1
|
Zhu B, Liu Y, Peng D. The double-edged role and therapeutic potential of TREM2 in atherosclerosis. Biomark Res 2024; 12:131. [PMID: 39497214 PMCID: PMC11533605 DOI: 10.1186/s40364-024-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease characterized by infiltration of large numbers of macrophages. The progression of the disease is closely related to the status of macrophages in atherosclerotic plaques. Recent advances in plaque analysis have revealed a subpopulation of macrophages that express high levels of triggering receptor expressed on myeloid cells 2 (TREM2). Although TREM2 is known to play a critical role in inflammation, lipid metabolism, and tissue repair, its role in atherosclerosis is still not fully understood. Recent studies have shown that TREM2 promotes macrophage cholesterol uptake and efflux, enhances efferocytosis function, regulates inflammation and metabolism, and promotes cell survival, all of which are significant functions in atherosclerosis. In early plaques TREM2 promotes lipid uptake and increases lesion size. In advanced plaques TREM2 promotes macrophage survival and increases plaque stability. The dualistic nature of TREM2 in atherosclerosis, where it can exert both protective effect and a side effect of increased lesion size, presents a complex but crucial area of study. Understanding these dual roles could help in the development of new therapeutic strategies to modulate TREM2 activity and utilize its atheroprotective function while mitigating its deleterious effects. In this review, we discuss the roles and mechanisms of TREM2 during different stages of atherosclerotic plaques, as well as the potential applications of TREM2 in the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yuxuan Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Wang J, Yan Z, Zhang W, Liu X, Wang J, Peng Q. Upregulation of TREM2 expression in M2 macrophages promotes Brucella abortus chronic infection. Front Immunol 2024; 15:1466520. [PMID: 39497817 PMCID: PMC11532147 DOI: 10.3389/fimmu.2024.1466520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
Brucella abortus (B.abortus) is a zoonotic bacterial pathogen that causes chronic host infections. The eradication of brucellosis using antibiotic therapy is often incomplete or slow. In a mouse model, the predominance of alternatively activated macrophages (also known as M2) plays an essential role in sustaining chronic infection. The underlying functional mechanism by which M2 sustains chronic infection remains unclear. Here, we show that B. abortus can enter M2 via triggering receptor expressed on myeloid cells 2 (TREM2) and promotes the upregulation of TREM2 expression of M2 in a type IV secretion system (T4SS)-dependent manner. Increased TREM2 enhances B. abortus growth within M2 by suppressing intracellular ROS production, preventing M2 pyroptosis via suppression of mitochondrial ROS (mROS), and promoting M2 proliferation by increasing β-catenin expression. In line with these results, downregulation of TREM2 expression suppressed B. abortus intracellular growth and M2 proliferation and induced M2 pyroptosis. In our mouse model, upregulation of TREM2 expression sustained the accumulation of M2 and B. abortus chronic infection, whereas downregulation of TREM2 expression restricted M2 proliferation and chronic infection. Collectively, our results suggest that targeting TREM2 may be a potential adjunct to antibiotic therapy for the prevention of chronic Brucella infection.
Collapse
Affiliation(s)
- Jingyu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhirong Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiyu Zhang
- Institute of Microbiology Department, Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Jiang H, Cui H, Chen M, Li F, Shen X, Guo CJ, Hoekel GE, Zhu Y, Han L, Wu K, Holtzman MJ, Liu Q. Divergent sensory pathways of sneezing and coughing. Cell 2024; 187:5981-5997.e14. [PMID: 39243765 DOI: 10.1016/j.cell.2024.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/25/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Sneezing and coughing are primary symptoms of many respiratory viral infections and allergies. It is generally assumed that sneezing and coughing involve common sensory receptors and molecular neurotransmission mechanisms. Here, we show that the nasal mucosa is innervated by several discrete populations of sensory neurons, but only one population (MrgprC11+MrgprA3-) mediates sneezing responses to a multitude of nasal irritants, allergens, and viruses. Although this population also innervates the trachea, it does not mediate coughing, as revealed by our newly established cough model. Instead, a distinct sensory population (somatostatin [SST+]) mediates coughing but not sneezing, unraveling an unforeseen sensory difference between sneezing and coughing. At the circuit level, sneeze and cough signals are transmitted and modulated by divergent neuropathways. Together, our study reveals the difference in sensory receptors and neurotransmission/modulation mechanisms between sneezing and coughing, offering neuronal drug targets for symptom management in respiratory viral infections and allergies.
Collapse
Affiliation(s)
- Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Huan Cui
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mengyu Chen
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Fengxian Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xiaolei Shen
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Changxiong J Guo
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - George E Hoekel
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yuyan Zhu
- The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liang Han
- The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Wang Q, Cao Y, Ye S, Ding M, Ge W, Liang Y, Chen J. Trem2/Syk/PI3K axis contributes to the host protection against Toxoplasma gondii-induced adverse pregnancy outcomes via modulating decidual macrophages. PLoS Pathog 2024; 20:e1012543. [PMID: 39250507 PMCID: PMC11412541 DOI: 10.1371/journal.ppat.1012543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/19/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Decidual macrophages residing at the maternal-fetal interface have been recognized as pivotal factors for maintaining normal pregnancy; however, they are also key target cells of Toxoplasma gondii (T. gondii) in the pathology of T. gondii-induced adverse pregnancy. Trem2, as a functional receptor on macrophage surface, recognizes and binds various kinds of pathogens. The role and underlying mechanism of Trem2 in T. gondii infection remain elusive. In the present study, we found that T. gondii infection downregulated Trem2 expression and that Trem2-/- mice exhibited more severe adverse pregnancy outcomes than wildtype mice. We also demonstrated that T. gondii infection resulted in increased decidual macrophages, which were significantly reduced in the Trem2-/- pregnant mouse model as compared to wildtype control animals. We further described the inhibited proliferation, migration, and invasion functions of trophoblast cell by T. gondii antigens through macrophages as an "intermediate bridge", while this inhibition can be rescued by Trem2 agonist HSP60. Concurrently, Trem2 deficiency in bone marrow-derived macrophages (BMDMs) heightened the inhibitory effect of TgAg on the migration and invasion of trophoblast cells, accompanied by higher pro-inflammatory factors (IL-1β, IL-6 and TNF-α) but a lower chemokine (CXCL1) in T. gondii antigens-treated BMDMs. Furthermore, compelling evidence from animal models and in vitro cell experiments suggests that T. gondii inhibits the Trem2-Syk-PI3K signaling pathway, leading to impaired function of decidual macrophages. Therefore, our findings highlight Trem2 signaling as an essential pathway by which decidual macrophages respond to T. gondii infection, suggesting Trem2 as a crucial sensor of decidual macrophages and potential therapeutic target in the pathology of T. gondii-induced adverse pregnancy.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Yining Cao
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Songyi Ye
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Maoyuan Ding
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Wenliang Ge
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Yuejin Liang
- Department of Microbiology & Immunology, The University of Texas Medical Branch Galveston, Texas, United States of America
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Zhang Y, Wu K, Mao D, Iberg CA, Yin-Declue H, Sun K, Wikfors HA, Keeler SP, Li M, Young D, Yantis J, Crouch EC, Chartock JR, Han Z, Byers DE, Brody SL, Romero AG, Holtzman MJ. A first-in-kind MAPK13 inhibitor that can correct stem cell reprogramming and post-injury disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608990. [PMID: 39229202 PMCID: PMC11370402 DOI: 10.1101/2024.08.21.608990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The stress kinase MAPK13 (aka p38δ-MAPK) is an attractive entry point for therapeutic intervention because it regulates the structural remodeling that can develop after epithelial barrier injury in the lung and likely other tissue sites. However, a selective, safe, and effective MAPK13 inhibitor is not yet available for experimental or clinical application. Here we identify a first-in-kind MAPK13 inhibitor using structure-based drug design combined with a screening funnel for cell safety and molecular specificity. This inhibitor (designated NuP-4) down-regulates basal-epithelial stem cell reprogramming, structural remodeling, and pathophysiology equivalently to Mapk13 gene-knockout in mouse and mouse organoid models of post-viral lung disease. This therapeutic benefit persists after stopping treatment as a sign of disease modification and attenuates key aspects of inflammation and remodeling as an indication of disease reversal. Similarly, NuP-4 treatment can directly control cytokine-stimulated growth, immune activation, and mucinous differentiation in human basal-cell organoids. The data thereby provide a new tool and potential fix for long-term stem cell reprogramming after viral injury and related conditions that require MAPK13 induction-activation.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
6
|
Hwang M, Bergmann CC. Neurotropic murine coronavirus mediated demyelination: Factors dampening pathogenesis. J Neuroimmunol 2024; 393:578382. [PMID: 38850674 DOI: 10.1016/j.jneuroim.2024.578382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Virus infections and autoimmune responses are implicated as primary triggers of demyelinating diseases. Specifically, the association of Epstein-Barr virus (EBV) infection with development of multiple sclerosis (MS) has re-ignited an interest in virus induced autoimmune responses to CNS antigens. Nevertheless, demyelination may also be caused by immune mediated bystander pathology in an attempt to control direct infection in the CNS. Tissue damage as a result of anti-viral responses or low level viral persistence may lead to immune activation manifesting in demyelinating lesions, axonal damage and clinical symptoms. This review focuses on the neurotropic mouse coronavirus induced demyelination model to highlight how immune responses activated during the acute phase pave the way to dampen pathology and promote repair. We specifically discuss the role of immune dampening factors programmed cell death ligand 1 (PD-L1) and interleukin (IL)-10, as well as microglia and triggering receptor expressed on myeloid cells 2 (Trem2), in limiting demyelination independent of viral persistence.
Collapse
Affiliation(s)
- Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Wu K, Zhang Y, Mao D, Iberg CA, Yin-Declue H, Sun K, Keeler SP, Wikfors HA, Young D, Yantis J, Austin SR, Byers DE, Brody SL, Crouch EC, Romero AG, Holtzman MJ. MAPK13 controls structural remodeling and disease after epithelial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596863. [PMID: 38895360 PMCID: PMC11185504 DOI: 10.1101/2024.05.31.596863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A. Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
8
|
Wu K, Zhang Y, Yin-DeClue H, Sun K, Mao D, Yang K, Austin SR, Crouch EC, Brody SL, Byers DE, Hoffmann CM, Hughes ME, Holtzman MJ. A correctable immune niche for epithelial stem cell reprogramming and post-viral lung diseases. J Clin Invest 2024; 134:e183092. [PMID: 39052353 PMCID: PMC11405052 DOI: 10.1172/jci183092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Epithelial barriers are programmed for defense and repair but are also the site of long-term structural remodeling and disease. In general, this paradigm features epithelial stem cells (ESCs) that are called on to regenerate damaged tissues but can also be reprogrammed for detrimental remodeling. Here we identified a Wfdc21-dependent monocyte-derived dendritic cell (moDC) population that functioned as an early sentinel niche for basal ESC reprogramming in mouse models of epithelial injury after respiratory viral infection. Niche function depended on moDC delivery of ligand GPNMB to the basal ESC receptor CD44 so that properly timed antibody blockade of ligand or receptor provided long-lasting correction of reprogramming and broad disease phenotypes. These same control points worked directly in mouse and human basal ESC organoids. Together, the findings identify a mechanism to explain and modify what is otherwise a stereotyped but sometimes detrimental response to epithelial injury.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kuangying Yang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Michael E Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Genetics, and
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
10
|
Lin C, Kong Y, Chen Q, Zeng J, Pan X, Miao J. Decoding sTREM2: its impact on Alzheimer's disease - a comprehensive review of mechanisms and implications. Front Aging Neurosci 2024; 16:1420731. [PMID: 38912524 PMCID: PMC11190086 DOI: 10.3389/fnagi.2024.1420731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). This review comprehensively examines sTREM2's involvement in AD, focusing on its regulatory functions in microglial responses, neuroinflammation, and interactions with key pathological processes. We discuss the dynamic changes in sTREM2 levels in cerebrospinal fluid and plasma throughout AD progression, highlighting its potential as a therapeutic target. Furthermore, we explore the impact of genetic variants on sTREM2 expression and its interplay with other AD risk genes. The evidence presented in this review suggests that modulating sTREM2 activity could influence AD trajectory, making it a promising avenue for future research and drug development. By providing a holistic understanding of sTREM2's multifaceted role in AD, this review aims to guide future studies and inspire novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Lin
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Kong
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Qian Chen
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jixiang Zeng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaojin Pan
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jifei Miao
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Jiang Y, Yu W, Hu T, Peng H, Hu F, Yuan Y, Liu X, Lai S, Zhou J, Dong X. Unveiling macrophage diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-associated macrophage subset. Front Immunol 2024; 15:1335333. [PMID: 38449872 PMCID: PMC10915075 DOI: 10.3389/fimmu.2024.1335333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background and objective Macrophages play a crucial and dichotomous role cardiac repair following myocardial ischemia-reperfusion, as they can both facilitate tissue healing and contribute to injury. This duality is intricately linked to environmental factors, and the identification of macrophage subtypes within the context of myocardial ischemia-reperfusion injury (MIRI) may offer insights for the development of more precise intervention strategies. Methods Specific marker genes were used to identify macrophage subtypes in GSE227088 (mouse single-cell RNA sequencing dataset). Genome Set Enrichment Analysis (GSEA) was further employed to validate the identified LAM subtypes. Trajectory analysis and single-cell regulatory network inference were executed using the R packages Monocle2 and SCENIC, respectively. The conservation of LAM was verified using human ischemic cardiomyopathy heart failure samples from the GSE145154 (human single-cell RNA sequencing dataset). Fluorescent homologous double-labeling experiments were performed to determine the spatial localization of LAM-tagged gene expression in the MIRI mouse model. Results In this study, single-cell RNA sequencing (scRNA-seq) was employed to investigate the cellular landscape in ischemia-reperfusion injury (IRI). Macrophage subtypes, including a novel Lipid-Associated Macrophage (LAM) subtype characterized by high expression of Spp1, Trem2, and other genes, were identified. Enrichment and Progeny pathway analyses highlighted the distinctive functional role of the SPP1+ LAM subtype, particularly in lipid metabolism and the regulation of the MAPK pathway. Pseudotime analysis revealed the dynamic differentiation of macrophage subtypes during IRI, with the activation of pro-inflammatory pathways in specific clusters. Transcription factor analysis using SCENIC identified key regulators associated with macrophage differentiation. Furthermore, validation in human samples confirmed the presence of SPP1+ LAM. Co-staining experiments provided definitive evidence of LAM marker expression in the infarct zone. These findings shed light on the role of LAM in IRI and its potential as a therapeutic target. Conclusion In conclusion, the study identifies SPP1+ LAM macrophages in ischemia-reperfusion injury and highlights their potential in cardiac remodeling.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanzhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xufeng Liu
- Department of Haematology, Ganzhou People’s Hospital, Ganzhou, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Matos ADO, Dantas PHDS, Queiroz HAGDB, Silva-Sales M, Sales-Campos H. TREM-2: friend or foe in infectious diseases? Crit Rev Microbiol 2024; 50:1-19. [PMID: 36403150 DOI: 10.1080/1040841x.2022.2146481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
13
|
Holtzman MJ, Zhang Y, Wu K, Romero AG. Mitogen-activated protein kinase-guided drug discovery for post-viral and related types of lung disease. Eur Respir Rev 2024; 33:230220. [PMID: 38417971 PMCID: PMC10900067 DOI: 10.1183/16000617.0220-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/01/2024] Open
Abstract
Respiratory viral infections are a major public health problem, with much of their morbidity and mortality due to post-viral lung diseases that progress and persist after the active infection is cleared. This paradigm is implicated in the most common forms of chronic lung disease, such as asthma and COPD, as well as other virus-linked diseases including progressive and long-term coronavirus disease 2019. Despite the impact of these diseases, there is a lack of small-molecule drugs available that can precisely modify this type of disease process. Here we will review current progress in understanding the pathogenesis of post-viral and related lung disease with characteristic remodelling phenotypes. We will also develop how this data leads to mitogen-activated protein kinase (MAPK) in general and MAPK13 in particular as key druggable targets in this pathway. We will also explore recent advances and predict the future breakthroughs in structure-based drug design that will provide new MAPK inhibitors as drug candidates for clinical applications. Each of these developments point to a more effective approach to treating the distinct epithelial and immune cell based mechanisms, which better account for the morbidity and mortality of post-viral and related types of lung disease. This progress is vital given the growing prevalence of respiratory viruses and other inhaled agents that trigger stereotyped progression to acute illness and chronic disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- NuPeak Therapeutics Inc., St. Louis, MO, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Wells SB, Rainbow DB, Mark M, Szabo PA, Ergen C, Maceiras AR, Caron DP, Rahmani E, Benuck E, Amiri VVP, Chen D, Wagner A, Howlett SK, Jarvis LB, Ellis KL, Kubota M, Matsumoto R, Mahbubani K, Saeb-Parsy K, Dominguez-Conde C, Richardson L, Xu C, Li S, Mamanova L, Bolt L, Wilk A, Teichmann SA, Farber DL, Sims PA, Jones JL, Yosef N. Multimodal profiling reveals tissue-directed signatures of human immune cells altered with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573877. [PMID: 38260588 PMCID: PMC10802388 DOI: 10.1101/2024.01.03.573877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.
Collapse
|
15
|
Wu Z, Yang S, Fang X, Shu Q, Chen Q. Function and mechanism of TREM2 in bacterial infection. PLoS Pathog 2024; 20:e1011895. [PMID: 38236825 PMCID: PMC10796033 DOI: 10.1371/journal.ppat.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2), which is a lipid sensing and phagocytosis receptor, plays a key role in immunity and inflammation in response to pathogens. Here, we review the function and signaling of TREM2 in microbial binding, engulfment and removal, and describe TREM2-mediated inhibition of inflammation by negatively regulating the Toll-like receptor (TLR) response. We further illustrate the role of TREM2 in restoring organ homeostasis in sepsis and soluble TREM2 (sTREM2) as a diagnostic marker for sepsis-associated encephalopathy (SAE). Finally, we discuss the prospect of TREM2 as an interesting therapeutic target for sepsis.
Collapse
Affiliation(s)
- Zehua Wu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shiyue Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiang Shu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qixing Chen
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Zhang X, Chen X, Zhang L, Sun Y, Liang Y, Li H, Zhang Y. Role of trigger receptor 2 expressed on myeloid cells in neuroinflammation-neglected multidimensional regulation of microglia. Neurochem Int 2023; 171:105639. [PMID: 37926352 DOI: 10.1016/j.neuint.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Neuroinflammation is an inflammatory cascade involved in various neurological disorders, including Alzheimer's disease, multiple sclerosis, and other relevant diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane immune receptor that is primarily expressed by microglia in the central nervous system (CNS). While TREM2 is initially believed to be an anti-inflammatory factor in the CNS, increasing evidence suggests that TREM2 plays a more complex role in balancing neuroinflammation. However, the exact mechanism remains unclear. Notably, TREM2 directly regulates microglia inflammation through various signaling pathways. Additionally, studies have suggested that TREM2 mediates microglial phagocytosis, autophagy, metabolism, and microglia phenotypes, which may be involved in the modulation of neuroinflammation. In this review, we aim to discuss the critical role of TREM2 in several microglia functions and the underlying molecular mechanism the modulatory which further mediate neuroinflammation, and elaborate. Finally, we discuss the potential of TREM2 as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Keeler SP, Wu K, Zhang Y, Mao D, Li M, Iberg CA, Austin SR, Glaser SA, Yantis J, Podgorny S, Brody SL, Chartock JR, Han Z, Byers DE, Romero AG, Holtzman MJ. A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production. Am J Physiol Lung Cell Mol Physiol 2023; 325:L726-L740. [PMID: 37847710 PMCID: PMC11068410 DOI: 10.1152/ajplung.00183.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively downregulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.NEW & NOTEWORTHY This study describes the discovery of a potent mitogen-activated protein kinase 13-14 (MAPK13-14) inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases [e.g., asthma, chronic obstructive pulmonary disease (COPD), Covid-19, postviral, and allergic respiratory disease] and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.
Collapse
Affiliation(s)
- Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Dailing Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ming Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Courtney A Iberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | | | - Samuel A Glaser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jennifer Yantis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Stephanie Podgorny
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joshua R Chartock
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zhenfu Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arthur G Romero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
- NuPeak Therapeutics Inc., St. Louis, Missouri, United States
| |
Collapse
|
18
|
Fan R, Cheng Z, Huang Z, Yang Y, Sun N, Hu B, Hou P, Liu B, Huang C, Liu S. TREM-1, TREM-2 and their association with disease severity in patients with COVID-19. Ann Med 2023; 55:2269558. [PMID: 37848000 PMCID: PMC10583614 DOI: 10.1080/07853890.2023.2269558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Delayed diagnosis and inadequate treatment caused by limited biomarkers are associated with the outcomes of COVID-19 patients. It is necessary to identify other promising biomarkers and candidate targets for defining dysregulated inflammatory states. METHODS The triggering receptors expressed on myeloid cell (TREM)-1 and TREM-2 expression from hospitalized COVID-19 patients were characterized using ELISA and flow cytometry, respectively. Their correlation with disease severity and contrast with the main clinical indicators were evaluated. RESULTS Increased expression of soluble TREM-1 and TREM-2 in the plasma of COVID-19 patients was found compared to the control group. Moreover, membrane-bound TREM-1 and TREM-2 expression was upregulated on the cell surface of circulating blood T cells from COVID-19 patients. Correlation analysis showed that sTREM-2 levels were negatively correlated with PaO2/FiO2, but positively correlated with C-reactive protein (CRP), procalcitonin (PCT) and interleukin (IL)-6 levels. Receiver operating characteristic curve analysis indicated that the predictive efficacy of sTREM-1 and sTREM-2 was equivalent to CRP and IL-6, and a little better than absolute leukocyte or neutrophil count and PCT in distinguishing disease severity. CONCLUSION TREM-2 and TREM-1 are critical host immune factors that response to SARS-COV-2 infection and could serve as potential diagnostic biomarkers and therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Ruyue Fan
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zuowang Cheng
- Department of Clinical Laboratory, Zhangqiu District People’s Hospital Affiliated to Jining Medical University, Jinan, China
| | - Zhisheng Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Na Sun
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Bo Liu
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Eren N, Gerike S, Üsekes B, Peters O, Cosma NC, Hellmann-Regen J. Effects of autologous serum on TREM2 and APOE in a personalized monocyte-derived macrophage assay of late-onset Alzheimer's patients. Immun Ageing 2023; 20:52. [PMID: 37833781 PMCID: PMC10576307 DOI: 10.1186/s12979-023-00376-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Age-associated deterioration of the immune system contributes to a chronic low-grade inflammatory state known as "inflammaging" and is implicated in the pathogenesis of late-onset Alzheimer's disease (LOAD). Whether changes in the tissue environment caused by circulatory factors associated with aging may alter the innate immune response is unknown. Monocyte-derived macrophages (Mo-MФs) infiltrating the brain alongside microglia are postulated to play a modulatory role in LOAD and both express triggering receptor expressed on myeloid cells 2 (TREM2). Apolipoprotein E (APOE) acts as a ligand for TREM2, and their role in amyloid beta (Aβ) clearance highlights their importance in LOAD. However, the influence of the patient's own milieu (autologous serum) on the synthesis of TREM2 and APOE in infiltrating macrophages remains unknown. OBJECTIVES To functionally assess patient-specific TREM2 and APOE synthesis, we designed a personalized assay based on Mo-MФs using monocytes from LOAD patients and matched controls (CO). We assessed the influence of each participant's own milieu, by examining the effect of short- (1 day) and long- (10 days) term differentiation of the cells in the presence of the donor´s autologous serum (AS) into M1-, M2- or M0-macrophages. Additionally, sex differences and Aβ-uptake ability in short- and long-term differentiated Mo-MФs were assessed. RESULTS We showed a time-dependent increase in TREM2 and APOE protein levels in LOAD- and CO-derived cells. While AS did not differentially modulate TREM2 compared to standard fetal calf serum (FCS), AS decreased APOE levels in M2 macrophages but increased levels in M1 macrophages. Interestingly, higher levels of TREM2 and lower levels of APOE were detected in female- than in male- LOAD patients. Finally, we report decreased Aβ-uptake in long-term differentiated CO- and LOAD-derived cells, particularly in APOEε4(+) carriers. CONCLUSIONS We demonstrate for the first time the suitability of a personalized Mo-MФ cell culture-based assay for studying functional TREM2 and APOE synthesis in a patient's own aged milieu. Our strategy may thus provide a useful tool for future research on diagnostic and therapeutic aspects of personalized medicine.
Collapse
Affiliation(s)
- Neriman Eren
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Susanna Gerike
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Berk Üsekes
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Mental Health (DZPG) Partner Site Berlin, Berlin, Germany
| | - Nicoleta-Carmen Cosma
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| |
Collapse
|
20
|
Keeler SP, Wu K, Zhang Y, Mao D, Li M, Iberg CA, Austin SR, Glaser SA, Yantis J, Podgorny S, Brody SL, Chartock JR, Han Z, Byers DE, Romero AG, Holtzman MJ. A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542451. [PMID: 37292761 PMCID: PMC10246002 DOI: 10.1101/2023.05.26.542451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Samuel A. Glaser
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephanie Podgorny
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R. Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
21
|
Abstract
Triggering receptors expressed on myeloid cells (TREMs) encompass a family of cell-surface receptors chiefly expressed by granulocytes, monocytes and tissue macrophages. These receptors have been implicated in inflammation, neurodegenerative diseases, bone remodelling, metabolic syndrome, atherosclerosis and cancer. Here, I review the structure, ligands, signalling modes and functions of TREMs in humans and mice and discuss the challenges that remain in understanding TREM biology.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
22
|
Li Y, Xu H, Wang H, Yang K, Luan J, Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer's disease. Biomed Pharmacother 2023; 165:115218. [PMID: 37517293 DOI: 10.1016/j.biopha.2023.115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, resulting in the loss of cognitive ability and memory. However, there is no specific treatment to mechanistically inhibit the progression of Alzheimer's disease, and most drugs only provide symptom relief and do not fundamentally reverse AD. Current studies show that triggering receptor expressed on myeloid cells 2 (TREM2) is predominantly expressed in microglia of the central nervous system (CNS) and is involved in microglia proliferation, survival, migration and phagocytosis. The current academic view suggests that TREM2 and its ligands have CNS protective effects in AD. Specifically, TREM2 acts by regulating the function of microglia and promoting the clearance of neuronal toxic substances and abnormal proteins by microglia. In addition, TREM2 is also involved in regulating inflammatory response and cell signaling pathways, affecting the immune response and regulatory role of microglia. Although the relationship between TREM2 and Alzheimer's disease has been extensively studied, its specific mechanism of action is not fully understood. The purpose of this review is to provide a comprehensive analysis of the research of TREM2, including its regulation of the inflammatory response, lipid metabolism and phagocytosis in microglia of CNS in AD, and to explore the potential application prospects as well as limitations of targeting TREM2 for the treatment of AD.
Collapse
Affiliation(s)
- Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
23
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
24
|
Martin RA, Keeler SP, Wu K, Shearon WJ, Patel D, Li J, Hoang M, Hoffmann CM, Hughes ME, Holtzman MJ. An alternative mechanism for skeletal muscle dysfunction in long-term post-viral lung disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L870-L878. [PMID: 37130808 PMCID: PMC10259859 DOI: 10.1152/ajplung.00338.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023] Open
Abstract
Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled chronic obstructive pulmonary disease (COPD) and relied on cigarette smoke exposure and LPS stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in COVID-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease caused by infection due to the natural pathogen Sendai virus using a mouse model of PVLD. We identify a significant decrease in myofiber size when PVLD is maximal at 49 days after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch-type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insights into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.NEW & NOTEWORTHY Our study used a mouse model of post-viral lung disease to study the impact of chronic lung disease on skeletal muscle. The model reveals a decrease in myofiber size that is selective for specific types of myofibers and an alternative mechanism for muscle atrophy that might be independent of the usual markers of protein synthesis and degradation. The findings provide a basis for new therapeutic strategies to correct skeletal muscle dysfunction in chronic respiratory disease.
Collapse
Affiliation(s)
- Ryan A Martin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - William J Shearon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Devin Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - My Hoang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Christy M Hoffmann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
25
|
Wu K, Zhang Y, Austin SR, Yin-Declue H, Byers DE, Crouch EC, Holtzman MJ. Lung Remodeling Regions in Long-Term Coronavirus Disease 2019 Feature Basal Epithelial Cell Reprogramming. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:680-689. [PMID: 36868468 PMCID: PMC9977469 DOI: 10.1016/j.ajpath.2023.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
Respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, the current study examined a series of consecutive fatal cases of coronavirus disease 2019 (COVID-19) that came to autopsy at 27 to 51 days after hospital admission. In each patient, a stereotyped bronchiolar-alveolar pattern of lung remodeling was identified with basal epithelial cell hyperplasia, immune activation, and mucinous differentiation. Remodeling regions featured macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This pattern closely resembled findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. Together, these results provide evidence of basal epithelial cell reprogramming in long-term COVID-19 and thereby yield a pathway for explaining and correcting lung dysfunction in this type of disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen R Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
26
|
Guilbaud E, Barouillet T, Ilie M, Borowczyk C, Ivanov S, Sarrazy V, Vaillant N, Ayrault M, Castiglione A, Rignol G, Brest P, Bazioti V, Zaitsev K, Lebrigand K, Dussaud S, Magnone V, Bertolotto C, Marchetti S, Irondelle M, Goldberg I, Huby T, Westerterp M, Gautier EL, Mari B, Barbry P, Hofman P, Yvan-Charvet L. Cholesterol efflux pathways hinder KRAS-driven lung tumor progenitor cell expansion. Cell Stem Cell 2023; 30:800-817.e9. [PMID: 37267915 DOI: 10.1016/j.stem.2023.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
Cholesterol efflux pathways could be exploited in tumor biology to unravel cancer vulnerabilities. A mouse model of lung-tumor-bearing KRASG12D mutation with specific disruption of cholesterol efflux pathways in epithelial progenitor cells promoted tumor growth. Defective cholesterol efflux in epithelial progenitor cells governed their transcriptional landscape to support their expansion and create a pro-tolerogenic tumor microenvironment (TME). Overexpression of the apolipoprotein A-I, to raise HDL levels, protected these mice from tumor development and dire pathologic consequences. Mechanistically, HDL blunted a positive feedback loop between growth factor signaling pathways and cholesterol efflux pathways that cancer cells hijack to expand. Cholesterol removal therapy with cyclodextrin reduced tumor burden in progressing tumor by suppressing the proliferation and expansion of epithelial progenitor cells of tumor origin. Local and systemic perturbations of cholesterol efflux pathways were confirmed in human lung adenocarcinoma (LUAD). Our results position cholesterol removal therapy as a putative metabolic target in lung cancer progenitor cells.
Collapse
Affiliation(s)
- Emma Guilbaud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Marius Ilie
- Institute of Research on Cancer and Aging of Nice (IRCAN), Inserm U1081, CNRS UMR7284, Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d'Azur, CHU de Nice, University Hospital Federation OncoAge, 06107 Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Stoyan Ivanov
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Vincent Sarrazy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Nathalie Vaillant
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Marion Ayrault
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Alexia Castiglione
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Guylène Rignol
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Patrick Brest
- Institute of Research on Cancer and Aging of Nice (IRCAN), Inserm U1081, CNRS UMR7284, Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d'Azur, CHU de Nice, University Hospital Federation OncoAge, 06107 Nice, France
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Konstantin Zaitsev
- Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | - Kevin Lebrigand
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, FHU-OncoAge, Nice Sophia-Antipolis, France
| | | | - Virginie Magnone
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, FHU-OncoAge, Nice Sophia-Antipolis, France
| | - Corine Bertolotto
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Sandrine Marchetti
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Marie Irondelle
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France
| | - Ira Goldberg
- Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY, USA
| | - Thierry Huby
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, 75013 Paris, France
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bernard Mari
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, FHU-OncoAge, Nice Sophia-Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, FHU-OncoAge, Nice Sophia-Antipolis, France
| | - Paul Hofman
- Institute of Research on Cancer and Aging of Nice (IRCAN), Inserm U1081, CNRS UMR7284, Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d'Azur, CHU de Nice, University Hospital Federation OncoAge, 06107 Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) OncoAge, 06204 Nice, France.
| |
Collapse
|
27
|
Lefterov I, Fitz NF, Lu Y, Koldamova R. APOEε4 and risk of Alzheimer's disease - time to move forward. Front Neurosci 2023; 17:1195724. [PMID: 37274212 PMCID: PMC10235508 DOI: 10.3389/fnins.2023.1195724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The inheritance of Apolipoprotein E4 (APOEε4) brings the highest genetic risk of Alzheimer's disease (AD), arguably the highest genetic risk in human pathology. Since the discovery of the association, APOE protein isoforms have been at the center of tens of thousands of studies and reports. While, without a doubt, our knowledge about the normal physiological function of APOE isoforms in the brain has increased tremendously, the questions of how the inheritance of the APOEε4 allele translates into a risk of AD, and the risk is materialized, remain unanswered. Moreover, the knowledge about the risk associated with APOEε4 has not helped design a meaningful preventative or therapeutic strategy. Animal models with targeted replacement of Apoe have been generated and, thanks to the recent NIH/NIA/Alzheimer's disease Association initiative, are now freely available to AD researchers. While helpful in many aspects, none of the available models recapitulates normal physiological transcriptional regulation of the human APOE gene cluster. Changes in epigenetic regulation of APOE alleles in animal models in response to external insults have rarely been if ever, addressed. However, these animal models provide a useful tool to handle questions and investigate protein-protein interactions with proteins expressed by other recently discovered genes and gene variants considered genetic risk factors of AD, like Triggering Receptor expressed on Myeloid cells 2 (TREM2). In this review, we discuss genetic and epigenetic regulatory mechanisms controlling and influencing APOE expression and focus on interactions of APOE and TREM2 in the context of microglia and astrocytes' role in AD-like pathology in animal models.
Collapse
|
28
|
Molgora M, Liu YA, Colonna M, Cella M. TREM2: A new player in the tumor microenvironment. Semin Immunol 2023; 67:101739. [PMID: 36989543 DOI: 10.1016/j.smim.2023.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
TREM2 is a myeloid cell receptor that has been extensively described in the context of neuroinflammation and neurodegenerative diseases. Recently, TREM2 emerged as a crucial regulator of macrophage function in tumors. TREM2-deficiency or blockade provide protection and promote the response to anti-PD1 in different murine models. In human tumors, TREM2-expressing macrophages are present in numerous cohorts and tumor types and are generally associated with immunosuppression and poor prognosis. Here, we provide an overview of the impact of TREM2 in tumors considering current literature, with a focus on both murine models and human cancer.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Yizhou A Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Wang HY, Yang FC, Yang CF, Liu YC, Ko PS, Li CJ, Tsai CK, Chung YL, Chen NJ. Surface TREM2 on circulating M-MDSCs as a novel prognostic factor for adults with treatment-naïve diffuse large B-cell lymphoma. Exp Hematol Oncol 2023; 12:35. [PMID: 37029450 PMCID: PMC10080769 DOI: 10.1186/s40164-023-00399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
INTRODUCTION Circulating monocytic myeloid-derived suppressive cells (M-MDSCs) are implicated as a poor prognostic factor and cause CAR T-cell failure in diffuse large B-cell lymphoma (DLBCL). Triggering receptors expressed on myeloid cells 2 (TREM2) are a transmembrane glycoprotein that polarize macrophages to anti-inflammation phenotype but have never been explored on M-MDSCs. This study aims to elucidate the expression and clinical impact of surface TREM2 on circulating M-MDSCs derived from DLBCL adults. METHODS This prospective, observational study enrolled 100 adults with newly diagnosed and treatment-naïve DLBCL from May 2019 to October 2021. Human circulating M-MDSCs were obtained from freshly isolated peripheral blood, and each patient's surface-TREM2 level on M-MDSCs was normalized via a healthy control at the same performance of flow-cytometry analysis. Murine MDSCs derived from bone marrow (BM-MDSCs) were adopted to assess the link between Trem2 and cytotoxic T lymphocytes. RESULTS More circulating M-MDSCs at diagnosis of DLBCL predicted worse progression-free (PFS) and overall survival (OS). Patients with higher IPI scores, bone marrow involvement, or lower absolute counts of CD4+ or CD8+ T cells in PB had significantly higher normalized TREM2 levels on M-MDSCs. Additionally, normalized TREM2 levels on M-MDSCs could be grouped into low (< 2%), medium (2-44%), or high (> 44%) levels, and a high normalized TREM2 level on M-MDSCs was proven as an independent prognostic factor for both PFS and OS via multivariate Cox regression analysis and associated with worst PFS and OS. Interestingly, normalized levels of surface TREM2 on M-MDSCs were negatively associated with absolute counts of PB CD8+ T cells and positively correlated with levels of intracellular arginase 1 (ARG1) within M-MDSCs. Wild-type BM-MDSCs had significantly higher mRNA levels of Arg1 and showed more prominent ability to suppress the proliferation of co-cultured CD8+ T cells than BM-MDSCs from Trem2 knockout mice, and the suppressive ability could be impaired by adding Arg1 inhibitors (CB1158) or supplementing L-arginine. CONCLUSION In treatment-naïve DLBCL adults, a high surface-TREM2 level on circulating M-MDSCs is a poor prognostic factor for both PFS and OS and warrants further investigation for its potential as a novel target in immunotherapy.
Collapse
Affiliation(s)
- Hao-Yuan Wang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Chen Yang
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fen Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yao-Chung Liu
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Shen Ko
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Jung Li
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Kuang Tsai
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Chung
- Institute of Genome Sciences, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nien-Jung Chen
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
30
|
Xue Y, Gu M, Chen C, Yao Y, Li Y, Weng G, Gu Y. Apolipoprotein E mimetic peptide COG1410 alleviates blood‑brain barrier injury in a rat model of ischemic stroke. Mol Med Rep 2023; 27:85. [PMID: 36866740 PMCID: PMC10018278 DOI: 10.3892/mmr.2023.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Blood‑brain barrier (BBB) damage is one of the main causes of poor outcomes and increased mortality rates following cerebral ischemia‑reperfusion injury. Apolipoprotein E (ApoE) and its mimetic peptide have been previously reported to exhibit potent neuroprotective properties in various central nervous system disease models. Therefore, the present study aimed to investigate the possible role of the ApoE mimetic peptide COG1410 in cerebral ischemia‑reperfusion injury and its potential underlying mechanism. Male SD rats were subjected to 2 h middle cerebral artery occlusion followed by 22 h reperfusion. Evans blue leakage and IgG extravasation assays results revealed that COG1410 treatment significantly reduced BBB permeability. In addition, in situ zymography and western blotting were used to prove that COG1410 was able to downregulate the activities of MMPs and upregulate the expression of occludin in the ischemic brain tissue samples. Subsequently, COG1410 was found to significantly reverse microglia activation while also suppressing inflammatory cytokine production, according to immunofluorescence signal of Iba‑1 and CD68 and protein expression of COX‑2. Consequently, this neuroprotective mechanism mediated by COG1410 was further tested using the BV2 cell line in vitro, which was exposed to oxygen glucose deprivation followed by reoxygenation. The mechanism of COG1410 was found to be mediated, as least partly, through the activation of triggering receptor expressed on myeloid cells 2. In conclusion, the data suggest that COG1410 can alleviate BBB injury and neuroinflammation following ischemic stroke.
Collapse
Affiliation(s)
- Yunwen Xue
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Minhua Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Cuilan Chen
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Yujian Yao
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Yuzhen Li
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Guohu Weng
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan 570203, P.R. China
| |
Collapse
|
31
|
Kim SH, Lee KY, Chang K. The Protective Role of TREM2 in the Heterogenous Population of Macrophages during Post-Myocardial Infarction Inflammation. Int J Mol Sci 2023; 24:5556. [PMID: 36982629 PMCID: PMC10051125 DOI: 10.3390/ijms24065556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Advances in interventions after myocardial infarction (MI) have dramatically increased survival, but MI remains the leading cause of heart failure due to maladaptive ventricular remodeling following ischemic damage. Inflammation is crucial in both the initial response to ischemia and subsequent wound healing in the myocardium. To date, preclinical and clinical efforts have been made to elucidate the deleterious effects of immune cells contributing to ventricular remodeling and to identify therapeutic molecular targets. The conventional concept classifies macrophages or monocytes into dichotomous populations, while recent studies support their diverse subpopulations and spatiotemporal dynamicity. The single-cell and spatial transcriptomic landscapes of macrophages in infarcted hearts successfully revealed the heterogeneity of cell types and their subpopulations post-MI. Among them, subsets of Trem2hi macrophages were identified that were recruited to infarcted myocardial tissue in the subacute phase of MI. The upregulation of anti-inflammatory genes was observed in Trem2hi macrophages, and an in vivo injection of soluble Trem2 during the subacute phase of MI significantly improved myocardial function and the remodeling of infarcted mice hearts, suggesting the potential therapeutic role of Trem2 in LV remodeling. Further investigation of the reparative role of Trem2 in LV remodeling would provide novel therapeutic targets for MI.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwan Yong Lee
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
32
|
Microglia and macrophages contribute to the development and maintenance of sciatica in lumbar disc herniation. Pain 2023; 164:362-374. [PMID: 36170151 DOI: 10.1097/j.pain.0000000000002708] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Lumbar disc herniation (LDH) is a major cause of sciatica. Emerging evidence indicated that inflammation induced by the herniated nucleus pulposus (NP) tissues plays a major role in the pathogenesis of sciatica. However, the underlying mechanisms are still elusive. Although microglia and macrophages have been implicated in nerve injury-induced neuropathic pain, their roles in LDH-induced sciatica largely remain unknown. This study successfully established and modified a mouse model of LDH. We found that nerve root compression using degenerated NP tissues can initiate remarkable and persistent sciatica, with increased and prolonged macrophage infiltration in dorsal root ganglia (DRG) and significant activation of microglia in the spinal dorsal horn. Instead, compression of the nerve root with nondegenerated NP tissues only led to transient sciatica, with transient infiltration and activation of macrophages and microglia. Moreover, continuous treatment of PLX5622, a specific colony-stimulating factor 1 receptor antagonist, ablated both macrophages and microglia, which effectively alleviated LDH-induced sciatica. However, mechanical allodynia reoccurred along with the repopulation of macrophages and microglia after the withdrawal of PLX5622. Using RNA sequencing analysis, the current study depicted transcriptional profile changes of DRG after LDH and identified several macrophage-related potential target candidates. Our results suggested that microglia and macrophages may play an essential role in the development and maintenance of LDH-induced sciatica. Targeting microglia and macrophages may be a promising treatment for chronic LDH-induced sciatica.
Collapse
|
33
|
Wang X, He Q, Zhou C, Xu Y, Liu D, Fujiwara N, Kubota N, Click A, Henderson P, Vancil J, Marquez CA, Gunasekaran G, Schwartz ME, Tabrizian P, Sarpel U, Fiel MI, Diao Y, Sun B, Hoshida Y, Liang S, Zhong Z. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. Immunity 2023; 56:58-77.e11. [PMID: 36521495 PMCID: PMC9839616 DOI: 10.1016/j.immuni.2022.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)-an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1β in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA
| | - Danhui Liu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arielle Click
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Polly Henderson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Janiece Vancil
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cesia Ammi Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh Gunasekaran
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myron E Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Parissa Tabrizian
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Sarpel
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Xue Q, Peng W, Zhang S, Wei X, Ye L, Wang Z, Xiang X, Zhang P, Zhou Q. Promising immunotherapeutic targets in lung cancer based on single-cell RNA sequencing. Front Immunol 2023; 14:1148061. [PMID: 37187731 PMCID: PMC10175686 DOI: 10.3389/fimmu.2023.1148061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Immunotherapy has made great strides in the treatment of lung cancer, but a significant proportion of patients still do not respond to treatment. Therefore, the identification of novel targets is crucial to improving the response to immunotherapy. The tumor microenvironment (TME) is a complex niche composed of diverse pro-tumor molecules and cell populations, making the function and mechanism of a unique cell subset difficult to understand. However, the advent of single-cell RNA sequencing (scRNA-seq) technology has made it possible to identify cellular markers and understand their potential functions and mechanisms in the TME. In this review, we highlight recent advances emerging from scRNA-seq studies in lung cancer, with a particular focus on stromal cells. We elucidate the cellular developmental trajectory, phenotypic remodeling, and cell interactions during tumor progression. Our review proposes predictive biomarkers and novel targets for lung cancer immunotherapy based on cellular markers identified through scRNA-seq. The identification of novel targets could help improve the response to immunotherapy. The use of scRNA-seq technology could provide new strategies to understand the TME and develop personalized immunotherapy for lung cancer patients.
Collapse
|
35
|
Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer's disease. Mol Neurodegener 2022; 17:84. [PMID: 36564824 PMCID: PMC9783481 DOI: 10.1186/s13024-022-00588-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Microglia are central players in brain innate immunity and have been the subject of extensive research in Alzheimer's disease (AD). In this review, we aim to summarize the genetic and functional discoveries that have advanced our understanding of microglia reactivity to AD pathology. Given the heightened AD risk posed by rare variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2), we will focus on the studies addressing the impact of this receptor on microglia responses to amyloid plaques, tauopathy and demyelination pathologies in mouse and human. Finally, we will discuss the implications of recent discoveries on microglia and TREM2 biology on potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yun Chen
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gary Grajales-Reyes
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Marco Colonna
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
36
|
Bandow K, Smith A, Garlick J. Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) positively regulates lipopolysaccharide-induced expression of CXC chemokine ligand 10 and 11 in mouse macrophages. Biochem Biophys Res Commun 2022; 635:227-235. [DOI: 10.1016/j.bbrc.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|
37
|
Hwang M, Savarin C, Kim J, Powers J, Towne N, Oh H, Bergmann CC. Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J Neuroinflammation 2022; 19:267. [PMID: 36333761 PMCID: PMC9635103 DOI: 10.1186/s12974-022-02629-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells 2 (Trem2) plays a protective role in neurodegenerative diseases. By contrast, Trem2 functions can exacerbate tissue damage during respiratory viral or liver infections. We, therefore, investigated the role of Trem2 in a viral encephalomyelitis model associated with prominent Th1 mediated antiviral immunity leading to demyelination. Methods Wild-type (WT) and Trem2 deficient (Trem2−/−) mice were infected with a sublethal glia tropic murine coronavirus (MHV–JHM) intracranially. Disease progression and survival were monitored daily. Leukocyte accumulation and pathological features including demyelination and axonal damage in spinal cords (SC) were determined by flow cytometry and tissue section immunofluorescence analysis. Expression of select inflammatory cytokines and chemokines was measured by RT-PCR and global myeloid cell gene expression in SC-derived microglia and infiltrated bone-marrow-derived macrophages (BMDM) were determined using the Nanostring nCounter platform. Results BMDM recruited to SCs in response to infection highly upregulated Trem2 mRNA compared to microglia coincident with viral control. Trem2 deficiency did not alter disease onset or severity, but impaired clinical recovery after onset of demyelination. Disease progression in Trem2−/− mice could not be attributed to altered virus control or an elevated proinflammatory response. A prominent difference was increased degenerated myelin not associated with the myeloid cell markers IBA1 and/or CD68. Gene expression profiles of SC-derived microglia and BMDM further revealed that Trem2 deficiency resulted in impaired upregulation of phagocytosis associated genes Lpl and Cd36 in microglia, but a more complex pattern in BMDM. Conclusions Trem2 deficiency during viral-induced demyelination dysregulates expression of other select genes regulating phagocytic pathways and lipid metabolism, with distinct effects on microglia and BMDM. The ultimate failure to remove damaged myelin is reminiscent of toxin or autoimmune cell-induced demyelination models and supports that Trem2 function is regulated by sensing tissue damage including a dysregulated lipid environment in very distinct inflammatory environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02629-1.
Collapse
|
38
|
Hendrikx T, Porsch F, Kiss MG, Rajcic D, Papac-Miličević N, Hoebinger C, Goederle L, Hladik A, Shaw LE, Horstmann H, Knapp S, Derdak S, Bilban M, Heintz L, Krawczyk M, Paternostro R, Trauner M, Farlik M, Wolf D, Binder CJ. Soluble TREM2 levels reflect the recruitment and expansion of TREM2 + macrophages that localize to fibrotic areas and limit NASH. J Hepatol 2022; 77:1373-1385. [PMID: 35750138 DOI: 10.1016/j.jhep.2022.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Previous single-cell RNA-sequencing analyses have shown that Trem2-expressing macrophages are present in the liver during obesity, non-alcoholic steatohepatitis (NASH) and cirrhosis. Herein, we aimed to functionally characterize the role of bone marrow-derived TREM2-expressing macrophage populations in NASH. METHODS We used bulk RNA sequencing to assess the hepatic molecular response to lipid-dependent dietary intervention in mice. Spatial mapping, bone marrow transplantation in two complementary murine models and single-cell sequencing were applied to functionally characterize the role of TREM2+ macrophage populations in NASH. RESULTS We found that the hepatic transcriptomic profile during steatohepatitis mirrors the dynamics of recruited bone marrow-derived monocytes that already acquire increased expression of Trem2 in the circulation. Increased Trem2 expression was reflected by elevated levels of systemic soluble TREM2 in mice and humans with NASH. In addition, soluble TREM2 levels were superior to traditionally used laboratory parameters for distinguishing between different fatty liver disease stages in two separate clinical cohorts. Spatial transcriptomics revealed that TREM2+ macrophages localize to sites of hepatocellular damage, inflammation and fibrosis in the steatotic liver. Finally, using multiple murine models and in vitro experiments, we demonstrate that hematopoietic Trem2 deficiency causes defective lipid handling and extracellular matrix remodeling, resulting in exacerbated steatohepatitis, cell death and fibrosis. CONCLUSIONS Our study highlights the functional properties of bone marrow-derived TREM2+ macrophages and implies the clinical relevance of systemic soluble TREM2 levels in the context of NASH. LAY SUMMARY Our study defines the origin and function of macrophages (a type of immune cell) that are present in the liver and express a specific protein called TREM2. We find that these cells have an important role in protecting against non-alcoholic steatohepatitis (a progressive form of fatty liver disease). We also show that the levels of soluble TREM2 in the blood could serve as a circulating marker of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tim Hendrikx
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria; Department of Molecular Genetics, NUTRIM, Maastricht University, Maastricht, the Netherlands.
| | - Florentina Porsch
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Máté G Kiss
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | | | - Constanze Hoebinger
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Laura Goederle
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University Vienna, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Hauke Horstmann
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sylvia Knapp
- Department of Medicine I, Laboratory of Infection Biology, Medical University Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Medical University Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria; Core Facilities, Medical University of Vienna, Medical University Vienna, Vienna, Austria
| | - Lena Heintz
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Rafael Paternostro
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Dennis Wolf
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Filiberti S, Russo M, Lonardi S, Bugatti M, Vermi W, Tournier C, Giurisato E. Self-Renewal of Macrophages: Tumor-Released Factors and Signaling Pathways. Biomedicines 2022; 10:2709. [PMID: 36359228 PMCID: PMC9687165 DOI: 10.3390/biomedicines10112709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 04/11/2024] Open
Abstract
Macrophages are the most abundant immune cells of the tumor microenvironment (TME) and have multiple important functions in cancer. During tumor growth, both tissue-resident macrophages and newly recruited monocyte-derived macrophages can give rise to tumor-associated macrophages (TAMs), which have been associated with poor prognosis in most cancers. Compelling evidence indicate that the high degree of plasticity of macrophages and their ability to self-renew majorly impact tumor progression and resistance to therapy. In addition, the microenvironmental factors largely affect the metabolism of macrophages and may have a major influence on TAMs proliferation and subsets functions. Thus, understanding the signaling pathways regulating TAMs self-renewal capacity may help to identify promising targets for the development of novel anticancer agents. In this review, we focus on the environmental factors that promote the capacity of macrophages to self-renew and the molecular mechanisms that govern TAMs proliferation. We also highlight the impact of tumor-derived factors on macrophages metabolism and how distinct metabolic pathways affect macrophage self-renewal.
Collapse
Affiliation(s)
- Serena Filiberti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Mariapia Russo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
40
|
Cui E, Zhang L, Pan X, Zhang Q, Zhang L, Wu F, Chen N, Lv L, Chen W, Chen H, Lin A, Wang F, Liang J, Pan R. RNA-Sequencing approach for exploring the therapeutic effect of umbilical cord mesenchymal stem/stromal cells on lipopolysaccharide-induced acute lung injury. Front Immunol 2022; 13:1021102. [PMID: 36341363 PMCID: PMC9632738 DOI: 10.3389/fimmu.2022.1021102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI) is significantly associated with morbidity and mortality in patients with critical diseases. In recent years, studies have identified that mesenchymal stem/stromal cells (MSCs) ameliorate ALI and pulmonary fibrosis. However, the mechanism underlying this outcome in ALI has not yet been investigated. In this study, RNA sequencing technology was used to analyze the gene expression profile of lung tissue in lipopolysaccharide (LPS)-induced ALI rats following treatment with human umbilical cord MSC (HUCMSC). Differential expression analyses, gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes enrichment, protein–protein interaction network identification, and hub gene analysis were also performed. HUCMSC treatment decreased inflammatory factor production and alveolar exudates, and attenuated lung damage in LPS-induced ALI rats. The RNA-Seq data indicated that HUCMSC treatment activated the IL-17, JAK-STAT, NF-κB, and TNF-α signaling pathways, increased oxygen transport, and decreased extracellular matrix organization. HUCMSC exert beneficial effects on ALI via these signaling pathways by reducing inflammation, inhibiting pulmonary fibrosis, and improving lung ventilation. Moreover, our study further revealed the hub genes (Tbx2, Nkx2-1, and Atf5) and signaling pathways involved in HUCMSC treatment, thus providing novel perspectives for future research into the molecular mechanisms underlying cell treatment of ALI. HUCMSC can regulate multiple genes and signaling pathways, which can prevent LPS-induced lung damage in an ALI rat model.
Collapse
Affiliation(s)
- Enhai Cui
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Na Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Lv
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Chen
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feng Wang
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinfeng Liang
- Department of Drug Evaluation, Zhejiang Center for Drug & Cosmetic Evaluation, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| |
Collapse
|
41
|
Zhang C, Chen S. Role of TREM2 in the Development of Neurodegenerative Diseases After Traumatic Brain Injury. Mol Neurobiol 2022; 60:342-354. [PMID: 36264434 DOI: 10.1007/s12035-022-03094-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) has been found as the primary cause of morbidity and disability worldwide, which has posed a significant social and economic burden. The first stage of TBI produces brain edema, axonal damage, and hypoxia, thus having an effect on the blood-brain barrier function, promoting inflammatory responses, and increasing oxidative stress. Patients with TBI are more likely to develop post-traumatic epilepsy, behavioral issues, as well as mental illnesses. The long-term effects arising from TBI have aroused rising attention over the past few years. Microglia in the brain can express the triggering receptor expressed on myeloid cells 2 (TREM2), which is a single transmembrane receptor pertaining to the immunoglobulin superfamily. The receptor has been correlated with a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and other relevant diseases. In this review, it is demonstrated that TREM2 is promising to serve as a neuroprotective factor for neurodegenerative disorders following TBI by modulating the function of microglial cells. Accordingly, it has potential avenues for TREM2-related therapies to improve long-term recovery after TBI.
Collapse
Affiliation(s)
- Chunhao Zhang
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
42
|
Hussain SS, Edwards YJK, Libby EF, Stanford D, Byzek SA, Sin DD, McDonald ML, Raju SV, Rowe SM. Comparative transcriptomics in human COPD reveals dysregulated genes uniquely expressed in ferrets. Respir Res 2022; 23:277. [PMID: 36217144 PMCID: PMC9552453 DOI: 10.1186/s12931-022-02198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with poor treatment options. However, most mouse models of COPD produce a primarily emphysematous disease not recapitulating clinically meaningful COPD features like chronic bronchitis. METHODS Wild-type ferrets (Mustela putorius furo) were divided randomly into two groups: whole body cigarette smoke exposure and air controls. Ferrets were exposed to smoke from 1R6F research cigarettes, twice daily for six months. RNA-sequencing was performed on RNA isolated from lung tissue. Comparative transcriptomics analyses of COPD in ferrets, mice, and humans were done to find the uniquely expressed genes. Further, Real-time PCR was performed to confirmed RNA-Seq data on multiple selected genes. RESULTS RNA-sequence analysis identified 420 differentially expressed genes (DEGs) that were associated with the development of COPD in ferrets. By comparative analysis, we identified 25 DEGs that are uniquely expressed in ferrets and humans, but not mice. Among DEGs, a number were related to mucociliary clearance (NEK-6, HAS1, and KL), while others have been correlated with abnormal lung function (IL-18), inflammation (TREM1, CTSB), or oxidative stress (SRX1, AHRR). Multiple cellular pathways were aberrantly altered in the COPD ferret model, including pathways associated with COPD pathogenesis in humans. Validation of these selected unique DEGs using real-time PCR demonstrated > absolute 2-fold changes in mRNA versus air controls, consistent with RNA-seq analysis. CONCLUSION Cigarette smoke-induced COPD in ferrets modulates gene expression consistent with human COPD and suggests that the ferret model may be uniquely well suited for the study of aspects of the disease.
Collapse
Affiliation(s)
- Shah S Hussain
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Yvonne J K Edwards
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Stephen A Byzek
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Merry-Lynn McDonald
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA.
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
43
|
Martin RA, Keeler SP, Wu K, Shearon WJ, Patel D, Hoang M, Hoffmann CM, Hughes ME, Holtzman MJ. An alternative mechanism for skeletal muscle dysfunction in long-term post-viral lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.07.511313. [PMID: 36238722 PMCID: PMC9558431 DOI: 10.1101/2022.10.07.511313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled COPD and relied on cigarette smoke exposure and LPS-stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in Covid-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease using a mouse model of PVLD caused by infection due to the natural pathogen Sendai virus. We identify a significant decrease in myofiber size when PVLD is maximal at 49 d after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insight into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.
Collapse
Affiliation(s)
- Ryan A. Martin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - William J. Shearon
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Devin Patel
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - My Hoang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Christy M. Hoffmann
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael E. Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
44
|
Li S, Bern MD, Miao B, Fan C, Xing X, Inoue T, Piersma SJ, Wang T, Colonna M, Kurosaki T, Yokoyama WM. The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function. eLife 2022; 11:e77294. [PMID: 36190189 PMCID: PMC9560152 DOI: 10.7554/elife.77294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2 deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.
Collapse
Affiliation(s)
- Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Benpeng Miao
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Changxu Fan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
45
|
Kim K, Park SE, Park JS, Choi JH. Characteristics of plaque lipid-associated macrophages and their possible roles in the pathogenesis of atherosclerosis. Curr Opin Lipidol 2022; 33:283-288. [PMID: 35942822 PMCID: PMC9594140 DOI: 10.1097/mol.0000000000000842] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Recent findings from single-cell transcriptomic studies prompted us to revisit the role of plaque foamy macrophages in the pathogenesis of atherosclerosis. In this review, we compared the gene expression profile of plaque foamy macrophages with those of other disease-associated macrophages and discussed their functions in the pathogenesis of atherosclerosis. RECENT FINDINGS To understand the phenotypes of macrophages in atherosclerotic aorta, many research groups performed single-cell RNA sequencing analysis and found that there are distinct phenotypic differences among intimal foamy, nonfoamy and adventitial macrophages. Especially, the plaque foamy macrophages express triggering receptor expressed on myeloid cells 2 (TREM2), a key common feature of disease-associated macrophages in Alzheimer's disease, obesity, cirrhosis and nonalcoholic steatohepatitis. These TREM2 + macrophages seem to be protective against chronic inflammation. SUMMARY As the gene expression profile of plaque foamy macrophages is highly comparable to that of lipid-associated macrophages from obesity, we named the plaque foamy macrophages as plaque lipid-associated macrophages (PLAMs). PLAMs have a high level of gene expression related to phago/endocytosis, lysosome, lipid metabolism and oxidative phosphorylation. Considering the protective function of lipid-associated macrophages against adipose tissue inflammation, PLAMs may suppress atherosclerotic inflammation by removing modified lipids and cell debris in the plaque.
Collapse
Affiliation(s)
- Kyeongdae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Wu K, Zhang Y, Austin SR, Declue HY, Byers DE, Crouch EC, Holtzman MJ. Lung remodeling regions in long-term Covid-19 feature basal epithelial cell reprogramming. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.17.22280043. [PMID: 36172126 PMCID: PMC9516857 DOI: 10.1101/2022.09.17.22280043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Respiratory viruses, including SARS-CoV-2, can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, we examined a series of consecutive fatal cases of Covid-19 that came to autopsy at 27-51 d after hospital admission. In each patient, we identify a stereotyped bronchiolar-alveolar pattern of lung remodeling with basal epithelial cell hyperplasia and mucinous differentiation. Remodeling regions also feature macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This entire pattern closely resembles findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. The present results thereby provide evidence of possible basal epithelial cell reprogramming in long-term Covid-19 as well and thereby a pathway for explaining and correcting lung dysfunction in this type of disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Huqing Yin Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
48
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
49
|
Wang Y, Cao C, Zhu Y, Fan H, Liu Q, Liu Y, Chen K, Wu Y, Liang S, Li M, Li L, Liu X, Zhang Y, Wu C, Lu G, Wu M. TREM2/β-catenin attenuates NLRP3 inflammasome-mediated macrophage pyroptosis to promote bacterial clearance of pyogenic bacteria. Cell Death Dis 2022; 13:771. [PMID: 36068223 PMCID: PMC9448748 DOI: 10.1038/s41419-022-05193-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Triggering receptors expressed on myeloid cells 2 (TREM2) is considered a protective factor to protect host from bacterial infection, while how it elicits this role is unclear. In the present study, we demonstrate that deficiency of triggering receptors expressed on myeloid cells 2 (TREM2) significantly enhanced macrophage pyroptosis induced by four common pyogenic bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Escherichia coli. TREM2 deficiency also decreased bacterial killing ratio of macrophage, while Caspase-1 or GSDMD inhibition promoted macrophage-mediated clearance to these bacteria. Further study demonstrated that the effect of TREM2 on macrophage pyroptosis and bacterial eradication mainly dependents on the activated status of NLRP3 inflammasome. Moreover, as the key downstream of TREM2, β-catenin phosphorylated at Ser675 by TREM2 signal and accumulated in nucleus and cytoplasm. β-catenin mediated the effect of TREM2 on NLRP3 inflammasome and macrophage pyroptosis by reducing NLRP3 expression, and inhibiting inflammasome complex assembly by interacting with ASC. Collectively, TREM2/β-catenin inhibits NLRP3 inflammasome to regulate macrophage pyroptosis, and enhances macrophage-mediated pyogenic bacterial clearance.
Collapse
Affiliation(s)
- Yi Wang
- grid.411866.c0000 0000 8848 7685Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Can Cao
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yanting Zhu
- grid.411866.c0000 0000 8848 7685Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Huifeng Fan
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yiting Liu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Kang Chen
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yongjian Wu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Siping Liang
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Meiyu Li
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Lexi Li
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Liu
- grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuanqing Zhang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chenglin Wu
- grid.12981.330000 0001 2360 039XOrgan Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gen Lu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XGuangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
50
|
Wolf EM, Fingleton B, Hasty AH. The therapeutic potential of TREM2 in cancer. Front Oncol 2022; 12:984193. [PMID: 36119485 PMCID: PMC9479103 DOI: 10.3389/fonc.2022.984193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer continues to be a substantial health concern and a leading cause of death in the United States and around the world. Therefore, it is important to continue to explore the potential of novel therapeutic targets and combinatorial therapies. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that associates with DNAX activation protein (DAP) 12 and DAP10 to propagate signals within the cell. TREM2 has primarily been recognized for its expression on cells in the monocyte-macrophage lineage, with the majority of work focusing on microglial function in Alzheimer’s Disease. However, expansion of TREM2 research into the field of cancer has revealed that epithelial tumor cells as well as intratumoral macrophages and myeloid regulatory cells also express TREM2. In this review, we discuss evidence that TREM2 contributes to tumor suppressing or oncogenic activity when expressed by epithelial tumor cells. In addition, we discuss the immunosuppressive role of TREM2-expressing intratumoral macrophages, and the therapeutic potential of targeting TREM2 in combination with immune checkpoint therapy. Overall, the literature reveals TREM2 could be considered a novel therapeutic target for certain types of cancer.
Collapse
Affiliation(s)
- Elysa M. Wolf
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Barbara Fingleton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Tennessee Healthcare System, Nashville, TN, United States
- *Correspondence: Alyssa H. Hasty,
| |
Collapse
|