1
|
Mayar S, Borbuliak M, Zoumpoulakis A, Bouceba T, Labonté MM, Ahrari A, Sinniah N, Memarpoor-Yazdi M, Vénien-Bryan C, Tieleman DP, D'Avanzo N. Endocannabinoid regulation of inward rectifier potassium (Kir) channels. Front Pharmacol 2024; 15:1439767. [PMID: 39253376 PMCID: PMC11381239 DOI: 10.3389/fphar.2024.1439767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
The inward rectifier potassium channel Kir2.1 (KCNJ2) is an important regulator of resting membrane potential in both excitable and non-excitable cells. The functions of Kir2.1 channels are dependent on their lipid environment, including the availability of PI(4,5)P2, secondary anionic lipids, cholesterol and long-chain fatty acids acyl coenzyme A (LC-CoA). Endocannabinoids are a class of lipids that are naturally expressed in a variety of cells, including cardiac, neuronal, and immune cells. While these lipids are identified as ligands for cannabinoid receptors there is a growing body of evidence that they can directly regulate the function of numerous ion channels independently of CBRs. Here we examine the effects of a panel of endocannabinoids on Kir2.1 function and demonstrate that a subset of endocannabinoids can alter Kir2.1 conductance to varying degrees independently of CBRs. Using computational and Surface plasmon resonance analysis, endocannabinoid regulation of Kir2.1 channels appears to be the result of altered membrane properties, rather than through direct protein-lipid interactions. Furthermore, differences in endocannabinoid effects on Kir4.1 and Kir7.1 channels, indicating that endocannabinoid regulation is not conserved among Kir family members. These findings may have broader implications on the function of cardiac, neuronal and/or immune cells.
Collapse
Affiliation(s)
- Sultan Mayar
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, QC, Canada
| | - Mariia Borbuliak
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - Andreas Zoumpoulakis
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR7590, Sorbonne Université, Centre national de la recherche scientifique (CNRS), MNHN, Paris, France
| | - Tahar Bouceba
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Madeleine M Labonté
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, QC, Canada
| | - Ameneh Ahrari
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, QC, Canada
| | - Niveny Sinniah
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, QC, Canada
| | - Mina Memarpoor-Yazdi
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, QC, Canada
| | - Catherine Vénien-Bryan
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR7590, Sorbonne Université, Centre national de la recherche scientifique (CNRS), MNHN, Paris, France
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - Nazzareno D'Avanzo
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
van Aalst EJ, Yekefallah M, A M van Beekveld R, Breukink E, Weingarth M, Wylie BJ. Coordination of bilayer properties by an inward-rectifier K + channel is a cooperative process driven by protein-lipid interaction. J Struct Biol X 2024; 9:100101. [PMID: 38883399 PMCID: PMC11176924 DOI: 10.1016/j.yjsbx.2024.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Physical properties of biological membranes directly or indirectly govern biological processes. Yet, the interplay between membrane and integral membrane proteins is difficult to assess due to reciprocal effects between membrane proteins, individual lipids, and membrane architecture. Using solid-state NMR (SSNMR) we previously showed that KirBac1.1, a bacterial Inward-Rectifier K+ channel, nucleates bilayer ordering and microdomain formation through tethering anionic lipids. Conversely, these lipids cooperatively bind cationic residues to activate the channel and initiate K+ flux. The mechanistic details governing the relationship between cooperative lipid loading and bilayer ordering are, however, unknown. To investigate, we generated KirBac1.1 samples with different concentrations of 13C-lableded phosphatidyl glycerol (PG) lipids and acquired a full suite of SSNMR 1D temperature series experiments using the ordered all-trans (AT) and disordered trans-gauche (TG) acyl conformations as markers of bilayer dynamics. We observed increased AT ordered signal, decreased TG disordered signal, and increased bilayer melting temperature with increased PG concentration. Further, we identified cooperativity between ordering and direct binding of PG lipids, indicating KirBac1.1-driven bilayer ordering and microdomain formation is a classically cooperative Hill-type process driven by and predicated upon direct binding of PG lipids. Our results provide unique mechanistic insight into how proteins and lipids in tandem contribute to supramolecular bilayer heterogeneity in the lipid membrane.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Roy A M van Beekveld
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Markus Weingarth
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Yekefallah M, Rasberry CA, van Aalst EJ, Browning HP, Amani R, Versteeg DB, Wylie BJ. Mutational Insight into Allosteric Regulation of Kir Channel Activity. ACS OMEGA 2022; 7:43621-43634. [PMID: 36506180 PMCID: PMC9730464 DOI: 10.1021/acsomega.2c04456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/08/2023]
Abstract
Potassium (K+) channels are regulated in part by allosteric communication between the helical bundle crossing, or inner gate, and the selectivity filter, or outer gate. This network is triggered by gating stimuli. In concert, there is an allosteric network which is a conjugated set of interactions which correlate long-range structural rearrangements necessary for channel function. Inward-rectifier K+ (Kir) channels favor inward K+ conductance, are ligand-gated, and help establish resting membrane potentials. KirBac1.1 is a bacterial Kir (KirBac) channel homologous to human Kir (hKir) channels. Additionally, KirBac1.1 is gated by the anionic phospholipid ligand phosphatidylglycerol (PG). In this study, we use site-directed mutagenesis to investigate residues involved in the KirBac1.1 gating mechanism and allosteric network we previously proposed using detailed solid-state NMR (SSNMR) measurements. Using fluorescence-based K+ and sodium (Na+) flux assays, we identified channel mutants with impaired function that do not alter selectivity of the channel. In tandem, we performed coarse grain molecular dynamics simulations, observing changes in PG-KirBac1.1 interactions correlated with mutant channel activity and contacts between the two transmembrane helices and pore helix tied to this behavior. Lipid affinity is closely tied to the proximity of two tryptophan residues on neighboring subunits which lure anionic lipids to a cationic pocket formed by a cluster of arginine residues. Thus, these simulations establish a structural and functional basis for the role of each mutated site in the proposed allosteric network. The experimental and simulated data provide insight into key functional residues involved in gating and lipid allostery of K+ channels. Our findings also have direct implications on the physiology of hKir channels due to conservation of many of the residues identified in this work from KirBac1.1.
Collapse
Affiliation(s)
- Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Carver A. Rasberry
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Holley P. Browning
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Derek B. Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| |
Collapse
|
4
|
Piermarini PM, Denton JS, Swale DR. The Molecular Physiology and Toxicology of Inward Rectifier Potassium Channels in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:125-142. [PMID: 34606365 DOI: 10.1146/annurev-ento-062121-063338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inward rectifier K+ (Kir) channels have been studied extensively in mammals, where they play critical roles in health and disease. In insects, Kir channels have recently been found to be key regulators of diverse physiological processes in several tissues. The importance of Kir channels in insects has positioned them to serve as emerging targets for the development of insecticides with novel modes of action. In this article, we provide the first comprehensive review of insect Kir channels, highlighting the rapid progress made in understanding their molecular biology, physiological roles, pharmacology, and toxicology. In addition, we highlight key gaps in our knowledge and suggest directions for future research to advance our understanding of Kir channels and their roles in insect physiology. Further knowledge of their functional roles will also facilitate their exploitation as targets for controlling arthropod pests and vectors of economic, medical, and/or veterinary relevance.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Wooster, Ohio 44691, USA;
| | - Jerod S Denton
- Departments of Anesthesiology & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, USA;
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
5
|
Amani R, Schwieters CD, Borcik CG, Eason IR, Han R, Harding BD, Wylie BJ. Water Accessibility Refinement of the Extended Structure of KirBac1.1 in the Closed State. Front Mol Biosci 2021; 8:772855. [PMID: 34917650 PMCID: PMC8669819 DOI: 10.3389/fmolb.2021.772855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
NMR structures of membrane proteins are often hampered by poor chemical shift dispersion and internal dynamics which limit resolved distance restraints. However, the ordering and topology of these systems can be defined with site-specific water or lipid proximity. Membrane protein water accessibility surface area is often investigated as a topological function via solid-state NMR. Here we leverage water-edited solid-state NMR measurements in simulated annealing calculations to refine a membrane protein structure. This is demonstrated on the inward rectifier K+ channel KirBac1.1 found in Burkholderia pseudomallei. KirBac1.1 is homologous to human Kir channels, sharing a nearly identical fold. Like many existing Kir channel crystal structures, the 1p7b crystal structure is incomplete, missing 85 out of 333 residues, including the N-terminus and C-terminus. We measure solid-state NMR water proximity information and use this for refinement of KirBac1.1 using the Xplor-NIH structure determination program. Along with predicted dihedral angles and sparse intra- and inter-subunit distances, we refined the residues 1-300 to atomic resolution. All structural quality metrics indicate these restraints are a powerful way forward to solve high quality structures of membrane proteins using NMR.
Collapse
Affiliation(s)
- Reza Amani
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institutes of Digestive Diseases and Kidneys, NIH, Bethesda, MD, United States
| | - Collin G. Borcik
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Isaac R. Eason
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Ruixian Han
- University of Wisconsin-Madison, Department of Biochemistry and Chemistry, Madison, WI, United States
| | - Benjamin D. Harding
- University of Wisconsin-Madison, Department of Biochemistry and Chemistry, Madison, WI, United States
- Biophysics Program, University of Wisconsin at Madison, Madison, WI, United States
| | - Benjamin J. Wylie
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| |
Collapse
|
6
|
Bogard A, Finn PW, McKinney F, Flacau IM, Smith AR, Whiting R, Fologea D. The Ionic Selectivity of Lysenin Channels in Open and Sub-Conducting States. MEMBRANES 2021; 11:897. [PMID: 34832126 PMCID: PMC8622276 DOI: 10.3390/membranes11110897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman-Hodgkin-Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels.
Collapse
Affiliation(s)
- Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Pangaea W. Finn
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Fulton McKinney
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Ilinca M. Flacau
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Aviana R. Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Rosey Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
7
|
MCAs in Arabidopsis are Ca 2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat Commun 2021; 12:6074. [PMID: 34667173 PMCID: PMC8526687 DOI: 10.1038/s41467-021-26363-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanosensitive (MS) ion channels respond to mechanical stress and convert it into intracellular electric and ionic signals. Five MS channel families have been identified in plants, including the Mid1-Complementing Activity (MCA) channel; however, its activation mechanisms have not been elucidated in detail. We herein demonstrate that the MCA2 channel is a Ca2+-permeable MS channel that is directly activated by membrane tension. The N-terminal 173 residues of MCA1 and MCA2 were synthesized in vitro, purified, and reconstituted into artificial liposomal membranes. Liposomes reconstituted with MCA1(1-173) or MCA2(1-173) mediate Ca2+ influx and the application of pressure to the membrane reconstituted with MCA2(1-173) elicits channel currents. This channel is also activated by voltage. Blockers for MS channels inhibit activation by stretch, but not by voltage. Since MCA proteins are found exclusively in plants, these results suggest that MCA represent plant-specific MS channels that open directly with membrane tension. Mechanosensitive ion channels convert mechanical stimuli into intracellular electric and ionic signals. Here the authors show that Arabidopsis MCA2 is a Ca2+-permeable mechanosensitive channel that is directly activated by membrane tension.
Collapse
|
8
|
Suma A, Granata D, Thomson AS, Carnevale V, Rothberg BS. Polyamine blockade and binding energetics in the MthK potassium channel. J Gen Physiol 2021; 152:151703. [PMID: 32342093 PMCID: PMC7335011 DOI: 10.1085/jgp.201912527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Polyamines such as spermidine and spermine are found in nearly all cells, at concentrations ranging up to 0.5 mM. These cations are endogenous regulators of cellular K+ efflux, binding tightly in the pores of inwardly rectifying K+ (Kir) channels in a voltage-dependent manner. Although the voltage dependence of Kir channel polyamine blockade is thought to arise at least partially from the energetically coupled movements of polyamine and K+ ions through the pore, the nature of physical interactions between these molecules is unclear. Here we analyze the polyamine-blocking mechanism in the model K+ channel MthK, using a combination of electrophysiology and computation. Spermidine (SPD3+) and spermine (SPM4+) each blocked current through MthK channels in a voltage-dependent manner, and blockade by these polyamines was described by a three-state kinetic scheme over a wide range of polyamine concentrations. In the context of the scheme, both SPD3+ and SPM4+ access a blocking site with similar effective gating valences (0.84 ± 0.03 e0 for SPD3+ and 0.99 ± 0.04 e0 for SPM4+), whereas SPM4+ binds in the blocked state with an ∼20-fold higher affinity than SPD3+ (Kd = 28.1 ± 3.1 µM for SPD3+ and 1.28 ± 0.20 µM for SPM4+), consistent with a free energy difference of 1.8 kcal/mol. Molecular simulations of the MthK pore in complex with either SPD3+ or SPM4+ are consistent with the leading amine interacting with the hydroxyl groups of T59, at the selectivity filter threshold, with access to this site governed by outward movement of K+ ions. These coupled movements can account for a large fraction of the voltage dependence of blockade. In contrast, differences in binding energetics between SPD3+ and SPM4+ may arise from distinct electrostatic interactions between the polyamines and carboxylate oxygens on the side chains of E92 and E96, located in the pore-lining helix.
Collapse
Affiliation(s)
- Antonio Suma
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Andrew S Thomson
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Fagnen C, Bannwarth L, Zuniga D, Oubella I, De Zorzi R, Forest E, Scala R, Guilbault S, Bendahhou S, Perahia D, Vénien-Bryan C. Unexpected Gating Behaviour of an Engineered Potassium Channel Kir. Front Mol Biosci 2021; 8:691901. [PMID: 34179097 PMCID: PMC8222812 DOI: 10.3389/fmolb.2021.691901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the dynamics and functional characteristics of the KirBac3.1 S129R, a mutated bacterial potassium channel for which the inner pore-lining helix (TM2) was engineered so that the bundle crossing is trapped in an open conformation. The structure of this channel has been previously determined at high atomic resolution. We explored the dynamical characteristics of this open state channel using an in silico method MDeNM that combines molecular dynamics simulations and normal modes. We captured the global and local motions at the mutation level and compared these data with HDX-MS experiments. MDeNM provided also an estimation of the probability of the different opening states that are in agreement with our electrophysiological experiments. In the S129R mutant, the Arg129 mutation releases the two constriction points in the channel that existed in the wild type but interestingly creates another restriction point.
Collapse
Affiliation(s)
- Charline Fagnen
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Ludovic Bannwarth
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Dania Zuniga
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Iman Oubella
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eric Forest
- IBS University Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Rosa Scala
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Samuel Guilbault
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Saïd Bendahhou
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Matamoros M, Nichols CG. Pore-forming transmembrane domains control ion selectivity and selectivity filter conformation in the KirBac1.1 potassium channel. J Gen Physiol 2021; 153:211923. [PMID: 33779689 PMCID: PMC8008366 DOI: 10.1085/jgp.202012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Potassium (K+) channels are membrane proteins with the remarkable ability to very selectively conduct K+ ions across the membrane. High-resolution structures have revealed that dehydrated K+ ions permeate through the narrowest region of the pore, formed by the backbone carbonyls of the signature selectivity filter (SF) sequence TxGYG. However, the existence of nonselective channels with similar SF sequences, as well as effects of mutations in other regions on selectivity, suggest that the SF is not the sole determinant of selectivity. We changed the selectivity of the KirBac1.1 channel by introducing mutations at residue I131 in transmembrane helix 2 (TM2). These mutations increase Na+ flux in the absence of K+ and introduce significant proton conductance. Consistent with K+ channel crystal structures, single-molecule FRET experiments show that the SF is conformationally constrained and stable in high-K+ conditions but undergoes transitions to dilated low-FRET states in high-Na+/low-K+ conditions. Relative to wild-type channels, I131M mutants exhibit marked shifts in the K+ and Na+ dependence of SF dynamics to higher K+ and lower Na+ concentrations. These results illuminate the role of I131, and potentially other structural elements outside the SF, in controlling ion selectivity, by suggesting that the physical interaction of these elements with the SF contributes to the relative stability of the constrained K+-induced SF configuration versus nonselective dilated conformations.
Collapse
Affiliation(s)
- Marcos Matamoros
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Schmidt M, Schroeder I, Bauer D, Thiel G, Hamacher K. Inferring functional units in ion channel pores via relative entropy. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:37-57. [PMID: 33523249 PMCID: PMC7872957 DOI: 10.1007/s00249-020-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Coarse-grained protein models approximate the first-principle physical potentials. Among those modeling approaches, the relative entropy framework yields promising and physically sound results, in which a mapping from the target protein structure and dynamics to a model is defined and subsequently adjusted by an entropy minimization of the model parameters. Minimization of the relative entropy is equivalent to maximization of the likelihood of reproduction of (configurational ensemble) observations by the model. In this study, we extend the relative entropy minimization procedure beyond parameter fitting by a second optimization level, which identifies the optimal mapping to a (dimension-reduced) topology. We consider anisotropic network models of a diverse set of ion channels and assess our findings by comparison to experimental results.
Collapse
Affiliation(s)
- Michael Schmidt
- Department of Physics, TU Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany
| | - Indra Schroeder
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Daniel Bauer
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Gerhard Thiel
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department of Physics, Department of Biology, Department of Computer Science, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
12
|
Borcik CG, Versteeg DB, Amani R, Yekefallah M, Khan NH, Wylie BJ. The Lipid Activation Mechanism of a Transmembrane Potassium Channel. J Am Chem Soc 2020; 142:14102-14116. [PMID: 32702990 DOI: 10.1021/jacs.0c01991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Membrane proteins and lipids coevolved to yield unique coregulatory mechanisms. Inward-rectifier K+ (Kir) channels are often activated by anionic lipids endemic to their native membranes and require accessible water along their K+ conductance pathway. To better understand Kir channel activation, we target multiple mutants of the Kir channel KirBac1.1 via solid-state nuclear magnetic resonance (SSNMR) spectroscopy, potassium efflux assays, and Förster resonance energy transfer (FRET) measurements. In the I131C stability mutant (SM), we observe an open-active channel in the presence of anionic lipids with greater activity upon addition of cardiolipin (CL). The introduction of three R to Q mutations (R49/151/153Q (triple Q mutant, TQ)) renders the protein inactive within the same activating lipid environment. Our SSNMR experiments reveal a stark reduction of lipid-protein interactions in the TQ mutant explaining the dramatic loss of channel activity. Water-edited SSNMR experiments further determined the TQ mutant possesses greater overall solvent exposure in comparison to wild-type but with reduced water accessibility along the ion conduction pathway, consistent with the closed state of the channel. These experiments also suggest water is proximal to the selectivity filter of KirBac1.1 in the open-activated state but that it may not directly enter the selectivity filter. Our findings suggest lipid binding initiates a concerted rotation of the cytoplasmic domain subunits, which is stabilized by multiple intersubunit salt bridges. This action buries ionic side chains away from the bulk water, while allowing water greater access to the K+ conduction pathway. This work highlights universal membrane protein motifs, including lipid-protein interactions, domain rearrangement, and water-mediated diffusion mechanisms.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Nazmul H Khan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
13
|
New Structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Sci Rep 2020; 10:8392. [PMID: 32439887 PMCID: PMC7242327 DOI: 10.1038/s41598-020-65246-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
Inward rectifier potassium (Kir) channels play diverse and important roles in shaping action potentials in biological membranes. An increasing number of diseases are now known to be directly associated with abnormal Kir function. However, the gating of Kir still remains unknown. To increase our understanding of its gating mechanism, a dynamical view of the entire channel is essential. Here the gating activation was studied using a recent developped in silico method, MDeNM, which combines normal mode analysis and molecular dynamics simulations that showed for the very first time the importance of interrelated collective and localized conformational movements. In particular, we highlighted the role played by concerted movements of the different regions throughout the entire protein, such as the cytoplasmic and transmembrane domains and the slide helices. In addition, the HDX-MS analysis achieved in these studies provided a comprehensive and detailed view of the dynamics associated with open/closed transition of the Kir channel in coherence with the theoretical results. MDeNM gives access to the probability of the different opening states that are in agreement with our electrophysiological experiments. The investigations presented in this article are important to remedy dysfunctional channels and are of interest for designing new pharmacological compounds.
Collapse
|
14
|
Petroff JT, Tong A, Chen LJ, Dekoster GT, Khan F, Abramson J, Frieden C, Cheng WWL. Charge Reduction of Membrane Proteins in Native Mass Spectrometry Using Alkali Metal Acetate Salts. Anal Chem 2020; 92:6622-6630. [PMID: 32250604 DOI: 10.1021/acs.analchem.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.
Collapse
Affiliation(s)
| | | | | | | | - Farha Khan
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
15
|
Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc Natl Acad Sci U S A 2020; 117:2938-2947. [PMID: 31980523 PMCID: PMC7022178 DOI: 10.1073/pnas.1915010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inward rectifier K+ (Kir) channels play an important role in reestablishing the resting membrane state of the action potential of excitable cells in humans. KirBac1.1 is a prokaryotic Kir channel with a high degree of homology to human Kir channels and can be isotopically labeled in NMR quantities for structural studies. Functional assays and NMR assignments confirm that KirBac1.1 is in a constitutively conductive state. Solid-state NMR assignments further reveal alternate conformations at key sites in the protein that are well conserved through human Kir channels, hinting at a possible allosteric network between channels. These underlying sequential and structural motifs could explain abnormal conductive properties of these channels fundamental to their native gating processes. The conformational changes required for activation and K+ conduction in inward-rectifier K+ (Kir) channels are still debated. These structural changes are brought about by lipid binding. It is unclear how this process relates to fast gating or if the intracellular and extracellular regions of the protein are coupled. Here, we examine the structural details of KirBac1.1 reconstituted into both POPC and an activating lipid mixture of 3:2 POPC:POPG (wt/wt). KirBac1.1 is a prokaryotic Kir channel that shares homology with human Kir channels. We establish that KirBac1.1 is in a constitutively active state in POPC:POPG bilayers through the use of real-time fluorescence quenching assays and Förster resonance energy transfer (FRET) distance measurements. Multidimensional solid-state NMR (SSNMR) spectroscopy experiments reveal two different conformers within the transmembrane regions of the protein in this activating lipid environment, which are distinct from the conformation of the channel in POPC bilayers. The differences between these three distinct channel states highlight conformational changes associated with an open activation gate and suggest a unique allosteric pathway that ties the selectivity filter to the activation gate through interactions between both transmembrane helices, the turret, selectivity filter loop, and the pore helix. We also identify specific residues involved in this conformational exchange that are highly conserved among human Kir channels.
Collapse
|
16
|
Toyama Y, Shimada I. Frequency selective coherence transfer NMR spectroscopy to study the structural dynamics of high molecular weight proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:62-77. [PMID: 31129430 DOI: 10.1016/j.jmr.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Multidimensional nuclear magnetic resonance (NMR) spectroscopy has enabled detailed characterizations of protein structures and dynamics that are closely linked to functions. However, it leads to a large sensitivity loss in applications to high molecular weight proteins, which is caused by spin relaxation during the frequency discrimination period in the indirect dimension. Here, we describe a selective coherence transfer scheme, which enables us to selectively observe 1H nuclei bonded to 15N or 13C nuclei with specified resonance frequencies. By utilizing this scheme, we achieved a 2.5- to 6-fold increase in signal height per unit of time with this scheme by avoiding the relaxation loss in the indirect dimension, as compared to the conventional two-dimensional heteronuclear correlation spectroscopy. We also demonstrated the effectiveness of this approach with applications to the membrane protein KirBac1.1, and characterized the functionally relevant conformational exchange process in both detergent micelles and a reconstituted membrane environment, corresponding to the apparent molecular masses of 220 kDa and 300 kDa, respectively.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
17
|
Borcik CG, Versteeg DB, Wylie BJ. An Inward-Rectifier Potassium Channel Coordinates the Properties of Biologically Derived Membranes. Biophys J 2019; 116:1701-1718. [PMID: 31010661 DOI: 10.1016/j.bpj.2019.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
18
|
Potassium channel selectivity filter dynamics revealed by single-molecule FRET. Nat Chem Biol 2019; 15:377-383. [PMID: 30833778 PMCID: PMC6430689 DOI: 10.1038/s41589-019-0240-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Potassium (K) channels exhibit exquisite selectivity for conduction of K+ ions over other cations, particularly Na+. High-resolution structures reveal an archetypal selectivity filter (SF) conformation in which dehydrated K+ ions, but not Na+ ions, are perfectly coordinated. Using single-molecule FRET (smFRET), we show that the SF-forming loop (SF-loop) in KirBac1.1 transitions between constrained and dilated conformations as a function of ion concentration. The constrained conformation, essential for selective K+ permeability, is stabilized by K+ but not Na+ ions. Mutations that render channels nonselective result in dilated and dynamically unstable conformations, independent of the permeant ion. Further, while wild-type KirBac1.1 channels are K+ selective in physiological conditions, Na+ permeates in the absence of K+. Moreover, whereas K+ gradients preferentially support 86Rb+ fluxes, Na+ gradients preferentially support 22Na+ fluxes. This suggests differential ion selectivity in constrained versus dilated states, potentially providing a structural basis for this anomalous mole fraction effect.
Collapse
|
19
|
Abstract
Potassium channels that exhibit the property of inward rectification (Kir channels) are present in most cells. Cloning of the first Kir channel genes 25 years ago led to recognition that inward rectification is a consequence of voltage-dependent block by cytoplasmic polyamines, which are also ubiquitously present in animal cells. Upon cellular depolarization, these polycationic metabolites enter the Kir channel pore from the intracellular side, blocking the movement of K+ ions through the channel. As a consequence, high K+ conductance at rest can provide very stable negative resting potentials, but polyamine-mediated blockade at depolarized potentials ensures, for instance, the long plateau phase of the cardiac action potential, an essential feature for a stable cardiac rhythm. Despite much investigation of the polyamine block, where exactly polyamines get to within the Kir channel pore and how the steep voltage dependence arises remain unclear. This Minireview will summarize current understanding of the relevance and molecular mechanisms of polyamine block and offer some ideas to try to help resolve the fundamental issue of the voltage dependence of polyamine block.
Collapse
Affiliation(s)
- Colin G Nichols
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Sun-Joo Lee
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
20
|
Wang S, Borschel WF, Heyman S, Hsu P, Nichols CG. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating. J Biol Chem 2017; 292:10087-10096. [PMID: 28446610 DOI: 10.1074/jbc.m117.785154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
The defining structural feature of inward-rectifier potassium (Kir) channels is the unique Kir cytoplasmic domain. Recently we showed that salt bridges located at the cytoplasmic domain subunit interfaces (CD-Is) of eukaryotic Kir channels control channel gating via stability of a novel inactivated closed state. The cytoplasmic domains of prokaryotic and eukaryotic Kir channels show similar conformational rearrangements to the common gating ligand, phosphatidylinositol bisphosphate (PIP2), although these exhibit opposite coupling to opening and closing transitions. In Kir2.1, mutation of one of these CD-I salt bridge residues (R204A) reduces apparent PIP2 sensitivity of channel activity, and here we show that Ala or Cys substitutions of the functionally equivalent residue (Arg-165) in the prokaryotic Kir channel KirBac1.1 also significantly decrease sensitivity of the channel to PIP2 (by 5-30-fold). To further understand the structural basis of CD-I control of Kir channel gating, we examined the effect of the R165A mutation on PIP2-induced changes in channel function and conformation. Single-channel analyses indicated that the R165A mutation disrupts the characteristic long interburst closed state of reconstituted KirBac1.1 in giant liposomes, resulting in a higher open probability due to more frequent opening bursts. Intramolecular FRET measurements indicate that, relative to wild-type channels, the R165A mutation results in splaying of the cytoplasmic domains away from the central axis and that PIP2 essentially induces opposite motions of the major β-sheet in this channel mutant. We conclude that the removal of stabilizing CD-I salt bridges results in a collapsed state of the Kir domain.
Collapse
Affiliation(s)
- Shizhen Wang
- From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - William F Borschel
- From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sarah Heyman
- From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Phillip Hsu
- From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
21
|
Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti. Comp Biochem Physiol B Biochem Mol Biol 2016; 204:35-44. [PMID: 27836744 DOI: 10.1016/j.cbpb.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.
Collapse
|
22
|
Wang S, Vafabakhsh R, Borschel WF, Ha T, Nichols CG. Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Nat Struct Mol Biol 2015; 23:31-36. [PMID: 26641713 PMCID: PMC4833211 DOI: 10.1038/nsmb.3138] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
Abstract
Crystallography has provided invaluable insights to ion channel selectivity and gating, but to advance understanding to a new level, dynamic views of channel structures within membranes are essential. We labeled tetrameric KirBac1.1 potassium channels with single donor and acceptor fluorophores at different sites, and examined structural dynamics within lipid membranes by single molecule FRET. We found that the extracellular region is structurally rigid in both closed and open states, whereas the N-terminal slide helix undergoes marked conformational fluctuations. The cytoplasmic C-terminal domain fluctuates between two major structural states both of which become less dynamic and move away from the pore axis and away from the membrane in closed channels. Our results reveal mobile and rigid conformations of functionally relevant KirBac1.1 channel motifs, implying similar dynamics for similar motifs in eukaryotic Kir channels and for cation channels in general.
Collapse
Affiliation(s)
- Shizhen Wang
- Center for Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis MO
| | - Reza Vafabakhsh
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL
| | - William F Borschel
- Center for Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis MO
| | - Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL.,Howard Hughes Medical Institute, Baltimore, MD.,Department of Biophysics and Biophysical Chemistry, Department of Biophysics, Department of Biomedical Engineering, Baltimore, MD
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
23
|
Zubcevic L, Wang S, Bavro VN, Lee SJ, Nichols CG, Tucker SJ. Modular Design of the Selectivity Filter Pore Loop in a Novel Family of Prokaryotic 'Inward Rectifier' (NirBac) channels. Sci Rep 2015; 5:15305. [PMID: 26470642 PMCID: PMC4607889 DOI: 10.1038/srep15305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/11/2015] [Indexed: 11/09/2022] Open
Abstract
Potassium channels exhibit a modular design with distinct structural and functional domains; in particular, a highly conserved pore-loop sequence that determines their ionic selectivity. We now report the functional characterisation of a novel group of functionally non-selective members of the prokaryotic 'inward rectifier' subfamily of K(+) channels. These channels share all the key structural domains of eukaryotic and prokaryotic Kir/KirBac channels, but instead possess unique pore-loop selectivity filter sequences unrelated to any other known ionic selectivity filter. The strikingly unusual architecture of these 'NirBac' channels defines a new family of functionally non-selective ion channels, and also provides important insights into the modular design of ion channels, as well as the evolution of ionic selectivity within this superfamily of tetrameric cation channels.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Shizhen Wang
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Vassiliy N. Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Sun-Joo Lee
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Colin G. Nichols
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Nomura T, Cox CD, Bavi N, Sokabe M, Martinac B. Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes. FASEB J 2015; 29:4334-45. [PMID: 26116700 DOI: 10.1096/fj.15-275198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Abstract
The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.
Collapse
Affiliation(s)
- Takeshi Nomura
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Charles D Cox
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Navid Bavi
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Boris Martinac
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Linder T, Wang S, Zangerl-Plessl EM, Nichols CG, Stary-Weinzinger A. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels. J Chem Inf Model 2015; 55:814-22. [PMID: 25794351 PMCID: PMC4415035 DOI: 10.1021/acs.jcim.5b00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Prokaryotic inwardly rectifying (KirBac) potassium channels are homologous to mammalian Kir channels. Their activity is controlled by dynamical conformational changes that regulate ion flow through a central pore. Understanding the dynamical rearrangements of Kir channels during gating requires high-resolution structure information from channels crystallized in different conformations and insight into the transition steps, which are difficult to access experimentally. In this study, we use MD simulations on wild type KirBac1.1 and an activatory mutant to investigate activation gating of KirBac channels. Full atomistic MD simulations revealed that introducing glutamate in position 143 causes significant widening at the helix bundle crossing gate, enabling water flux into the cavity. Further, global rearrangements including a twisting motion as well as local rearrangements at the subunit interface in the cytoplasmic domain were observed. These structural rearrangements are similar to recently reported KirBac3.1 crystal structures in closed and open conformation, suggesting that our simulations capture major conformational changes during KirBac1.1 opening. In addition, an important role of protein-lipid interactions during gating was observed. Slide-helix and C-linker interactions with lipids were strengthened during activation gating.
Collapse
Affiliation(s)
- Tobias Linder
- Department
of Pharmacology and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Shizhen Wang
- Center
for Investigation of Membrane Excitability Diseases, Department of
Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | | | - Colin G. Nichols
- Center
for Investigation of Membrane Excitability Diseases, Department of
Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Anna Stary-Weinzinger
- Department
of Pharmacology and Toxicology, University
of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Baronas VA, Kurata HT. Inward rectifiers and their regulation by endogenous polyamines. Front Physiol 2014; 5:325. [PMID: 25221519 PMCID: PMC4145359 DOI: 10.3389/fphys.2014.00325] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022] Open
Abstract
Inwardly-rectifying potassium (Kir) channels contribute to maintenance of the resting membrane potential and regulation of electrical excitation in many cell types. Strongly rectifying Kir channels exhibit a very steep voltage dependence resulting in silencing of their activity at depolarized membrane voltages. The mechanism underlying this steep voltage dependence is blockade by endogenous polyamines. These small multifunctional, polyvalent metabolites enter the long Kir channel pore from the intracellular side, displacing multiple occupant ions as they migrate to a stable binding site in the transmembrane region of the channel. Numerous structure-function studies have revealed structural elements of Kir channels that determine their susceptibility to polyamine block, and enable the steep voltage dependence of this process. In addition, various channelopathies have been described that result from alteration of the polyamine sensitivity or activity of strongly rectifying channels. The primary focus of this article is to summarize current knowledge of the molecular mechanisms of polyamine block, and provide some perspective on lingering uncertainties related to this physiologically important mechanism of ion channel blockade. We also briefly review some of the important and well understood physiological roles of polyamine sensitive, strongly rectifying Kir channels, primarily of the Kir2 family.
Collapse
Affiliation(s)
- Victoria A Baronas
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
28
|
Fürst O, Mondou B, D'Avanzo N. Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Front Physiol 2014; 4:404. [PMID: 24409153 PMCID: PMC3884141 DOI: 10.3389/fphys.2013.00404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
Inward rectifier potassium (Kir) channels are integral membrane proteins charged with a key role in establishing the resting membrane potential of excitable cells through selective control of the permeation of K+ ions across cell membranes. In conjunction with secondary anionic phospholipids, members of this family are directly regulated by phosphoinositides (PIPs) in the absence of other proteins or downstream signaling pathways. Different Kir isoforms display distinct specificities for the activating PIPs but all eukaryotic Kir channels are activated by PI(4,5)P2. On the other hand, the bacterial KirBac1.1 channel is inhibited by PIPs. Recent crystal structures of eukaryotic Kir channels in apo and lipid bound forms reveal one specific binding site per subunit, formed at the interface of N- and C-terminal domains, just beyond the transmembrane segments and clearly involving some of the key residues previously identified as controlling PI(4,5)P2 sensitivity. Computational, biochemical, and biophysical approaches have attempted to address the energetic determinants of PIP binding and selectivity among Kir channel isoforms, as well as the conformational changes that trigger channel gating. Here we review our current understanding of the molecular determinants of PIP regulation of Kir channel activity, including in context with other lipid modulators, and provide further discussion on the key questions that remain to be answered.
Collapse
Affiliation(s)
- Oliver Fürst
- Groupe d'étude des Protéines Membranaires (GÉPROM), Physiologie, Université de Montréal Montréal, QC, Canada
| | - Benoit Mondou
- Groupe d'étude des Protéines Membranaires (GÉPROM), Physiologie, Université de Montréal Montréal, QC, Canada
| | - Nazzareno D'Avanzo
- Groupe d'étude des Protéines Membranaires (GÉPROM), Physiologie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
29
|
Zubcevic L, Bavro VN, Muniz JRC, Schmidt MR, Wang S, De Zorzi R, Venien-Bryan C, Sansom MSP, Nichols CG, Tucker SJ. Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains. J Biol Chem 2014; 289:143-51. [PMID: 24257749 PMCID: PMC3879539 DOI: 10.1074/jbc.m113.501833] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/04/2013] [Indexed: 01/22/2023] Open
Abstract
KirBac channels are prokaryotic homologs of mammalian inwardly rectifying potassium (Kir) channels, and recent structures of KirBac3.1 have provided important insights into the structural basis of gating in Kir channels. In this study, we demonstrate that KirBac3.1 channel activity is strongly pH-dependent, and we used x-ray crystallography to determine the structural changes that arise from an activatory mutation (S205L) located in the cytoplasmic domain (CTD). This mutation stabilizes a novel energetically favorable open conformation in which changes at the intersubunit interface in the CTD also alter the electrostatic potential of the inner cytoplasmic cavity. These results provide a structural explanation for the activatory effect of this mutation and provide a greater insight into the role of the CTD in Kir channel gating.
Collapse
Affiliation(s)
- Lejla Zubcevic
- From the Biological Physics Group, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Vassiliy N. Bavro
- From the Biological Physics Group, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- the School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Joao R. C. Muniz
- the Sao Carlos Institute of Physics, University of Sao Paulo, Sao Paulo SP 13560-970, Brazil
| | - Matthias R. Schmidt
- the Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Shizhen Wang
- the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | - Catherine Venien-Bryan
- Harvard Medical School, Boston, Massachusetts 02115
- the Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), CNRS-UMR 7590, Université Pierre et Marie Curie, 75005 Paris, France, and
| | - Mark S. P. Sansom
- the Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- the OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Colin G. Nichols
- the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen J. Tucker
- From the Biological Physics Group, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- the OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
30
|
D'Avanzo N, Lee SJ, Cheng WWL, Nichols CG. Energetics and location of phosphoinositide binding in human Kir2.1 channels. J Biol Chem 2013; 288:16726-16737. [PMID: 23564459 PMCID: PMC3675606 DOI: 10.1074/jbc.m113.452540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/03/2013] [Indexed: 11/06/2022] Open
Abstract
Kir2.1 channels are uniquely activated by phosphoinositide 4,5-bisphosphate (PI(4,5)P2) and can be inhibited by other phosphoinositides (PIPs). Using biochemical and computational approaches, we assess PIP-channel interactions and distinguish residues that are energetically critical for binding from those that alter PIP sensitivity by shifting the open-closed equilibrium. Intriguingly, binding of each PIP is disrupted by a different subset of mutations. In silico ligand docking indicates that PIPs bind to two sites. The second minor site may correspond to the secondary anionic phospholipid site required for channel activation. However, 96-99% of PIP binding localizes to the first cluster, which corresponds to the general PI(4,5)P2 binding location in recent Kir crystal structures. PIPs can encompass multiple orientations; each di- and triphosphorylated species binds with comparable energies and is favored over monophosphorylated PIPs. The data suggest that selective activation by PI(4,5)P2 involves orientational specificity and that other PIPs inhibit this activation through direct competition.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110.
| | - Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Wayland W L Cheng
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110.
| |
Collapse
|
31
|
D'Avanzo N, McCusker EC, Powl AM, Miles AJ, Nichols CG, Wallace BA. Differential lipid dependence of the function of bacterial sodium channels. PLoS One 2013; 8:e61216. [PMID: 23579615 PMCID: PMC3620320 DOI: 10.1371/journal.pone.0061216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/08/2013] [Indexed: 12/13/2022] Open
Abstract
The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative (22)Na(+) uptake into proteoliposomes containing a 3∶1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different "guest" glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Physiology and GEPROM (Group d'étude des Proteins Membranaires), Université de Montréal, Montréal, Québec, Canada
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Emily C. McCusker
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Andrew M. Powl
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Andrew J. Miles
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Colin G. Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (CN); (BW)
| | - B. A. Wallace
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (CN); (BW)
| |
Collapse
|
32
|
Ceccarini L, Masetti M, Cavalli A, Recanatini M. Ion conduction through the hERG potassium channel. PLoS One 2012; 7:e49017. [PMID: 23133669 PMCID: PMC3487835 DOI: 10.1371/journal.pone.0049017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 10/09/2012] [Indexed: 12/02/2022] Open
Abstract
The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway.
Collapse
Affiliation(s)
- Luisa Ceccarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- * E-mail:
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, Genova, Italy
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Jimenez V, Docampo R. Molecular and electrophysiological characterization of a novel cation channel of Trypanosoma cruzi. PLoS Pathog 2012; 8:e1002750. [PMID: 22685407 PMCID: PMC3369953 DOI: 10.1371/journal.ppat.1002750] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023] Open
Abstract
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes. The use of high-resolution electrophysiological techniques to study ion channels has provided a large amount of information on functional aspects of these important membrane proteins. However, the study of ion channels in unicellular eukaryotes has been limited to detection of ion conductances in large cells, gene identification studies, and pharmacological treatments to investigate the potential presence of different ion channels. In this paper we report the first identification, functional expression, purification, reconstitution, and electrophysiological characterization with single-molecule resolution of a novel cation channel (TcCat) from Trypanosoma cruzi. This is a novel channel that shares little sequence and functional similarities to other potassium channels and its peculiar characteristics could be important for the development of specific inhibitors with therapeutic potential against trypanosomiasis. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. We demonstrated the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. In addition, we obtained yeast mutants that will provide a useful genetic system for studies of the assembly and composition of the channel.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| |
Collapse
|
34
|
Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun 2012; 3:617. [PMID: 22233627 PMCID: PMC4277880 DOI: 10.1038/ncomms1625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Inward rectifier potassium (Kir) channels are physiologically regulated by a wide range of ligands that all act on a common gate, although structural details of gating are unclear. Here we show, using small molecule fluorescent probes attached to introduced cysteines, the molecular motions associated with gating of KirBac1.1 channels. The accessibility of the probes indicates a major barrier to fluorophore entry to the inner cavity. Changes in FRET between fluorophores attached to KirBac1.1 tetramers show that PIP2-induced closure involves tilting and rotational motions of secondary structural elements of the cytoplasmic domain that couple ligand binding to a narrowing of the cytoplasmic vestibule. The observed ligand-dependent conformational changes in KirBac1.1 provide a general model for ligand-induced Kir channel gating at the molecular level.
Collapse
|
35
|
Kumar R, Chadha S, Saraswat D, Bajwa JS, Li RA, Conti HR, Edgerton M. Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J Biol Chem 2011; 286:43748-43758. [PMID: 22033918 DOI: 10.1074/jbc.m111.311175] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Histatin 5 (Hst 5) is a salivary gland-secreted cationic peptide with potent fungicidal activity against Candida albicans. Hst 5 kills fungal cells following intracellular translocation, although its selective transport mechanism is unknown. C. albicans cells grown in the presence of polyamines were resistant to Hst 5 due to reduced intracellular uptake, suggesting that this cationic peptide may enter candidal cells through native yeast polyamine transporters. Based upon homology to known Saccharomyces cerevisiae polyamine permeases, we identified six C. albicans Dur polyamine transporter family members and propose a new nomenclature. Gene deletion mutants were constructed for C. albicans polyamine transporters Dur3, Dur31, Dur33, Dur34, and were tested for Hst 5 sensitivity and uptake of spermidine. We found spermidine uptake and Hst 5 mediated killing were decreased significantly in Δdur3, Δdur31, and Δdur3/Δdur31 strains; whereas a DUR3 overexpression strain increased Hst 5 sensitivity and higher spermidine uptake. Treatment of cells with a spermidine synthase inhibitor increased spermidine uptake and Hst 5 killing, whereas protonophores and cold treatment reduced spermidine uptake. Inhibition assays showed that Hst 5 is a competitive analog of spermidine for uptake into C. albicans cells, and that Hst 5 Ki values were increased by 80-fold in Δdur3/Δdur31 cells. Thus, Dur3p and Dur31p are preferential spermidine transporters used by Hst 5 for its entry into candidal cells. Understanding of polyamine transporter-mediated internalization of Hst 5 provides new insights into the uptake mechanism for C. albicans toxicity, and further suggests design for targeted fungal therapeutic agents.
Collapse
Affiliation(s)
- Rohitashw Kumar
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Sonia Chadha
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Darpan Saraswat
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Jashanjot Singh Bajwa
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Rui A Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Heather R Conti
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214.
| |
Collapse
|
36
|
Aimon S, Manzi J, Schmidt D, Poveda Larrosa JA, Bassereau P, Toombes GES. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One 2011; 6:e25529. [PMID: 21998666 PMCID: PMC3188570 DOI: 10.1371/journal.pone.0025529] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated ion channels are key players in cellular excitability. Recent studies suggest that their behavior can depend strongly on the membrane lipid composition and physical state. In vivo studies of membrane/channel and channel/channel interactions are challenging as membrane properties are actively regulated in living cells, and are difficult to control in experimental settings. We developed a method to reconstitute functional voltage-gated ion channels into cell-sized Giant Unilamellar Vesicles (GUVs) in which membrane composition, tension and geometry can be controlled. First, a voltage-gated potassium channel, KvAP, was purified, fluorescently labeled and reconstituted into small proteoliposomes. Small proteoliposomes were then converted into GUVs via electroformation. GUVs could be formed using different lipid compositions and buffers containing low (5 mM) or near-physiological (100 mM) salt concentrations. Protein incorporation into GUVs was characterized with quantitative confocal microscopy, and the protein density of GUVs was comparable to the small proteoliposomes from which they were formed. Furthermore, patch-clamp measurements confirmed that the reconstituted channels retained potassium selectivity and voltage-gated activation. GUVs containing functional voltage-gated ion channels will allow the study of channel activity, distribution and diffusion while controlling membrane state, and should prove a powerful tool for understanding how the membrane modulates cellular excitability.
Collapse
Affiliation(s)
- Sophie Aimon
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| | - John Manzi
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| | - Daniel Schmidt
- Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, New York, United States of America
| | | | - Patricia Bassereau
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| | - Gilman E. S. Toombes
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
37
|
Identification of a novel bacterial K(+) channel. J Membr Biol 2011; 242:153-64. [PMID: 21744086 DOI: 10.1007/s00232-011-9386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
In an attempt to explore unknown K(+) channels in mammalian cells, especially ATP-sensitive K(+) (K(ATP)) channels, we compared the sequence homology of Kir6.1 and Kir6.2, two pore-forming subunits of mammalian K(ATP) channel genes, with bacterial genes that code for selective proteins with confirmed or putative ion transport properties. BLAST analysis revealed that a prokaryotic gene (ydfJ) expressed in Escherichia coli K12 strain shared 8.6% homology with Kir6.1 and 8.3% with Kir6.2 genes. Subsequently, we cloned and sequenced ydfJ gene from E. coli K12 and heterologously expressed it in mammalian HEK-293 cells. The whole-cell patch-clamp technique was used to record ion channel currents generated by ydfJ-encoded protein. Heterologous expression of ydfJ gene in HEK-293 cells yielded a novel K(+) channel current that was inwardly rectified and had a reversal potential close to K(+) equilibrium potential. The expressed ydfJ channel was blocked reversibly by low concentration of barium in a dose-dependent fashion. Specific K(ATP) channel openers or blockers did not alter the K(+) current generated by ydfJ expression alone or ydfJ coexpressed with rvSUR1 or rvSUR2B subunits of K(ATP) channel complex. Furthermore, this coexpressed ydfJ/rvSUR1 channels were not inhibited by ATP dialysis. On the other hand, ydfJ K(+) currents were inhibited by protopine (a nonspecific K(+) channel blocker) but not by dofetilide (a HERG channel blocker). In summary, heterologously expressed prokaryotic ydfJ gene formed a novel functional K(+) channel in mammalian cells.
Collapse
|
38
|
Cheng WWL, D'Avanzo N, Doyle DA, Nichols CG. Dual-mode phospholipid regulation of human inward rectifying potassium channels. Biophys J 2011; 100:620-628. [PMID: 21281576 DOI: 10.1016/j.bpj.2010.12.3724] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 12/29/2022] Open
Abstract
The lipid bilayer is a critical determinant of ion channel activity; however, efforts to define the lipid dependence of channel function have generally been limited to cellular expression systems in which the membrane composition cannot be fully controlled. We reconstituted purified human Kir2.1 and Kir2.2 channels into liposomes of defined composition to study their phospholipid dependence of activity using (86)Rb(+) flux and patch-clamp assays. Our results demonstrate that Kir2.1 and Kir2.2 have two distinct lipid requirements for activity: a specific requirement for phosphatidylinositol 4,5-bisphosphate (PIP(2)) and a nonspecific requirement for anionic phospholipids. Whereas we previously showed that PIP(2) increases the channel open probability, in this work we find that activation by POPG increases both the open probability and unitary conductance. Oleoyl CoA potently inhibits Kir2.1 by antagonizing the specific requirement for PIP(2), and EPC appears to antagonize activation by the nonspecific anionic requirement. Phosphatidylinositol phosphates can act on both lipid requirements, yielding variable and even opposite effects on Kir2.1 activity depending on the lipid background. Mutagenesis experiments point to the role of intracellular residues in activation by both PIP(2) and anionic phospholipids. In conclusion, we utilized purified proteins in defined lipid membranes to quantitatively determine the phospholipid requirements for human Kir channel activity.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Declan A Doyle
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
39
|
D'Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One 2011; 6:e19393. [PMID: 21559361 PMCID: PMC3084843 DOI: 10.1371/journal.pone.0019393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/29/2011] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is the major sterol component of all mammalian cell plasma membranes and plays a critical role in cell function and growth. Previous studies have shown that cholesterol inhibits inward rectifier K+ (Kir) channels, but have not distinguished whether this is due directly to protein-sterol interactions or indirectly to changes in the physical properties of the lipid bilayer. Using purified bacterial and eukaryotic Kir channels reconstituted into liposomes of controlled lipid composition, we demonstrate by 86Rb+ influx assays that bacterial Kir channels (KirBac1.1 and KirBac3.1) and human Kir2.1 are all inhibited by cholesterol, most likely by locking the channels into prolonged closed states, whereas the enantiomer, ent-cholesterol, does not inhibit these channels. These data indicate that cholesterol regulates Kir channels through direct protein-sterol interactions likely taking advantage of an evolutionarily conserved binding pocket.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krzysztof Hyrc
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Decha Enkvetchakul
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Polyamine blockade of inwardly rectifying potassium (Kir) channels underlies their steep voltage--dependence observed in native cells. The structural determinants of polyamine blockade and the structure-activity profile of endogenous polyamines requires specialized methodology for characterizing polyamine interactions with Kir channels. Recent identification and growing interest in the structure and function of prokaryotic Kir channels (KirBacs) has driven the development of new techniques for measuring ion channel activity. Several methods for measuring polyamine interactions with prokaryotic and eukaryotic Kir channels are discussed.
Collapse
|
41
|
Paynter JJ, Andres-Enguix I, Fowler PW, Tottey S, Cheng W, Enkvetchakul D, Bavro VN, Kusakabe Y, Sansom MSP, Robinson NJ, Nichols CG, Tucker SJ. Functional complementation and genetic deletion studies of KirBac channels: activatory mutations highlight gating-sensitive domains. J Biol Chem 2010; 285:40754-61. [PMID: 20876570 PMCID: PMC3003375 DOI: 10.1074/jbc.m110.175687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2010] [Indexed: 12/16/2022] Open
Abstract
The superfamily of prokaryotic inwardly rectifying (KirBac) potassium channels is homologous to mammalian Kir channels. However, relatively little is known about their regulation or about their physiological role in vivo. In this study, we have used random mutagenesis and genetic complementation in K(+)-auxotrophic Escherichia coli and Saccharomyces cerevisiae to identify activatory mutations in a range of different KirBac channels. We also show that the KirBac6.1 gene (slr5078) is necessary for normal growth of the cyanobacterium Synechocystis PCC6803. Functional analysis and molecular dynamics simulations of selected activatory mutations identified regions within the slide helix, transmembrane helices, and C terminus that function as important regulators of KirBac channel activity, as well as a region close to the selectivity filter of KirBac3.1 that may have an effect on gating. In particular, the mutations identified in TM2 favor a model of KirBac channel gating in which opening of the pore at the helix-bundle crossing plays a far more important role than has recently been proposed.
Collapse
Affiliation(s)
| | | | - Philip W. Fowler
- the Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry
| | - Stephen Tottey
- the Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Wayland Cheng
- the OXION Initiative, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Decha Enkvetchakul
- the Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, and
| | | | | | - Mark S. P. Sansom
- the Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry
- the OXION Initiative, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Nigel J. Robinson
- the Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Colin G. Nichols
- the Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen J. Tucker
- the Department of Physics, Clarendon Laboratory, and
- the OXION Initiative, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
42
|
D'Avanzo N, Cheng WWL, Doyle DA, Nichols CG. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2010; 285:37129-32. [PMID: 20921230 DOI: 10.1074/jbc.c110.186692] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many ion channels are modulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)), but studies examining the PIP(2) dependence of channel activity have been limited to cell expression systems, which present difficulties for controlling membrane composition. We have characterized the PIP(2) dependence of purified human Kir2.1 and Kir2.2 activity using (86)Rb(+) flux and patch clamp assays in liposomes of defined composition. We definitively show that these channels are directly activated by PIP(2) and that PIP(2) is absolutely required in the membrane for channel activity. The results provide the first quantitative description of the dependence of eukaryotic Kir channel function on PIP(2) levels in the membrane; Kir2.1 shows measureable activity in as little as 0.01% PIP(2), and open probability increases to ∼0.4 at 1% PIP(2). Activation of Kir2.1 by phosphatidylinositol phosphates is also highly selective for PIP(2); PI, PI(4)P, and PI(5)P do not activate channels, and PI(3,4,5)P(3) causes minimal activity. The PIP(2) dependence of eukaryotic Kir activity is almost exactly opposite that of KirBac1.1, which shows marked inhibition by PIP(2). This raises the interesting hypothesis that PIP(2) activation of eukaryotic channels reflects an evolutionary adaptation of the channel to the appearance of PIP(2) in the eukaryotic cell membrane.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Gupta S, Bavro VN, D’Mello R, Tucker SJ, Vénien-Bryan C, Chance MR. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure 2010; 18:839-46. [PMID: 20637420 PMCID: PMC3124773 DOI: 10.1016/j.str.2010.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/21/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
Potassium channels are dynamic proteins that undergo large conformational changes to regulate the flow of K(+) ions across the cell membrane. Understanding the gating mechanism of these channels therefore requires methods for probing channel structure in both their open and closed conformations. Radiolytic footprinting is used to study the gating mechanism of the inwardly-rectifying potassium channel KirBac3.1. The purified protein stabilized in either open or closed conformations was exposed to focused synchrotron X-ray beams on millisecond timescales to modify solvent accessible amino acid side chains. These modifications were identified and quantified using high-resolution mass spectrometry. The differences observed between the closed and open states were then used to reveal local conformational changes that occur during channel gating. The results provide support for a proposed gating mechanism of the Kir channel and demonstrate a method of probing the dynamic gating mechanism of other integral membrane proteins and ion channels.
Collapse
Affiliation(s)
- Sayan Gupta
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland Ohio, 44022, USA
| | - Vassiliy N. Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | - Rhijuta D’Mello
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland Ohio, 44022, USA
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | - Catherine Vénien-Bryan
- OXION Initiative, Sherrington Building, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland Ohio, 44022, USA
| |
Collapse
|
44
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
45
|
Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM. Domain Reorientation and Rotation of an Intracellular Assembly Regulate Conduction in Kir Potassium Channels. Cell 2010; 141:1018-29. [DOI: 10.1016/j.cell.2010.05.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Balleza D, Quinto C, Elias D, Gómez-Lagunas F. A high-conductance cation channel from the inner membrane of the free-living soil bacteria Rhizobium etli. Arch Microbiol 2010; 192:595-602. [PMID: 20502878 DOI: 10.1007/s00203-010-0587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
Abstract
In this communication we reported the study of a cation channel present in the cytoplasmic membrane of the nitrogen fixing bacterium Rhizobium etli. Inner-membrane (IM) vesicles were purified and fused into planar lipid bilayers (PLBs), under voltage clamp conditions. We have found that fusion of IM-enriched vesicle fractions with these model membranes leads, mainly (>30% of 46 experiments), to the reconstitution of high-conductance channels. Following this strategy, the activity of a channel with main open conductance of 198 pS, in symmetrical 100 mM KCl, was recorded. The single-channel conductance increase to 653 pS in the presence of a 5:1 (cis to trans) gradient of KCl. The channel exhibits voltage dependency and a weak selectivity for cations showing a permeability ratios of P (Rb)/P (K) = 0.96, P (Na)/P (K) = 0.07, and a conductance ratio of gamma(Rb)/gamma(K) = 1.1. The channel here characterized represents a previously undescribed Rhizobium channel although its precise role in rhizobial physiology remains yet to be determined.
Collapse
Affiliation(s)
- Daniel Balleza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Ap. Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | | | | | | |
Collapse
|
47
|
D'Avanzo N, Cheng WWL, Wang S, Enkvetchakul D, Nichols CG. Lipids driving protein structure? Evolutionary adaptations in Kir channels. Channels (Austin) 2010; 4:139-41. [PMID: 21150302 DOI: 10.4161/chan.4.3.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many eukaryotic channels, transporters and receptors are activated by phosphatidyl inositol bisphosphate (PIP(2)) in the membrane, and every member of the eukaryotic inward rectifier potassium (Kir) channel family requires membrane PIP(2) for activity. In contrast, a bacterial homolog (KirBac1.1) is specifically inhibited by PIP(2). We speculate that a key evolutionary adaptation in eukaryotic channels is the insertion of additional linkers between transmembrane and cytoplasmic domains, revealed by new crystal structures, that convert PIP(2) inhibition to activation. Such an adaptation may reflect a novel evolutionary drive to protein structure, and that was necessary to permit channel function within the highly negatively charged membranes that evolved in the eukaryotic lineage.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
48
|
Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MSP. PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry 2009; 48:10926-33. [PMID: 19839652 PMCID: PMC2895862 DOI: 10.1021/bi9013193] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphatidylinositol bisphosphate (PIP(2)) is an activator of mammalian inwardly rectifying potassium (Kir) channels. Multiscale simulations, via a sequential combination of coarse-grained and atomistic molecular dynamics, enabled exploration of the interactions of PIP(2) molecules within the inner leaflet of a lipid bilayer membrane with possible binding sites on Kir channels. Three Kir channel structures were investigated: X-ray structures of KirBac1.1 and of a Kir3.1-KirBac1.3 chimera and a homology model of Kir6.2. Coarse-grained simulations of the Kir channels in PIP(2)-containing lipid bilayers identified the PIP(2)-binding site on each channel. These models of the PIP(2)-channel complexes were refined by conversion to an atomistic representation followed by molecular dynamics simulation in a lipid bilayer. All three channels were revealed to contain a conserved binding site at the N-terminal end of the slide (M0) helix, at the interface between adjacent subunits of the channel. This binding site agrees with mutagenesis data and is in the proximity of the site occupied by a detergent molecule in the Kir chimera channel crystal. Polar contacts in the coarse-grained simulations corresponded to long-lived electrostatic and H-bonding interactions between the channel and PIP(2) in the atomistic simulations, enabling identification of key side chains.
Collapse
Affiliation(s)
- Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
49
|
Koth CMM, Payandeh J. Strategies for the cloning and expression of membrane proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 76:43-86. [PMID: 20663478 DOI: 10.1016/s1876-1623(08)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Despite the determination of thousands of high-resolution structures of soluble proteins, many features of integral membrane proteins render them difficult targets for the structural biologist. Among these, the most important challenge is in expressing sufficient quantities of active protein to support downstream purification and structure determination efforts. Over 190 unique membrane protein structures have now been solved, and noticeable trends in successful expression strategies are beginning to emerge. A number of groups have also explored high-throughput (HTP) methods for membrane protein expression, with varying degrees of success. Here we review the current state of expressing membrane proteins for functional and structural studies. We first survey successful methods that have already yielded levels of membrane protein expression sufficient for structure determination. HTP methods are also examined since these aim to explore large numbers of targets and can predict reasonable starting points for many membrane proteins. Since HTP techniques may fail, particularly for certain classes of eukaryotic targets, detailed strategies for the expression of two prominent classes of eukaryotic protein families, G-protein-coupled receptors and ion channels, are also summarized.
Collapse
Affiliation(s)
- Christopher M M Koth
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | | |
Collapse
|