1
|
Hu H, Vomund AN, Peterson OJ, Srivastava N, Li T, Kain L, Beatty WL, Zhang B, Hsieh CS, Teyton L, Lichti CF, Unanue ER, Wan X. Crinophagic granules in pancreatic β cells contribute to mouse autoimmune diabetes by diversifying pathogenic epitope repertoire. Nat Commun 2024; 15:8318. [PMID: 39333495 PMCID: PMC11437215 DOI: 10.1038/s41467-024-52619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Autoimmune attack toward pancreatic β cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models. Pharmacological inhibition of crinosome formation in β cells delays T1D progression without affecting the dominant DCGs. Mechanistically, crinophagy inhibition diminishes the epitope repertoire in pancreatic islets, including cryptic, modified and disease-relevant epitopes derived from insulin. These unconventional insulin epitopes are largely undetectable in the MHC-II epitope repertoire of the thymus, where only canonical insulin epitopes are presented. CD4+ T cells targeting unconventional insulin epitopes display autoreactive phenotypes, unlike tolerized T cells recognizing epitopes presented in the thymus. Thus, the crinophagic pathway emerges as a tissue-intrinsic mechanism that transforms insulin from a signature thymic self-protein to a critical autoantigen by creating a peripheral-thymic mismatch in the epitope repertoire.
Collapse
Affiliation(s)
- Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Perez C, Plaza-Rojas L, Boucher JC, Nagy MZ, Kostenko E, Prajapati K, Burke B, Reyes MD, Austin AL, Zhang S, Le PT, Guevara-Patino JA. NKG2D receptor signaling shapes T cell thymic education. J Leukoc Biol 2024; 115:306-321. [PMID: 37949818 DOI: 10.1093/jleuko/qiad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023] Open
Abstract
The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vβ chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Lourdes Plaza-Rojas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Justin C Boucher
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Mate Z Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Kushal Prajapati
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Brianna Burke
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Michael Delos Reyes
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Anna L Austin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Shubin Zhang
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Phong T Le
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - José A Guevara-Patino
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
3
|
Racine JJ, Misherghi A, Dwyer JR, Maser R, Forte E, Bedard O, Sattler S, Pugliese A, Landry L, Elso C, Nakayama M, Mannering S, Rosenthal N, Serreze DV. HLA-DQ8 Supports Development of Insulitis Mediated by Insulin-Reactive Human TCR-Transgenic T Cells in Nonobese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1792-1805. [PMID: 37877672 PMCID: PMC10939972 DOI: 10.4049/jimmunol.2300303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining β2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived β cell autoantigen-specific TCRs.
Collapse
Affiliation(s)
| | - Adel Misherghi
- The Jackson Laboratory, Bar Harbor, ME
- College of the Atlantic, Bar Harbor, ME
| | | | | | | | | | - Susanne Sattler
- Imperial College London, London, United Kingdom
- Medical University Graz, Graz, Austria
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Laurie Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Colleen Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Stuart Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME
- Imperial College London, London, United Kingdom
| | | |
Collapse
|
4
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
5
|
Steier Z, Aylard DA, McIntyre LL, Baldwin I, Kim EJY, Lutes LK, Ergen C, Huang TS, Robey EA, Yosef N, Streets A. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4 + T cell and CD8 + T cell lineage commitment. Nat Immunol 2023; 24:1579-1590. [PMID: 37580604 PMCID: PMC10457207 DOI: 10.1038/s41590-023-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
The development of CD4+ T cells and CD8+ T cells in the thymus is critical to adaptive immunity and is widely studied as a model of lineage commitment. Recognition of self-peptide major histocompatibility complex (MHC) class I or II by the T cell antigen receptor (TCR) determines the CD8+ or CD4+ T cell lineage choice, respectively, but how distinct TCR signals drive transcriptional programs of lineage commitment remains largely unknown. Here we applied CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell states for each T cell lineage. These analyses identified a sequential process whereby all thymocytes initiate CD4+ T cell lineage differentiation during a first wave of TCR signaling, followed by a second TCR signaling wave that coincides with CD8+ T cell lineage specification. CITE-seq and pharmaceutical inhibition experiments implicated a TCR-calcineurin-NFAT-GATA3 axis in driving the CD4+ T cell fate. Our data provide a resource for understanding cell fate decisions and implicate a sequential selection process in guiding lineage choice.
Collapse
Affiliation(s)
- Zoë Steier
- University of California, Berkeley, Department of Bioengineering, Berkeley, CA, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dominik A Aylard
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Laura L McIntyre
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Isabel Baldwin
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Esther Jeong Yoon Kim
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Lydia K Lutes
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Can Ergen
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA
- University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA
| | | | - Ellen A Robey
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA.
| | - Nir Yosef
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA.
- University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA.
- Weizmann Institute of Science, Department of Systems Immunology, Rehovot, Israel.
| | - Aaron Streets
- University of California, Berkeley, Department of Bioengineering, Berkeley, CA, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA.
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Simeonov DR, Park K, Cortez JT, Young A, Li Z, Nguyen V, Umhoefer J, Indart AC, Woo JM, Anderson MS, Tsang JS, Germain RN, Wong HS, Marson A. Non-coding sequence variation reveals fragility within interleukin 2 feedback circuitry and shapes autoimmune disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.17.545426. [PMID: 37503101 PMCID: PMC10370162 DOI: 10.1101/2023.06.17.545426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genetic variants associated with human autoimmune diseases commonly map to non-coding control regions, particularly enhancers that function selectively in immune cells and fine-tune gene expression within a relatively narrow range of values. How such modest, cell-type-selective changes can meaningfully shape organismal disease risk remains unclear. To explore this issue, we experimentally manipulated species-conserved enhancers within the disease-associated IL2RA locus and studied accompanying changes in the progression of autoimmunity. Perturbing distinct enhancers with restricted activity in conventional T cells (Tconvs) or regulatory T cells (Tregs)-two functionally antagonistic T cell subsets-caused only modest, cell-type-selective decreases in IL2ra expression parameters. However, these same perturbations had striking and opposing effects in vivo , completely preventing or severely accelerating disease in a murine model of type 1 diabetes. Quantitative tissue imaging and computational modelling revealed that each enhancer manipulation impinged on distinct IL-2-dependent feedback circuits. These imbalances altered the intracellular signaling and intercellular communication dynamics of activated Tregs and Tconvs, producing opposing spatial domains that amplified or constrained ongoing autoimmune responses. These findings demonstrate how subtle changes in gene regulation stemming from non-coding variation can propagate across biological scales due to non-linearities in intra- and intercellular feedback circuitry, dramatically shaping disease risk at the organismal level.
Collapse
|
7
|
Dong M, Audiger C, Adegoke A, Lebel MÈ, Valbon SF, Anderson CC, Melichar HJ, Lesage S. CD5 levels reveal distinct basal T-cell receptor signals in T cells from non-obese diabetic mice. Immunol Cell Biol 2021; 99:656-667. [PMID: 33534942 DOI: 10.1111/imcb.12443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic β cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self. TCR interactions with self-peptide are also necessary for T-cell homeostasis in the peripheral lymphoid organs. To identify differences in TCR signal strength that accompany thymic selection and peripheral T-cell maintenance, we compared CD5 levels, a marker of basal TCR signal strength, on immature and mature T cells from autoimmune diabetes-prone NOD and -resistant B6 mice. The data suggest that there is no preferential selection of NOD thymocytes that perceive stronger TCR signals from self-peptide engagement. Instead, NOD mice have an MHC-dependent increase in CD4+ thymocytes and mature T cells that express lower levels of CD5. In contrast, T cell-intrinsic mechanisms lead to higher levels of CD5 on peripheral CD8+ T cells from NOD relative to B6 mice, suggesting that peripheral CD8+ T cells with higher basal TCR signals may have survival advantages in NOD mice. These differences in the T-cell pool in NOD mice may contribute to the development or progression of autoimmune diabetes.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Cindy Audiger
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Adeolu Adegoke
- Departments of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Stefanie F Valbon
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Colin C Anderson
- Departments of Surgery and Medical Microbiology & Immunology, Alberta Diabetes Institute, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Ye C, Low BE, Wiles MV, Brusko TM, Serreze DV, Driver JP. CD70 Inversely Regulates Regulatory T Cells and Invariant NKT Cells and Modulates Type 1 Diabetes in NOD Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1763-1777. [PMID: 32868408 DOI: 10.4049/jimmunol.2000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | | | | | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | | | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611;
| |
Collapse
|
10
|
Genetic Variation in Type 1 Diabetes Reconfigures the 3D Chromatin Organization of T Cells and Alters Gene Expression. Immunity 2020; 52:257-274.e11. [PMID: 32049053 DOI: 10.1016/j.immuni.2020.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/23/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Genetics is a major determinant of susceptibility to autoimmune disorders. Here, we examined whether genome organization provides resilience or susceptibility to sequence variations, and how this would contribute to the molecular etiology of an autoimmune disease. We generated high-resolution maps of linear and 3D genome organization in thymocytes of NOD mice, a model of type 1 diabetes (T1D), and the diabetes-resistant C57BL/6 mice. Multi-enhancer interactions formed at genomic regions harboring genes with prominent roles in T cell development in both strains. However, diabetes risk-conferring loci coalesced enhancers and promoters in NOD, but not C57BL/6 thymocytes. 3D genome mapping of NODxC57BL/6 F1 thymocytes revealed that genomic misfolding in NOD mice is mediated in cis. Moreover, immune cells infiltrating the pancreas of humans with T1D exhibited increased expression of genes located on misfolded loci in mice. Thus, genetic variation leads to altered 3D chromatin architecture and associated changes in gene expression that may underlie autoimmune pathology.
Collapse
|
11
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
12
|
Wendland K, Niss K, Kotarsky K, Wu NYH, White AJ, Jendholm J, Rivollier A, Izarzugaza JMG, Brunak S, Holländer GA, Anderson G, Sitnik KM, Agace WW. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis. THE JOURNAL OF IMMUNOLOGY 2018; 201:524-532. [DOI: 10.4049/jimmunol.1800418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022]
|
13
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad. Mech Dev 2017; 147:17-27. [PMID: 28760667 DOI: 10.1016/j.mod.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 01/22/2023]
Abstract
Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Michal Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Dagmara Podkowa
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, F-35043, France; Université Rennes 1, UEB, UMS Biosit, Faculty of Medicine, F-35043 Rennes, France; Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
15
|
McLachlan SM, Aliesky HA, Banuelos B, Lesage S, Collin R, Rapoport B. High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin Exp Immunol 2017; 188:243-253. [PMID: 28099999 PMCID: PMC5383439 DOI: 10.1111/cei.12928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
The thyrotrophin receptor (TSHR) A-subunit is the autoantigen targeted by pathogenic autoantibodies that cause Graves' hyperthyroidism, a common autoimmune disease in humans. Previously, we reported that pathogenic TSHR antibodies develop spontaneously in thyroiditis-susceptible non-obese diabetic (NOD).H2h4 mice bearing a human TSHR A-subunit transgene, which is expressed at low levels in both the thyroid and thymus (Lo-expressor transgene). The present study tested recent evidence that high intrathymic TSHR expression protects against the development of pathogenic TSHR antibodies in humans. By successive back-crossing, we transferred to the NOD.H2h4 background a human TSHR A-subunit transgene expressed at high levels in the thyroid and thymus (Hi-expressor transgene). In the sixth back-cross generation (> 98% NOD.H2h4 genome), only transgenic offspring produced spontaneously immunoglobulin (Ig)G class non-pathogenic human TSHR A-subunit antibodies. In contrast, both transgenic and non-transgenic offspring developed antibodies to thyroglobulin and thyroid peroxidase. However, non-pathogenic human TSHR antibody levels in Hi-expressor offspring were lower than in Lo-expressor transgenic mice. Moreover, pathogenic TSHR antibodies, detected by inhibition of TSH binding to the TSHR, only developed in back-cross offspring bearing the Lo-expressor, but not the Hi-expressor, transgene. High versus low expression human TSHR A-subunit in the NOD.H2h4 thymus was not explained by the transgene locations, namely chromosome 2 (127-147 Mb; Hi-expressor) and chromosome 1 (22.9-39.3 Mb; low expressor). Nevertheless, using thyroiditis-prone NOD.H2h4 mice and two transgenic lines, our data support the association from human studies that low intrathymic TSHR expression is associated with susceptibility to developing pathogenic TSHR antibodies, while high intrathymic TSHR expression is protective.
Collapse
Affiliation(s)
- S. M. McLachlan
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| | - H. A. Aliesky
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| | - B. Banuelos
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| | - S. Lesage
- Department of Immunology‐OncologyMaisonneuve‐Rosemont Hospital, Montréal, Québec, Canada and Département de Microbiologie, Infectiologie et Immunologie, Université de MontréalMontréalQuébecCanada
| | - R. Collin
- Department of Immunology‐OncologyMaisonneuve‐Rosemont Hospital, Montréal, Québec, Canada and Département de Microbiologie, Infectiologie et Immunologie, Université de MontréalMontréalQuébecCanada
| | - B. Rapoport
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| |
Collapse
|
16
|
Guyden JC, Martinez M, Chilukuri RVE, Reid V, Kelly F, Samms MOD. Thymic Nurse Cells Participate in Heterotypic Internalization and Repertoire Selection of Immature Thymocytes; Their Removal from the Thymus of Autoimmune Animals May be Important to Disease Etiology. Curr Mol Med 2016; 15:828-35. [PMID: 26511706 PMCID: PMC5303014 DOI: 10.2174/1566524015666151026102328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/20/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
Thymic nurse cells (TNCs) are specialized epithelial cells that reside in the thymic cortex. The initial report of their discovery in 1980 showed TNCs to contain up to 200 thymocytes within specialized vacuoles in their cytoplasm. Much has been reported since that time to determine the function of this heterotypic internalization event that exists between TNCs and developing thymocytes. In this review, we discuss the literature reported that describes the internalization event and the role TNCs play during T cell development in the thymus as well as why these multicellular complexes may be important in inhibiting the development of autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - M-O D Samms
- Department of Biology, The City College of New York, MR-526, New York, NY 10031, USA.
| |
Collapse
|
17
|
Lebailly B, Langa F, Boitard C, Avner P, Rogner UC. The circadian gene Arntl2 on distal mouse chromosome 6 controls thymocyte apoptosis. Mamm Genome 2016; 28:1-12. [DOI: 10.1007/s00335-016-9665-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/11/2016] [Indexed: 10/20/2022]
|
18
|
Stadinski BD, Shekhar K, Gómez-Touriño I, Jung J, Sasaki K, Sewell AK, Peakman M, Chakraborty AK, Huseby ES. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol 2016; 17:946-55. [PMID: 27348411 PMCID: PMC4955740 DOI: 10.1038/ni.3491] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (Vβ) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished Vβ2(+), Vβ6(+) and Vβ8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.
Collapse
Affiliation(s)
- Brian D. Stadinski
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Karthik Shekhar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jonathan Jung
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Katsuhiro Sasaki
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Arup K. Chakraborty
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139., USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| |
Collapse
|
19
|
Nishijima H, Kitano S, Miyachi H, Morimoto J, Kawano H, Hirota F, Morita R, Mouri Y, Masuda K, Imoto I, Ikuta K, Matsumoto M. Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4641-9. [PMID: 26453754 DOI: 10.4049/jimmunol.1501026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022]
Abstract
Cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs) play essential roles in the positive and negative selection of developing thymocytes, respectively. Aire in mTECs plays an essential role in the latter process through expression of broad arrays of tissue-restricted Ags. To determine whether the location of Aire within the medulla is absolutely essential or whether Aire could also function within the cortex for establishment of self-tolerance, we used bacterial artificial chromosome technology to establish a semiknockin strain of NOD-background (β5t/Aire-transgenic) mice expressing Aire under control of the promoter of β5t, a thymoproteasome expressed exclusively in the cortex. Although Aire was expressed in cTECs as typical nuclear dot protein in β5t/Aire-Tg mice, cTECs expressing Aire ectopically did not confer transcriptional expression of either Aire-dependent or Aire-independent tissue-restricted Ag genes. We then crossed β5t/Aire-Tg mice with Aire-deficient NOD mice, generating a strain in which Aire expression was confined to cTECs. Despite the presence of Aire(+) cTECs, these mice succumbed to autoimmunity, as did Aire-deficient NOD mice. The thymic microenvironment harboring Aire(+) cTECs, within which many Aire-activated genes were present, also showed no obvious alteration of positive selection, suggesting that Aire's unique property of generating a self-tolerant T cell repertoire is functional only in mTECs.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Kawano
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Fumiko Hirota
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Ryoko Morita
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yasuhiro Mouri
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; and
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; and
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan;
| |
Collapse
|
20
|
Martinez RJ, Evavold BD. Lower Affinity T Cells are Critical Components and Active Participants of the Immune Response. Front Immunol 2015; 6:468. [PMID: 26441973 PMCID: PMC4564719 DOI: 10.3389/fimmu.2015.00468] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Abstract
Kinetic and biophysical parameters of T cell receptor (TCR) and peptide:MHC (pMHC) interaction define intrinsic factors required for T cell activation and differentiation. Although receptor ligand kinetics are somewhat cumbersome to assess experimentally, TCR:pMHC affinity has been shown to predict peripheral T cell functionality and potential for forming memory. Multimeric forms of pMHC monomers have often been used to provide an indirect readout of higher affinity T cells due to their availability and ease of use while allowing simultaneous definition of other functional and phenotypic characteristics. However, multimeric pMHC reagents have introduced a bias that underestimates the lower affinity components contained in the highly diverse TCR repertoires of all polyclonal T cell responses. Advances in the identification of lower affinity cells have led to the examination of these cells and their contribution to the immune response. In this review, we discuss the identification of high- vs. low-affinity T cells as well as their attributed signaling and functional differences. Lastly, mechanisms are discussed that maintain a diverse range of low- and high-affinity T cells.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Krishnamurthy B, Chee J, Jhala G, Trivedi P, Catterall T, Selck C, Gurzov EN, Brodnicki TC, Graham KL, Wali JA, Zhan Y, Gray D, Strasser A, Allison J, Thomas HE, Kay TWH. BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells. Diabetes 2015; 64:3229-38. [PMID: 25948683 DOI: 10.2337/db14-1851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/15/2015] [Indexed: 11/13/2022]
Abstract
Because regulatory T-cell (Treg) development can be induced by the same agonist self-antigens that induce negative selection, perturbation of apoptosis will affect both negative selection and Treg development. But how the processes of thymocyte deletion versus Treg differentiation bifurcate and their relative importance for tolerance have not been studied in spontaneous organ-specific autoimmune disease. We addressed these questions by removing a critical mediator of thymocyte deletion, BIM, in the NOD mouse model of autoimmune diabetes. Despite substantial defects in the deletion of autoreactive thymocytes, BIM-deficient NOD (NODBim(-/-)) mice developed less insulitis and were protected from diabetes. BIM deficiency did not impair effector T-cell function; however, NODBim(-/-) mice had increased numbers of Tregs, including those specific for proinsulin, in the thymus and peripheral lymphoid tissues. Increased levels of Nur77, CD5, GITR, and phosphorylated IκB-α in thymocytes from NODBim(-/-) mice suggest that autoreactive cells receiving strong T-cell receptor signals that would normally delete them escape apoptosis and are diverted into the Treg pathway. Paradoxically, in the NOD model, reduced thymic deletion ameliorates autoimmune diabetes by increasing Tregs. Thus, modulating apoptosis may be one of the ways to increase antigen-specific Tregs and prevent autoimmune disease.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, Australia Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, Australia
| | | | | | | | | | | | | | | | | | | | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Daniel Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | | | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, Australia Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Australia Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, Australia
| |
Collapse
|
22
|
Viret C, Mahiddine K, Baker RL, Haskins K, Guerder S. The T Cell Repertoire-Diversifying Enzyme TSSP Contributes to Thymic Selection of Diabetogenic CD4 T Cell Specificities Reactive to ChgA and IAPP Autoantigens. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209627 DOI: 10.4049/jimmunol.1401683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple studies highlighted the overtly self-reactive T cell repertoire in the diabetes-prone NOD mouse. This autoreactivity has primarily been linked to defects in apoptosis induction during central tolerance. Previous studies suggested that thymus-specific serine protease (TSSP), a putative serine protease expressed by cortical thymic epithelial cells and thymic dendritic cells, may edit the repertoire of self-peptides presented by MHC class II molecules and shapes the self-reactive CD4 T cell repertoire. To gain further insight into the role of TSSP in the selection of self-reactive CD4 T cells by endogenous self-Ags, we examined the development of thymocytes expressing distinct diabetogenic TCRs sharing common specificity in a thymic environment lacking TSSP. Using mixed bone marrow chimeras, we evaluated the effect of TSSP deficiency confined to different thymic stromal cells on the differentiation of thymocytes expressing the chromogranin A-reactive BDC-2.5 and BDC-10.1 TCRs or the islet amyloid polypeptide-reactive TCR BDC-6.9 and BDC-5.2.9. We found that TSSP deficiency resulted in deficient positive selection and induced deletion of the BDC-6.9 and BDC-10.1 TCRs, but it did not affect the differentiation of the BDC-2.5 and BDC-5.2.9 TCRs. Hence, TSSP has a subtle role in the generation of self-peptide ligands directing diabetogenic CD4 T cell development. These results provide additional evidence for TSSP activity as a novel mechanism promoting autoreactive CD4 T cell development/accumulation in the NOD mouse.
Collapse
Affiliation(s)
- Christophe Viret
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| | - Karim Mahiddine
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| | - Rocky Lee Baker
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | - Kathryn Haskins
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| |
Collapse
|
23
|
Michaux H, Martens H, Jaïdane H, Halouani A, Hober D, Geenen V. How Does Thymus Infection by Coxsackievirus Contribute to the Pathogenesis of Type 1 Diabetes? Front Immunol 2015; 6:338. [PMID: 26175734 PMCID: PMC4485212 DOI: 10.3389/fimmu.2015.00338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Through synthesis and presentation of neuroendocrine self-antigens by major histocompatibility complex proteins, thymic epithelial cells (TECs) play a crucial role in programing central immune self-tolerance to neuroendocrine functions. Insulin-like growth factor-2 (IGF-2) is the dominant gene/polypeptide of the insulin family that is expressed in TECs from different animal species and humans. Igf2 transcription is defective in the thymus of diabetes-prone bio-breeding rats, and tolerance to insulin is severely decreased in Igf2 (-/-) mice. For more than 15 years now, our group is investigating the hypothesis that, besides a pancreotropic action, infection by coxsackievirus B4 (CV-B4) could implicate the thymus as well, and interfere with the intrathymic programing of central tolerance to the insulin family and secondarily to insulin-secreting islet β cells. In this perspective, we have demonstrated that a productive infection of the thymus occurs after oral CV-B4 inoculation of mice. Moreover, our most recent data have demonstrated that CV-B4 infection of a murine medullary (m) TEC line induces a significant decrease in Igf2 expression and IGF-2 production. In these conditions, Igf1 expression was much less affected by CV-B4 infection, while Ins2 transcription was not detected in this cell line. Through the inhibition of Igf2 expression in TECs, CV-B4 infection could lead to a breakdown of central immune tolerance to the insulin family and promote an autoimmune response against insulin-secreting islet β cells. Our major research objective now is to understand the molecular mechanisms by which CV-B4 infection of TECs leads to a major decrease in Igf2 expression in these cells.
Collapse
Affiliation(s)
- Hélène Michaux
- Department of Biomedical and Preclinical Sciences, GIGA-I 3 Center of Immunoendocrinology, GIGA Research Institute, University of Liege , Liege , Belgium
| | - Henri Martens
- Department of Biomedical and Preclinical Sciences, GIGA-I 3 Center of Immunoendocrinology, GIGA Research Institute, University of Liege , Liege , Belgium
| | - Hela Jaïdane
- Laboratory of Virology LR99ES27, School of Pharmacy, University of Monastir , Monastir , Tunisia ; Faculty of Sciences of Tunis, University of Tunis El Manar , Tunis , Tunisia
| | - Aymen Halouani
- Laboratory of Virology LR99ES27, School of Pharmacy, University of Monastir , Monastir , Tunisia ; Faculty of Sciences of Tunis, University of Tunis El Manar , Tunis , Tunisia
| | - Didier Hober
- Laboratory of Virology EA3610, Centre Hospitalier Régional Universitaire de Lille, University of Lille 2 , Lille , France
| | - Vincent Geenen
- Department of Biomedical and Preclinical Sciences, GIGA-I 3 Center of Immunoendocrinology, GIGA Research Institute, University of Liege , Liege , Belgium
| |
Collapse
|
24
|
Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, Pe'er D, Nolan GP. Systems biology. Conditional density-based analysis of T cell signaling in single-cell data. Science 2014; 346:1250689. [PMID: 25342659 PMCID: PMC4334155 DOI: 10.1126/science.1250689] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naïve and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naïve cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.
Collapse
Affiliation(s)
- Smita Krishnaswamy
- Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Matthew H Spitzer
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Michael Mingueneau
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Sean C Bendall
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Oren Litvin
- Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Erica Stone
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dana Pe'er
- Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Garry P Nolan
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Racine JJ, Zhang M, Wang M, Morales W, Shen C, Zeng D. MHC-mismatched mixed chimerism mediates thymic deletion of cross-reactive autoreactive T cells and prevents insulitis in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:407-17. [PMID: 25429069 DOI: 10.4049/jimmunol.1401584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetic NOD mice have defects in both thymic negative selection and peripheral regulation of autoreactive T cells, and induction of mixed chimerism can effectively reverse these defects. Our recent studies suggest that MHC-mismatched mixed chimerism mediates negative selection of autoreactive thymocytes in wild-type NOD and TCR-transgenic NOD.Rag1(+/+).BDC2.5 mice. However, it remains unknown how mismatched I-A(b) MHC class II can mediate deletion of autoreactive T cells positively selected by I-A(g7). In the present study, we directly tested the hypothesis that mismatched MHC class II in mixed chimeras mediates deletion of cross-reactive autoreactive thymocytes. We first identify that transgenic BDC2.5 T cells from NOD.Rag1(+/+).BDC2.5 but not NOD.Rag1(-/-).BDC2.5 mice possess cross-reactive TCRs with endogenous TCRα-chains; MHC-mismatched H-2(b) but not matched H-2(g7) mixed chimerism mediates thymic deletion of the cross-reactive transgenic T cells in NOD.Rag1(+/+).BDC2.5 mice. Second, by transplanting T cell-depleted (TCD) bone marrow (BM) cells from NOD.Rag1(+/+).BDC2.5 or NOD.Rag1(-/-).BDC2.5 mice into lethally irradiated MHC-mismatched H-2(b) C57BL/6 or MHC-matched congenic B6.H-2(g7) recipients, we demonstrate that NOD.Rag1(+/+).BDC2.5 BM-derived cross-reactive transgenic T cells, but not NOD.Rag1(-/-).BDC2.5 BM-derived non-cross-reactive transgenic T cells, can be positively selected in MHC-mismatched H-2(b) thymus. Third, by cotransplanting NOD.Rag1(+/+).BDC2.5 TCD BM cells with BM cells from MHC-mismatched T cell-deficient C57BL/6 mice into lethally irradiated MHC-matched B6.H-2(g7) recipients, we demonstrate that thymic deletion of the cross-reactive transgenic T cells is dependent on MHC-mismatched donor BM-derived APCs but not on donor BM-derived T cells. Taken together, our studies indicate that MHC-mismatched mixed chimerism can mediate thymic deletion of cross-reactive autoreactive T cells that express more than one TCR.
Collapse
Affiliation(s)
- Jeremy J Racine
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010; Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - Mingfeng Zhang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - Miao Wang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - William Morales
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Christine Shen
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010; Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| |
Collapse
|
26
|
Sarikonda G, Fousteri G, Sachithanantham S, Miller JF, Dave A, Juntti T, Coppieters KT, von Herrath M. BDC12-4.1 T-cell receptor transgenic insulin-specific CD4 T cells are resistant to in vitro differentiation into functional Foxp3+ T regulatory cells. PLoS One 2014; 9:e112242. [PMID: 25393309 PMCID: PMC4231041 DOI: 10.1371/journal.pone.0112242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 10/09/2014] [Indexed: 11/18/2022] Open
Abstract
The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into functional and stable Treg (iTreg) cells has proved challenging. As insulin is the major autoantigen leading to T1D, we tested the capacity of insulin-specific T-cell receptor (TCR) transgenic CD4(+) T cells of the BDC12-4.1 clone to convert into Foxp3(+) iTreg cells. We found that in vitro polarization toward Foxp3(+) iTreg was effective with a majority (>70%) of expanded cells expressing Foxp3. However, adoptive transfer of Foxp3(+) BDC12-4.1 cells did not prevent diabetes onset in immunocompetent NOD mice. Thus, in vitro polarization of insulin-specific BDC12-4.1 TCR transgenic CD4(+) T cells toward Foxp3+ cells did not provide dominant tolerance in recipient mice. These results highlight the disconnect between an in vitro acquired Foxp3(+) cell phenotype and its associated in vivo regulatory potential.
Collapse
Affiliation(s)
- Ghanashyam Sarikonda
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Georgia Fousteri
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Jacqueline F. Miller
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Amy Dave
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Therese Juntti
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Ken T. Coppieters
- Type 1 Diabetes R&D center, Novo Nordisk Inc., Seattle, Washington, USA
| | - Matthias von Herrath
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Type 1 Diabetes R&D center, Novo Nordisk Inc., Seattle, Washington, USA
- * E-mail:
| |
Collapse
|
27
|
Kern J, Drutel R, Leanhart S, Bogacz M, Pacholczyk R. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome. PLoS One 2014; 9:e112467. [PMID: 25379761 PMCID: PMC4224485 DOI: 10.1371/journal.pone.0112467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren’s syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9–23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Flow Cytometry
- Genetic Variation/immunology
- Insulin/genetics
- Insulin/immunology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Salivary Glands/immunology
- Salivary Glands/metabolism
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Xerostomia/immunology
Collapse
Affiliation(s)
- Joanna Kern
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Robert Drutel
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Silvia Leanhart
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Marek Bogacz
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Rafal Pacholczyk
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
28
|
Single-cell mass cytometry of TCR signaling: amplification of small initial differences results in low ERK activation in NOD mice. Proc Natl Acad Sci U S A 2014; 111:16466-71. [PMID: 25362052 DOI: 10.1073/pnas.1419337111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2-S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates.
Collapse
|
29
|
Meyer zu Horste G, Mausberg AK, Cordes S, El-Haddad H, Partke HJ, Leussink VI, Roden M, Martin S, Steinman L, Hartung HP, Kieseier BC. Thymic epithelium determines a spontaneous chronic neuritis in Icam1(tm1Jcgr)NOD mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:2678-90. [PMID: 25108020 DOI: 10.4049/jimmunol.1400367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The NOD mouse strain spontaneously develops autoimmune diabetes. A deficiency in costimulatory molecules, such as B7-2, on the NOD genetic background prevents diabetes but instead triggers an inflammatory peripheral neuropathy. This constitutes a shift in the target of autoimmunity, but the underlying mechanism remains unknown. In this study, we demonstrate that NOD mice deficient for isoforms of ICAM-1, which comediate costimulatory functions, spontaneously develop a chronic autoimmune peripheral neuritis instead of diabetes. The disease is transferred by CD4(+) T cells, which infiltrate peripheral nerves together with macrophages and B cells and are autoreactive against peripheral myelin protein zero. These Icam1(tm1Jcgr)NOD mice exhibit unaltered numbers of regulatory T cells, but increased IL-17-producing T cells, which determine the severity, but not the target specificity, of autoimmunity. Ab-mediated ICAM-1 blockade triggers neuritis only in young NOD mice. Thymic epithelium from Icam1(tm1Jcgr)NOD mice features an altered expression of costimulatory molecules and induces neuritis and myelin autoreactivity after transplantation into nude mice in vivo. Icam1(tm1Jcgr)NOD mice exhibit a specifically altered TCR repertoire. Our findings introduce a novel animal model of chronic inflammatory neuropathies and indicate that altered expression of ICAM-1 on thymic epithelium shifts autoimmunity specifically toward peripheral nerves. This improves our understanding of autoimmunity in the peripheral nervous system with potential relevance for human diseases.
Collapse
Affiliation(s)
- Gerd Meyer zu Horste
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Anne K Mausberg
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Steffen Cordes
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Houda El-Haddad
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Joachim Partke
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Verena I Leussink
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Stephan Martin
- West-German Center of Diabetes and Health, Catholic Clinic Network of Düsseldorf, 40225 Düsseldorf, Germany; and
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94305
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Ferreira C, Palmer D, Blake K, Garden OA, Dyson J. Reduced regulatory T cell diversity in NOD mice is linked to early events in the thymus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4145-52. [PMID: 24663675 DOI: 10.4049/jimmunol.1301600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thymic natural regulatory T cell (Treg) compartment of NOD mice is unusual in having reduced TCR diversity despite normal cellularity. In this study, we show that this phenotype is attributable to perturbations in early and late stages of thymocyte development and is controlled, at least in part, by the NOD Idd9 region on chromosome 4. Progression from double negative 1 to double negative 2 stage thymocytes in NOD mice is inefficient; however, this defect is compensated by increased proliferation of natural Tregs (nTregs) within the single positive CD4 thymocyte compartment, accounting for recovery of cellularity accompanied by loss of TCR diversity. This region also underlies the known attenuation of ERK-MAPK signaling, which may preferentially disadvantage nTreg selection. Interestingly, the same genetic region also regulates the rate of thymic involution that is accelerated in NOD mice. These findings highlight further complexity in the control of nTreg repertoire diversity.
Collapse
Affiliation(s)
- Cristina Ferreira
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Kisand K, Peterson P, Laan M. Lymphopenia-induced proliferation in aire-deficient mice helps to explain their autoimmunity and differences from human patients. Front Immunol 2014; 5:51. [PMID: 24592265 PMCID: PMC3923166 DOI: 10.3389/fimmu.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and its mouse model – both caused by mutant AIRE – have greatly advanced the understanding of thymic processes that generate a self-tolerant T-cell repertoire. Much is now known about the molecular mechanisms by which AIRE induces tissue-specific antigen expression in thymic epithelium, and how this leads to negative selection of auto-reactive thymocytes. However, we still do not understand the processes that lead to the activation of any infrequent naïve auto-reactive T-cells exported by AIRE-deficient thymi. Also, the striking phenotypic differences between APECED and its mouse models have puzzled researchers for years. The aim of this review is to suggest explanations for some of these unanswered questions, based on a fresh view of published experiments. We review evidence that auto-reactive T-cells can be activated by the prolonged neonatal lymphopenia that naturally develops in young Aire-deficient mice due to delayed export of mature thymocytes. Lymphopenia-induced proliferation (LIP) helps to fill the empty space; by favoring auto-reactive T-cells, it also leads to lymphocyte infiltration in the same tissues as in day 3 thymectomized animals. The LIP becomes uncontrolled when loss of Aire is combined with defects in genes responsible for anergy induction and Treg responsiveness, or in signaling from the T-cell receptor and homeostatic cytokines. In APECED patients, LIP is much less likely to be involved in activation of naïve auto-reactive T-cells, as humans are born with a more mature immune system than in neonatal mice. We suggest that human AIRE-deficiency presents with different phenotypes because of additional precipitating factors that compound the defective negative selection of potentially autoaggressive tissue-specific thymocytes.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Martti Laan
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| |
Collapse
|
32
|
Children who develop type 1 diabetes early in life show low levels of carnitine and amino acids at birth: does this finding shed light on the etiopathogenesis of the disease? Nutr Diabetes 2013; 3:e94. [PMID: 24166423 PMCID: PMC3817347 DOI: 10.1038/nutd.2013.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/29/2013] [Accepted: 09/08/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Children and adolescents with overt type 1 diabetes (T1D) have been found to show an altered carnitine profile. This pattern has not previously been analyzed in neonates before onset of the disease. MATERIALS AND METHODS Fifty children who developed T1D during the first 6 years of life, born and living in the Tuscany and Umbria Regions of Italy, were identified and 200 controls were recruited into the study. All newborns were subjected to extended neonatal screening by mass spectrometry at 48-72 h of life. Four controls for each of the 50 index cases were taken randomly and blinded in the same analytical batch. The panel used for neonatal screening consists of 13 amino acids, free carnitine, 33 acyl-carnitines and 21 ratios. All Guthrie cards are analyzed within 2 days of collection. RESULTS Total and free carnitine were found to be significantly lower in neonates who later developed T1D compared with controls. Moreover, the concentrations of the acyl-carnitines - acetyl-L-carnitine (C2), proprionylcarnitine (C3), 3-hydroxyisovalerylcarnitine (C5OH), miristoylcarnitine (C4), palmitoylcarnitine (C16) and stearoylcarnitine (C18) - were also significantly low in the cases vs controls. Furthermore, total amino-acid concentrations, expressed as the algebraic sum of all amino acids tested, showed a trend toward lower levels in cases vs controls. CONCLUSIONS We found that carnitine and amino-acid deficit may be evident before the clinical appearance of T1D, possibly from birth. The evaluation of these metabolites in the neonatal period of children human leukocyte antigen genetically at 'risk' to develop T1D, could represent an additional tool for the prediction of T1D and could also offer the possibility to design new strategies for the primary prevention of the disease from birth.
Collapse
|
33
|
Geenen V, Bodart G, Henry S, Michaux H, Dardenne O, Charlet-Renard C, Martens H, Hober D. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosci 2013; 7:187. [PMID: 24137108 PMCID: PMC3797387 DOI: 10.3389/fnins.2013.00187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
For centuries after its first description by Galen, the thymus was considered as only a vestigial endocrine organ until the discovery in 1961 by Jacques FAP Miller of its essential role in the development of T (thymo-dependent) lymphocytes. A unique thymus first appeared in cartilaginous fishes some 500 million years ago, at the same time or shortly after the emergence of the adaptive (acquired) immune system. The thymus may be compared to a small brain or a computer highly specialized in the orchestration of central immunological self-tolerance. This was a necessity for the survival of species, given the potent evolutionary pressure imposed by the high risk of autotoxicity inherent in the stochastic generation of the diversity of immune cell receptors that characterize the adaptive immune response. A new paradigm of “neuroendocrine self-peptides” has been proposed, together with the definition of “neuroendocrine self.” Neuroendocrine self-peptides are secreted by thymic epithelial cells (TECs) not according to the classic model of neuroendocrine signaling, but are processed for presentation by, or in association with, the thymic major histocompatibility complex (MHC) proteins. The autoimmune regulator (AIRE) gene/protein controls the transcription of neuroendocrine genes in TECs. The presentation of self-peptides in the thymus is responsible for the clonal deletion of self-reactive T cells, which emerge during the random recombination of gene segments that encode variable parts of the T cell receptor for the antigen (TCR). At the same time, self-antigen presentation in the thymus generates regulatory T (Treg) cells that can inhibit, in the periphery, those self-reactive T cells that escaped negative selection in the thymus. Several arguments indicate that the origin of autoimmunity directed against neuroendocrine glands results primarily from a defect in the intrathymic programming of self-tolerance to neuroendocrine functions. This defect may be genetic or acquired, for example during an enteroviral infection. This novel knowledge of normal and pathologic functions of the thymus constitutes a solid basis for the development of a novel type of tolerogenic/negative self-vaccination against type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Vincent Geenen
- Department of Biomedical and Preclinical Sciences, Center of Immunoendocrinology, GIGA Research Institute, Fund of Scientific Research, University of Liege Liege-Sart Tilman, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mohan JF, Calderon B, Anderson MS, Unanue ER. Pathogenic CD4⁺ T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. ACTA ACUST UNITED AC 2013; 210:2403-14. [PMID: 24127484 PMCID: PMC3804950 DOI: 10.1084/jem.20130582] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the nonobese diabetic mouse, a predominant component of the autoreactive CD4(+) T cell repertoire is directed against the B:9-23 segment of the insulin B chain. Previous studies established that the majority of insulin-reactive T cells specifically recognize a weak peptide-MHC binding register within the B:9-23 segment, that to the 12-20 register. These T cells are uniquely stimulated when the B:9-23 peptide, but not the insulin protein, is offered to antigen presenting cells (APCs). Here, we report on a T cell receptor (TCR) transgenic mouse (8F10) that offers important new insights into the biology of these unconventional T cells. Many of the 8F10 CD4(+) T cells escaped negative selection and were highly pathogenic. The T cells were directly recruited into islets of Langerhans, where they established contact with resident intra-islet APCs. Immunogenic insulin had to be presented in order for the T cells to localize and cause disease. These T cells bypassed an initial priming stage in the pancreatic lymph node thought to precede islet T cell entry. 8F10 T cells induced the production of antiinsulin antibodies and islets contained immunoglobulin (IgG) deposited on β cells and along the vessel walls.
Collapse
Affiliation(s)
- James F Mohan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
35
|
De Riva A, Varley MC, Bluck LJ, Cooke A, Deery MJ, Busch R. Accelerated turnover of MHC class II molecules in nonobese diabetic mice is developmentally and environmentally regulated in vivo and dispensable for autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5961-71. [PMID: 23677470 PMCID: PMC3785126 DOI: 10.4049/jimmunol.1300551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The H2-A(g7) (A(g7)) MHC class II (MHCII) allele is required for type 1 diabetes (T1D) in NOD mice. A(g7) not only has a unique peptide-binding profile, it was reported to exhibit biochemical defects, including accelerated protein turnover. Such defects were proposed to impair Ag presentation and, thus, self-tolerance. Here, we report measurements of MHCII protein synthesis and turnover in vivo. NOD mice and BALB/c controls were labeled continuously with heavy water, and splenic B cells and dendritic cells were isolated. MHCII molecules were immunoprecipitated and digested with trypsin. Digests were analyzed by liquid chromatography/mass spectrometry to quantify the fraction of newly synthesized MHCII molecules and, thus, turnover. MHCII turnover was faster in dendritic cells than in B cells, varying slightly between mouse strains. Some A(g7) molecules exhibited accelerated turnover in B cells from young, but not older, prediabetic female NOD mice. This acceleration was not detected in a second NOD colony with a high incidence of T1D. Turnover rates of A(g7) and H2-A(d) were indistinguishable in (NOD × BALB/c) F1 mice. In conclusion, accelerated MHCII turnover may occur in NOD mice, but it reflects environmental and developmental regulation, rather than a structural deficit of the A(g7) allele. Moreover, this phenotype wanes before the onset of overt T1D and is dispensable for the development of autoimmune diabetes. Our observations highlight the importance of in vivo studies in understanding the role of protein turnover in genotype/phenotype relationships and offer a novel approach for addressing this fundamental research challenge.
Collapse
Affiliation(s)
| | - Mark C. Varley
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Leslie J. Bluck
- Elsie Widdowson Laboratories, Medical Research Council Human Nutrition Research, Fulbourn, Cambridge, UK
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Michael J. Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer MH, Nolan GP, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Best AJ, Knell J, Goldrath A, Joic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Nageswara Rao T, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, Turley S. The transcriptional landscape of αβ T cell differentiation. Nat Immunol 2013; 14:619-32. [PMID: 23644507 PMCID: PMC3660436 DOI: 10.1038/ni.2590] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/19/2013] [Indexed: 12/11/2022]
Abstract
αβT cell differentiation from thymic precursors is a complex process, explored here with the breadth of ImmGen expression datasets, analyzing how differentiation of thymic precursors gives rise to transcriptomes. After surprisingly gradual changes though early T commitment, transit through the CD4+CD8+ stage involves a shutdown or rare breadth, and correlating tightly with MYC. MHC-driven selection promotes a large-scale transcriptional reactivation. We identify distinct signatures that mark cells destined for positive selection versus apoptotic deletion. Differential expression of surprisingly few genes accompany CD4 or CD8 commitment, a similarity that carries through to peripheral T cells and their activation, revealed by mass cytometry phosphoproteomics. The novel transcripts identified as candidate mediators of key transitions help define the “known unknown” of thymocyte differentiation.
Collapse
Affiliation(s)
- Michael Mingueneau
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yui MA, Feng N, Zhang JA, Liaw CY, Rothenberg EV, Longmate JA. Loss of T cell progenitor checkpoint control underlies leukemia initiation in Rag1-deficient nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3276-88. [PMID: 23440410 DOI: 10.4049/jimmunol.1202970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NOD mice exhibit major defects in the earliest stages of T cell development in the thymus. Genome-wide genetic and transcriptome analyses were used to investigate the origins and consequences of an early T cell developmental checkpoint breakthrough in Rag1-deficient NOD mice. Quantitative trait locus analysis mapped the presence of checkpoint breakthrough cells to several known NOD diabetes susceptibility regions, particularly insulin-dependent diabetes susceptibility genes (Idd)9/11 on chromosome 4, suggesting common genetic origins for T cell defects affecting this trait and autoimmunity. Genome-wide RNA deep-sequencing of NOD and B6 Rag1-deficient thymocytes revealed the effects of genetic background prior to breakthrough, as well as the cellular consequences of the breakthrough. Transcriptome comparison between the two strains showed enrichment in differentially expressed signal transduction genes, prominently tyrosine kinase and actin-binding genes, in accord with their divergent sensitivities to activating signals. Emerging NOD breakthrough cells aberrantly expressed both stem cell-associated proto-oncogenes, such as Lmo2, Hhex, Lyl1, and Kit, which are normally repressed at the commitment checkpoint, and post-β-selection checkpoint genes, including Cd2 and Cd5. Coexpression of genes characteristic of multipotent progenitors and more mature T cells persists in the expanding population of thymocytes and in the thymic leukemias that emerge with age in these mice. These results show that Rag1-deficient NOD thymocytes have T cell defects that can collapse regulatory boundaries at two early T cell checkpoints, which may predispose them to both leukemia and autoimmunity.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Al-Adra DP, Pawlick R, Shapiro AMJ, Anderson CC. Targeting cells causing split tolerance allows fully allogeneic islet survival with minimal conditioning in NOD mixed chimeras. Am J Transplant 2012; 12:3235-45. [PMID: 22974315 DOI: 10.1111/j.1600-6143.2012.04260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Donor-specific tolerance induced by mixed chimerism is one approach that may eliminate the need for long-term immunosuppressive therapy, while preventing chronic rejection of an islet transplant. However, even in the presence of chimerism it is possible for certain donor tissues or cells to be rejected whereas others from the same donor are accepted (split tolerance). We previously developed a nonmyeloablative protocol that generated mixed chimerism across full major histocompatability complex plus minor mismatches in NOD (nonobese diabetic) mice, however, these chimeras demonstrated split tolerance. In this study, we used radiation chimeras and found that the radiosensitive component of NOD has a greater role in the split tolerance NOD mice develop. We then show that split tolerance is mediated primarily by preexisting NOD lymphocytes and have identified T cells, but not NK cells or B cells, as cells that both resist chimerism induction and mediate split tolerance. Finally, after recognizing the barrier that preexisting T cells impose on the generation of fully tolerant chimeras, the chimerism induction protocol was refined to include nonmyeloablative recipient NOD T cell depletion which generated long-term mixed chimerism across fully allogeneic barriers. Furthermore, these chimeric NOD mice are immunocompetent, diabetes free and accept donor islet allografts.
Collapse
Affiliation(s)
- D P Al-Adra
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
39
|
Rybakin V, Gascoigne NRJ. Negative selection assay based on stimulation of T cell receptor transgenic thymocytes with peptide-MHC tetramers. PLoS One 2012; 7:e43191. [PMID: 22900100 PMCID: PMC3416795 DOI: 10.1371/journal.pone.0043191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/20/2012] [Indexed: 02/04/2023] Open
Abstract
Thymocyte negative selection is a requirement for the development of self tolerance. Although it is possible to assay the induction of cell death in thymocytes in vitro using antibody cross-linking, this stimulus is much stronger than the normal range of T cell receptor ligands that could be encountered during normal development. Signaling in thymocytes is finely balanced between positive and negative selection stimuli, where a negative selecting ligand can be only marginally higher affinity than a positive selecting ligand. We have therefore developed an assay for the induction of negative selection that can distinguish such cases, and that is amenable to high-throughput analysis. The assay is based on the induction of activated caspase 3 in thymocytes expressing a defined T cell receptor, after stimulation with MHC-peptide tetramers in vitro for 24 hours or less.
Collapse
Affiliation(s)
- Vasily Rybakin
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| |
Collapse
|
40
|
On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev Mol Med 2012; 14:e15. [PMID: 22805744 DOI: 10.1017/erm.2012.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review discusses mechanisms that link allelic variants of major histocompatibility complex (MHC) class II molecules (MHCII) to immune pathology. We focus on HLA (human leukocyte antigen)-DQ (DQ) alleles associated with celiac disease (CD) and type 1 diabetes (T1D) and the role of the murine DQ-like allele, H2-Ag7 (I-Ag7 or Ag7), in murine T1D. MHCII molecules bind peptides, and alleles vary in their peptide-binding specificity. Disease-associated alleles permit binding of disease-inducing peptides, such as gluten-derived, Glu-/Pro-rich gliadin peptides in CD and peptides from islet autoantigens, including insulin, in T1D. In addition, the CD-associated DQ2.5 and DQ8 alleles are unusual in their interactions with factors that regulate their peptide loading, invariant chain (Ii) and HLA-DM (DM). The same alleles, as well as other T1D DQ risk alleles (and Ag7), share nonpolar residues in place of Asp at β57 and prefer peptides that place acidic side chains in a pocket in the MHCII groove (P9). Antigen-presenting cells from T1D-susceptible mice and humans retain CLIP because of poor DM editing, although underlying mechanisms differ between species. We propose that these effects on peptide presentation make key contributions to CD and T1D pathogenesis.
Collapse
|