1
|
Perkins B, Novis C, Baessler A, Sircy LM, Thomas MM, Harrison-Chau M, Richens AW, Fuchs B, Nguyen NX, Flint K, Varley KE, Hale JS. Dnmt3a-mediated de novo methylation balances memory Th1 and Tfh cell plasticity and functionality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.623450. [PMID: 39677644 PMCID: PMC11642886 DOI: 10.1101/2024.12.03.623450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Following acute viral infection, naïve CD4+ T cells differentiate into T follicular helper (Tfh) and T helper 1 (Th1) cells that generate long-lived memory cells. However, it is unclear how memory Tfh and Th1 cells maintain their lineage commitment. Here we demonstrate that Tfh and Th1 lineages acquire distinct de novo DNA methylation programs that are preserved into memory. Using whole genome methylation analyses and deletion of DNA methyltransferase 3a, we found that de novo DNA methylation is required for generating epigenetic programing to enforce lineage commitment and preserve lineage-specific functions during a recall response to infection. Importantly, partial inhibition of de novo methylation using the methyltransferase inhibitor decitabine during priming enhances Tfh cell functionality in primary and secondary responses to viral infection. Together, these findings demonstrate that de novo DNA methylation is critical to balance lineage commitment and functionality of memory CD4+ T cell subsets and reveal novel potential strategies to modulate immune responses to infectious diseases.
Collapse
Affiliation(s)
- Bryant Perkins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Camille Novis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Andrew Baessler
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Linda M Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Monyca M Thomas
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Malia Harrison-Chau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Andrew W Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Bryce Fuchs
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Nguyen X. Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Kaitlyn Flint
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Çebi M, Çakar A, Durmuş H, Akan O, Aysal F, Parman Y, Saruhan-Direskeneli G. In vitro modulation of T cells in myasthenia gravis by low-dose IL-2. Eur J Immunol 2024; 54:e2451268. [PMID: 39285833 DOI: 10.1002/eji.202451268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/08/2024]
Abstract
Follicular helper (Tfh), peripheral helper (Tph), and regulatory (Treg) T cells are involved in myasthenia gravis (MG) pathogenesis, an autoimmune disorder arising from autoantibodies targeting neuromuscular junction proteins. This study explores the impact of low-dose IL-2 on Tfh, Tph, and Treg cells in vitro in MG. Acetylcholine-receptor antibody-positive MG (AChR-MG), muscle-specific kinase antibody-positive MG (MuSK-MG) patients, and healthy controls (HC) were studied. Blood cells were cultured with/without IL-2 and compared by the ratios of IL-2 stimulated/unstimulated cultures. In both AChR-MG and MuSK-MG patients, CD25+FoxP3+Tregs were lower, while CXCR5+PD-1+ or ICOS+Tfh and CXCR5-PD-1+ or ICOS+Tph cells were higher compared with HC. Among the MG group, the FoxP3+ Treg cells in AChR-MG patients were even lower compared with MuSK-MG patients. In vitro IL-2 stimulation increased Tregs in all groups while decreasing PD-1+/ICOS+Tfh and PD-1+/ICOS+Tph populations. The fold-increase ratio of Tregs and the fold-decrease ratio of PD-1+ or ICOS+Tfh and ICOS+Tph cells in AChR-MG and MuSK-MG patients were greater than in HCs. Low-dose IL-2 treatment may balance Tfh, Tph, and Treg cells in MG patients, offering a potential opportunity for disease modulation.
Collapse
Affiliation(s)
- Merve Çebi
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
- Department of Immunology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Onur Akan
- Department of Neurology, Prof. Dr. Cemil Tascioglu City Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
3
|
He K, Xiao H, MacDonald WA, Mehta I, Kishore A, Vincent A, Xu Z, Ray A, Chen W, Weaver CT, Lambrecht BN, Das J, Poholek AC. Spatial microniches of IL-2 combine with IL-10 to drive lung migratory T H2 cells in response to inhaled allergen. Nat Immunol 2024; 25:2124-2139. [PMID: 39394532 DOI: 10.1038/s41590-024-01986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
The mechanisms that guide T helper 2 (TH2) cell differentiation in barrier tissues are unclear. Here we describe the molecular pathways driving allergen-specific TH2 cells using temporal, spatial and single-cell transcriptomic tracking of house dust mite-specific T cells in mice. Differentiation and migration of lung allergen-specific TH2 cells requires early expression of the transcriptional repressor Blimp-1. Loss of Blimp-1 during priming in the lymph node ablated the formation of TH2 cells in the lung, indicating early Blimp-1 promotes TH2 cells with migratory capability. IL-2/STAT5 signals and autocrine/paracrine IL-10 from house dust mite-specific T cells were essential for Blimp-1 and subsequent GATA3 upregulation through repression of Bcl6 and Bach2. Spatial microniches of IL-2 in the lymph node supported the earliest Blimp-1+TH2 cells, demonstrating lymph node localization is a driver of TH2 initiation. Our findings identify an early requirement for IL-2-mediated spatial microniches that integrate with allergen-driven IL-10 from responding T cells to drive allergic asthma.
Collapse
Affiliation(s)
- Kun He
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - William A MacDonald
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Sequencing Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Isha Mehta
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Akash Kishore
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Augusta Vincent
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Casey T Weaver
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Lu KC, Tsai KW, Hu WC. Role of TGFβ-producing regulatory T cells in scleroderma and end-stage organ failure. Heliyon 2024; 10:e35590. [PMID: 39170360 PMCID: PMC11336735 DOI: 10.1016/j.heliyon.2024.e35590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells that initiate a tolerable immune response. Transforming growth factor-beta (TGFβ) is a key cytokine produced by Tregs and plays a significant role in stimulating tissue fibrosis. Systemic sclerosis, an autoimmune disease characterized by organ fibrosis, is associated with an overrepresentation of regulatory T cells. This review aims to identify Treg-dominant tolerable host immune reactions and discuss their association with scleroderma and end-stage organ failure. End-stage organ failures, including heart failure, liver cirrhosis, uremia, and pulmonary fibrosis, are frequently linked to tissue fibrosis. This suggests that TGFβ-producing Tregs are involved in the pathogenesis of these conditions. However, the exact significance of TGFβ and the mechanisms through which it induces tolerable immune reactions during end-stage organ failure remain unclear. A deeper understanding of these mechanisms could lead to improved preventive and therapeutic strategies for these severe diseases.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan City, 333, Taiwan
| |
Collapse
|
5
|
Li X, Sun W, Huang M, Gong L, Zhang X, Zhong L, Calderon V, Bian Z, He Y, Suh WK, Li Y, Song T, Zou Y, Lian ZX, Gu H. Deficiency of CBL and CBLB ubiquitin ligases leads to hyper T follicular helper cell responses and lupus by reducing BCL6 degradation. Immunity 2024; 57:1603-1617.e7. [PMID: 38761804 DOI: 10.1016/j.immuni.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.
Collapse
Affiliation(s)
- Xin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China; Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Weili Sun
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mengxing Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liying Gong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xiaochen Zhang
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Zhong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Zhenhua Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Woong-Kyung Suh
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yang Li
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Yongrui Zou
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.
| | - Hua Gu
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
6
|
Castaño D, Wang S, Atencio-Garcia S, Shields EJ, Rico MC, Sharpe H, Bustamante J, Feng A, Le Coz C, Romberg N, Tobias JW, Utz PJ, Henrickson SE, Casanova JL, Bonasio R, Locci M. IL-12 drives the differentiation of human T follicular regulatory cells. Sci Immunol 2024; 9:eadf2047. [PMID: 38968337 DOI: 10.1126/sciimmunol.adf2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
T follicular regulatory (Tfr) cells can counteract the B cell helper activity of T follicular helper (Tfh) cells and hinder the production of antibodies against self-antigens or allergens. A mechanistic understanding of the cytokines initiating the differentiation of human regulatory T (Treg) cells into Tfr cells is still missing. Herein, we report that low doses of the pro-Tfh cytokine interleukin-12 (IL-12) drive the induction of a Tfr cell program on activated human Treg cells while also preserving their regulatory function. Mechanistically, we found that IL-12 led to STAT4 (signal transducer and activator of transcription 4) phosphorylation and binding to IL-12-driven follicular signature genes. Patients with inborn errors of immunity in the IL12RB1 gene presented with a strong decrease in circulating Tfr cells and produced higher levels of anti-actin autoantibodies in vivo. Overall, this study unveils IL-12 as an inducer of Tfr cell differentiation in vivo and provides an approach for the in vitro generation of human Tfr-like cells.
Collapse
Affiliation(s)
- Diana Castaño
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sidney Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Segovia Atencio-Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily J Shields
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Rico
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Hannah Sharpe
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| | - Neil Romberg
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah E Henrickson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Kim YJ, Choi J, Choi YS. Transcriptional regulation of Tfh dynamics and the formation of immunological synapses. Exp Mol Med 2024; 56:1365-1372. [PMID: 38825646 PMCID: PMC11263543 DOI: 10.1038/s12276-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inside germinal centers (GCs), antigen-specific B cells rely on precise interactions with immune cells and strategic localization between the dark and light zones to clonally expand, undergo affinity maturation, and differentiate into long-lived plasma cells or memory B cells. Follicular helper T (Tfh) cells, the key gatekeepers of GC-dependent humoral immunity, exhibit remarkable dynamic positioning within secondary lymphoid tissues and rely on intercellular interactions with antigen-presenting cells (APCs) during their differentiation and execution of B-cell-facilitating functions within GCs. In this review, we briefly cover the transcriptional regulation of Tfh cell differentiation and function and explore the molecular mechanisms governing Tfh cell motility, their interactions with B cells within GCs, and the impact of their dynamic behavior on humoral responses.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
9
|
Bettini E, Chudnovskiy A, Protti G, Nakadakari-Higa S, Ceglia S, Castaño D, Chiu J, Muramatsu H, Mdluli T, Abraham E, Lipinszki Z, Maillard I, Tam YK, Reboldi A, Pardi N, Spreafico R, Victora GD, Locci M. Distinct components of nucleoside-modified messenger RNA vaccines cooperate to instruct efficient germinal center responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594726. [PMID: 38798523 PMCID: PMC11118742 DOI: 10.1101/2024.05.17.594726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nucleoside-modified mRNA vaccines elicit protective antibodies through their ability to promote T follicular helper (Tfh) cells. The lipid nanoparticle (LNP) component of mRNA vaccines possesses inherent adjuvant activity. However, to what extent the nucleoside-modified mRNA can be sensed and contribute to Tfh cell responses remains largely undefined. Herein, we deconvoluted the signals induced by LNP and mRNA that instruct dendritic cells (DCs) to promote Tfh cell differentiation. We demonstrated that the nucleoside-modified mRNA drives the production of type I interferons that act on DCs to induce their maturation and the induction of Th1-biased Tfh responses. Conversely, LNP favors the acquisition of a Tfh cell-inducing program in DCs, a stronger Th2 polarization in Tfh cells, and allows for rapid mRNA translation by DCs within the draining lymph node. Our work unravels distinct adjuvant features of mRNA and LNP necessary for the induction of Tfh cells, with implications for vaccine design.
Collapse
|
10
|
Read KA, Amici SA, Farsi S, Cutcliffe M, Lee B, Lio CWJ, Wu HJJ, Guerau-de-Arellano M, Oestreich KJ. PRMT5 Promotes T follicular helper Cell Differentiation and Germinal Center Responses during Influenza Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1442-1449. [PMID: 38436421 PMCID: PMC11018492 DOI: 10.4049/jimmunol.2300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Protein arginine methyltransferases (PRMTs) modify diverse protein targets and regulate numerous cellular processes; yet, their contributions to individual effector T cell responses during infections are incompletely understood. In this study, we identify PRMT5 as a critical regulator of CD4+ T follicular helper cell (Tfh) responses during influenza virus infection in mice. Conditional PRMT5 deletion in murine T cells results in an almost complete ablation of both Tfh and T follicular regulatory populations and, consequently, reduced B cell activation and influenza-specific Ab production. Supporting a potential mechanism, we observe elevated surface expression of IL-2Rα on non-T regulatory effector PRMT5-deficient T cells. Notably, IL-2 signaling is known to negatively impact Tfh differentiation. Collectively, our findings identify PRMT5 as a prominent regulator of Tfh programming, with potential causal links to IL-2 signaling.
Collapse
Affiliation(s)
- Kaitlin A. Read
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Stephanie A. Amici
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
| | - Sadaf Farsi
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
| | - Madeline Cutcliffe
- Department of Internal Medicine, Division of Rheumatology-Immunology, The Ohio State University, Columbus, OH
| | - Bella Lee
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
| | - Hsin-Jung Joyce Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Internal Medicine, Division of Rheumatology-Immunology, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
| | - Mireia Guerau-de-Arellano
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
| |
Collapse
|
11
|
Nasa Y, Satake A, Tsuji R, Saito R, Tsubokura Y, Yoshimura H, Ito T. Concomitant use of interleukin-2 and tacrolimus suppresses follicular helper T cell proportion and exerts therapeutic effect against lupus nephritis in systemic lupus erythematosus-like chronic graft versus host disease. Front Immunol 2024; 15:1326066. [PMID: 38665907 PMCID: PMC11043470 DOI: 10.3389/fimmu.2024.1326066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Defective interleukin-2 (IL-2) production contributes to immune system imbalance in patients with systemic erythematosus lupus (SLE). Recent clinical studies suggested that low-dose IL-2 treatment is beneficial for SLE and the therapeutic effect is associated with regulatory T cell (Treg) expansion. Pharmacological calcineurin inhibition induces a reduction in the number of Tregs because they require stimulation of T cell receptor signaling and IL-2 for optimal proliferation. However, the activation of T cell receptor signaling is partially dispensable for the expansion of Tregs, but not for that of conventional T cells if IL-2 is present. Aim We examined whether addition of IL-2 restores the Treg proportion even with concurrent use of a calcineurin inhibitor and if the follicular helper T cell (Tfh) proportion is reduced in an SLE-like murine chronic graft versus host disease model. Methods Using a parent-into-F1 model, we investigated the effect of IL-2 plus tacrolimus on Treg and Tfh proportions and the therapeutic effect. Results Treatment with a combination of IL-2 and tacrolimus significantly delayed the initiation of proteinuria and decreased the urinary protein concentration, whereas tacrolimus or IL-2 monotherapy did not significantly attenuate proteinuria. Phosphorylation of signal transducer and activator of transcription 3, a positive regulator of Tfh differentiation, was reduced by combination treatment, whereas phosphorylation of signal transducer and activator of transcription 5, a negative regulator, was not reduced. Conclusion Addition of calcineurin inhibitors as adjunct agents may be beneficial for IL-2-based treatment of lupus nephritis.
Collapse
Affiliation(s)
| | - Atsushi Satake
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Cheng C, Liang S, Yue K, Wu N, Li Z, Dong T, Dong X, Ling M, Jiang Q, Liu J, Huang XJ. STAT5 is essential for inducing the suppressive subset and attenuate cytotoxicity of Vδ2 + T cells in acute myeloid leukemia. Cancer Lett 2024; 587:216730. [PMID: 38360140 DOI: 10.1016/j.canlet.2024.216730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Under the sustained exposure to tumor microenvironment, effector lymphocytes may transform into the suppressive populations. γδ T cells are recognized as a crucial mediator and effector of immune surveillance and thereby a promising candidate for anti-tumor immunotherapy. Emerging clinical studies implicate that some γδ T subsets play an important role in promoting tumor progression. Our previous study identified an abnormal Vδ2+ T cells subset with regulatory features (Reg-Vδ2) in the patients with newly diagnosed acute myeloid leukemia (AML), and demonstrated that Reg-Vδ2 cells significantly suppressed the anti-AML effects of effector Vδ2 cells (Eff-Vδ2). The molecular mechanism underlying the subset transformation of Vδ2 cells remains unclear. Here, we found that the expression and activity of STAT5 were significantly induced in Reg-Vδ2 cells compared with Eff-Vδ2 cells, which was consistent with the differences found in primary Vδ2 cells between AML patients and healthy donors. In-vitro experiments further indicated that STAT5 was required for the induction of Reg-Vδ2 cells. The combined immunophenotypical and functional assays showed that blockage of STAT5 alleviated the immunosuppressive effect of Reg-Vδ2 cells on Eff-Vδ2 cells and enhanced the anti-AML capacity of Vδ2 cells from health donors and AML patients. Collectively, these results suggest that STAT5 acts as a critical regulator in the transformation of effector Vδ2 cells into a subset with immunosuppressive characteristics, providing a potential target for the improvement the efficacy of γδ T cells-based immunotherapy to treat AML and other hematologic malignancies.
Collapse
Affiliation(s)
- Cong Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (2019RU029), Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zongru Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tianhui Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Min Ling
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (2019RU029), Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
13
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
15
|
Chang Y, Bach L, Hasiuk M, Wen L, Elmzzahi T, Tsui C, Gutiérrez-Melo N, Steffen T, Utzschneider DT, Raj T, Jost PJ, Heink S, Cheng J, Burton OT, Zeiträg J, Alterauge D, Dahlström F, Becker JC, Kastl M, Symeonidis K, van Uelft M, Becker M, Reschke S, Krebs S, Blum H, Abdullah Z, Paeschke K, Ohnmacht C, Neumann C, Liston A, Meissner F, Korn T, Hasenauer J, Heissmeyer V, Beyer M, Kallies A, Jeker LT, Baumjohann D. TGF-β specifies T FH versus T H17 cell fates in murine CD4 + T cells through c-Maf. Sci Immunol 2024; 9:eadd4818. [PMID: 38427718 DOI: 10.1126/sciimmunol.add4818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024]
Abstract
T follicular helper (TFH) cells are essential for effective antibody responses, but deciphering the intrinsic wiring of mouse TFH cells has long been hampered by the lack of a reliable protocol for their generation in vitro. We report that transforming growth factor-β (TGF-β) induces robust expression of TFH hallmark molecules CXCR5 and Bcl6 in activated mouse CD4+ T cells in vitro. TGF-β-induced mouse CXCR5+ TFH cells are phenotypically, transcriptionally, and functionally similar to in vivo-generated TFH cells and provide critical help to B cells. The study further reveals that TGF-β-induced CXCR5 expression is independent of Bcl6 but requires the transcription factor c-Maf. Classical TGF-β-containing T helper 17 (TH17)-inducing conditions also yield separate CXCR5+ and IL-17A-producing cells, highlighting shared and distinct cell fate trajectories of TFH and TH17 cells. We demonstrate that excess IL-2 in high-density T cell cultures interferes with the TGF-β-induced TFH cell program, that TFH and TH17 cells share a common developmental stage, and that c-Maf acts as a switch factor for TFH versus TH17 cell fates in TGF-β-rich environments in vitro and in vivo.
Collapse
Affiliation(s)
- Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marko Hasiuk
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Lifen Wen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Tarek Elmzzahi
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Carlson Tsui
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Nicolás Gutiérrez-Melo
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Teresa Steffen
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel T Utzschneider
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Timsse Raj
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Paul Jonas Jost
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, 81675 Munich, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Julia Zeiträg
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Dominik Alterauge
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Frank Dahlström
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Jennifer-Christin Becker
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Melanie Kastl
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Konstantinos Symeonidis
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martina van Uelft
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katrin Paeschke
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Christian Neumann
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Jan Hasenauer
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
- Center for Mathematics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Feodor-Lynen-Str. 21, 81377 Munich, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Charley KR, Ramstead AG, Matous JG, Kumaki Y, Sircy LM, Hale JS, Williams MA. Effector-Phase IL-2 Signals Drive Th1 Effector and Memory Responses Dependently and Independently of TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:586-595. [PMID: 38149929 PMCID: PMC10872735 DOI: 10.4049/jimmunol.2300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Following viral infection, CD4+ T cell differentiation is tightly regulated by cytokines and TCR signals. Although most activated CD4+ T cells express IL-2Rα after lymphocytic choriomeningtis virus infection, by day 3 postinfection, only half of activated T cells maintain expression. IL-2Rα at this time point distinguishes precursors for terminally differentiated Th1 cells (IL-2Rαhi) from precursors for Tfh cells and memory T cells (IL-2Rαlo) and is linked to strong TCR signals. In this study, we test whether TCR-dependent IL-2 links the TCR to CD4+ T cell differentiation. We employ a mixture of anti-IL-2 Abs to neutralize IL-2 throughout the primary CD4+ T cell response to lymphocytic choriomeningitis virus infection in mice or only after the establishment of lineage-committed effector cells (day 3 postinfection). We report that IL-2 signals drive the formation of Th1 precursor cells in the early stages of the immune response and sustain Th1 responses during its later stages (after day 3). Effector-stage IL-2 also shapes the composition and function of resulting CD4+ memory T cells. Although IL-2 has been shown previously to drive Th1 differentiation by reducing the activity of the transcriptional repressor TCF-1, we found that sustained IL-2 signals were still required to drive optimal Th1 differentiation even in the absence of TCF-1. Therefore, we concluded that IL-2 plays a central role throughout the effector phase in regulating the balance between Th1 and Tfh effector and memory cells via mechanisms that are both dependent and independent of its role in modulating TCF-1 activity.
Collapse
Affiliation(s)
- Krystal R. Charley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Andrew G. Ramstead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Joseph G. Matous
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Yohichi Kumaki
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Linda M. Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Matthew A. Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| |
Collapse
|
17
|
Parvathaneni S, Yang J, Lotspeich-Cole L, Sakai J, Lee RC, Akkoyunlu M. IL6 suppresses vaccine responses in neonates by enhancing IL2 activity on T follicular helper cells. NPJ Vaccines 2023; 8:173. [PMID: 37938563 PMCID: PMC10632457 DOI: 10.1038/s41541-023-00764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
The inability of neonates to develop CD4+FoxP3-CXCR5hiPD-1hi T follicular helper (TFH) cells contributes to their weak vaccine responses. In previous studies, we measured diminished IgG responses when IL-6 was co-injected with a pneumococcal conjugate vaccine (PCV) in neonatal mice. This is in sharp contrast to adults, where IL-6 improves vaccine responses by downregulating the expression of IL-2Rβ on TFH cells and protecting them from the inhibitory effect of IL-2. In this study, we found that splenic IL-6 levels rapidly increased in both adult and neonatal mice following immunization, but the increase in neonatal mice was significantly more than that of adult mice. Moreover, immunized neonatal TFH cells expressed significantly more IL-2 as well as its receptors, IL-2Rα and IL-2Rβ, than the adult cells. Remarkably, IL-6 co-injection with PCV vaccine further increased the production of IL-2 and the expression of its receptors by neonatal TFH cells, whereas excess IL-6 had totally opposite effect in immunized adult mice. Underscoring the role of IL-6 in activating the IL-2 mediated suppression of vaccine responses, immunization of IL-6 knock-out neonates led to improved antibody responses accompanied by expanded TFH cells as well as lower levels of IL-2 and IL-2 receptors on TFH cells. Moreover, CpG containing PCV improved TFH response in neonates by suppressing the expression of IL-2 receptors on TFH cells and inhibiting IL-2 activity. These findings unveil age-specific differences in IL-6 mediated vaccine responses and highlight the need to consider age-related immunobiological attributes in designing vaccines.
Collapse
Affiliation(s)
| | - Jiyeon Yang
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | | | - Jiro Sakai
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | - Robert C Lee
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | - Mustafa Akkoyunlu
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA.
| |
Collapse
|
18
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
19
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. Rapid activation of IL-2 receptor signaling by CD301b + DC-derived IL-2 dictates the outcome of helper T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564276. [PMID: 37961107 PMCID: PMC10634899 DOI: 10.1101/2023.10.26.564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Effector T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DCs) preferentially induce different types of Th cells, but the fate instruction mechanism for Th type 2 (Th2) differentiation remains enigmatic, as the critical DC-derived cue has not been clearly identified. Here, we show that CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by 'kick-starting' IL-2 receptor signaling in CD4T cells. Mechanistically, CD40 engagement induces IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4 T cells, which is required specifically for the Th2 fate decision. On the other hand, CD25 in CD301b+ DCs facilitates directed action of IL-2 toward cognate CD4T cells. Furthermore, CD301b+ DC-derived IL-2 skews CD4T cells away from the T follicular helper fate. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in bifurcation of Th cell fate.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
20
|
Gu W, Zhang J, Li Q, Zhang Y, Lin X, Wu B, Yin Q, Sun J, Lu Y, Sun X, Jia C, Li C, Zhang Y, Wang M, Yin X, Wang S, Xu J, Wang R, Zhu S, Cheng S, Chen S, Liu L, Zhu L, Yan C, Yi C, Li X, Lian Q, Lin G, Ling Z, Ma L, Zhou M, Xiao K, Wei H, Hu R, Zhou W, Ye L, Wang H, Li J, Sun B. The TRIM37 variants in Mulibrey nanism patients paralyze follicular helper T cell differentiation. Cell Discov 2023; 9:82. [PMID: 37528081 PMCID: PMC10394018 DOI: 10.1038/s41421-023-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 08/03/2023] Open
Abstract
The Mulibrey (Muscle-liver-brain-eye) nanism caused by loss-of-function variants in TRIM37 gene is an autosomal recessive disorder characterized by severe growth failure and constrictive pericarditis. These patients also suffer from severe respiratory infections, co-incident with an increased mortality rate. Here, we revealed that TRIM37 variants were associated with recurrent infection. Trim37 FINmajor (a representative variant of Mulibrey nanism patients) and Trim37 knockout mice were susceptible to influenza virus infection. These mice showed defects in follicular helper T (TFH) cell development and antibody production. The effects of Trim37 on TFH cell differentiation relied on its E3 ligase activity catalyzing the K27/29-linked polyubiquitination of Bcl6 and its MATH domain-mediated interactions with Bcl6, thereby protecting Bcl6 from proteasome-mediated degradation. Collectively, these findings highlight the importance of the Trim37-Bcl6 axis in controlling the development of TFH cells and the production of high-affinity antibodies, and further unveil the immunologic mechanism underlying recurrent respiratory infection in Mulibrey nanism.
Collapse
Affiliation(s)
- Wangpeng Gu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Xuan Lin
- Institute of Pasteur of Shanghai, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caiwei Jia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chuanyin Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Institute of Pasteur of Shanghai, Shanghai, China
| | - Meng Wang
- Institute of Pasteur of Shanghai, Shanghai, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Su Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ran Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Songling Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuangfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lian Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenghua Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoshi Lian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guomei Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Kuanlin Xiao
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Haiming Wei
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ronggui Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
- Beijing Changping Laboratory, Beijing, China.
| | - Haikun Wang
- Institute of Pasteur of Shanghai, Shanghai, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
21
|
Tuazon JA, Read KA, Sreekumar BK, Roettger JE, Yaeger MJ, Varikuti S, Pokhrel S, Jones DM, Warren RT, Powell MD, Rasheed MN, Duncan EG, Childs LM, Gowdy KM, Oestreich KJ. Eos Promotes TH2 Differentiation by Interacting with and Propagating the Activity of STAT5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:365-376. [PMID: 37314436 PMCID: PMC10524986 DOI: 10.4049/jimmunol.2200861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.
Collapse
Affiliation(s)
- Jasmine A. Tuazon
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | | | - Jack E. Roettger
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Michael J. Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Michael D. Powell
- Department of Microbiology and Immunology; Emory University School of Medicine, Atlanta, GA, 30322; USA
| | - Mustafa N. Rasheed
- Department of Emergency Medicine; Emory University Medical Center, Atlanta, GA, 30322; USA
| | | | - Lauren M. Childs
- Department of Mathematics; Virginia Tech, Blacksburg, VA, 24061; USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| |
Collapse
|
22
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Prolonged T cell - DC macro-clustering within lymph node microenvironments initiates Th2 cell differentiation in a site-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547554. [PMID: 37461439 PMCID: PMC10350056 DOI: 10.1101/2023.07.07.547554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
| | - Elya A. Shamskhou
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
23
|
Chen Q, Dent AL. Nonbinary Roles for T Follicular Helper Cells and T Follicular Regulatory Cells in the Germinal Center Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:15-22. [PMID: 37339403 DOI: 10.4049/jimmunol.2200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/22/2023]
Abstract
Development of high-affinity Abs in the germinal center (GC) is dependent on a specialized subset of T cells called "T follicular helper" (TFH) cells that help select Ag-specific B cells. A second T cell subset, T follicular regulatory (TFR) cells, can act as repressors of the GC and Ab response but can also provide a helper function for GC B cells in some contexts. Recent studies showed that, apart from their traditional helper role, TFH cells can also act as repressors of the Ab response, particularly for IgE responses. We review how both TFH and TFR cells express helper and repressor factors that coordinately regulate the Ab response and how the line between these two subsets is less clear than initially thought. Thus, TFH and TFR cells are interconnected and have "nonbinary" functions. However, many questions remain about how these critical cells control the Ab response.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
24
|
Sakamoto R, Takada A, Yamakado S, Tsuge H, Ito E, Iwata M. Release from persistent T cell receptor engagement and blockade of aryl hydrocarbon receptor activity enhance IL-6-dependent mouse follicular helper T-like cell differentiation in vitro. PLoS One 2023; 18:e0287746. [PMID: 37352327 PMCID: PMC10289413 DOI: 10.1371/journal.pone.0287746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Follicular helper T (Tfh) cells are crucial for humoral immunity. Dysregulation of Tfh cell differentiation can cause infectious, allergic, and autoimmune diseases. To elucidate the molecular mechanisms underlying Tfh cell differentiation, we attempted to establish an in vitro mouse model of Tfh cell differentiation in the absence of other cell types. Various cytokines and cell surface molecules are suggested to contribute to the differentiation. We found that stimulating naïve CD4+ T cells with immobilized antibodies to CD3, ICOS, and LFA-1 in the presence of soluble anti-CD28 antibody, IL-6, and antibodies that block IL-2 signaling for 3 days induced the expression of Bcl6 and Rorc(γt), master regulator genes of Tfh and Th17 cells, respectively. TGF-β significantly enhanced cell proliferation and Bcl6 and Rorc(γt) expression. An additional 2 days of culture without immobilized antibodies selectively downregulated Rorc(γt) expression. These cells produced IL-21 and promoted B cells to produce IgG antibodies. Adding the aryl hydrocarbon receptor (AhR) antagonist CH-223191 to the T cell culture further downregulated Rorc(γt) expression without significantly affecting Bcl6 expression, and upregulated expression of a key Tfh marker, CXCR5. Although their CXCR5 expression levels were still not high, the CH-223191-treated cells showed chemotactic activity towards the CXCR5 ligand CXCL13. On the other hand, AhR agonists upregulated Rorc(γt) expression and downregulated CXCR5 expression. These findings suggest that AhR activity and the duration of T cell receptor stimulation contribute to regulating the balance between Tfh and Th17 cell differentiation. Although this in vitro system needs to be further improved, it may be useful for elucidating the mechanisms of Tfh cell differentiation as well as for screening physiological or pharmacological factors that affect Tfh cell differentiation including CXCR5 expression.
Collapse
Affiliation(s)
- Rei Sakamoto
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | - Ayumi Takada
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | | | - Haruki Tsuge
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | - Makoto Iwata
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| |
Collapse
|
25
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
26
|
Bao K, Isik Can U, Miller MM, Brown IK, Dell'Aringa M, Dooms H, Seibold MA, Scott-Browne J, Lee Reinhardt R. A bifurcated role for c-Maf in Th2 and Tfh2 cells during helminth infection. Mucosal Immunol 2023; 16:357-372. [PMID: 37088263 PMCID: PMC10290510 DOI: 10.1016/j.mucimm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Differences in transcriptomes, transcription factor usage, and function have identified T follicular helper 2 (Tfh2) cells and T helper 2 (Th2) cells as distinct clusters of differentiation 4+",(CD4) T-cell subsets in settings of type-2 inflammation. Although the transcriptional programs driving Th2 cell differentiation and cytokine production are well defined, dependence on these classical Th2 programs by Tfh2 cells is less clear. Using cytokine reporter mice in combination with transcription factor inference analysis, the b-Zip transcription factor c-Maf and its targets were identified as an important regulon in both Th2 and Tfh2 cells. Conditional deletion of c-Maf in T cells confirmed its importance in type-2 cytokine expression by Th2 and Tfh2 cells. However, while c-Maf was not required for Th2-driven helminth clearance or lung eosinophilia, it was required for Tfh2-driven Immunoglobulin E production and germinal center formation. This differential regulation of cell-mediated and humoral immunity by c-Maf was a result of redundant pathways in Th2 cells that were absent in Tfh2 cells, and c-Maf-specific mechanisms in Tfh2 cells that were absent in Th2 cells. Thus, despite shared expression by Tfh2 and Th2 cells, c-Maf serves as a unique regulator of Tfh2-driven humoral hallmarks during type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, USA
| | - Uryan Isik Can
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mindy M Miller
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Ivy K Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mark Dell'Aringa
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Hans Dooms
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, USA; Department of Pediatrics, National Jewish Health, Denver, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, USA
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Richard Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
27
|
Bélanger S, Haupt S, Faliti CE, Getzler A, Choi J, Diao H, Karunadharma PP, Bild NA, Pipkin ME, Crotty S. The Chromatin Regulator Mll1 Supports T Follicular Helper Cell Differentiation by Controlling Expression of Bcl6, LEF-1, and TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1752-1760. [PMID: 37074193 PMCID: PMC10334568 DOI: 10.4049/jimmunol.2200927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023]
Abstract
T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression. However, detailed knowledge of how chromatin regulators (CRs) regulate differentiation of TFH cells is limited. We screened a large short hairpin RNA library targeting all known CRs in mice and identified the histone methyltransferase mixed lineage leukemia 1 (Mll1) as a positive regulator of TFH differentiation. Loss of Mll1 expression reduced formation of TFH cells following acute viral infection or protein immunization. In addition, expression of the TFH lineage-defining transcription factor Bcl6 was reduced in the absence of Mll1. Transcriptomics analysis identified Lef1 and Tcf7 as genes dependent on Mll1 for their expression, which provides one mechanism for the regulation of TFH differentiation by Mll1. Taken together, CRs such as Mll1 substantially influence TFH differentiation.
Collapse
Affiliation(s)
- Simon Bélanger
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Biomedical Sciences (BMS) Graduate Program. School of Medicine, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Caterina E. Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Adam Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 03083, Republic of Korea
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Nicholas A. Bild
- Genomics Core, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 9203,7USA
| |
Collapse
|
28
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Araujo IL, Piraine REA, Fischer G, Leite FPL. Recombinant BoHV-5 glycoprotein (rgD5) elicits long-lasting protective immunity in cattle. Virology 2023; 584:44-52. [PMID: 37244054 DOI: 10.1016/j.virol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
BoHV-5 is a worldwide distributed pathogen usually associated with a lethal neurological disease in dairy and beef cattle resulting in important economic losses due to the cattle industry. Using recombinant gD5, we evaluated the long-duration humoral immunity of the recombinant vaccines in a cattle model. Here we report that two doses of intramuscular immunization, particularly with the rgD5ISA vaccine, induce long-lasting antibody responses. Recombinant gD5 antigen elicited tightly mRNA transcription of the Bcl6 and the chemokine receptor CXCR5 which mediate memory B cells and long-lived plasma cells in germinal centers. In addition, using an in-house indirect ELISA we observed higher and earlier responses of rgD5-specific IgG antibody and the upregulation of mRNA transcription of IL2, IL4, IL10, IL15, and IFN-γ in rgD5 vaccinated cattle, indicating a mixed immune response. We further show that rgD5 immunization protects against both BoHV -1 and -5. Our findings indicate that the rgD5-based vaccine represents an effective vaccine strategy to induce an efficient control of herpesviruses.
Collapse
Affiliation(s)
- Itauá L Araujo
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Renan E A Piraine
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| | - Fábio P L Leite
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
30
|
Read KA, Jones DM, Pokhrel S, Hales EDS, Varkey A, Tuazon JA, Eisele CD, Abdouni O, Saadey A, Leonard MR, Warren RT, Powell MD, Boss JM, Hemann EA, Yount JS, Xin G, Ghoneim HE, Lio CWJ, Freud AG, Collins PL, Oestreich KJ. Aiolos represses CD4 + T cell cytotoxic programming via reciprocal regulation of T FH transcription factors and IL-2 sensitivity. Nat Commun 2023; 14:1652. [PMID: 36964178 PMCID: PMC10039023 DOI: 10.1038/s41467-023-37420-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
During intracellular infection, T follicular helper (TFH) and T helper 1 (TH1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8+ T cells. The mechanisms underlying differentiation of these populations are incompletely understood. Here, we identify the transcription factor Aiolos as a reciprocal regulator of TFH and CD4-CTL programming. We find that Aiolos deficiency results in downregulation of key TFH transcription factors, and consequently reduced TFH differentiation and antibody production, during influenza virus infection. Conversely, CD4-CTL programming is elevated, including enhanced Eomes and cytolytic molecule expression. We further demonstrate that Aiolos deficiency allows for enhanced IL-2 sensitivity and increased STAT5 association with CD4-CTL gene targets, including Eomes, effector molecules, and IL2Ra. Thus, our collective findings identify Aiolos as a pivotal regulator of CD4-CTL and TFH programming and highlight its potential as a target for manipulating CD4+ T cell responses.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Emily D S Hales
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jasmine A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
- Medical Scientist Training Program, Columbus, OH, 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
- Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Omar Abdouni
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Abbey Saadey
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Melissa R Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Combined Anatomic Pathology Residency/PhD Program, The Ohio State University College of Veterinary Medicine, Columbus, USA
| | - Robert T Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chan-Wang J Lio
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA.
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Osum KC, Jenkins MK. Toward a general model of CD4 + T cell subset specification and memory cell formation. Immunity 2023; 56:475-484. [PMID: 36921574 PMCID: PMC10084496 DOI: 10.1016/j.immuni.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
In the past few decades, a number of transformative discoveries have been made regarding memory CD8+ T cell biology; meanwhile, the CD4+ T cell field has lagged behind this progress. This perspective focuses on CD4+ helper T (Th) cell subset specification and memory cell formation. Here, we argue that the sheer number of Th effector and memory cell subsets and a focus on their differences have been a barrier to a general model of CD4+ memory T cell formation that applies to all immune responses. We highlight a bifurcation model that relies on an IL-2 signal-dependent switch as an explanation for the balanced production of diverse Th memory cells that participate in cell-mediated or humoral immunity in most contexts.
Collapse
Affiliation(s)
- Kevin C Osum
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
The HDAC inhibitor zabadinostat is a systemic regulator of adaptive immunity. Commun Biol 2023; 6:102. [PMID: 36702861 PMCID: PMC9878486 DOI: 10.1038/s42003-023-04485-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Protein acetylation plays a key role in regulating cellular processes and is subject to aberrant control in diverse pathologies. Although histone deacetylase (HDAC) inhibitors are approved drugs for certain cancers, it is not known whether they can be deployed in other therapeutic contexts. We have explored the clinical HDAC inhibitor, zabadinostat/CXD101, and found that it is a stand-alone regulator of the adaptive immune response. Zabadinostat treatment increased expression of MHC class I and II genes in a variety of cells, including dendritic cells (DCs) and healthy tissue. Remarkably, zabadinostat enhanced the activity of DCs, and CD4 and CD8 T lymphocytes. Using an antigenic peptide presented to the immune system by MHC class I, zabadinostat caused an increase in antigen-specific CD8 T lymphocytes. Further, mice immunised with covid19 spike protein and treated with zabadinostat exhibit enhanced covid19 neutralising antibodies and an increased level of T lymphocytes. The enhanced humoral response reflected increased activity of T follicular helper (Tfh) cells and germinal centre (GC) B cells. Our results argue strongly that zabadinostat has potential to augment diverse therapeutic agents that act through the immune system.
Collapse
|
33
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Domeier PP, Rahman ZSM, Ziegler SF. B cell- and T cell-intrinsic regulation of germinal centers by thymic stromal lymphopoietin signaling. Sci Immunol 2023; 8:eadd9413. [PMID: 36608149 PMCID: PMC10162646 DOI: 10.1126/sciimmunol.add9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-lived and high-affinity antibodies are derived from germinal center (GC) activity, but the cytokines that regulate GC function are still being identified. Here, we show that thymic stromal lymphopoietin (TSLP) signaling regulates the GC and the magnitude of antigen-specific antibody responses. Both GC B cells and T follicular helper (TFH) cells up-regulate the expression of surface TSLP receptor (TSLPR), but cell-specific loss of TSLPR results in distinct effects on GC formation and antibody production. TSLPR signaling on T cells supports the retention of antigen-specific B cells and TFH differentiation, whereas TSLPR in B cells regulates the generation of antigen-specific memory B cells. TSLPR in both cell types promotes interferon regulatory factor 4 (IRF4) expression, which is important for efficient GC activity. Overall, we identified a previously unappreciated cytokine regulator of GCs and identified how this signaling pathway differentially regulates B and T cell responses in the GC.
Collapse
Affiliation(s)
- Phillip P Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ziaur S M Rahman
- Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
35
|
Qi J, Liu C, Bai Z, Li X, Yao G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol 2023; 14:1178792. [PMID: 37187757 PMCID: PMC10175690 DOI: 10.3389/fimmu.2023.1178792] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
T follicular helper (Tfh) cells are heterogeneous and mainly characterized by expressing surface markers CXCR5, ICOS, and PD-1; cytokine IL-21; and transcription factor Bcl6. They are crucial for B-cell differentiation into long-lived plasma cells and high-affinity antibody production. T follicular regulatory (Tfr) cells were described to express markers of conventional T regulatory (Treg) cells and Tfh cells and were able to suppress Tfh-cell and B-cell responses. Evidence has revealed that the dysregulation of Tfh and Tfr cells is positively associated with the pathogenic processes of autoimmune diseases. Herein, we briefly introduce the phenotype, differentiation, and function of Tfh and Tfr cells, and review their potential roles in autoimmune diseases. In addition, we discuss perspectives to develop novel therapies targeting Tfh/Tfr balance.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| |
Collapse
|
36
|
Zhang H, Jadhav RR, Cao W, Goronzy IN, Zhao TV, Jin J, Ohtsuki S, Hu Z, Morales J, Greenleaf WJ, Weyand CM, Goronzy JJ. Aging-associated HELIOS deficiency in naive CD4 + T cells alters chromatin remodeling and promotes effector cell responses. Nat Immunol 2023; 24:96-109. [PMID: 36510022 PMCID: PMC10118794 DOI: 10.1038/s41590-022-01369-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit R Jadhav
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Wenqiang Cao
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Isabel N Goronzy
- Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Tuantuan V Zhao
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jun Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Zhaolan Hu
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jose Morales
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | | | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Ollerton MT, Folkvord JM, La Mantia A, Parry DA, Meditz AL, McCarter MD, D’Aquila R, Connick E. Follicular regulatory T cells eliminate HIV-1-infected follicular helper T cells in an IL-2 concentration dependent manner. Front Immunol 2022; 13:878273. [PMID: 36420277 PMCID: PMC9676968 DOI: 10.3389/fimmu.2022.878273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Follicular helper CD4+ T cells (TFH) are highly permissive to HIV and major foci of virus expression in both untreated and treated infection. Follicular regulatory CD4+ T cells (TFR) limit TFH numbers and function in vitro and in vivo. We evaluated the hypothesis that TFR suppress HIV replication in TFH using a well-established model of ex vivo HIV infection that employs tonsil cells from HIV uninfected individuals spinoculated with CXCR4- and CCR5-tropic HIV-GFP reporter viruses. Both CXCR4 and CCR5-tropic HIV replication were reduced in TFH cultured with TFR as compared to controls. Blocking antibodies to CD39, CTLA-4, IL-10, and TGF-beta failed to reverse suppression of HIV replication by TFR, and there were no sex differences in TFR suppressive activity. TFR reduced viability of TFH and even more so reduced HIV infected TFH as assessed by total and integrated HIV DNA. Exogenous IL-2 enhanced TFH viability and particularly numbers of GFP+ TFH in a concentration dependent manner. TFR reduced productively infected TFH at low and moderate IL-2 concentrations, and this was associated with decreases in extracellular IL-2. Both IL-2 expressing cells and larger numbers of FoxP3+CD4+ cells were detected in follicles and germinal centers of lymph nodes of people living with HIV. TFR may deplete TFH in vivo through restriction of IL-2 and thereby contribute to decay of HIV expressing cells in B cell follicles during HIV infection.
Collapse
Affiliation(s)
- Matthew T. Ollerton
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | - Joy M. Folkvord
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | | | - David A. Parry
- Department of Otolaryngology, University of Arizona, Tucson, AZ, United States
| | - Amie L. Meditz
- Department of Medicine, Division of Infectious Diseases, University of Colorado, Aurora, CO, United States
| | - Martin D. McCarter
- Department of Surgery, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, United States
| | - Richard T. D’Aquila
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elizabeth Connick
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
38
|
Feng H, Zhao Z, Dong C. Adapting to the world: The determination and plasticity of T follicular helper cells. J Allergy Clin Immunol 2022; 150:981-989. [DOI: 10.1016/j.jaci.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
39
|
Zander R, Khatun A, Kasmani MY, Chen Y, Cui W. Delineating the transcriptional landscape and clonal diversity of virus-specific CD4 + T cells during chronic viral infection. eLife 2022; 11:e80079. [PMID: 36255051 PMCID: PMC9629829 DOI: 10.7554/elife.80079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Although recent evidence indicates that CD4+ T cells responding to chronic viral infection are functionally heterogenous, our understanding of the developmental relationships between these subsets, and a determination of how their transcriptional landscape compares to their acute infection counterparts remains unclear. Additionally, whether cell-intrinsic factors such as TCR usage influence CD4+ T cell fate commitment during persistent infection has not previously been studied. Herein, we perform single-cell RNA sequencing (scRNA-seq) combined with single-cell T cell receptor sequencing (scTCR-seq) on virus-specific CD4+ T cells isolated from mice infected with chronic lymphocytic choriomeningitis virus (LCMV) infection. We identify several transcriptionally distinct states among the Th1, Tfh, and memory-like T cell subsets that form at the peak of infection, including the presence of a previously unrecognized Slamf7+ subset with cytolytic features. We further show that the relative distribution of these populations differs substantially between acute and persistent LCMV infection. Moreover, while the progeny of most T cell clones displays membership within each of these transcriptionally unique populations, overall supporting a one cell-multiple fate model, a small fraction of clones display a biased cell fate decision, suggesting that TCR usage may impact CD4+ T cell development during chronic infection. Importantly, comparative analyses further reveal both subset-specific and core gene expression programs that are differentially regulated between CD4+ T cells responding to acute and chronic LCMV infection. Together, these data may serve as a useful framework and allow for a detailed interrogation into the clonal distribution and transcriptional circuits underlying CD4+ T cell differentiation during chronic viral infection.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
| | - Achia Khatun
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Yao Chen
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Weiguo Cui
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
40
|
Pelham SJ, Caldirola MS, Avery DT, Mackie J, Rao G, Gothe F, Peters TJ, Guerin A, Neumann D, Vokurkova D, Hwa V, Zhang W, Lyu SC, Chang I, Manohar M, Nadeau KC, Gaillard MI, Bezrodnik L, Iotova V, Zwirner NW, Gutierrez M, Al-Herz W, Goodnow CC, Vargas-Hernández A, Forbes Satter LR, Hambleton S, Deenick EK, Ma CS, Tangye SG. STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 2022; 150:931-946. [PMID: 35469842 DOI: 10.1016/j.jaci.2022.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.
Collapse
Affiliation(s)
- Simon J Pelham
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Maria Soledad Caldirola
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | | | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Florian Gothe
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - David Neumann
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Doris Vokurkova
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wenming Zhang
- Department of Surgery, Stanford University, Stanford, Calif
| | - Shu-Chen Lyu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Iris Chang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Maria Isabel Gaillard
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina; Center for Clinical Immunology, Buenos Aires, Argentina
| | - Violeta Iotova
- Department of Pediatrics, Medical University-Varna, Varna, Bulgaria; Pediatric Endocrinology, University Hospital "St Marina," Varna, Bulgaria
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental, Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mavel Gutierrez
- Rocky Mountain Hospital for Children/Presbyterian St Luke's Medical Center, Denver, Colo
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sophie Hambleton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Great North Children's Hospital, Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
41
|
Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022; 10:991840. [PMID: 36211467 PMCID: PMC9537379 DOI: 10.3389/fcell.2022.991840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louisa K James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Lewis Zhichang Shi
- Department of Radiation Oncology University of Alabama at Birmingham School of Medicine (UAB-SOM) UAB Comprehensive Cancer Center, Jinzhou, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Quan Gong
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jinzhou, China
- Department of Immunology, School of Medicine, Yangtze University, Jinzhou, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| |
Collapse
|
42
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
43
|
Hoog A, Villanueva-Hernández S, Razavi MA, van Dongen K, Eder T, Piney L, Chapat L, de Luca K, Grebien F, Mair KH, Gerner W. Identification of CD4 + T cells with T follicular helper cell characteristics in the pig. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 134:104462. [PMID: 35667468 DOI: 10.1016/j.dci.2022.104462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
T follicular helper (Tfh) cells provide help to germinal center B cells for affinity maturation, class switch and memory formation. Despite these important functions, this subset has not been studied in detail in pigs due to a lack of species-specific antibodies. We investigated putative Tfh cells from lymphoid tissues and blood of healthy pigs by using cross-reactive antibodies for inducible T-cell costimulator (ICOS) and B-cell lymphoma 6 (Bcl-6). In lymph nodes, we identified a CD4+ T cell population with an ICOS+Bcl-6+CD8α+ phenotype, reminiscent of human and murine germinal center Tfh cells. Within blood-derived CD4+ T cells, sorted ICOShiCD25- and ICOSdimCD25dim cells were able to induce the differentiation of CD21+IgM+ B cells into Ig-secreting plasmablasts. Compared to naïve CD4+ T cells, these two phenotypes were 3- to 7-fold enriched for cells expressing the Tfh-related transcripts CD28, CD40LG, IL6R and MAF, as identified by single-cell RNA sequencing. These results provide a first characterization of Tfh cells in swine and confirm their ability to provide B-cell help.
Collapse
Affiliation(s)
- Anna Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Sonia Villanueva-Hernández
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Katinka van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Lauriane Piney
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Ludivine Chapat
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Florian Grebien
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
44
|
Herati RS, Knorr DA, Vella LA, Silva LV, Chilukuri L, Apostolidis SA, Huang AC, Muselman A, Manne S, Kuthuru O, Staupe RP, Adamski SA, Kannan S, Kurupati RK, Ertl HCJ, Wong JL, Bournazos S, McGettigan S, Schuchter LM, Kotecha RR, Funt SA, Voss MH, Motzer RJ, Lee CH, Bajorin DF, Mitchell TC, Ravetch JV, Wherry EJ. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat Immunol 2022; 23:1183-1192. [PMID: 35902637 PMCID: PMC9880663 DOI: 10.1038/s41590-022-01274-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.
Collapse
Affiliation(s)
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura A Vella
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Luisa Victoria Silva
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lakshmi Chilukuri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sokratis A Apostolidis
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander Muselman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Immunology, Stanford University, Stanford, CA, USA
| | - Sasikanth Manne
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ryan P Staupe
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sharon A Adamski
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Jeffrey L Wong
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Suzanne McGettigan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara C Mitchell
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA.
| | - E John Wherry
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
46
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
47
|
Immune tolerance of food is mediated by layers of CD4 + T cell dysfunction. Nature 2022; 607:762-768. [PMID: 35794484 DOI: 10.1038/s41586-022-04916-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 11/08/2022]
Abstract
Gastrointestinal health depends on the adaptive immune system tolerating the foreign proteins in food1,2. This tolerance is paradoxical because the immune system normally attacks foreign substances by generating inflammation. Here we addressed this conundrum by using a sensitive cell enrichment method to show that polyclonal CD4+ T cells responded to food peptides, including a natural one from gliadin, by proliferating weakly in secondary lymphoid organs of the gut-liver axis owing to the action of regulatory T cells. A few food-specific T cells then differentiated into T follicular helper cells that promoted a weak antibody response. Most cells in the expanded population, however, lacked canonical T helper lineage markers and fell into five subsets dominated by naive-like or T follicular helper-like anergic cells with limited capacity to form inflammatory T helper 1 cells. Eventually, many of the T helper lineage-negative cells became regulatory T cells themselves through an interleukin-2-dependent mechanism. Our results indicate that exposure to food antigens causes cognate CD4+ naive T cells to form a complex set of noncanonical hyporesponsive T helper cell subsets that lack the inflammatory functions needed to cause gut pathology and yet have the potential to produce regulatory T cells that may suppress it.
Collapse
|
48
|
Luo P, Wang P, Xu J, Hou W, Xu P, Xu K, Liu L. Immunomodulatory role of T helper cells in rheumatoid arthritis : a comprehensive research review. Bone Joint Res 2022; 11:426-438. [PMID: 35775145 PMCID: PMC9350707 DOI: 10.1302/2046-3758.117.bjr-2021-0594.r1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article: Bone Joint Res 2022;11(7):426–438.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peixu Wang
- Department of Orthopedics, China-Japan Friendship Hospital, China-Japan Friendship Institute of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| | - Jiawen Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
49
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|