1
|
Xu X, Huang Z, Huang Z, Lv X, Jiang D, Huang Z, Han B, Lin G, Liu G, Li S, Fan J, Lv X. Butyrate attenuates intestinal inflammation in Crohn's disease by suppressing pyroptosis of intestinal epithelial cells via the cGSA-STING-NLRP3 axis. Int Immunopharmacol 2024; 143:113305. [PMID: 39426229 DOI: 10.1016/j.intimp.2024.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Butyrate can strengthen the intestinal epithelial barrier. However, the mechanisms by which butyrate affects intestinal epithelial cells (IECs) pyroptosis in Crohn's disease (CD) remain unclear. In this study, we collected colonic biopsy samples from CD patients and healthy controls to assess pyroptosis levels. Our findings indicated elevated expression of pyroptosis markers in CD patients, alongside distinct morphological evidence of pyroptosis in IECs. We further investigated the effects of tributyrin on pyroptosis and the cGAS-STING pathway in a trinitrobenzene sulfonic acid-induced colitis rat model. Tributyrin significantly mitigated intestinal inflammation, reduced pathological progression, and inhibited pyroptosis and cGAS-STING pathway activation in the colitis rat model. Similarly, in an in vitro model of IECs pyroptosis, sodium butyrate inhibited pyroptosis and cGAS-STING pathway activation in HT-29 cells. Co-treatment with a cGAS-STING pathway activator and butyrate demonstrated that the activator reversed the inhibitory effects of butyrate on pyroptosis and cGAS-STING pathway activation in both the colitis rat model and HT-29 cells. Mechanistically, the cGAS-STING pathway was found to interact with NLRP3. Taken together, butyrate may mitigate intestinal inflammation in CD by suppressing cGAS-STING-NLRP3 axis-mediated IECs pyroptosis. These findings offer new insights into potential therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| |
Collapse
|
4
|
Lim ESY, Ong Y, Chou Y, Then CK. Interconnected influences of tumour and host microbiota on treatment response and side effects in nasopharyngeal cancer. Crit Rev Oncol Hematol 2024; 202:104468. [PMID: 39103130 DOI: 10.1016/j.critrevonc.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study elucidates the intricate relationship between nasopharyngeal carcinoma (NPC), a significant malignancy predominant in Asia with notable global incidence and mortality rates, and the host microbiota, including those of tumour, nasal, nasopharyngeal, oral, oropharyngeal, and gut communities. It underscores how the composition and diversity of microbiota are altered in NPC, delving into their implications for disease pathogenesis, treatment response, and the side effects of therapies. A consistent reduction in alpha diversity across oral, nasal, and gut microbiomes in NPC patients compared to healthy individuals signals a distinct microbial signature indicative of the diseased state. The study also shows unique microbial changes tied to different NPC stages, indicating a dynamic interplay between disease progression and microbiota composition. Patients with specific microbial profiles exhibit varied responses to chemotherapy and immunotherapy, underscoring the potential for treatment personalisation based on microbiota analysis. Furthermore, the side effects of NPC treatments, such as oral mucositis, are intensified by shifts in microbial communities, suggesting a direct link between microbiota composition and treatment tolerance. This nexus offers opportunities for interventions aimed at modulating the microbiota to alleviate side effects, improve quality of life, and potentially enhance treatment efficacy. Highlighting the dual potential of microbiota as both a therapeutic target and a biomarker for NPC, this review emphasises its significance in influencing treatment outcomes and side effects, heralding a new era in NPC management through personalised treatment strategies and innovative approaches.
Collapse
Affiliation(s)
- Eugene Sheng Yao Lim
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yenyi Ong
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yang Chou
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Keane L, Cryan JF, Gleeson JP. Exploiting the gut microbiome for brain tumour treatment. Trends Mol Med 2024:S1471-4914(24)00222-3. [PMID: 39256110 DOI: 10.1016/j.molmed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Increasing evidence suggests that the gut microbiome plays a key role in a host of pathological conditions, including cancer. Indeed, the bidirectional communication that occurs between the gut and the brain, known as the 'gut-brain axis,' has recently been implicated in brain tumour pathology. Here, we focus on current research that supports a gut microbiome-brain tumour link with emphasis on high-grade gliomas, the most aggressive of all brain tumours, and the impact on the glioma tumour microenvironment. We discuss the potential use of gut-brain axis signals to improve responses to current and future therapeutic approaches. We highlight that the success of novel treatment strategies may rely on patient-specific microbiome profiles, and these should be considered for personalised treatment approaches.
Collapse
Affiliation(s)
- Lily Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Jack P Gleeson
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland; CUH/UCC Cancer Centre, Cork University Hospital, Cork, Ireland.
| |
Collapse
|
7
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
8
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
9
|
Wang LY, He LH, Xu LJ, Li SB. Short-chain fatty acids: bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol 2024; 39:1728-1736. [PMID: 38780349 DOI: 10.1111/jgh.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
In recent years, gut microbiota has become a hot topic in the fields of medicine and life sciences. Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota produced by microbial fermentation of dietary fiber, play a vital role in healthy and ill hosts. SCFAs regulate the process of metabolism, immune, and inflammation and have therapeutic effects on gastrointestinal and neurological disorders, as well as antitumor properties. This review summarized the production, distribution, and molecular mechanism of SCFAs, as well as their mechanisms of action in healthy and ill hosts. In addition, we also emphasized the negative effects of SCFAs, aiming to provide the public with a more comprehensive understanding of SCFAs.
Collapse
Affiliation(s)
- Ling-Yun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, Zhoushan, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Hong He
- College of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Jun Xu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Bo Li
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| |
Collapse
|
10
|
Wu B, Quan C, He Y, Matsika J, Huang J, Liu B, Chen J. Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors. Expert Opin Biol Ther 2024; 24:747-759. [PMID: 38910461 DOI: 10.1080/14712598.2024.2371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Growing attention has been drawn to urologic tumors due to their rising incidence and suboptimal clinical treatment outcomes. Cancer therapy resistance poses a significant challenge in clinical oncology, limiting the efficacy of conventional treatments and contributing to disease progression. Recent research has unveiled a complex interplay between the host microbiota and cancer cells, highlighting the role of the microbiota in modulating therapeutic responses. AREAS COVERED We used the PubMed and Web of Science search engines to identify key publications in the fields of tumor progression and urologic tumor treatment, specifically focusing on the role of the microbiota. In this review, we summarize the current literature on how microbiota influence the tumor microenvironment and anti-tumor immunity, as well as their impact on treatments for urinary system malignancies, highlighting promising future applications. EXPERT OPINION We explore how the composition and function of the gut microbiota influence the tumor microenvironment and immune response, ultimately impacting treatment outcomes. Additionally, we discuss emerging strategies targeting the microbiota to enhance therapeutic efficacy and overcome resistance. The application of antibiotics, fecal microbiota transplantation, and oncolytic bacteria has improved tumor treatment outcomes, which provides a novel insight into developing therapeutic strategies for urologic cancer.
Collapse
Affiliation(s)
- Bingquan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juliet Matsika
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Amit U, Uslu U, Verginadis II, Kim MM, Motlagh SAO, Diffenderfer ES, Assenmacher CA, Bicher S, Atoche SJ, Ben-Josef E, Young RM, June CH, Koumenis C. Proton radiation boosts the efficacy of mesothelin-targeting chimeric antigen receptor T cell therapy in pancreatic cancer. Proc Natl Acad Sci U S A 2024; 121:e2403002121. [PMID: 39047033 PMCID: PMC11294999 DOI: 10.1073/pnas.2403002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents a challenge in oncology, with limited treatment options for advanced-stage patients. Chimeric antigen receptor T cell (CAR T) therapy targeting mesothelin (MSLN) shows promise, but challenges such as the hostile immunosuppressive tumor microenvironment (TME) hinder its efficacy. This study explores the synergistic potential of combining proton radiation therapy (RT) with MSLN-targeting CAR T therapy in a syngeneic PDAC model. Proton RT significantly increased MSLN expression in tumor cells and caused a significant increase in CAR T cell infiltration into tumors. The combination therapy reshaped the immunosuppressive TME, promoting antitumorigenic M1 polarized macrophages and reducing myeloid-derived suppressor cells (MDSC). In a flank PDAC model, the combination therapy demonstrated superior attenuation of tumor growth and improved survival compared to individual treatments alone. In an orthotopic PDAC model treated with image-guided proton RT, tumor growth was significantly reduced in the combination group compared to the RT treatment alone. Further, the combination therapy induced an abscopal effect in a dual-flank tumor model, with increased serum interferon-γ levels and enhanced proliferation of extratumoral CAR T cells. In conclusion, combining proton RT with MSLN-targeting CAR T therapy proves effective in modulating the TME, enhancing CAR T cell trafficking, and exerting systemic antitumor effects. Thus, this combinatorial approach could present a promising strategy for improving outcomes in unresectable PDAC.
Collapse
Affiliation(s)
- Uri Amit
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiation Oncology, Tel Aviv Medical Center, Tel Aviv64239, Israel
| | - Ugur Uslu
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Ioannis I. Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, Comparative Pathology Core, University of Pennsylvania, Philadelphia, PA19104
| | - Sandra Bicher
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Sebastian J. Atoche
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Edgar Ben-Josef
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Regina M. Young
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Carl H. June
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
12
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Song P, Peng Z, Guo X. Gut microbial metabolites in cancer therapy. Trends Endocrinol Metab 2024:S1043-2760(24)00177-2. [PMID: 39004537 DOI: 10.1016/j.tem.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
Collapse
Affiliation(s)
- Panwei Song
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| |
Collapse
|
14
|
Lu G, Gao D, Jiang W, Yu X, Tong J, Liu X, Qiao T, Wang R, Zhang M, Wang S, Yang J, Li D, Lv Z. Disrupted gut microecology after high-dose 131I therapy and radioprotective effects of arachidonic acid supplementation. Eur J Nucl Med Mol Imaging 2024; 51:2395-2408. [PMID: 38561516 PMCID: PMC11178657 DOI: 10.1007/s00259-024-06688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Despite the potential radiotoxicity in differentiated thyroid cancer (DTC) patients with high-dose 131I therapy, the alterations and regulatory mechanisms dependent on intestinal microecology remain poorly understood. We aimed to identify the characteristics of the gut microbiota and metabolites in DTC patients suffering from high-dose 131I therapy and explore the radioprotective mechanisms underlying arachidonic acid (ARA) treatment. METHODS A total of 102 patients with DTC were recruited, with fecal samples collected before and after 131I therapy for microbiome and untargeted and targeted metabolomic analyses. Mice were exposed to total body irradiation with ARA replenishment and antibiotic pretreatment and were subjected to metagenomic, metabolomic, and proteomic analyses. RESULTS 131I therapy significantly changed the structure of gut microbiota and metabolite composition in patients with DTC. Lachnospiraceae were the most dominant bacteria after 131I treatment, and metabolites with decreased levels and pathways related to ARA and linoleic acid were observed. In an irradiation mouse model, ARA supplementation not only improved quality of life and recovered hematopoietic and gastrointestinal systems but also ameliorated oxidative stress and inflammation and preserved enteric microecology composition. Additionally, antibiotic intervention eliminated the radioprotective effects of ARA. Proteomic analysis and ursolic acid pretreatment showed that ARA therapy greatly influenced intestinal lipid metabolism in mice subjected to irradiation by upregulating the expression of hydroxy-3-methylglutaryl-coenzyme A synthase 1. CONCLUSION These findings highlight that ARA, as a key metabolite, substantially contributes to radioprotection. Our study provides novel insights into the pivotal role that the microbiota-metabolite axis plays in radionuclide protection and offers effective biological targets for treating radiation-induced adverse effects.
Collapse
Affiliation(s)
- Ganghua Lu
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Dingwei Gao
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wen Jiang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiaqing Yu
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Junyu Tong
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiaoyan Liu
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingting Qiao
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ru Wang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Mengyu Zhang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shaoping Wang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jianshe Yang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Dan Li
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, China.
| | - Zhongwei Lv
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
15
|
Then CK, Paillas S, Moomin A, Misheva MD, Moir RA, Hay SM, Bremner D, Roberts Nee Nellany KS, Smith EE, Heidari Z, Sescu D, Wang X, Suárez-Bonnet A, Hay N, Murdoch SL, Saito R, Collie-Duguid ESR, Richardson S, Priestnall SL, Wilson JM, Gurumurthy M, Royle JS, Samuel LM, Ramsay G, Vallis KA, Foster KR, McCullagh JSO, Kiltie AE. Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity. MICROBIOME 2024; 12:89. [PMID: 38745230 PMCID: PMC11092108 DOI: 10.1186/s40168-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.
Collapse
Affiliation(s)
- Chee Kin Then
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Radiation Oncology, Shunag Ho Hospital, Taipei Medical University, New Taipai City, Taiwan
| | - Salome Paillas
- Department of Oncology, University of Oxford, Oxford, UK
| | - Aliu Moomin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - Mariya D Misheva
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rachel A Moir
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Susan M Hay
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - David Bremner
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Ellen E Smith
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zeynab Heidari
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Daniel Sescu
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Nadine Hay
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Sarah L Murdoch
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ryoichi Saito
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, USA
- The Department of Urology, Kyoto University, Kyoto, Japan
| | - Elaina S R Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Joan M Wilson
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Justine S Royle
- Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Leslie M Samuel
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George Ramsay
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK.
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK.
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
16
|
Felchle H, Gissibl J, Lansink Rotgerink L, Nefzger SM, Walther CN, Timnik VR, Combs SE, Fischer JC. Influence of intestinal microbial metabolites on the abscopal effect after radiation therapy combined with immune checkpoint inhibitors. Clin Transl Radiat Oncol 2024; 46:100758. [PMID: 38500667 PMCID: PMC10945164 DOI: 10.1016/j.ctro.2024.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Background Most clinical studies failed to elicit a strong antitumor immune response and subsequent systemic tumor regression after radiation therapy (RT), even in combination with the immune checkpoint inhibitors (ICI) anti-CTLA4 or anti-PD1. Mechanistically, type I interferon (IFN-I) activation is essential for the development of such abscopal effects (AE); however, mechanisms driving or limiting IFN-I activation are ill defined. Groundbreaking discoveries have shown that antibiotics (ABx) can affect oncological outcomes and that microbiota-derived metabolites can modulate systemic antitumor immunity. Recent studies have demonstrated that the bacterial metabolites desaminotyrosine (DAT) and indole-3-carboxaldehyde (ICA) can enhance IFN-I activation in models of inflammatory diseases. Materials and Methods The subcutaneous bilateral MC38 tumor model is a widely used experimental tool to study the AE in mice. We applied it to explore the influence of broad-spectrum ABx, DAT and ICA on the AE after radioimmunotherapy (RIT). We performed 1x8 Gy of the primary tumor ± anti-CTLA4 or anti-PD1, and ± daily oral application of ABx or metabolites. Result Combinatory ABx had neither a significant effect on tumor growth of the irradiated tumor nor on tumor progression of the abscopal tumor after RIT with anti-CTLA4. Furthermore, DAT and ICA did not significantly impact on the AE after RIT with anti-CTLA4 or anti-PD1. Surprisingly, ICA even appears to reduce outcomes after RIT with anti-CTLA4. Conclusion We did not find a significant impact of combinatory ABx on the AE. Experimental application of the IFN-I-inducing metabolites DAT or ICA did not boost the AE after combined RIT. Additional studies are important to further investigate whether the intestinal microbiota or specific microbiota-derived metabolites modulate the AE.
Collapse
Affiliation(s)
- Hannah Felchle
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Gissibl
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Laura Lansink Rotgerink
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sophie M. Nefzger
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Caroline N. Walther
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vincent R. Timnik
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Zentrum München, Institute of Radiation Medicine, 85764 Neuherberg, Germany
| | - Julius C. Fischer
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
18
|
Felchle H, Brunner V, Groll T, Walther CN, Nefzger SM, Zaurito AE, Silva MG, Gissibl J, Topping GJ, Lansink Rotgerink L, Saur D, Steiger K, Combs SE, Tschurtschenthaler M, Fischer JC. Novel Tumor Organoid-Based Mouse Model to Study Image Guided Radiation Therapy of Rectal Cancer After Noninvasive and Precise Endoscopic Implantation. Int J Radiat Oncol Biol Phys 2024; 118:1094-1104. [PMID: 37875245 DOI: 10.1016/j.ijrobp.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE Preoperative (neoadjuvant) radiation therapy (RT) is an essential part of multimodal rectal cancer therapy. Recently, total neoadjuvant therapy (TNT), which combines simultaneous radiochemotherapy with additional courses of chemotherapy, has emerged as an effective approach. TNT achieves a pathologic complete remission in approximately 30% of resected patients, opening avenues for treatment strategies that avoid radical organ resection. Furthermore, recent studies have demonstrated that anti-programmed cell death protein 1 immunotherapy can induce clinical complete responses in patients with specific genetic alterations. There is significant potential to enhance outcomes through intensifying, personalizing, and de-escalating treatment approaches. However, the heterogeneous response rates to RT or TNT and strategies to sensitize patients without specific genetic changes to immunotherapy remain poorly understood. METHODS AND MATERIALS We developed a novel orthotopic mouse model of rectal cancer based on precisely defined endoscopic injections of tumor organoids that reflect tumor heterogeneity. Subsequently, we employed endoscopic- and computed tomography-guided RT and validated rectal tumor growth and response rates to therapy using small-animal magnetic resonance imaging and endoscopic follow-up. RESULTS Rectal tumor formation was successfully induced in all mice after 2 organoid injections. Clinically relevant RT regimens with 5 × 5 Gy significantly delayed clinical signs of tumor progression and significantly improved survival. Consistent with human disease, rectal tumor progression correlated with the development of liver and lung metastases. Notably, long-term survivors after RT showed no evidence of tumor recurrence, as demonstrated by in vivo radiologic tumor staging and histopathologic examination. CONCLUSIONS Our novel mouse model combines orthotopic tumor growth via noninvasive and precise rectal organoid injection and small-animal RT. This model holds significant promise for investigating the effect of tumor cell-intrinsic aspects, genetic alterations of the host, and exogenous factors (eg, nutrition or microbiota) on RT outcomes. Furthermore, it allows for the exploration of combination therapies involving chemotherapy, immunotherapy, or novel targeted therapies.
Collapse
Affiliation(s)
- Hannah Felchle
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Valentina Brunner
- Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Tanja Groll
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caroline N Walther
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie M Nefzger
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Antonio E Zaurito
- Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Miguel G Silva
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Gissibl
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Geoffrey J Topping
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Lansink Rotgerink
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - Markus Tschurtschenthaler
- Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julius C Fischer
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
19
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
20
|
Chollet L, Heumel S, Deruyter L, Bouilloux F, Delval L, Robert V, Gevaert MH, Pichavant M, Sencio V, Robil C, Wolowczuk I, Sokol H, Auger S, Douablin A, Langella P, Chatel JM, Grangette C, Trottein F. Faecalibacterium duncaniae as a novel next generation probiotic against influenza. Front Immunol 2024; 15:1347676. [PMID: 38590519 PMCID: PMC11000806 DOI: 10.3389/fimmu.2024.1347676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.
Collapse
Affiliation(s)
- Loïc Chollet
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Séverine Heumel
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | | | - Lou Delval
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Véronique Robert
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Marie-Hélène Gevaert
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Univ. Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille, France
| | - Muriel Pichavant
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Valentin Sencio
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Cyril Robil
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine, Centre de Recherche scientifique Saint-Antoine (CRSA), Assistance Public – Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Gastroenterology Department, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) Fédérations Hospitalo-Universitaires (FHU), Paris, France
| | - Sandrine Auger
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | | | - Philippe Langella
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Corinne Grangette
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - François Trottein
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| |
Collapse
|
21
|
Zhang Y, Yang H, Hou S, Xia Y, Wang YQ. Influence of the brain‑gut axis on neuroinflammation in cerebral ischemia‑reperfusion injury (Review). Int J Mol Med 2024; 53:30. [PMID: 38299236 PMCID: PMC10852013 DOI: 10.3892/ijmm.2024.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Stroke, a debilitating cerebrovascular ailment, poses significant threats to human life and health. The intricate interplay between the gut‑brain‑microbiota axis (GBMA) and cerebral ischemia‑reperfusion has increasingly become a focal point of scientific exploration, emerging as a pivotal research avenue in stroke pathophysiology. In the present review, the authors delved into the nexus between the GBMA and neuroinflammation observed post‑stroke. The analysis underscored the pivotal roles of histone deacetylase 3 and neutrophil extracellular traps subsequent to stroke incidents. The influence of gut microbial compositions and their metabolites, notably short‑chain fatty acids and trimethylamine N‑oxide, on neuroinflammatory processes, was further elucidated. The involvement of immune cells, especially regulatory T‑cells, and the intricate signaling cascades including cyclic GMP‑AMP synthase/stimulator of interferon genes/Toll‑like receptor, further emphasized the complex regulatory mechanisms of GBMA in cerebral ischemia/reperfusion injury (CI/RI). Collectively, the present review offered a comprehensive perspective on the metabolic, immune and inflammatory modulations orchestrated by GBMA, augmenting the understanding of its role in neuroinflammation following CI/RI.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hang Yang
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Shuai Hou
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Yulei Xia
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Yan-Qiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
22
|
Yin L, Liu X, Yao Y, Yuan M, Luo Y, Zhang G, Pu J, Liu P. Gut microbiota-derived butyrate promotes coronavirus TGEV infection through impairing RIG-I-triggered local type I interferon responses via class I HDAC inhibition. J Virol 2024; 98:e0137723. [PMID: 38197629 PMCID: PMC10878070 DOI: 10.1128/jvi.01377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.
Collapse
Affiliation(s)
- Lingdan Yin
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Yao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengqi Yuan
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Luo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pinghuang Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
24
|
Meng C, Wang X, Fan L, Fan Y, Yan Z, Wang Y, Li Y, Zhang J, Lv S. A new perspective in the prevention and treatment of antitumor therapy-related cardiotoxicity: Intestinal microecology. Biomed Pharmacother 2024; 170:115588. [PMID: 38039758 DOI: 10.1016/j.biopha.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 12/03/2023] Open
Abstract
The continuous development of antitumor therapy has significantly reduced the mortality of patients with malignancies. However, the antitumor-related cardiotoxicity has become the leading cause of long-term mortality in patients with malignancies. Besides, the pathogenesis of antitumor-related cardiotoxicity is still unclear, and practical means of prevention and treatment are lacking in clinical practice. Therefore, the major challenge is how to combat the cardiotoxicity of antitumor therapy effectively. More and more studies have shown that antitumor therapy kills tumor cells while causing damage to sensitive tissues such as the intestinal mucosa, leading to the increased permeability of the intestine and the dysbiosis of intestinal microecology. In addition, the dysbiosis of intestinal microecology contributes to the development and progression of cardiovascular diseases through multiple pathways. Thus, the dysbiosis of intestinal microecology may be a potential mechanism and target for antitumor-related cardiotoxicity. We summarized the characteristics of intestinal microecology disorders induced by antitumor therapy and the association between intestinal microecological dysbiosis and CVD. And on this basis, we hypothesized the potential mechanisms of intestinal microecology mediating the occurrence of antitumor-related cardiotoxicity. Then we reviewed the previous studies targeting intestinal microecology against antitumor-associated cardiotoxicity, aiming to provide a reference for future studies on the occurrence and prevention of antitumor-related cardiotoxicity by intestinal microecology.
Collapse
Affiliation(s)
- Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yajie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yanyang Li
- Department of integrated Chinese and Western medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| |
Collapse
|
25
|
Huang J, Duan F, Xie C, Xu J, Zhang Y, Wang Y, Tang YP, Leung ELH. Microbes mediated immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:128-142. [PMID: 37553793 DOI: 10.1111/imr.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.
Collapse
Affiliation(s)
- Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Fugang Duan
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Yizhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Dr. Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| |
Collapse
|
26
|
Huang X, Chen C, Xie W, Zhou C, Tian X, Zhang Z, Wang Q, Chang H, Xiao W, Zhang R, Gao Y. Metagenomic Analysis of Intratumoral Microbiome Linking to Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Int J Radiat Oncol Biol Phys 2023; 117:1255-1269. [PMID: 37433373 DOI: 10.1016/j.ijrobp.2023.06.2515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE To assess taxonomic and functional characteristics of tumor-bearing microbiota and its association with response to neoadjuvant chemoradiation therapy (nCRT) in patients with locally advanced rectal cancer. METHODS AND MATERIALS We performed metagenomic sequencing of biopsy tumoral tissues from 73 patients with locally advanced rectal cancer before nCRT. Patients were classified into poor responders (PR) and good responders (GR) according to response to nCRT. Subsequent investigation of network alteration, key community, microbial biomarkers, and function related to nCRT responses were carried out. RESULTS The network-driven analysis systematically revealed 2 co-occurring bacteria modules that exhibited opposite relationship with rectal cancer radiosensitivity. In the 2 modules, prominent alteration of global graph properties and community structure was observed between networks of PR and GR group. By quantifying changes in between-group association patterns and abundances, a total of 115 discriminative biomarker species linked to nCRT response were found, and 35 microbial variables were selected to establish the optimal randomForest classifier for nCRT response prediction. It yielded an area under the curve value of 85.5% (95% CI, 73.3%-97.8%) in the training cohort and 88.4% (95% CI, 77.5%-99.4%) in the validation cohort. In a comprehensive consideration, 5 key bacteria showed high relevance with inducing resistance to nCRT, including Streptococcus equinus, Schaalia odontolytica, Clostridium hylemonae, Blautia producta, and Pseudomonas azotoformans. One key hub including several butyrate-formation bacteria involving with driving network alteration from GR to PR indicate that microbiota-derived butyrate may also be involved in reducing the antitumor effects of nCRT, especially Coprococcus. The functional analysis of metagenome linked the nitrate and sulfate-sulfur assimilation, histidine catabolic process, and resistance to cephamycin to the reduced therapeutic response. It also linked to leucine degradation, isoleucine biosynthesis, taurine, and hypotaurine metabolism to the improved response to nCRT. CONCLUSIONS Our data offer novel potential microbial factors and shared metagenome function linked to resistance to nCRT.
Collapse
Affiliation(s)
- Xiaoxue Huang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyan Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weihao Xie
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chengjing Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xue Tian
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zitong Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiaoxuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Chang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiwei Xiao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Zhang
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yuanhong Gao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
27
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
28
|
Huang S, Chen J, Cui Z, Ma K, Wu D, Luo J, Li F, Xiong W, Rao S, Xiang Q, Shi W, Song T, Deng J, Yin Y, Tan C. Lachnospiraceae-derived butyrate mediates protection of high fermentable fiber against placental inflammation in gestational diabetes mellitus. SCIENCE ADVANCES 2023; 9:eadi7337. [PMID: 37922350 PMCID: PMC10624355 DOI: 10.1126/sciadv.adi7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
Inflammation-associated insulin resistance is a key trigger of gestational diabetes mellitus (GDM), but the underlying mechanisms and effective interventions remain unclear. Here, we report the association of placental inflammation (tumor necrosis factor-α) and abnormal maternal glucose metabolism in patients with GDM, and a high fermentable dietary fiber (HFDF; konjac) could reduce GDM development through gut flora-short-chain fatty acid-placental inflammation axis in GDM mouse model. Mechanistically, HFDF increases abundances of Lachnospiraceae and butyrate, reduces placental-derived inflammation by enhancing gut barrier and inhibiting the transfer of bacterial-derived lipopolysaccharide, and ultimately resists high-fat diet-induced insulin resistance. Lachnospiraceae and butyrate have similar anti-GDM and anti-placental inflammation effects, and they can ameliorate placental function and pregnancy outcome effects probably by dampening placental immune dysfunction. These findings demonstrate the involvement of important placental inflammation-related mechanisms in the progression of GDM and the great potential of HFDFs to reduce susceptibility to GDM through gut-flora-placenta axis.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijuan Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Department of Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
- Department of Obstetrics and Gynecology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan 430070, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sujuan Rao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Quanhang Xiang
- Department of Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan 430070, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
30
|
Hylander BL, Qiao G, Cortes Gomez E, Singh P, Repasky EA. Housing temperature plays a critical role in determining gut microbiome composition in research mice: Implications for experimental reproducibility. Biochimie 2023; 210:71-81. [PMID: 36693616 PMCID: PMC10953156 DOI: 10.1016/j.biochi.2023.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Preclinical mouse models are widely used for studying mechanisms of disease and responses to therapeutics, however there is concern about the lack of experimental reproducibility and failure to predict translational success. The gut microbiome has emerged as a regulator of metabolism and immunological processes in health and disease. The gut microbiome of mice differs by supplier and this affects experimental outcomes. We have previously reported that the mandated, mildly cool housing temperature for research mice (22°-26 °C) induces chronic adrenergic stress which suppresses anti-tumor immunity and promotes tumor growth compared to thermoneutral housing (30 °C). Therefore, we wondered how housing temperature affects the microbiome. Here, we demonstrate that the gut microbiome of BALB/c mice is easily modulated by a few degrees difference in temperature. Our results reveal significant differences between the gut microbiome of mice housed at 22°-23 °C vs. 30 °C. Although the genera vary, we consistently observed an enrichment of members of the family Lachnospiraceae when mice are housed at 22°-23 °C. These findings demonstrate that adrenergic stress and need for increased energy harvest to support thermogenesis, in addition to other factors such as diet, modulates the gut microbiome and this could be one mechanism by which housing temperature affects experimental outcomes. Additionally, tumor growth in mice housed at 30 °C also increases the proportion of Lachnospiraceae. The idea that stress can alter the gut microbiome and cause differences in experimental outcomes is applicable to mouse studies in general and is a variable that has significant potential to affect experimental reproducibility.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Eduardo Cortes Gomez
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Prashant Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
31
|
Woo JS, Hwang SH, Yang S, Lee KH, Lee YS, Choi JW, Park JS, Jhun J, Park SH, Cho ML. Lactobacillus acidophilus and propionate attenuate Sjögren's syndrome by modulating the STIM1-STING signaling pathway. Cell Commun Signal 2023; 21:135. [PMID: 37316856 DOI: 10.1186/s12964-023-01141-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation of the exocrine gland. An imbalance of gut microbiota has been linked to SS. However, the molecular mechanism is unclear. We investigated the effects of Lactobacillus acidophilus (L. acidophilus) and propionate on the development and progression of SS in mouse model. METHODS We compared the gut microbiomes of young and old mice. We administered L. acidophilus and propionate up to 24 weeks. The saliva flow rate and the histopathology of the salivary glands were investigated, and the effects of propionate on the STIM1-STING signaling pathway were evaluated in vitro. RESULTS Lactobacillaceae and Lactobacillus were decreased in aged mice. SS symptoms were ameliorated by L. acidophilus. The abundance of propionate-producing bacterial was increased by L. acidophilus. Propionate ameliorated the development and progression of SS by inhibiting the STIM1-STING signaling pathway. CONCLUSIONS The findings suggest that Lactobacillus acidophilus and propionate have therapeutic potential for SS. Video Abstract.
Collapse
Affiliation(s)
- Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Sun-Hee Hwang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - SeungCheon Yang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kun Hee Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yeon Su Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jeong Won Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Sung-Hwan Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
32
|
Hannon G, Lesch ML, Gerber SA. Harnessing the Immunological Effects of Radiation to Improve Immunotherapies in Cancer. Int J Mol Sci 2023; 24:7359. [PMID: 37108522 PMCID: PMC10138513 DOI: 10.3390/ijms24087359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to DNA damage with IR have been known since the early 20th century, the role of the immune system in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death (ICD), which activates innate and adaptive immunity against the cancer. It has also been widely reported that an intact immune system is essential to IR efficacy. However, this response is typically transient, and wound healing processes also become upregulated, dampening early immunological efforts to overcome the disease. This immune suppression involves many complex cellular and molecular mechanisms that ultimately result in the generation of radioresistance in many cases. Understanding the mechanisms behind these responses is challenging as the effects are extensive and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with the hope of shedding light on the complex immune stimulatory and immunosuppressive responses involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide a platform for improving immunotherapy efficacy in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maggie L. Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
33
|
Amit U, Facciabene A, Ben-Josef E. Radiation Therapy and the Microbiome; More Than a Gut Feeling. Cancer J 2023; 29:84-88. [PMID: 36957978 DOI: 10.1097/ppo.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT It is increasingly recognized that heterogeneities in tumor response and severity of adverse effects in irradiated patients can be attributed to the tumor microenvironment and host-related factors. Among the latter, a growing body of literature in recent years has demonstrated the role of the patient's microbiome in modulating both tumor and normal tissue response to radiotherapy (RT). Upon contact with the environment after birth, the infant's gastrointestinal tract is rapidly colonized by microbiota, which is low in diversity and predominantly characterized by 2 dominant species, Actinobacteria and Proteobacteria. With time, intestinal microbiota diversity increases, and colonization of Firmicutes and Bacteroidetes becomes dominant. By the time a child reaches 3 years, the gut microbiota composition has been reshaped and is relatively similar to that of an adult. The microbiome colonizing the different body organs comprises various species and abundances, which may impact human health. Although the adult microbiome composition is thought to remain stable in health, microbiome diversity and composition respond to different environmental and pathological conditions, including pharmaceutical interventions and RT. Our review focuses on how the gut microbiota modulates normal tissue toxicity and tumor control. Readers who want to learn more about how RT shapes gut microbiome diversity and composition are referred to several excellent recently published reviews.
Collapse
Affiliation(s)
| | | | - Edgar Ben-Josef
- From the Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Paz Del Socorro T, Tonneau M, Pasquier D, Chamaillard M. Short- and Long-term Repercussions of Vancomycin on Immune Surveillance and the Efficacy of Antitumor Treatments. Cancer J 2023; 29:98-101. [PMID: 36957980 DOI: 10.1097/ppo.0000000000000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Although antibiotic is a major contributor to shifts in the intestinal flora that may persist for up to several months after cessation, it is now increasingly recognized that its prescription may differentially influence clinical outcome of different anticancer treatments. Intense clinical and basic research efforts aim then at gaining sufficient insights about how the cooperative action between the intestinal ecosystem and immune surveillance modulates the efficacy of anticancer treatments. In this review, we summarize multiple levels of knowledge between vancomycin exposure, the gut microbiota, and a meaningful therapeutic response. Furthermore, we discuss the mode of action of antibiotic therapy that is prescribed for prophylaxis of bacteremia and neutropenia and outline the opportunity for judiciously improving the efficacy of anticancer drugs.
Collapse
Affiliation(s)
| | - Marion Tonneau
- Academic Department of Radiation Oncology, Centre Oscar Lambret
| | | | | |
Collapse
|
35
|
Uribe-Herranz M, Beghi S, Ruella M, Parvathaneni K, Salaris S, Kostopoulos N, George SS, Pierini S, Krimitza E, Costabile F, Ghilardi G, Amelsberg KV, Lee YG, Pajarillo R, Markmann C, McGettigan-Croce B, Agarwal D, Frey N, Lacey SF, Scholler J, Gabunia K, Wu G, Chong E, Porter DL, June CH, Schuster SJ, Bhoj V, Facciabene A. Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy. Mol Ther 2023; 31:686-700. [PMID: 36641624 PMCID: PMC10014349 DOI: 10.1016/j.ymthe.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.
Collapse
Affiliation(s)
- Mireia Uribe-Herranz
- Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Immunology Department, Hospital Clínic of Barcelona, Barcelona 08036, Spain
| | - Silvia Beghi
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kalpana Parvathaneni
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Silvano Salaris
- Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
| | - Nektarios Kostopoulos
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S George
- Bioinformatics Core, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefano Pierini
- Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; The Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisavet Krimitza
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesca Costabile
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly V Amelsberg
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caroline Markmann
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bevin McGettigan-Croce
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divyansh Agarwal
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Noelle Frey
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Khatuna Gabunia
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gary Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elise Chong
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - David L Porter
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vijay Bhoj
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea Facciabene
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; The Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Colciago RR, Fischetti I, Giandini C, La Rocca E, Rancati T T, Rejas Mateo A, Colombo MP, Lozza L, Chiodoni C, Jachetti E, De Santis MC. Overview of the synergistic use of radiotherapy and immunotherapy in cancer treatment: current challenges and scopes of improvement. Expert Rev Anticancer Ther 2023; 23:135-145. [PMID: 36803369 DOI: 10.1080/14737140.2023.2173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Oncological treatments are changing rapidly due to the advent of several targeted anticancer drugs and regimens. The primary new area of research in oncological medicine is the implementation of a combination of novel therapies and standard care. In this scenario, radioimmunotherapy is one of the most promising fields, as proven by the exponential growth of publications in this context during the last decade. AREAS COVERED This review provides an overview of the synergistic use of radiotherapy and immunotherapy and addresses questions like the importance of this subject, aspects clinicians look for in patients to administer this combined therapy, individuals who would benefit the most from this treatment, how to achieve abscopal effect and when does radio-immunotherapy become standard clinical practice. EXPERT OPINION Answers to these queries generate further issues that need to be addressed and solved. The abscopal and bystander effects are not utopia, rather physiological phenomena that occur in our bodies. Nevertheless, substantial evidence regarding the combination of radioimmunotherapy is lacking. In conclusion, joining forces and finding answers to all these open questions is of paramount importance.
Collapse
Affiliation(s)
- Riccardo Ray Colciago
- Department of Radiation Oncology, School of Medicine and Surgery - University of Milan Bicocca, Milan Italy.,Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Carlotta Giandini
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eliana La Rocca
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Tiziana Rancati T
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alicia Rejas Mateo
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Laura Lozza
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | | |
Collapse
|
37
|
Yuan H, Gui R, Wang Z, Fang F, Zhao H. Gut microbiota: A novel and potential target for radioimmunotherapy in colorectal cancer. Front Immunol 2023; 14:1128774. [PMID: 36798129 PMCID: PMC9927011 DOI: 10.3389/fimmu.2023.1128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate, and is a major burden on human health worldwide. Gut microbiota regulate human immunity and metabolism through producing numerous metabolites, which act as signaling molecules and substrates for metabolic reactions in various biological processes. The importance of host-gut microbiota interactions in immunometabolic mechanisms in CRC is increasingly recognized, and interest in modulating the microbiota to improve patient's response to therapy has been raising. However, the specific mechanisms by which gut microbiota interact with immunotherapy and radiotherapy remain incongruent. Here we review recent advances and discuss the feasibility of gut microbiota as a regulatory target to enhance the immunogenicity of CRC, improve the radiosensitivity of colorectal tumor cells and ameliorate complications such as radiotoxicity. Currently, great breakthroughs in the treatment of non-small cell lung cancer and others have been achieved by radioimmunotherapy, but radioimmunotherapy alone has not been effective in CRC patients. By summarizing the recent preclinical and clinical evidence and considering regulatory roles played by microflora in the gut, such as anti-tumor immunity, we discuss the potential of targeting gut microbiota to enhance the efficacy of radioimmunotherapy in CRC and expect this review can provide references and fresh ideas for the clinical application of this novel strategy.
Collapse
Affiliation(s)
- Hanghang Yuan
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| |
Collapse
|
38
|
Asokan S, Cullin N, Stein-Thoeringer CK, Elinav E. CAR-T Cell Therapy and the Gut Microbiota. Cancers (Basel) 2023; 15:794. [PMID: 36765752 PMCID: PMC9913364 DOI: 10.3390/cancers15030794] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) - T cell cancer therapy has yielded promising results in treating hematologic malignancies in clinical studies, and a growing number of CAR-T regimens are approved for clinical usage. While the therapy is considered of great potential in expanding the cancer immunotherapy arsenal, more than half of patients receiving CAR-T infusions do not respond, while others develop significant adverse effects, collectively indicating a need for optimization of CAR-T treatment to the individual. The microbiota is increasingly suggested as a major modulator of immunotherapy responsiveness. Studying causal microbiota roles possibly contributing to CAR-T therapy efficacy, adverse effects reduction, and prediction of patient responsiveness constitutes an exciting area of active research. Herein, we discuss the latest developments implicating human microbiota involvement in CAR-T therapy, while highlighting challenges and promises in harnessing the microbiota as a predictor and modifier of CAR-T treatment towards optimized efficacy and minimization of treatment-related adverse effects.
Collapse
Affiliation(s)
- Sahana Asokan
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nyssa Cullin
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christoph K. Stein-Thoeringer
- Department of Internal Medicine I, Laboratory of Translational Microbiome Science, University Clinic Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany
| | - Eran Elinav
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Systems Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther 2023; 8:35. [PMID: 36646684 PMCID: PMC9842669 DOI: 10.1038/s41392-022-01304-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
Microorganisms, including bacteria, viruses, fungi, and other eukaryotes, play critical roles in human health. An altered microbiome can be associated with complex diseases. Intratumoral microbial components are found in multiple tumor tissues and are closely correlated with cancer initiation and development and therapy efficacy. The intratumoral microbiota may contribute to promotion of the initiation and progression of cancers by DNA mutations, activating carcinogenic pathways, promoting chronic inflammation, complement system, and initiating metastasis. Moreover, the intratumoral microbiota may not only enhance antitumor immunity via mechanisms including STING signaling activation, T and NK cell activation, TLS production, and intratumoral microbiota-derived antigen presenting, but also decrease antitumor immune responses and promote cancer progression through pathways including upregulation of ROS, promoting an anti-inflammatory environment, T cell inactivation, and immunosuppression. The effect of intratumoral microbiota on antitumor immunity is dependent on microbiota composition, crosstalk between microbiota and the cancer, and status of cancers. The intratumoral microbiota may regulate cancer cell physiology and the immune response by different signaling pathways, including ROS, β-catenin, TLR, ERK, NF-κB, and STING, among others. These viewpoints may help identify the microbiota as diagnosis or prognosis evaluation of cancers, and as new therapeutic strategy and potential therapeutic targets for cancer therapy.
Collapse
|
40
|
Abstract
Striving to optimize surgical outcomes, the Enhanced Recovery After Surgery (ERAS) pathway mitigates patients' stress through the implementation of evidence-based practices during the pre-, intra-, and postoperative periods. Intestinal flora is a sophisticated ecosystem integrating with the host and the external environment, which serves as a mediator in diverse interventions of ERAS to regulate human metabolism and inflammation. This review linked gut microbes and their metabolites with ERAS interventions, offering novel high-quality investigative proponents for ERAS. ERAS could alter the composition and function of intestinal flora in patients by alleviating various perioperative stress responses. Modifying gut flora through multiple modalities, such as diet and nutrition, to accelerate recovery might be a complementary approach when exploring novel ERAS initiatives. Meanwhile, the pandemic of COVID-19 and the availability of promising qualitative evidence created both challenges and opportunities for the establishment of ERAS mode.
Collapse
|
41
|
Al-Qadami G, Bowen J, Van Sebille Y, Secombe K, Dorraki M, Verjans J, Wardill H, Le H. Baseline gut microbiota composition is associated with oral mucositis and tumour recurrence in patients with head and neck cancer: a pilot study. Support Care Cancer 2023; 31:98. [PMID: 36607434 DOI: 10.1007/s00520-022-07559-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Mounting evidence suggests that the gut microbiome influences radiotherapy efficacy and toxicity by modulating immune signalling. However, its contribution to radiotherapy outcomes in head and neck cancer (HNC) is yet to be investigated. This study, therefore, aimed to uncover associations between an individual's pre-therapy gut microbiota and (i) severity of radiotherapy-induced oral mucositis (OM), and (ii) recurrence risk in patients with HNC. METHODS In this prospective pilot study, 20 patients with HNC scheduled to receive radiotherapy or chemoradiotherapy were recruited. Stool samples were collected before treatment and microbial composition was analysed using 16S rRNA gene sequencing. OM severity was assessed using the NCI-CTCAE scoring system. Patients were also followed for 12 months of treatment completion to assess tumour recurrence. RESULTS Overall, 80% of the patients were male with a median age of 65.5 years. Fifty-three percent experienced mild/moderate OM while 47% developed severe OM. Furthermore, 18% experienced tumour relapse within 1 year of treatment completion. A pre-treatment microbiota enriched of Eubacterium, Victivallis, and Ruminococcus was associated with severe OM. Conversely, a higher relative abundance of immunomodulatory microbes Faecalibacterium, Prevotella, and Phascolarctobacterium was associated with a lower risk of tumour recurrence. CONCLUSION Our results indicate that a patient's gut microbiota composition at the start of treatment is linked to OM severity and recurrence risk. We now seek to validate these findings to determine their ability to predict treatment outcomes in HNC, with the goal of using this data to inform second-generation microbial therapeutics to optimise treatment outcomes for patients with HNC.
Collapse
Affiliation(s)
- Ghanyah Al-Qadami
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ysabella Van Sebille
- UniSA Online, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Secombe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mohsen Dorraki
- Australian Institute for Machine Learning (AIML), University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme (Platform AI), South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Johan Verjans
- Australian Institute for Machine Learning (AIML), University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme (Platform AI), South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hannah Wardill
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Precision Medicine Theme (Cancer), South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
43
|
Eaton SE, Kaczmarek J, Mahmood D, McDiarmid AM, Norarfan AN, Scott EG, Then CK, Tsui HY, Kiltie AE. Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients. Br J Cancer 2022; 127:2087-2098. [PMID: 36175620 PMCID: PMC9727022 DOI: 10.1038/s41416-022-01980-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
With an ageing population, there is an urgent need to find alternatives to current standard-of-care chemoradiation schedules in the treatment of pelvic malignancies. The gut microbiota may be exploitable, having shown a valuable role in improving patient outcomes in anticancer immunotherapy. These bacteria feed on dietary fibres, which reach the large intestine intact, resulting in the production of beneficial metabolites, including short-chain fatty acids. The gut microbiota can impact radiotherapy (RT) treatment responses and itself be altered by the radiation. Evidence is emerging that manipulation of the gut microbiota by dietary fibre supplementation can improve tumour responses and reduce normal tissue side effects following RT, although data on tumour response are limited to date. Both may be mediated by immune and non-immune effects of gut microbiota and their metabolites. Alternative approaches include use of probiotics and faecal microbiota transplantation (FMT). Current evidence will be reviewed regarding the use of dietary fibre interventions and gut microbiota modification in improving outcomes for pelvic RT patients. However, data regarding baseline (pre-RT) gut microbiota of RT patients and timing of dietary fibre manipulation (before or during RT) is limited, heterogenous and inconclusive, thus more robust clinical studies are required before these strategies can be applied clinically.
Collapse
Affiliation(s)
- Selina E Eaton
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Justyna Kaczmarek
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daanish Mahmood
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anna M McDiarmid
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alya N Norarfan
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Erin G Scott
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hailey Y Tsui
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anne E Kiltie
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
44
|
Mirji G, Worth A, Bhat SA, Sayed ME, Kannan T, Goldman AR, Tang HY, Liu Q, Auslander N, Dang CV, Abdel-Mohsen M, Kossenkov A, Stanger BZ, Shinde RS. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci Immunol 2022; 7:eabn0704. [PMID: 36083892 PMCID: PMC9925043 DOI: 10.1126/sciimmunol.abn0704] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The composition of the gut microbiome can control innate and adaptive immunity and has emerged as a key regulator of tumor growth, especially in the context of immune checkpoint blockade (ICB) therapy. However, the underlying mechanisms for how the microbiome affects tumor growth remain unclear. Pancreatic ductal adenocarcinoma (PDAC) tends to be refractory to therapy, including ICB. Using a nontargeted, liquid chromatography-tandem mass spectrometry-based metabolomic screen, we identified the gut microbe-derived metabolite trimethylamine N-oxide (TMAO), which enhanced antitumor immunity to PDAC. Delivery of TMAO intraperitoneally or via a dietary choline supplement to orthotopic PDAC-bearing mice reduced tumor growth, associated with an immunostimulatory tumor-associated macrophage (TAM) phenotype, and activated effector T cell response in the tumor microenvironment. Mechanistically, TMAO potentiated the type I interferon (IFN) pathway and conferred antitumor effects in a type I IFN-dependent manner. Delivering TMAO-primed macrophages intravenously produced similar antitumor effects. Combining TMAO with ICB (anti-PD1 and/or anti-Tim3) in a mouse model of PDAC significantly reduced tumor burden and improved survival beyond TMAO or ICB alone. Last, the levels of bacteria containing CutC (an enzyme that generates trimethylamine, the TMAO precursor) correlated with long-term survival in patients with PDAC and improved response to anti-PD1 in patients with melanoma. Together, our study identifies the gut microbial metabolite TMAO as a driver of antitumor immunity and lays the groundwork for potential therapeutic strategies targeting TMAO.
Collapse
Affiliation(s)
- Gauri Mirji
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Alison Worth
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Sajad Ahmad Bhat
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Mohamed El Sayed
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Aaron R Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Noam Auslander
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chi V Dang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
- Ludwig Institute for Cancer Research, New York, NY USA
| | - Mohamed Abdel-Mohsen
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul S Shinde
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
45
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
46
|
Reis Ferreira M, Pasto A, Ng T, Patel V, Guerrero Urbano T, Sears C, Wade WG. The microbiota and radiotherapy for head and neck cancer: What should clinical oncologists know? Cancer Treat Rev 2022; 109:102442. [PMID: 35932549 DOI: 10.1016/j.ctrv.2022.102442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Radiotherapy is a linchpin in head and neck squamous cell carcinoma (HN-SCC) treatment. Modulating tumour and/or normal tissue biology offers opportunities to further develop HN-SCC radiotherapy. The microbiota, which can exhibit homeostatic properties and be a modulator of immunity, has recently received considerable interest from the Oncology community. Microbiota research in head and neck oncology has also flourished. However, available data are difficult to interpret for clinical and radiation oncologists. In this review, we focus on how microbiota research can contribute to the improvement of radiotherapy for HN-SCC, focusing on how current and future research can be translated back to the clinic. We include in-depth discussions about the microbiota, its multiple habitats and relevance to human physiology, mechanistic interactions with HN-SCC, available evidence on microbiota and HNC oncogenesis, efficacy and toxicity of treatment. We discuss clinically-relevant areas such as the role of the microbiota as a predictive and prognostic biomarker, as well as the potential of leveraging the microbiota and its interactions with immunity to improve treatment results. Importantly, we draw parallels with other cancers where research is more mature. We map out future directions of research and explain clinical implications in detail.
Collapse
Affiliation(s)
- Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK.
| | | | - Tony Ng
- King's College London, London, UK
| | - Vinod Patel
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | | | - Cynthia Sears
- Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, USA
| | | |
Collapse
|
47
|
The oligometastatic spectrum in the era of improved detection and modern systemic therapy. Nat Rev Clin Oncol 2022; 19:585-599. [PMID: 35831494 DOI: 10.1038/s41571-022-00655-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Metastases remain the leading cause of cancer-related mortality. The oligometastasis hypothesis postulates that a spectrum of metastatic spread exists and that some patients with a limited burden of metastases can be cured with ablative therapy. Over the past decade, substantial advances in systemic therapies have resulted in considerable improvements in the outcomes of patients with metastatic cancers, warranting re-examination of the oligometastatic paradigm and the role of local ablative therapies within the context of the improved therapeutic responses, shifting patterns of disease recurrence and possible synergy with systemic treatments. Herein, we reframe the oligometastatic phenotype as a dynamic state for which locally ablative, metastasis-directed therapy improves clinical outcomes, including by prolonging survival and increasing cure rates. Important risk factors defining the metastatic spectrum are highlighted that inform both staging and therapy. Finally, we synthesize the literature on combining local therapies with modern systemic treatments, identifying general themes to optimally integrate ablative therapies in this context.
Collapse
|
48
|
Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022; 10:jitc-2021-004147. [PMID: 35882448 PMCID: PMC9330349 DOI: 10.1136/jitc-2021-004147] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota and its metabolites have been shown to play a pivotal role in the regulation of metabolic, endocrine and immune functions. Though the exact mechanism of action remains to be fully elucidated, available knowledge supports the ability of microbiota-fermented short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, to influence epigenetic and metabolic cascades controlling gene expression, chemotaxis, differentiation, proliferation, and apoptosis in several non-immune and immune cell subsets. While used as preferred metabolic substrates and sources of energy by colonic gut epithelial cells, most recent evidence indicates that these metabolites regulate immune functions, and in particular fine-tune T cell effector, regulatory and memory phenotypes, with direct in vivo consequences on the efficacy of chemotherapy, radiotherapy and immunotherapy. Most recent data also support the use of these metabolites over the course of T cell manufacturing, paving the way for refined adoptive T cell therapy engineering. Here, we review the most recent advances in the field, highlighting in vitro and in vivo evidence for the ability of SCFAs to shape T cell phenotypes and functions.
Collapse
Affiliation(s)
- Priya Rangan
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Anna Mondino
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
49
|
Turchan WT, Pitroda SP, Weichselbaum RR. Combined radio-immunotherapy: An opportunity to increase the therapeutic ratio of oligometastasis-directed radiotherapy. Neoplasia 2022; 27:100782. [PMID: 35303578 PMCID: PMC8931441 DOI: 10.1016/j.neo.2022.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
The utility of radiotherapy as a means of palliating symptoms due to metastatic cancer is well-accepted. A growing body of literature suggests that radiotherapy may play a role beyond palliation in some patients with low-burden metastatic disease. Recent data suggest that oligometastasis-directed radiotherapy may improve progression-free and even overall survival in select patients. Immunotherapy also has a growing role in the management of patients with metastatic cancer and, like radiotherapy, appears to be most effective in the setting of low-volume disease. Thus, the addition of immunotherapy may be a feasible means of increasing the therapeutic ratio of metastasis-directed radiotherapy, particularly among patients with oligometastatic cancer.
Collapse
Affiliation(s)
- William Tyler Turchan
- University of Chicago, Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, 5758 S Maryland Ave, Chicago, IL 60637, United States
| | - Sean P Pitroda
- University of Chicago, Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, 5758 S Maryland Ave, Chicago, IL 60637, United States
| | - Ralph R Weichselbaum
- University of Chicago, Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, 5758 S Maryland Ave, Chicago, IL 60637, United States.
| |
Collapse
|
50
|
Smith M, Dai A, Ghilardi G, Amelsberg KV, Devlin SM, Pajarillo R, Slingerland JB, Beghi S, Herrera PS, Giardina P, Clurman A, Dwomoh E, Armijo G, Gomes ALC, Littmann ER, Schluter J, Fontana E, Taur Y, Park JH, Palomba ML, Halton E, Ruiz J, Jain T, Pennisi M, Afuye AO, Perales MA, Freyer CW, Garfall A, Gier S, Nasta S, Landsburg D, Gerson J, Svoboda J, Cross J, Chong EA, Giralt S, Gill SI, Riviere I, Porter DL, Schuster SJ, Sadelain M, Frey N, Brentjens RJ, June CH, Pamer EG, Peled JU, Facciabene A, van den Brink MRM, Ruella M. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat Med 2022; 28:713-723. [PMID: 35288695 PMCID: PMC9434490 DOI: 10.1038/s41591-022-01702-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/13/2022] [Indexed: 01/29/2023]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has led to unprecedented responses in patients with high-risk hematologic malignancies. However, up to 60% of patients still experience disease relapse and up to 80% of patients experience CAR-mediated toxicities, such as cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. We investigated the role of the intestinal microbiome on these outcomes in a multicenter study of patients with B cell lymphoma and leukemia. We found in a retrospective cohort (n = 228) that exposure to antibiotics, in particular piperacillin/tazobactam, meropenem and imipenem/cilastatin (P-I-M), in the 4 weeks before therapy was associated with worse survival and increased neurotoxicity. In stool samples from a prospective cohort of CAR T cell recipients (n = 48), the fecal microbiome was altered at baseline compared to healthy controls. Stool sample profiling by 16S ribosomal RNA and metagenomic shotgun sequencing revealed that clinical outcomes were associated with differences in specific bacterial taxa and metabolic pathways. Through both untargeted and hypothesis-driven analysis of 16S sequencing data, we identified species within the class Clostridia that were associated with day 100 complete response. We concluded that changes in the intestinal microbiome are associated with clinical outcomes after anti-CD19 CAR T cell therapy in patients with B cell malignancies.
Collapse
Affiliation(s)
- Melody Smith
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Anqi Dai
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly V Amelsberg
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sean M Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John B Slingerland
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Silvia Beghi
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Pamela S Herrera
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Paul Giardina
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annelie Clurman
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel Dwomoh
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriel Armijo
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio L C Gomes
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric R Littmann
- The Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jonas Schluter
- Institute for Computational Medicine, New York University Langone Health, New York, NY, USA
| | - Emily Fontana
- Molecular Microbiology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, and Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jae H Park
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Lia Palomba
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Halton
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josel Ruiz
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tania Jain
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Martina Pennisi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Aishat Olaide Afuye
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Craig W Freyer
- Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred Garfall
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon Gier
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunita Nasta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Landsburg
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - James Gerson
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elise A Chong
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergio Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Isabelle Riviere
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David L Porter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noelle Frey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Renier J Brentjens
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Eric G Pamer
- The Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrea Facciabene
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|