1
|
Setoguchi R, Sengiku T, Kono H, Kawakami E, Kubo M, Yamamoto T, Hori S. Memory CD8 T cells are vulnerable to chronic IFN-γ signals but not to CD4 T cell deficiency in MHCII-deficient mice. Nat Commun 2024; 15:4418. [PMID: 38806459 PMCID: PMC11133459 DOI: 10.1038/s41467-024-48704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.
Collapse
Affiliation(s)
- Ruka Setoguchi
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Tomoya Sengiku
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroki Kono
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, 260-8670, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tadashi Yamamoto
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Formerly Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| |
Collapse
|
2
|
Kristensen NP, Dionisio E, Bentzen AK, Tamhane T, Kemming JS, Nos G, Voss LF, Hansen UK, Lauer GM, Hadrup SR. Simultaneous analysis of pMHC binding and reactivity unveils virus-specific CD8 T cell immunity to a concise epitope set. SCIENCE ADVANCES 2024; 10:eadm8951. [PMID: 38608022 PMCID: PMC11014448 DOI: 10.1126/sciadv.adm8951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses. The prevalence and magnitude of CD8 T cell responses were evaluated in 48 donors and reported along with 137 frequently recognized virus epitopes, many of which were underrepresented in the public domain. Eighty-four percent of epitope-specific CD8 T cell populations demonstrated reactivity to peptide stimulation, which was associated with effector and long-term memory phenotypes. Conversely, nonreactive T cell populations were associated primarily with naive phenotypes. Our analysis provides a reference map of epitopes for characterizing CD8 T cell responses toward common human virus infections.
Collapse
Affiliation(s)
- Nikolaj Pagh Kristensen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Edoardo Dionisio
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Amalie Kai Bentzen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Tripti Tamhane
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Janine Sophie Kemming
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Grigorii Nos
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Lasse Frank Voss
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Ulla Kring Hansen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Georg Michael Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sine Reker Hadrup
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Yang C, Liu Z, Yang Y, Cocka LJ, Li Y, Zeng W, Shen H. Chronic viral infection impairs immune memory to a different pathogen. PLoS Pathog 2024; 20:e1012113. [PMID: 38547316 PMCID: PMC11003680 DOI: 10.1371/journal.ppat.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Chronic viral infections cause T cell dysfunction in both animal models and human clinical settings, thereby affecting the ability of the host immune system to clear viral pathogens and develop proper virus-specific immune memory. However, the impact of chronic viral infections on the host's immune memory to other pathogens has not been well described. In this study, we immunized mice with recombinant Listeria monocytogenes expressing OVA (Lm-OVA) to generate immunity to Lm and allow analysis of OVA-specific memory T (Tm) cells. We then infected these mice with lymphocytic choriomeningitis virus (LCMV) strain Cl-13 which establishes a chronic infection. We found that chronically infected mice were unable to protect against Listeria re-challenge. OVA-specific Tm cells showed a progressive loss in total numbers and in their ability to produce effector cytokines in the context of chronic LCMV infection. Unlike virus-specific T cells, OVA-specific Tm cells from chronically infected mice did not up-regulate the expression of inhibitory receptors, a hallmark feature of exhaustion in virus-specific T cells. Finally, OVA-specific Tm cells failed to mount a robust recall response after bacteria re-challenge both in the chronically infected and adoptively transferred naïve hosts. These results show that previously established bacteria-specific Tm cells become functionally impaired in the setting of an unrelated bystander chronic viral infection, which may contribute to poor immunity against other pathogens in the host with chronic viral infection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Zhicui Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Luis J. Cocka
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Yongguo Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Zeng
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
4
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol 2023; 14:1155770. [PMID: 37313412 PMCID: PMC10258318 DOI: 10.3389/fimmu.2023.1155770] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Tachas
- Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, VIC, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Cheng J, Sun Y, He J, Wang Z, Li W, Wang R. The mechanism of colon tissue damage mediated by HIF-1α/NF-κB/STAT1 in high-altitude environment. Front Physiol 2022; 13:933659. [PMID: 36164339 PMCID: PMC9508275 DOI: 10.3389/fphys.2022.933659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
The high-altitude environment damages the intestinal mucosal barrier, leading to a high incidence of intestinal diseases and seriously affects the working ability of people at high altitude. However, how high altitude induces intestinal mucosal barrier injury has not been well defined. The purpose of this study was to investigate the mechanism of colonic tissue injury induced by the influence of the high-altitude environment on the colonic microenvironment. Forty-eight SPF C57BL/6J mice were randomly divided into four groups: the control group and three other that were high-altitude exposure groups (Yushu, Qinghai; elevation: 4,010 m; 12 h, 24 h, 48 h). First, HE staining was used to observe the effect of the high-altitude environment on colon histomorphology of mice. The protein expression levels of claudin-1, occludin, and ZO-1 were analyzed by molecular biological methods. We found that altitude caused inflammatory damage to colon tissue. Intestinal hypoxia was measured with the hypoxic probe pimonidazole (PMDZ). Interestingly, we observed a decrease in the concentration of oxygen in the microenvironment in the colonic lumen. We sought to explore the mechanism of colonic mucosal barrier damage at different times when entering high altitude. The expression levels of hypoxia-inducible factors: HIF-1α, STAT1, and NF-κB and of inflammatory factors: IFN-γ, TNF-α, and IL-6 were significantly increased. This work highlights that the high-altitude environment leads to a reduction in the concentration of oxygen in the microenvironment of the colonic lumen, which disrupts the colonic mucosal barrier and ultimately induces and exacerbates intestinal injury.
Collapse
Affiliation(s)
- Junfei Cheng
- Lanzhou University School of Pharmacy, Lanzhou, Gansu, China
- The Logistics Support Force of Chinese People’s Liberation Army Pharmacy Department, Lanzhou, Gansu, China
| | - Yuemei Sun
- The Logistics Support Force of Chinese People’s Liberation Army Pharmacy Department, Lanzhou, Gansu, China
| | - Jiaxin He
- Lanzhou University School of Pharmacy, Lanzhou, Gansu, China
- The Logistics Support Force of Chinese People’s Liberation Army Pharmacy Department, Lanzhou, Gansu, China
| | - Zihan Wang
- The Logistics Support Force of Chinese People’s Liberation Army Pharmacy Department, Lanzhou, Gansu, China
| | - Wenbin Li
- The Logistics Support Force of Chinese People’s Liberation Army Pharmacy Department, Lanzhou, Gansu, China
- *Correspondence: Wenbin Li, Rong Wang,
| | - Rong Wang
- Lanzhou University School of Pharmacy, Lanzhou, Gansu, China
- The Logistics Support Force of Chinese People’s Liberation Army Pharmacy Department, Lanzhou, Gansu, China
- *Correspondence: Wenbin Li, Rong Wang,
| |
Collapse
|
6
|
Swain AC, Borghans JA, de Boer RJ. Effect of cellular aging on memory T-cell homeostasis. Front Immunol 2022; 13:947242. [PMID: 36059495 PMCID: PMC9429809 DOI: 10.3389/fimmu.2022.947242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The fact that T-cell numbers remain relatively stable throughout life, and that T-cell proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers are regulated in a density-dependent manner. Competition for resources among memory T cells has been proposed to underlie this ‘homeostatic’ regulation. We first review how two classic models of resource competition affect the T-cell receptor (TCR) diversity of the memory T-cell pool. First, ‘global’ competition for cytokines leads to a skewed repertoire that tends to be dominated by the very first immune response. Second, additional ‘cognate’ competition for specific antigens results in a very diverse and stable memory T-cell pool, allowing every antigen to be remembered, which we therefore define as the ‘gold-standard’. Because there is limited evidence that memory T cells of the same specificity compete more strongly with each other than with memory T cells of different specificities, i.e., for ‘cognate’ competition, we investigate whether cellular aging could account for a similar level of TCR diversity. We define cellular aging as a declining cellular fitness due to reduced proliferation. We find that the gradual erosion of previous T-cell memories due to cellular aging allows for better establishment of novel memories and for a much higher level of TCR diversity compared to global competition. A small continual source (either from stem-cell-like memory T-cells or from naive T-cells due to repeated antigen exposure) improves the diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We further show that the presence of a source keeps the inflation of chronic memory responses in check by maintaining the immune memories to non-chronic antigens. We conclude that cellular aging along with a small source provides a novel and immunologically realistic mechanism to achieve and maintain the ‘gold-standard’ level of TCR diversity in the memory T-cell pool.
Collapse
Affiliation(s)
- Arpit C. Swain
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Arpit C. Swain,
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kurz E, Hirsch CA, Dalton T, Shadaloey SA, Khodadadi-Jamayran A, Miller G, Pareek S, Rajaei H, Mohindroo C, Baydogan S, Ngo-Huang A, Parker N, Katz MHG, Petzel M, Vucic E, McAllister F, Schadler K, Winograd R, Bar-Sagi D. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell 2022; 40:720-737.e5. [PMID: 35660135 PMCID: PMC9280705 DOI: 10.1016/j.ccell.2022.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
Aerobic exercise is associated with decreased cancer incidence and cancer-associated mortality. However, little is known about the effects of exercise on pancreatic ductal adenocarcinoma (PDA), a disease for which current therapeutic options are limited. Herein, we show that aerobic exercise reduces PDA tumor growth, by modulating systemic and intra-tumoral immunity. Mechanistically, exercise promotes immune mobilization and accumulation of tumor-infiltrating IL15Rα+ CD8 T cells, which are responsible for the tumor-protective effects. In clinical samples, an exercise-dependent increase of intra-tumoral CD8 T cells is also observed. Underscoring the translational potential of the interleukin (IL)-15/IL-15Rα axis, IL-15 super-agonist (NIZ985) treatment attenuates tumor growth, prolongs survival, and enhances sensitivity to chemotherapy. Finally, exercise or NIZ985 both sensitize pancreatic tumors to αPD-1, with improved anti-tumor and survival benefits. Collectively, our findings highlight the therapeutic potential of an exercise-oncology axis and identify IL-15 activation as a promising treatment strategy for this deadly disease.
Collapse
Affiliation(s)
- Emma Kurz
- Department of Cell Biology, NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Carolina Alcantara Hirsch
- Department of Cell Biology, NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Tanner Dalton
- Department of Pathology, Columbia University Irving Medical Center, 630 W 168th St., New York, NY 10032, USA
| | - Sorin Alberto Shadaloey
- Department of Cell Biology, NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratory, NYU Grossman School of Medicine, 227 East 30(th) St., New York, NY 10016, USA
| | - George Miller
- Department of Surgery, Trinity Health New England, 56 Franklin St., Waterbury, CT 06706, USA
| | - Sumedha Pareek
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Hajar Rajaei
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - An Ngo-Huang
- Department of Rehabilitation Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Nathan Parker
- Department of Health Outcomes and Behavior, Moffit Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Maria Petzel
- Department of Clinical Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Emily Vucic
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Gastrointestinal Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston TX, 77030, USA
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Rafael Winograd
- Permultter Cancer Center, NYU Langone Health, 160 East 34(th) St., New York, NY 10016, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA.
| |
Collapse
|
9
|
Kuhn R, Sandu I, Agrafiotis A, Hong KL, Shlesinger D, Neimeier D, Merkler D, Oxenius A, Reddy ST, Yermanos A. Clonally Expanded Virus-Specific CD8 T Cells Acquire Diverse Transcriptional Phenotypes During Acute, Chronic, and Latent Infections. Front Immunol 2022; 13:782441. [PMID: 35185882 PMCID: PMC8847396 DOI: 10.3389/fimmu.2022.782441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cells play a crucial role in the control and resolution of viral infections and can adopt a wide range of phenotypes and effector functions depending on the inflammatory context and the duration and extent of antigen exposure. Similarly, viral infections can exert diverse selective pressures on populations of clonally related T cells. Technical limitations have nevertheless made it challenging to investigate the relationship between clonal selection and transcriptional phenotypes of virus-specific T cells. We therefore performed single-cell T cell receptor (TCR) repertoire and transcriptome sequencing of virus-specific CD8 T cells in murine models of acute, chronic and latent infection. We observed clear infection-specific populations corresponding to memory, effector, exhausted, and inflationary phenotypes. We further uncovered a mouse-specific and polyclonal T cell response, despite all T cells sharing specificity to a single viral epitope, which was accompanied by stereotypic TCR germline gene usage in all three infection types. Persistent antigen exposure during chronic and latent viral infections resulted in a higher proportion of clonally expanded T cells relative to acute infection. We furthermore observed a relationship between transcriptional heterogeneity and clonal expansion for all three infections, with highly expanded clones having distinct transcriptional phenotypes relative to less expanded clones. Together our work relates clonal selection to gene expression in the context of viral infection and further provides a dataset and accompanying software for the immunological community.
Collapse
Affiliation(s)
- Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Neimeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | | | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
The IL6-174G/C Polymorphism Associated with High Levels of IL-6 Contributes to HCV Infection, but Is Not Related to HBV Infection, in the Amazon Region of Brazil. Viruses 2022; 14:v14030507. [PMID: 35336914 PMCID: PMC8950165 DOI: 10.3390/v14030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The dysregulation of cytokine production can lead to an inefficient immune response, promoting viral persistence that induces the progression of chronic viral hepatitis. The study investigated the association of the IL6-174G/C polymorphism with changes in cytokine levels and its influence on the persistence and progression of chronic hepatitis caused by HBV and HCV in 72 patients with chronic hepatitis B (HBV), 100 patients with hepatitis C (HCV), and a control group of 300 individuals. The genotyping of the IL6-174G/C polymorphism was performed by real-time PCR, and cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA). HCV patients with the wild-type genotype (GG) had a higher viral load (p = 0.0230). The plasma levels of IL-6 were higher among patients infected with HBV and HCV than among the control group (p < 0.0001). Patients with HCV were associated with increased inflammatory activity (A2−A3; p < 0.0001). In hepatitis C, carriers of the GG genotype had higher levels of IL-6 (p = 0.0286), which were associated with A2−A3 inflammatory activity (p = 0.0097). Patients with A2−A3 inflammatory activity and GG genotype had higher levels of IL-6 than those with the GC/CC genotype (p = 0.0127). In conclusion, the wild-type genotype for the IL6-174G/C polymorphism was associated with high levels of IL-6 and HCV viral load and inflammatory activity, suggesting that this genotype may be a contributing factor to virus-induced chronic infection.
Collapse
|
11
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
12
|
Maurice NJ, Taber AK, Prlic M. The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:455-462. [PMID: 33468558 DOI: 10.4049/jimmunol.2000937] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Memory T cells (Tmem) rapidly mount Ag-specific responses during pathogen reencounter. However, Tmem also respond to inflammatory cues in the absence of an activating TCR signal, a phenomenon termed bystander activation. Although bystander activation was first described over 20 years ago, the physiological relevance and the consequences of T cell bystander activation have only become more evident in recent years. In this review, we discuss the scenarios that trigger CD8 Tmem bystander activation including acute and chronic infections that are either systemic or localized, as well as evidence for bystander CD8 Tmem within tumors and following vaccination. We summarize the possible consequences of bystander activation for the T cell itself, the subsequent immune response, and the host. We highlight when T cell bystander activation appears to benefit or harm the host and briefly discuss our current knowledge gaps regarding regulatory signals that can control bystander activation.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Immunology, University of Washington, Seattle, WA 98109; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
13
|
Abstract
Immunotherapy has revolutionized cancer treatment, but efficacy remains limited in most clinical settings. Cancer is a systemic disease that induces many functional and compositional changes to the immune system as a whole. Immunity is regulated by interactions of diverse cell lineages across tissues. Therefore, an improved understanding of tumour immunology must assess the systemic immune landscape beyond the tumour microenvironment (TME). Importantly, the peripheral immune system is required to drive effective natural and therapeutically induced antitumour immune responses. In fact, emerging evidence suggests that immunotherapy drives new immune responses rather than the reinvigoration of pre-existing immune responses. However, new immune responses in individuals burdened with tumours are compromised even beyond the TME. Herein, we aim to comprehensively outline the current knowledge of systemic immunity in cancer.
Collapse
Affiliation(s)
- Kamir J Hiam-Galvez
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Breanna M Allen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Matthew H Spitzer
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Barnstorf I, Welten SPM, Borsa M, Baumann NS, Pallmer K, Joller N, Spörri R, Oxenius A. Chronic viral infections impinge on naive bystander CD8 T cells. Immun Inflamm Dis 2020; 8:249-257. [PMID: 32220007 PMCID: PMC7416038 DOI: 10.1002/iid3.300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Epidemiological data suggest that persistent viral infections impair immune homeostasis and immune responsiveness. Previous studies showed that chronic virus infections negatively impact bystander T-cell differentiation and memory formation but there is limited knowledge of how chronic virus infections impinge on heterologous naive T-cell populations. METHODS We used adoptive transfer of naive CD8 T cells with defined nonviral specificity into hosts, which were subsequently chronically infected with lymphocytic choriomeningitis virus, followed by analyses of numeric, phenotypic, and functional changes provoked in the chronically infected host. RESULTS We demonstrate that chronic virus infections have a profound effect on the number and phenotype of naive bystander CD8 T cells. Moreover, primary expansion upon antigen encounter was severely compromised in chronically infected hosts. However, when naive bystander CD8 T cells were transferred from the chronically infected mice into naive hosts, they regained their expansion potential. Conversely, when chronically infected hosts were supplied with additional antigen-presenting cells (APCs), primary expansion of the naive CD8 T cells was restored to levels of the uninfected hosts. CONCLUSIONS Our results document numeric, phenotypic, and functional adaptation of bystander naive CD8 T cells during nonrelated chronic viral infection. Their functional impairment was only evident in the chronically infected host, indicating that T-cell extrinsic factors, in particular the quality of priming APCs, are responsible for the impaired function of naive bystander T cells in the chronically infected hosts.
Collapse
Affiliation(s)
- Isabel Barnstorf
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | | | - Mariana Borsa
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicolas S. Baumann
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicole Joller
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Roman Spörri
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
15
|
Allen BM, Hiam KJ, Burnett CE, Venida A, DeBarge R, Tenvooren I, Marquez DM, Cho NW, Carmi Y, Spitzer MH. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat Med 2020; 26:1125-1134. [PMID: 32451499 PMCID: PMC7384250 DOI: 10.1038/s41591-020-0892-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.
Collapse
Affiliation(s)
- Breanna M Allen
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Kamir J Hiam
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Cassandra E Burnett
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Venida
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Rachel DeBarge
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Iliana Tenvooren
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Nam Woo Cho
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew H Spitzer
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Wong KA, Harker JA, Dolgoter A, Marooki N, Zuniga EI. T Cell-Intrinsic IL-6R Signaling Is Required for Optimal ICOS Expression and Viral Control during Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1509-1520. [PMID: 31413107 DOI: 10.4049/jimmunol.1801567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
The pleiotropic cytokine IL-6 plays an integral role not only in innate inflammatory responses but also in the activation and differentiation of lymphocyte subsets. In this study, by using a conditional knockout (cKO) model with selective IL-6 receptor deletion in T cells (IL-6R-cKO), we demonstrated that T cell-specific IL-6R signaling is essential for viral control during persistent lymphocytic choriomeningitis virus clone 13 infection. Strikingly, we observed that in contrast to previous studies with ubiquitous IL-6 deletion or blockade, specific IL-6R deletion in T cells did not affect T follicular helper (Tfh) cell accumulation unless IL-6R-deficient T cells were competing with wild-type cells in mixed bone marrow chimeras. In contrast, Tfh cells from IL-6R-cKO-infected mice exhibited reduced ICOS expression in both chimeric and nonchimeric settings, and this sole identifiable Tfh defect was associated with reduced germinal centers, compromised Ig switch and low avidity of lymphocytic choriomeningitis virus-specific Abs despite intact IL-6R expression in B cells. We posit that IL-6R cis-signaling is absolutely required for appropriate ICOS expression in Tfh cells and provides a competitive advantage for Tfh accumulation, enabling generation of optimal B cell and Ab responses, and ultimately viral control during in vivo chronic infection.
Collapse
Affiliation(s)
- Kurt A Wong
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - James A Harker
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Aleksandr Dolgoter
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Nuha Marooki
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elina I Zuniga
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Lang PA, Lang KS. Stand by me(mory): Chronic infection diminishes memory pool via IL-6/STAT1. J Exp Med 2019; 216:474-475. [PMID: 30782615 PMCID: PMC6400542 DOI: 10.1084/jem.20190066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Despite great efforts to eradicate chronic viral infections, they still remain a global health problem. In this issue, Barnstorf et al. (2019. J. Exp. Med. https://doi.org/10.1084/jem.20181589) show that virus-unspecific bystander memory T cells are highly affected during chronic viral infection via IL-6/STAT1. Bystander memory T cells are strongly decimated in numbers and change in phenotype and function during chronic viral infection. These data provide new explanations for immune-mediated problems during chronic virus infections.
Collapse
Affiliation(s)
- Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|