1
|
Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din TM, Bankston JR, Li J. The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels. J Gen Physiol 2025; 157:e202413669. [PMID: 39820972 PMCID: PMC11740781 DOI: 10.1085/jgp.202413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
2
|
Elhanafy E, Ahangar AA, Roth R, Gamal El-Din TM, Bankston JR, Li J. ELUCIDATING THE DIFFERENTIAL IMPACTS OF EQUIVALENT GATING-CHARGE MUTATIONS IN VOLTAGE-GATED SODIUM CHANNELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612021. [PMID: 39314455 PMCID: PMC11419121 DOI: 10.1101/2024.09.09.612021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 μs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our μs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
3
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
4
|
Eltokhi A, Lundstrom BN, Li J, Zweifel LS, Catterall WA, Gamal El-Din TM. Pathogenic gating pore current conducted by autism-related mutations in the Na V1.2 brain sodium channel. Proc Natl Acad Sci U S A 2024; 121:e2317769121. [PMID: 38564633 PMCID: PMC11009634 DOI: 10.1073/pnas.2317769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Brian Nils Lundstrom
- Department of Neurology in the Division of Epilepsy, Mayo Clinic, Rochester, MN55905
| | - Jin Li
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA98195
| | | | | |
Collapse
|
5
|
Eltokhi A, Catterall WA, Gamal El-Din TM. Cell-cycle arrest at the G1/S boundary enhances transient voltage-gated ion channel expression in human and insect cells. CELL REPORTS METHODS 2023; 3:100559. [PMID: 37751687 PMCID: PMC10545908 DOI: 10.1016/j.crmeth.2023.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 07/20/2023] [Indexed: 09/28/2023]
Abstract
Heterologous expression of recombinant ion channel subunits in cell lines is often limited by the presence of a low number of channels at the cell surface level. Here, we introduce a combination of two techniques: viral expression using the baculovirus system plus cell-cycle arrest at the G1/S boundary using either thymidine or hydroxyurea. This method achieved a manifold increase in the peak current density of expressed ion channels compared with the classical liposome-mediated transfection methods. The enhanced ionic current was accompanied by an increase in the density of gating charges, confirming that the increased yield of protein and ionic current reflects the functional localization of channels in the plasma membrane. This modified method of viral expression coordinated with the cell cycle arrest will pave the way to better decipher the structure and function of ion channels and their association with ion channelopathies.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
6
|
Kostritskii AY, Machtens JP. Domain- and state-specific shape of the electric field tunes voltage sensing in voltage-gated sodium channels. Biophys J 2023; 122:1807-1821. [PMID: 37077046 PMCID: PMC10209041 DOI: 10.1016/j.bpj.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
The ability to sense transmembrane voltage underlies most physiological roles of voltage-gated sodium (Nav) channels. Whereas the key role of their voltage-sensing domains (VSDs) in channel activation is well established, the molecular underpinnings of voltage coupling remain incompletely understood. Voltage-dependent energetics of the activation process can be described in terms of the gating charge that is defined by coupling of charged residues to the external electric field. The shape of the electric field within VSDs is therefore crucial for the activation of voltage-gated ion channels. Here, we employed molecular dynamics simulations of cardiac Nav1.5 and bacterial NavAb, together with our recently developed tool g_elpot, to gain insights into the voltage-sensing mechanisms of Nav channels via high-resolution quantification of VSD electrostatics. In contrast to earlier low-resolution studies, we found that the electric field within VSDs of Nav channels has a complex isoform- and domain-specific shape, which prominently depends on the activation state of a VSD. Different VSDs vary not only in the length of the region where the electric field is focused but also differ in their overall electrostatics, with possible implications in the diverse ion selectivity of their gating pores. Due to state-dependent field reshaping, not only translocated basic but also relatively immobile acidic residues contribute significantly to the gating charge. In the case of NavAb, we found that the transition between structurally resolved activated and resting states results in a gating charge of 8e, which is noticeably lower than experimental estimates. Based on the analysis of VSD electrostatics in the two activation states, we propose that the VSD likely adopts a deeper resting state upon hyperpolarization. In conclusion, our results provide an atomic-level description of the gating charge, demonstrate diversity in VSD electrostatics, and reveal the importance of electric-field reshaping for voltage sensing in Nav channels.
Collapse
Affiliation(s)
- Andrei Y Kostritskii
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Gamal El-Din TM. When the Gates Swing Open Only: Arrhythmia Mutations That Target the Fast Inactivation Gate of Na v1.5. Cells 2022; 11:cells11233714. [PMID: 36496974 PMCID: PMC9735811 DOI: 10.3390/cells11233714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Nav1.5 is the main voltage-gated sodium channel found in cardiac muscle, where it facilitates the fast influx of Na+ ions across the cell membrane, resulting in the fast depolarization phase-phase 0 of the cardiac action potential. As a result, it plays a major role in determining the amplitude and the upstroke velocity of the cardiac impulse. Quantitively, cardiac sodium channel activates in less than a millisecond to trigger the cardiac action potential and inactivates within 2-3 ms to facilitate repolarization and return to the resting state in preparation for firing the next action potential. Missense mutations in the gene that encodes Nav1.5 (SCN5A), change these time constants which leads to a wide spectrum of cardiac diseases ranging from long QT syndrome type 3 (LQT3) to sudden cardiac death. In this mini-review I will focus on the missense mutations in the inactivation gate of Nav1.5 that results in arrhythmia, attempting to correlate the location of the missense mutation to their specific phenotype.
Collapse
|
8
|
Naranjo D. A scenario for the origin of life: Volume regulation by bacteriorhodopsin required extremely voltage sensitive Na‐channels and very selective K‐channels. Bioessays 2022; 44:e2100210. [DOI: 10.1002/bies.202100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/25/2022]
Affiliation(s)
- David Naranjo
- Instituto de Neurociencia, Facultad de Ciencias Universidad de Valparaíso Playa Ancha Valparaíso Chile
| |
Collapse
|
9
|
Autism-associated mutations in K V7 channels induce gating pore current. Proc Natl Acad Sci U S A 2021; 118:2112666118. [PMID: 34728568 PMCID: PMC8609342 DOI: 10.1073/pnas.2112666118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.
Collapse
|
10
|
Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, Catterall WA. Structure of the Cardiac Sodium Channel. Cell 2019; 180:122-134.e10. [PMID: 31866066 DOI: 10.1016/j.cell.2019.11.041] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVβ subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yan Zhao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Mason ER, Wu F, Patel RR, Xiao Y, Cannon SC, Cummins TR. Resurgent and Gating Pore Currents Induced by De Novo SCN2A Epilepsy Mutations. eNeuro 2019; 6:ENEURO.0141-19.2019. [PMID: 31558572 PMCID: PMC6795554 DOI: 10.1523/eneuro.0141-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Over 150 mutations in the SCN2A gene, which encodes the neuronal Nav1.2 protein, have been implicated in human epilepsy cases. Of these, R1882Q and R853Q are two of the most commonly reported mutations. This study utilized voltage-clamp electrophysiology to characterize the biophysical effects of the R1882Q and R853Q mutations on the hNav1.2 channel, including their effects on resurgent current and gating pore current, which are not typically investigated in the study of Nav1.2 channel mutations. HEK cells transiently transfected with DNA encoding either wild-type (WT) or mutant hNav1.2 revealed that the R1882Q mutation induced a gain-of-function phenotype, including slowed fast inactivation, depolarization of the voltage dependence of inactivation, and increased persistent current. In this model system, the R853Q mutation primarily produced loss-of-function effects, including reduced transient current amplitude and density, hyperpolarization of the voltage dependence of inactivation, and decreased persistent current. The presence of a Navβ4 peptide (KKLITFILKKTREK-OH) in the pipette solution induced resurgent currents, which were increased by the R1882Q mutation and decreased by the R853Q mutation. Further study of the R853Q mutation in Xenopus oocytes indicated a reduced surface expression and revealed a robust gating pore current at negative membrane potentials, a function absent in the WT channel. This not only shows that different epileptogenic point mutations in hNav1.2 have distinct biophysical effects on the channel, but also illustrates that individual mutations can have complex consequences that are difficult to identify using conventional analyses. Distinct mutations may, therefore, require tailored pharmacotherapies in order to eliminate seizures.
Collapse
Affiliation(s)
- Emily R Mason
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1751
| | - Reesha R Patel
- Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yucheng Xiao
- School of Science, Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1751
| | - Theodore R Cummins
- School of Science, Biology Department Chair, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202
| |
Collapse
|
12
|
Abstract
A fundamental question in contemporary neuroscience is how the remarkable cellular diversity required for the intricate function of the nervous system is achieved. Here, we bridge the gap between a cellular machinery that is known to diversify the transcriptome and the existence of distinct neuronal populations that compose the Drosophila brain. Adenosine-to-inosine (A-to-I) RNA editing is a ubiquitous mechanism that generates transcriptomic diversity in cells by recoding certain adenosines within the pre-mRNA sequence into inosines. We present a spatial map of RNA editing across different neuronal populations in Drosophila brain. Each neuronal population has a distinct editing signature, with the majority of differential editing occurring in highly conserved regions of transcripts that encode ion channels and other essential neuronal genes. Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the Drosophila brain and show that different neuronal populations possess distinct RNA editing signatures. After purifying and sequencing RNA from genetically marked groups of neuronal nuclei, we identified a large number of editing sites and compared editing levels in hundreds of transcripts across nine functionally different neuronal populations. We found distinct editing repertoires for each population, including sites in repeat regions of the transcriptome and differential editing in highly conserved and likely functional regions of transcripts that encode essential neuronal genes. These changes are site-specific and not driven by changes in Adar expression, suggesting a complex, targeted regulation of editing levels in key transcripts. This fine-tuning of the transcriptome between different neurons by RNA editing may account for functional differences between distinct populations in the brain.
Collapse
|
13
|
Gamal El-Din TM, Lenaeus MJ, Ramanadane K, Zheng N, Catterall WA. Molecular dissection of multiphase inactivation of the bacterial sodium channel Na VAb. J Gen Physiol 2018; 151:174-185. [PMID: 30510035 PMCID: PMC6363407 DOI: 10.1085/jgp.201711884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/22/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated sodium channels have a conserved multiphase slow-inactivation process. Gamal El-Din et al. show that the early phase involves conformational changes at a critical threonine in the S6 segment, which are followed by a late phase mediated by the intracellular C-terminal domain. Homotetrameric bacterial voltage-gated sodium channels share major biophysical features with their more complex eukaryotic counterparts, including a slow-inactivation mechanism that reduces ion-conductance activity during prolonged depolarization through conformational changes in the pore. The bacterial sodium channel NaVAb activates at very negative membrane potentials and inactivates through a multiphase slow-inactivation mechanism. Early voltage-dependent inactivation during one depolarization is followed by late use-dependent inactivation during repetitive depolarization. Mutations that change the molecular volume of Thr206 in the pore-lining S6 segment can enhance or strongly block early voltage-dependent inactivation, suggesting that this residue serves as a molecular hub controlling the coupling of activation to inactivation. In contrast, truncation of the C-terminal tail enhances the early phase of inactivation yet completely blocks late use-dependent inactivation. Determination of the structure of a C-terminal tail truncation mutant and molecular modeling of conformational changes at Thr206 and the S6 activation gate led to a two-step model of these gating processes. First, bending of the S6 segment, local protein interactions dependent on the size of Thr206, and exchange of hydrogen-bonding partners at the level of Thr206 trigger pore opening followed by the early phase of voltage-dependent inactivation. Thereafter, conformational changes in the C-terminal tail lead to late use-dependent inactivation. These results have important implications for the sequence of conformational changes that lead to multiphase inactivation of NaVAb and other sodium channels.
Collapse
Affiliation(s)
| | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA.,Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Karthik Ramanadane
- Department of Pharmacology, University of Washington, Seattle, WA.,École Normal Supérieure, Cachan, France
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | | |
Collapse
|
14
|
Gamal El-Din TM, Lenaeus MJ, Catterall WA. Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective. Handb Exp Pharmacol 2018; 246:53-72. [PMID: 29043505 DOI: 10.1007/164_2017_61] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels initiate and propagate action potentials in excitable cells. They respond to membrane depolarization through opening, followed by fast inactivation that terminates the sodium current. This ON-OFF behavior of voltage-gated sodium channels underlays the coding of information and its transmission from one location in the nervous system to another. In this review, we explore and compare structural and functional data from prokaryotic and eukaryotic channels to infer the effects of evolution on sodium channel structure and function.
Collapse
Affiliation(s)
- Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA.
| | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA
| |
Collapse
|
15
|
Jiang D, Gamal El-Din TM, Ing C, Lu P, Pomès R, Zheng N, Catterall WA. Structural basis for gating pore current in periodic paralysis. Nature 2018; 557:590-594. [PMID: 29769724 PMCID: PMC6708612 DOI: 10.1038/s41586-018-0120-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Abstract
Potassium-sensitive Hypokalemic and Normokalemic Periodic Paralysis (HypoPP, NormoPP) are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness1,2. They are caused by mutations in one gating charge in an S4 transmembrane segment in the voltage sensor (VS) of voltage-gated sodium channel Nav1.4 or calcium channel Cav1.11,2. Mutations of the outermost arginine gating charges (R1 and R2) cause HypoPP1,2 by creating a pathogenic gating pore in the VS through which cations leak in the resting state3,4. Mutations of the third arginine gating charge (R3) cause NormoPP5 owing to cationic leak in activated/inactivated states6. Here we present high-resolution structures of these pathogenic gating pores in the model bacterial sodium channel NaVAb7,8. Mutation of R2 in NaVAb gives gating pore current in resting states, whereas mutation of R3 gives gating pore current in activated/inactivated states. Mutations R2G and R3G have no effect on backbone structures of VS, but create aqueous space near the hydrophobic constriction site (HCS) that controls gating charge movement through VS. The R3G mutation extends the extracellular aqueous cleft completely through the activated VS. Although the R2G mutation does not create a continuous aqueous pathway in the activated state, molecular modeling of the resting state reveals a complete water-accessible pathway. Crystal structures of NaVAb/R2G in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na+ permeation through the mutant gating pore in concert with conformational fluctuations of gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from these episodic diseases.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Christopher Ing
- Molecular Medicine, Hospital for Sick Children Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peilong Lu
- Department of Pharmacology, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
16
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Structures of closed and open states of a voltage-gated sodium channel. Proc Natl Acad Sci U S A 2017; 114:E3051-E3060. [PMID: 28348242 DOI: 10.1073/pnas.1700761114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial voltage-gated sodium channels (BacNavs) serve as models of their vertebrate counterparts. BacNavs contain conserved voltage-sensing and pore-forming domains, but they are homotetramers of four identical subunits, rather than pseudotetramers of four homologous domains. Here, we present structures of two NaVAb mutants that capture tightly closed and open states at a resolution of 2.8-3.2 Å. Introduction of two humanizing mutations in the S6 segment (NaVAb/FY: T206F and V213Y) generates a persistently closed form of the activation gate in which the intracellular ends of the four S6 segments are drawn tightly together to block ion permeation completely. This construct also revealed the complete structure of the four-helix bundle that forms the C-terminal domain. In contrast, truncation of the C-terminal 40 residues in NavAb/1-226 captures the activation gate in an open conformation, revealing the open state of a BacNav with intact voltage sensors. Comparing these structures illustrates the full range of motion of the activation gate, from closed with its orifice fully occluded to open with an orifice of ∼10 Å. Molecular dynamics and free-energy simulations confirm designation of NaVAb/1-226 as an open state that allows permeation of hydrated Na+, and these results also support a hydrophobic gating mechanism for control of ion permeation. These two structures allow completion of a closed-open-inactivated conformational cycle in a single voltage-gated sodium channel and give insight into the structural basis for state-dependent binding of sodium channel-blocking drugs.
Collapse
|
18
|
Abstract
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- a Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| |
Collapse
|
19
|
Vien TN, DeCaen PG. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:39-64. [PMID: 27586280 DOI: 10.1016/bs.ctm.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features.
Collapse
Affiliation(s)
- T N Vien
- Tufts University, Boston, MA, United States
| | - P G DeCaen
- Children's Hospital Boston, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Randolph AL, Mokrab Y, Bennett AL, Sansom MS, Ramsey IS. Proton currents constrain structural models of voltage sensor activation. eLife 2016; 5. [PMID: 27572256 PMCID: PMC5065317 DOI: 10.7554/elife.18017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.
Collapse
Affiliation(s)
- Aaron L Randolph
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Younes Mokrab
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ashley L Bennett
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This is an update on skeletal muscle sodium channelopathies since knowledge in the field have dramatically increased in the past years. RECENT FINDING The relationship between two phenotypes and SCN4A has been confirmed with additional cases that remain extremely rare: severe neonatal episodic laryngospasm mimicking encephalopathy, which should be actively searched for since patients respond well to sodium channel blockers; congenital myasthenic syndromes, which have the particularity to be the first recessive Nav1.4 channelopathy. Deep DNA sequencing suggests the contribution of other ion channels in the clinical expressivity of sodium channelopathies, which may be one of the factors modulating the latter. The increased knowledge of channel molecular structure, the quantity of sodium channel blockers, and the availability of preclinical models would permit a most personalized choice of medication for patients suffering from these debilitating neuromuscular diseases. SUMMARY Advances in the understanding of the molecular structure of voltage-gated sodium channels, as well as availability of preclinical models, would lead to improved medical care of patients suffering from skeletal muscle, as well as other sodium channelopathies.
Collapse
|
22
|
Abstract
BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties.
Collapse
Affiliation(s)
- A Pantazis
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - R Olcese
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
23
|
Moreau A, Gosselin-Badaroudine P, Chahine M. Gating pore currents, a new pathological mechanism underlying cardiac arrhythmias associated with dilated cardiomyopathy. Channels (Austin) 2016; 9:139-44. [PMID: 26046592 PMCID: PMC4594536 DOI: 10.1080/19336950.2015.1031937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated ion channels (VGIC) are transmembrane proteins responsible for the generation of electrical signals in excitable cells. VGIC were first described in 1952 by Hodgkin and Huxley,1 and have since been associated with various physiological functions such as propagating nerve impulses, locomotion, and cardiac excitability. VGIC include channels specialized in the selective passage of K+, Ca2+ Na+, or H+. They are composed of 2 main structures: the pore domain (PD) and the voltage sensor domain (VSD). The PD ensures the physiological flow of ions and is typically composed of 8 transmembrane segments (TM). The VSD detects voltage variations and is composed of 4 TM (S1-S4). Given their crucial physiological role, VGIC dysfunctions are associated with diverse pathologies known as ion channelopathies. These dysfunctions usually affect the membrane expression of ion channels or voltage-dependent conformational changes of the pore. However, an increasing number of ion channelopathies, including periodic paralysis, dilated cardiomyopathy (DCM) associated with cardiac arrhythmias, and peripheral nerve hyperexcitability (PNH), have been linked to the appearance of a new pathological mechanism involving the creation of an alternative permeation pathway through the normally non-conductive VSD of VGIC. This permeation pathway is called the gating pore or omega pore.
Collapse
Affiliation(s)
- Adrien Moreau
- a Centre de Recherche ; Institut Universitaire en Santé Mentale de Québec ; Quebec City , QC Canada
| | | | | |
Collapse
|
24
|
Armstrong CT, Mason PE, Anderson JLR, Dempsey CE. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci Rep 2016; 6:21759. [PMID: 26899474 PMCID: PMC4761985 DOI: 10.1038/srep21759] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/28/2016] [Indexed: 01/18/2023] Open
Abstract
Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.
Collapse
Affiliation(s)
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
25
|
Held K, Voets T, Vriens J. Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels. Rev Physiol Biochem Pharmacol 2016; 170:67-99. [DOI: 10.1007/112_2015_5003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Moreau A, Gosselin-Badaroudine P, Boutjdir M, Chahine M. Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents. Front Pharmacol 2015; 6:301. [PMID: 26733869 PMCID: PMC4689871 DOI: 10.3389/fphar.2015.00301] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City QC, Canada
| | | | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn NY, USA
| | - Mohamed Chahine
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec CityQC, Canada; Department of Medicine, Université Laval, Quebec CityQC, Canada
| |
Collapse
|
27
|
Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. ACTA ACUST UNITED AC 2015; 145:93-106. [PMID: 25624448 PMCID: PMC4306709 DOI: 10.1085/jgp.201411304] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nav1.5 channels bearing voltage-sensor domain mutations associated with atypical cardiac arrhythmias and dilated cardiomyopathy generate gating pore currents. The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Nav1.5 mutations (R222Q and R225W) located in the VSD are associated with atypical clinical phenotypes involving complex arrhythmias and dilated cardiomyopathy. Using the patch-clamp technique, in silico mutagenesis, and molecular dynamic simulations, we tested the hypothesis that these two mutations may generate gating pore currents, potentially accounting for their clinical phenotypes. Our findings suggest that the gating pore current generated by the R222Q and R225W mutations could constitute the underlying pathological mechanism that links Nav1.5 VSD mutations with human cardiac arrhythmias and dilatation of cardiac chambers.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Pascal Gosselin-Badaroudine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Lucie Delemotte
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Mohamed Chahine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada Department of Medicine, Université Laval, Québec City, Québec G1K 7P4, Canada
| |
Collapse
|
28
|
Abstract
Ion channels open and close in response to diverse stimuli, and the molecular events underlying these processes are extensively modulated by ligands of both endogenous and exogenous origin. In the past decade, high-resolution structures of several channel types have been solved, providing unprecedented details of the molecular architecture of these membrane proteins. Intrinsic conformational flexibility of ion channels critically governs their functions. However, the dynamics underlying gating mechanisms and modulations are obscured in the information from crystal structures. While nuclear magnetic resonance spectroscopic methods allow direct measurements of protein dynamics, they are limited by the large size of these membrane protein assemblies in detergent micelles or lipid membranes. Electron paramagnetic resonance (EPR) spectroscopy has emerged as a key biophysical tool to characterize structural dynamics of ion channels and to determine stimulus-driven conformational transition between functional states in a physiological environment. This review will provide an overview of the recent advances in the field of voltage- and ligand-gated channels and highlight some of the challenges and controversies surrounding the structural information available. It will discuss general methods used in site-directed spin labeling and EPR spectroscopy and illustrate how findings from these studies have narrowed the gap between high-resolution structures and gating mechanisms in membranes, and have thereby helped reconcile seemingly disparate models of ion channel function.
Collapse
|