immunol Rev 2020; 296:9-23. [DOI: 10.1111/imr.12865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jackson S. Turner
- Department of Microbiology and Immunology University of Michigan Medical School Ann Arbor MichiganUSA
| | - Zachary L. Benet
- Department of Microbiology and Immunology University of Michigan Medical School Ann Arbor MichiganUSA
| | - Irina L. Grigorova
- Department of Microbiology and Immunology University of Michigan Medical School Ann Arbor MichiganUSA
| |
Collapse
|
40
|
Ronca V, Mancuso C, Milani C, Carbone M, Oo YH, Invernizzi P. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis. J Leukoc Biol 2020; 108:659-671. [PMID: 32349179 DOI: 10.1002/jlb.5mr0320-200r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by the destruction of the small and medium bile ducts. Its pathogenesis is still unknown. Despite the genome wide association study findings, the therapies targeting the cytokines pathway, tested so far, have failed. The concept of the biliary epithelium as a key player of the PBC pathogenesis has emerged over the last few years. It is now well accepted that the biliary epithelial cells (BECs) actively participate to the genesis of the damage. The chronic stimulation of BECs via microbes and bile changes the cell phenotype toward an active state, which, across the production of proinflammatory mediators, can recruit, retain, and activate immune cells. The consequent immune system activation can in turn damage BECs. Thus, the crosstalk between both innate and adaptive immune cells and the biliary epithelium creates a paracrine loop responsible for the disease progression. In this review, we summarize the evidence provided in literature about the role of BECs and the immune system in the pathogenesis of PBC. We also dissect the relationship between the immune system and the BECs, focusing on the unanswered questions and the future potential directions of the translational research and the cellular therapy in this area.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Clara Mancuso
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Ye Htun Oo
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
41
|
Nazimek K, Bryniarski K. Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scand J Immunol 2020; 91:e12881. [PMID: 32243636 DOI: 10.1111/sji.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Increasing prevalence of allergic and autoimmune diseases urges clinicians and researchers to search for new and efficient treatments. Strategies that activate antigen-specific immune tolerance and simultaneously maintain immune reactivity to all other antigens deserve special attention. Accordingly, antigen-presenting cells (APCs) seem to be the best suited for orchestrating these mechanisms by directing T cell immune responses towards a tolerant subtype. Recent advances in understanding cell-to-cell communication via extracellular vesicles (EVs) make the latter promising candidates for reprogramming APCs towards a tolerant phenotype, and for mediating tolerogenic APC function. Thus, comprehensive studies have been undertaken to describe the interactions of APCs and EVs naturally occurring during immune tolerance induction, as well as to develop EV-based manoeuvres enabling the induction of immune tolerance in an antigen-specific manner. In this review, we summarize the findings of relevant studies, with a special emphasis on future perspectives on their translation to clinical practice.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| | - Krzysztof Bryniarski
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| |
Collapse
|
42
|
Angata T. Siglecs that Associate with DAP12. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:215-230. [PMID: 32152949 DOI: 10.1007/978-981-15-1580-4_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Siglecs are a family of transmembrane receptor-like glycan-recognition proteins expressed primarily on leukocytes. Majority of Siglecs have an intracellular sequence motif called immunoreceptor tyrosine-based inhibitory motif (ITIM) and associate with Src homology region 2 domain-containing tyrosine phosphatase-1 (SHP-1), and negatively regulate tyrosine phosphorylation-mediated intracellular signaling events. On the other hand, some Siglecs have a positively charged amino acid residue in the transmembrane domain and associate with DNAX activation protein of 12 kDa (DAP12), which in turn recruits spleen tyrosine kinase (Syk). These DAP12-associated Siglecs play diverse functions. For example, Siglec-15 is conserved throughout vertebrate evolution and plays a role in bone homeostasis by regulating osteoclast development and function. Human Siglec-14 and -16 have inhibitory counterparts (Siglec-5 and -11, respectively), which show extremely high sequence similarity with them at the extracellular domain but interact with SHP-1. The DAP12-associated Siglec in such "paired receptor" configuration counteracts the pathogens that exploit the inhibitory counterpart. Polymorphisms (mutations) that render DAP12-associated inactive Siglecs are found in humans, and some of these appear to be associated with sensitivity or resistance of human hosts to bacterially induced conditions. Studies of mouse Siglec-H have revealed complex and intriguing functions it plays in regulating adaptive immunity. Many questions remain unanswered, and further molecular and genetic studies of DAP12-associated Siglecs will yield valuable insights with translational relevance.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei, Taiwan.
| |
Collapse
|
43
|
Läubli H, Varki A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell Mol Life Sci 2020; 77:593-605. [PMID: 31485715 PMCID: PMC7942692 DOI: 10.1007/s00018-019-03288-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic transformed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs-in particular CD33-related Siglecs-as self-receptors and their sialoglycan ligands in regulating this balance between recognition of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| |
Collapse
|
44
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
45
|
Biomaterials for Immunoengineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
47
|
Enterina JR, Jung J, Macauley MS. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed J 2019; 42:218-232. [PMID: 31627864 PMCID: PMC6818156 DOI: 10.1016/j.bj.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
CD22 is an inhibitory B cell co-receptor that recognizes sialic acid-containing glycoconjugates as ligands. Interactions with its glycan ligands are key to regulating the ability of CD22 to modulate B cell function, the most widely explored of which is antagonizing B cell receptor (BCR) signaling. Most importantly, interactions of CD22 with ligands on the same cell (cis) control the organization of CD22 on the cell surface, which minimizes co-localization with the BCR. In contrast with the modest ability of CD22 to intrinsically dampen BCR signaling, glycan ligands presented on another cell (trans) along with an antigen drawn CD22 and the BCR together within an immunological synapse, strongly inhibiting BCR signaling. New concepts are emerging for how CD22 controls B cell function, such as changes in glycosylation at different stages of B cell differentiation, specifically on GC B cells. Related to these changes, new players, such galectin-9, have been discovered that regulate cell surface nanoclusters of CD22. Roles of glycan ligands in controlling CD22 are the primary focus of this review as we highlight the ability of CD22 to modulate B cell function.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Department of Chemistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
48
|
Nycholat CM, Duan S, Knuplez E, Worth C, Elich M, Yao A, O'Sullivan J, McBride R, Wei Y, Fernandes SM, Zhu Z, Schnaar RL, Bochner BS, Paulson JC. A Sulfonamide Sialoside Analogue for Targeting Siglec-8 and -F on Immune Cells. J Am Chem Soc 2019; 141:14032-14037. [PMID: 31460762 DOI: 10.1021/jacs.9b05769] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Siglec family of cell surface receptors have emerged as attractive targets for cell-directed therapies due to their restricted expression on immune cells, endocytic properties, and ability to modulate receptor signaling. Human Siglec-8, for instance, has been identified as a therapeutic target for the treatment of eosinophil and mast cell disorders. A promising strategy to target Siglecs involves the use of liposomal nanoparticles with a multivalent display of Siglec ligands. A key challenge for this approach is the identification of a high affinity ligand for the target Siglec. Here, we report the development of a ligand of Siglec-8 and its closest murine functional orthologue Siglec-F that is capable of targeting liposomes to cells expressing Siglec-8 or -F. A glycan microarray library of synthetic 9-N-sulfonyl sialoside analogues was screened to identify potential lead compounds. The best ligand, 9-N-(2-naphthyl-sulfonyl)-Neu5Acα2-3-[6-O-sulfo]-Galβ1-4GlcNAc (6'-O-sulfo NSANeu5Ac) combined the lead 2-naphthyl sulfonyl C-9 substituent with the preferred sulfated scaffold. The ligand 6'-O-sulfo NSANeu5Ac was conjugated to lipids for display on liposomes to evaluate targeted delivery to cells. Targeted liposomes showed strong in vitro binding/uptake and selectivity to cells expressing Siglec-8 or -F and, when administered to mice, exhibit in vivo targeting to Siglec-F+ eosinophils.
Collapse
Affiliation(s)
- Corwin M Nycholat
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Shiteng Duan
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Eva Knuplez
- Department of Medicine, Division of Allergy and Immunology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Charli Worth
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Mila Elich
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Anzhi Yao
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Jeremy O'Sullivan
- Department of Medicine, Division of Allergy and Immunology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Ryan McBride
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Yadong Wei
- Section of Allergy and Clinical Immunology , Yale University School of Medicine , New Haven , Connecticut 06511 , United States
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Zhou Zhu
- Section of Allergy and Clinical Immunology , Yale University School of Medicine , New Haven , Connecticut 06511 , United States
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - James C Paulson
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
49
|
Liu Q, Wang X, Liu X, Kumar S, Gochman G, Ji Y, Liao YP, Chang CH, Situ W, Lu J, Jiang J, Mei KC, Meng H, Xia T, Nel AE. Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS NANO 2019; 13:4778-4794. [PMID: 30964276 PMCID: PMC6506187 DOI: 10.1021/acsnano.9b01444] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanoparticles (NPs) can be used to accomplish antigen-specific immune tolerance in allergic and autoimmune disease. The available options for custom-designing tolerogenic NPs include the use of nanocarriers that introduce antigens into natural tolerogenic environments, such as the liver, where antigen presentation promotes tolerance to self- or foreign antigens. Here, we demonstrate the engineering of a biodegradable polymeric poly(lactic- co-glycolic acid) (PLGA) nanocarrier for the selective delivery of the murine allergen, ovalbumin (OVA), to the liver. This was accomplished by developing a series of NPs in the 200-300 nm size range as well as decorating particle surfaces with ligands that target scavenger and mannose receptors on liver sinusoidal endothelial cells (LSECs). LSECs represent a major antigen-presenting cell type in the liver capable of generating regulatory T-cells (Tregs). In vitro exposure of LSECs to NPOVA induced abundant TGF-β, IL-4, and IL-10 production, which was further increased by surface ligands. Animal experiments showed that, in the chosen size range, NPOVA was almost exclusively delivered to the liver, where the colocalization of fluorescent-labeled particles with LSECs could be seen to increase by surface ligand decoration. Moreover, prophylactic treatment with NPOVA in OVA-sensitized and challenged animals (aerosolized inhalation) could be seen to significantly suppress anti-OVA IgE responses, airway eosinophilia, and TH2 cytokine production in the bronchoalveolar lavage fluid. The suppression of allergic airway inflammation was further enhanced by attachment of surface ligands, particularly for particles decorated with the ApoB peptide, which induced high levels of TGF-β production in the lung along with the appearance of Foxp3+ Tregs. The ApoB-peptide-coated NPs could also interfere in allergic airway inflammation when delivered postsensitization. The significance of these findings is that liver and LSEC targeting PLGA NPs could be used for therapy of allergic airway disease, in addition to the potential of using their tolerogenic effects for other disease applications.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sanjan Kumar
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Grant Gochman
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Ying Ji
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Wesley Situ
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jianqin Lu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS. Exploiting CD22 To Selectively Tolerize Autoantibody Producing B-Cells in Rheumatoid Arthritis. ACS Chem Biol 2019; 14:644-654. [PMID: 30835424 DOI: 10.1021/acschembio.8b01018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the synovial joints and can lead to bone erosion and cartilage damage. One hallmark of RA is anticitrullinated protein autoantibodies (ACPA) and memory citrulline-specific B-cells, which have been implicated in RA pathogenesis. While depletion of B-cells with Rituximab improves clinical responses in RA patients, this treatment strategy leaves patients susceptible to infections. Here we use of Siglec-engaging Tolerance-inducing Antigenic Liposomes (STALs) to selectively target the citrulline-specific B-cells. ACPA production from purified human RA patients' B-cells in vitro was achieved through a set of stimulation conditions, which includes the following: BAFF, anti-CD40, IL-21, and LPS. In vivo generation of citrulline specific B-cells and ACPA production was accomplished by antigenic liposomes consisting of monophosphoryl lipid A (MPLA) and a cyclic citrullinated peptide (CCP) administered to SJL/J mice. We show that STALs that codisplay a high affinity CD22 glycan ligand and synthetic citrullinated antigen (CCP STALs) can prevent ACPA production from RA patients' memory B-cells in vitro. These CCP STALs were also effective in inducing tolerance to citrullinated antigens in SJL/J mice. The results demonstrate that tolerization of the B-cells responsible for ACPA can be achieved by exploiting the inhibitory receptor CD22 with high-affinity glycan ligands. Such a treatment strategy could be beneficial in the treatment of RA.
Collapse
Affiliation(s)
- Kyle J. Bednar
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Corwin M. Nycholat
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tadimeti S. Rao
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Wai-Ping Fung-Leung
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - Matthew S. Macauley
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|