1
|
Goudsward HJ, Ruiz-Velasco V, Stella SL, Herold PB, Holmes GM. Ghrelin Modulates Voltage-Gated Ca 2+ Channels through Voltage-Dependent and Voltage-Independent Pathways in Rat Gastric Vagal Afferent Neurons. Mol Pharmacol 2024; 106:253-263. [PMID: 39187389 PMCID: PMC11493335 DOI: 10.1124/molpharm.124.000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50) = -2.10 ± 0.44 and a maximal inhibition of 42.8 ± 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 ± 16.7% vs. 1.9 ± 2.5%, n = 6, P = 0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by the Gα i/o or Gα q/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition = 15.7 ± 10.6%, n = 8, P = 0.0327) and YM-254890 (15.2 ± 11.9%, n = 8, P = 0.0269) blocked ghrelin's effects on Ca2+ currents, as compared with control neurons (34.3 ± 18.9%, n = 8). These results indicate GHSR1a can couple to both Gα i/o and Gα q/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin's regulation of gastric vagal afferents. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insights into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.
Collapse
Affiliation(s)
- Hannah J Goudsward
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Salvatore L Stella
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Paul B Herold
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Gregory M Holmes
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
2
|
Pan X, Gao Y, Guan K, Chen J, Ji B. Ghrelin/GHSR System in Depressive Disorder: Pathologic Roles and Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7324-7338. [PMID: 39057075 PMCID: PMC11275499 DOI: 10.3390/cimb46070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays a dual role in experimental animals, increasing depressed behavior and decreasing anxiety. By combining several neuropeptides and traditional neurotransmitter systems to construct neural networks, this hormone modifies signals connected to depression. The present review focuses on the role of ghrelin in neuritogenesis, astrocyte protection, inflammatory factor production, and endocrine disruption in depression. Furthermore, ghrelin/GHSR can activate multiple signaling pathways, including cAMP/CREB/BDNF, PI3K/Akt, Jak2/STAT3, and p38-MAPK, to produce antidepressant effects, given which it is expected to become a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Xingli Pan
- School of Biological Sciences, Jining Medical University, Jining 272067, China;
| | - Yuxin Gao
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Kaifu Guan
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| |
Collapse
|
3
|
McCarthy CI, Mustafá ER, Cornejo MP, Yaneff A, Rodríguez SS, Perello M, Raingo J. Chlorpromazine, an Inverse Agonist of D1R-Like, Differentially Targets Voltage-Gated Calcium Channel (Ca V) Subtypes in mPFC Neurons. Mol Neurobiol 2023; 60:2644-2660. [PMID: 36694048 DOI: 10.1007/s12035-023-03221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity. On the other hand, D1R is highly expressed in the medial prefrontal cortex (mPFC), a brain area with important functions such as working memory. Here, we studied the impact of D1R-like constitutive activity and chlorpromazine (CPZ), an antipsychotic drug and D1R-like inverse agonist, on various neuronal CaV conductances, and we explored its effect on calcium-dependent neuronal functions in the mouse medial mPFC. Using ex vivo brain slices containing the mPFC and transfected HEK293T cells, we found that CPZ reduces CaV2.2 currents by occluding D1R-like constitutive activity, in agreement with a mechanism previously reported by our lab, whereas CPZ directly inhibits CaV1 currents in a D1R-like activity independent manner. In contrast, CPZ and D1R constitutive activity did not affect CaV2.1, CaV2.3, or CaV3 currents. Finally, we found that CPZ reduces excitatory postsynaptic responses in mPFC neurons. Our results contribute to understanding CPZ molecular targets in neurons and describe a novel physiological consequence of CPZ non-canonical action as a D1R-like inverse agonist in the mouse brain.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - María Paula Cornejo
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Li N, Li N, Yang L, Gu H, Ji J, Zhou H, Zhu Q, Yu M, Sun Y, Zhou Y. GHSR1a deficiency suppresses inhibitory drive on dCA1 pyramidal neurons and contributes to memory reinforcement. Cereb Cortex 2023; 33:2612-2625. [PMID: 35797708 DOI: 10.1093/cercor/bhac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a)-the receptor for orexigenic hormone ghrelin-is a G protein-coupled receptor that is widely distributed in the brain, including the hippocampus. Studies have demonstrated that genetic deletion of GHSR1a affects memory, suggesting the importance of ghrelin/GHSR1a signaling in cognitive control. However, current reports are controversial, and the mechanism underlying GHSR1a modulation of memory is uncertain. Here, we first report that global GHSR1a knockout enhances hippocampus-dependent memory, facilitates initial LTP in dorsal hippocampal Schaffer Collateral-CA1 synapses, and downregulates Akt activity in the hippocampus. Moreover, we show that the intrinsic excitability of GAD67+ interneurons-rather than neighboring pyramidal neurons in the dCA1-is suppressed by GHSR1a deletion, an effect that is antagonized by acute application of the Akt activator SC79. In addition, the inhibitory postsynaptic currents (IPSCs) on dCA1 pyramidal neurons are selectively reduced in mice with a GHSR1a deficiency. Finally, we demonstrate that selectively increasing the excitability of parvalbumin-expressing interneurons by hM3Dq-DREADDs increases IPSCs on dCA1 pyramidal neurons and normalizes memory in Ghsr1a KO mice. Our findings thus reveal a novel mechanism underlying memory enhancement of GHSR1a deficiency and herein support an adverse effect of GHSR1a signaling in hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Medicine, Qingdao Binhai University, 425 West Jialing River Rd, Qingdao, Shandong, 266555, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Huating Gu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Junjie Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Hao Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Qianqian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, 750 Agronomy Rd, College Station, TX, 77843, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
- Department of Physiology, Institute of Brain Sciences and Related Disorders, Qingdao University, 308 Ningxia Rd., Qingdao, Shandong, 266071, China
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, 16 Jiangsu Rd., Qingdao, Shandong, 266000, China
| |
Collapse
|
5
|
Hirono M, Nakata M. Ghrelin signaling in the cerebellar cortex enhances GABAergic transmission onto Purkinje cells. Sci Rep 2023; 13:2150. [PMID: 36750743 PMCID: PMC9905081 DOI: 10.1038/s41598-023-29226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Ghrelin, an orexigenic peptide ligand for growth hormone secretagogue receptor 1a (GHS-R1a), occurs not only in the stomach but also in the brain, and modulates neuronal activity and synaptic efficacy. Previous studies showed that GHS-R1a exists in the cerebellum, and ghrelin facilitates spontaneous firing of Purkinje cells (PCs). However, the effects of ghrelin on cerebellar GABAergic transmission have yet to be elucidated. We found that ghrelin enhanced GABAergic transmission between molecular layer interneurons (MLIs) and PCs using electrophysiological recordings in mouse cerebellar slices. This finding was consistent with the possibility that blocking synaptic transmission enhanced the ghrelin-induced facilitation of PC firing. Ghrelin profoundly increased the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) in PCs without affecting miniature or stimulation-evoked IPSCs, whereas it significantly facilitated spontaneous firing of MLIs. This facilitation of MLI spiking disappeared during treatments with blockers of GHS-R1a, type 1 transient receptor potential canonical (TRPC1) channels and KCNQ channels. These results suggest that both activating TRPC1 channels and inhibiting KCNQ channels occur downstream the ghrelin-GHS-R1a signaling pathway probably in somatodendritic sites of MLIs. Thus, ghrelin can control PC firing directly and indirectly via its modulation of GABAergic transmission, thereby impacting activity in cerebellar circuitry.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| | - Masanori Nakata
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| |
Collapse
|
6
|
Fernández E, McCarthy CI, Cerviño RH, Rodríguez SS, Yaneff A, Hernández J, Garrido V, Di Rocco F, Raingo J. Functional alterations of two novel MC4R mutations found in Argentinian pediatric patients with early onset obesity. Mol Cell Endocrinol 2023; 559:111777. [PMID: 36210601 DOI: 10.1016/j.mce.2022.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023]
Abstract
Loss-of-function mutations in melanocortin-4 receptor (MC4R) are the most common cause of monogenic obesity, a severe type of early-onset obesity. Our aim was to determine the prevalence of MC4R mutations in a cohort of 97 Argentinian children with early-onset obesity. We found two novel mutations (p.V52E and p.G233S) and estimated a prevalence of 2.1%. We investigated the pathogenicity of mutations in HEK293T cells expressing wild-type or mutant MC4R and found that both mutants exhibited reduced plasma membrane expression and altered agonist-induced cAMP responses, with no changes in basal activity. Besides, MC4R G233S mutant demonstrated an altered agonist-dependent inhibition of voltage-gated calcium channels type 2.2. Results using a Gαs protein inhibitor suggest that the G233S mutation could be recruiting a different G-protein signaling pathway. The identification of new mutations in MC4R and characterization of their functional impact provide tools for the diagnosis and treatment of monogenic obesity.
Collapse
Affiliation(s)
- Estefanía Fernández
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| | - Clara Inés McCarthy
- Laboratorio de Electrofisiología, IMBICE, CONICET, UNLP y CIC-PBA, La Plata, Buenos Aires, Argentina.
| | - Ramiro Hector Cerviño
- Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Silvia Susana Rodríguez
- Laboratorio de Electrofisiología, IMBICE, CONICET, UNLP y CIC-PBA, La Plata, Buenos Aires, Argentina.
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Julieta Hernández
- Servicio de Nutrición del Hospital de Niños "Sor María Ludovica" de La Plata, La Plata, Buenos Aires, Argentina.
| | - Verónica Garrido
- Servicio de Nutrición del Hospital de Niños "Sor María Ludovica" de La Plata, La Plata, Buenos Aires, Argentina.
| | - Florencia Di Rocco
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| | - Jesica Raingo
- Laboratorio de Electrofisiología, IMBICE, CONICET, UNLP y CIC-PBA, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Chen RB, Wang QY, Wang YY, Wang YD, Liu JH, Liao ZZ, Xiao XH. Feeding-induced hepatokines and crosstalk with multi-organ: A novel therapeutic target for Type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1094458. [PMID: 36936164 PMCID: PMC10020511 DOI: 10.3389/fendo.2023.1094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hyperglycemia, which can be caused by either an insulin deficit and/or insulin resistance, is the main symptom of Type 2 diabetes, a significant endocrine metabolic illness. Conventional medications, including insulin and oral antidiabetic medicines, can alleviate the signs of diabetes but cannot restore insulin release in a physiologically normal amount. The liver detects and reacts to shifts in the nutritional condition that occur under a wide variety of metabolic situations, making it an essential organ for maintaining energy homeostasis. It also performs a crucial function in glucolipid metabolism through the secretion of hepatokines. Emerging research shows that feeding induces hepatokines release, which regulates glucose and lipid metabolism. Notably, these feeding-induced hepatokines act on multiple organs to regulate glucolipotoxicity and thus influence the development of T2DM. In this review, we focus on describing how feeding-induced cross-talk between hepatokines, including Adropin, Manf, Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose tissue) affects metabolic disorders, thus revealing a novel approach for both controlling and managing of Type 2 diabetes as a promising medication.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Zhe-Zhen Liao,
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Zhe-Zhen Liao,
| |
Collapse
|
8
|
Mustafá ER, McCarthy CI, Portales AE, Cordisco Gonzalez S, Rodríguez SS, Raingo J. Constitutive activity of the dopamine (D 5 ) receptor, highly expressed in CA1 hippocampal neurons, selectively reduces Ca V 3.2 and Ca V 3.3 currents. Br J Pharmacol 2022; 180:1210-1231. [PMID: 36480023 DOI: 10.1111/bph.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CaV 3.1-3 currents differentially contribute to neuronal firing patterns. CaV 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about CaV 3 as targets of the constitutive activity of GPCRs is scarce. We investigate the impact of D5 recpetor constitutive activity, a GPCR with high levels of basal activity, on CaV 3 functionality. D5 recpetor and CaV 3 are expressed in the hippocampus and have been independently linked to pathophysiological states associated with epilepsy. EXPERIMENTAL APPROACH Our study models were HEK293T cells heterologously expressing D1 or D5 receptor and CaV 3.1-3, and mouse brain slices containing the hippocampus. We used chlorpromazine (D1 /D5 inverse agonist) and a D5 receptor mutant lacking constitutive activity as experimental tools. We measured CaV 3 currents and excitability parameters using the patch-clamp technique. We completed our study with computational modelling and imaging technique. KEY RESULTS We found a higher sensitivity to TTA-P2 (CaV 3 blocker) in CA1 pyramidal neurons obtained from chlorpromazine-treated animals compared with vehicle-treated animals. We found that CaV 3.2 and CaV 3.3-but not CaV 3.1-are targets of D5 receptor constitutive activity in HEK293T cells. Finally, we found an increased firing rate in CA1 pyramidal neurons from chlorpromazine-treated animals in comparison with vehicle-treated animals. Similar changes in firing rate were observed on a neuronal model with controlled CaV 3 currents levels. CONCLUSIONS AND IMPLICATIONS Native hippocampal CaV 3 and recombinant CaV 3.2-3 are sensitive to D5 receptor constitutive activity. Manipulation of D5 receptor constitutive activity could be a valuable strategy to control neuronal excitability, especially in exacerbated conditions such as epilepsy.
Collapse
Affiliation(s)
- Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Andrea Estefanía Portales
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Santiago Cordisco Gonzalez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| |
Collapse
|
9
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
10
|
Parrela JPSDS, Borkenhagen IR, Salmeron SRF, Lima TAL, Miranda GDS, Costermani HDO, Ricken CLRDS, Alves EV, Gomes RM, de Oliveira JC. Intrauterine malnutrition disrupts leptin and ghrelin milk hormones, programming rats. J Endocrinol 2022; 255:11-23. [PMID: 35904490 DOI: 10.1530/joe-21-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Herein, we assessed milk hormones, the biochemical composition of milk, and its association with neonatal body weight gain and metabolic homeostasis in weaned rats whose mothers were undernourished in the last third of pregnancy. From the 14th day of pregnancy until delivery, undernourished mothers had their food restricted by 50% (FR50), whereas control mothers were fed ad libitum. The litter size was adjusted to eight pups, and rats were weaned at 22 days old. Milk and blood from mothers, as well as blood and tissues from pups, were collected for further analyses. At birth, FR50 pups were smaller than control pups, and they exhibited hyperphagia and rapid catch-up growth during the suckling period. On day 12, the milk from FR50 mothers had higher energy content, glucose, total cholesterol, triglycerides, and acylated ghrelin but lower leptin and corticosterone levels. Interestingly, FR50 mothers were hypoglycemic and hyperleptinemic at the end of the nursing period. Weaned FR50 pups had an obese phenotype and exhibited insulin resistance, which was associated with hyperglycemia and hypertriglyceridemia; they also had high blood levels of total cholesterol, leptin, and acylated ghrelin. In addition, the protein expression of growth hormone secretagogue receptor (GHSR) in the hypothalamus was increased by almost 4-fold in FR50 pups. In summary, maternal calorie restriction during the last third of pregnancy disrupts energy and metabolic hormones in milk, induces pup hyperleptinemia and hyperghrelinemia, and upregulates their hypothalamic GHSR, thus suggesting that the hypothalamic neuroendocrine circuitry may be working to address the early onset of obesity.
Collapse
Affiliation(s)
- Jocemara Patrícia Silva de Souza Parrela
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Ingridys Regina Borkenhagen
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Sarah Ramany Faria Salmeron
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Thalyne Aparecida Leite Lima
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Ginislene Dias Souza Miranda
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Hercules de Oliveira Costermani
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Camila Luiza Rodrigues Dos Santos Ricken
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Ester Vieira Alves
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Júlio Cezar de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, Mato Grosso, Brazil
| |
Collapse
|
11
|
Yu M, Zhu QQ, Niu ML, Li N, Ren BQ, Yu TB, Zhou ZS, Guo JD, Zhou Y. Ghrelin infusion into the basolateral amygdala suppresses CTA memory formation in rats via the PI3K/Akt/mTOR and PLC/PKC signaling pathways. Acta Pharmacol Sin 2022; 43:2242-2252. [PMID: 35169271 PMCID: PMC9433413 DOI: 10.1038/s41401-022-00859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Ghrelin is a circulating orexigenic hormone that promotes feeding behavior and regulates metabolism in humans and rodents. We previously reported that local infusion of ghrelin into the basolateral amygdala (BLA) blocked memory acquisition for conditioned taste aversion (CTA) by activating growth hormone secretagogue receptor 1a. In this study, we further explored the underlying mechanism and signaling pathways mediating ghrelin modulation of CTA memory in rats. Pharmacological agents targeting distinct signaling pathways were infused into the BLA during conditioning. We showed that preadministration of the PI3K inhibitor LY294002 abolished the repressive effect of ghrelin on CTA memory. Moreover, LY294002 pretreatment prevented ghrelin from inhibiting Arc and zif268 mRNA expression in the BLA triggered by CTA memory retrieval. Preadministration of rapamycin eliminated the repressive effect of ghrelin, while Gsk3 inhibitors failed to mimic ghrelin's effect. In addition, PLC and PKC inhibitors microinfused in the BLA blocked ghrelin's repression of CTA acquisition. These results demonstrate that ghrelin signaling in the BLA shapes CTA memory via the PI3K/Akt/mTOR and PLC/PKC pathways. We conducted in vivo multichannel recordings from mouse BLA neurons and found that microinjection of ghrelin (20 µM) suppressed intrinsic excitability. By means of whole-cell recordings from rat brain slices, we showed that bath application of ghrelin (200 nM) had no effect on basal synaptic transmission or synaptic plasticity of BLA pyramidal neurons. Together, this study reveals the mechanism underlying ghrelin-induced interference with CTA memory acquisition in rats, i.e., suppression of intrinsic excitability of BLA principal neurons via the PI3K/Akt/mTOR and PLC/PKC pathways.
Collapse
Affiliation(s)
- Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian-Qian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Ming-Lu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Bai-Qing Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Teng-Bo Yu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhi-Shang Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China.
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
12
|
Fernandez G, Cabral A, De Francesco PN, Uriarte M, Reynaldo M, Castrogiovanni D, Zubiría G, Giovambattista A, Cantel S, Denoyelle S, Fehrentz JA, Tolle V, Schiöth HB, Perello M. GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner. Cell Mol Life Sci 2022; 79:277. [PMID: 35504998 PMCID: PMC11072678 DOI: 10.1007/s00018-022-04302-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Prolonged fasting is a major challenge for living organisms. An appropriate metabolic response to food deprivation requires the activation of the corticotropin-releasing factor-producing neurons of the hypothalamic paraventricular nucleus (PVHCRF neurons), which are a part of the hypothalamic-pituitary-adrenal axis (HPA), as well as the growth hormone secretagogue receptor (GHSR) signaling, whose activity is up- or down-regulated, respectively, by the hormones ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2). Since ghrelin treatment potently up-regulates the HPA axis, we studied the role of GHSR in mediating food deprivation-induced activation of the PVHCRF neurons in mice. METHODS We estimated the activation of the PVHCRF neurons, using immuno-staining against CRF and the marker of neuronal activation c-Fos in brain sections, and assessed plasma levels of corticosterone and glucose in different pharmacologically or genetically manipulated mouse models exposed, or not, to a 2-day food deprivation protocol. In particular, we investigated ad libitum fed or food-deprived male mice that: (1) lacked GHSR gene expression, (2) had genetic deletion of the ghrelin gene, (3) displayed neurotoxic ablation of the hypothalamic arcuate nucleus, (4) were centrally treated with an anti-ghrelin antibody to block central ghrelin action, (5) were centrally treated with a GHSR ligand that blocks ghrelin-evoked and constitutive GHSR activities, or (6) received a continuous systemic infusion of LEAP2(1-12). RESULTS We found that food deprivation results in the activation of the PVHCRF neurons and in a rise of the ghrelin/LEAP2 molar ratio. Food deprivation-induced activation of PVHCRF neurons required the presence and the signaling of GHSR at hypothalamic level, but not of ghrelin. Finally, we found that preventing the food deprivation-induced fall of LEAP2 reverses the activation of the PVHCRF neurons in food-deprived mice, although it has no effect on body weight or blood glucose. CONCLUSION Food deprivation-induced activation of the PVHCRF neurons involves ghrelin-independent actions of GHSR at hypothalamic level and requires a decrease of plasma LEAP2 levels. We propose that the up-regulation of the actions of GHSR associated to the fall of plasma LEAP2 level are physiologically relevant neuroendocrine signals during a prolonged fasting.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Guillermina Zubiría
- Laboratory of Neuroendocrinology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Andrés Giovambattista
- Laboratory of Neuroendocrinology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Sonia Cantel
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Severine Denoyelle
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, UMR-S 1266 INSERM, Paris, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
GHS-R1a activity suppresses synaptic function of primary cultured hippocampal neurons. Biochem Biophys Res Commun 2022; 602:91-97. [DOI: 10.1016/j.bbrc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
14
|
Portales AE, Mustafá ER, McCarthy CI, Cornejo MP, Couto PM, Gironacci MM, Caramelo JJ, Perelló M, Raingo J. ACE2 internalization induced by a SARS-CoV-2 recombinant protein is modulated by angiotensin II type 1 and bradykinin 2 receptors. Life Sci 2022; 293:120284. [PMID: 35038454 PMCID: PMC8758573 DOI: 10.1016/j.lfs.2021.120284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
AIMS Angiotensin-converting enzyme 2 (ACE2) is a key regulator of the renin-angiotensin system (RAS) recently identified as the membrane receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we aim to study whether two receptors from RAS, the angiotensin receptor type 1 (AT1R) and the bradykinin 2 receptor (B2R) modulate ACE2 internalization induced by a recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein. Also, we investigated the impact of ACE2 coexpression on AT1R and B2R functionality. MATERIALS AND METHODS To study ACE2 internalization, we assessed the distribution of green fluorescent protein (GFP) signal in HEK293T cells coexpressing GFP-tagged ACE2 and AT1R, or B2R, or AT1R plus B2R in presence of RBD alone or in combination with AT1R or B2R ligands. To estimate ACE2 internalization, we classified GFP signal distribution as plasma membrane uniform GFP (PMU-GFP), plasma membrane clustered GFP (PMC-GFP) or internalized GFP and calculated its relative frequency. Additionally, we investigated the effect of ACE2 coexpression on AT1R and B2R inhibitory action on voltage-gated calcium channels (CaV2.2) currents by patch-clamp technique. KEY FINDINGS RBD induced ACE2-GFP internalization in a time-dependent manner. RBD-induced ACE2-GFP internalization was increased by angiotensin II and reduced by telmisartan in cells coexpressing AT1R. RBD-induced ACE2-GFP internalization was strongly inhibited by B2R co-expression. This effect was mildly modified by bradykinin and rescued by angiotensin II in presence of AT1R. ACE2 coexpression impacted on B2R- and AT1R-mediated inhibition of CaV2.2 currents. SIGNIFICANCE Our work contributes to understand the role of RAS modulators in the susceptibility to SARS-CoV-2 infection and severity of COVID-19.
Collapse
Affiliation(s)
- Andrea Estefanía Portales
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Emilio Román Mustafá
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - María Paula Cornejo
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Paula Monserrat Couto
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mariela Mercedes Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Argentina
| | - Julio Javier Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mario Perelló
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina..
| |
Collapse
|
15
|
Li N, Xiao K, Mi X, Li N, Guo L, Wang X, Sun Y, Li GD, Zhou Y. Ghrelin signaling in dCA1 suppresses neuronal excitability and impairs memory acquisition via PI3K/Akt/GSK-3β cascades. Neuropharmacology 2022; 203:108871. [PMID: 34742928 DOI: 10.1016/j.neuropharm.2021.108871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Ghrelin is a circulating peptide hormone that promotes feeding and regulates metabolism in humans and rodents. The action of ghrelin is mediated by the growth hormone secretagogue receptor type 1a (GHSR-1a) that is widely distributed in the brain, including the hippocampus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology and memory. However, those findings are controversial, and the mechanism underlying ghrelin modulation of learning and memory is uncertain. Here, we report that micro-infusion of ghrelin in the CA1 region of the dorsal hippocampus during training specifically impairs memory acquisition. The activation of GHS-R1a and the subsequent PI3K/Akt/GSK3β signaling cascades are involved in this process. Moreover, we report that bath application of ghrelin suppresses the intrinsic excitability of dCA1 pyramidal neurons through activating GHS-R1a, and PI3K inhibitor LY294002 blocks ghrelin's effect. However, LY294002 fails to rescue ghrelin-induced LTP impairment. Our findings support an adverse effect of ghrelin-dependent activation of GHS-R1a on memory acquisition, and suggest that PI3K/Akt/GSK3β signaling-dependent repression of neuronal intrinsic excitability is an important novel mechanism underlying memory inhibition of ghrelin in the hippocampus.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kewei Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaorong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, United States
| | - Guo-Dong Li
- Department of Surgery, Valley Presbyterian Hospital, Van Nuys, CA, 91405, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China.
| |
Collapse
|
16
|
Mustafá ER, Cordisco González S, Damian M, Cantel S, Denoyelle S, Wagner R, Schiöth HB, Fehrentz JA, Banères JL, Perelló M, Raingo J. LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling. Front Pharmacol 2021; 12:712437. [PMID: 34447311 PMCID: PMC8383165 DOI: 10.3389/fphar.2021.712437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (CaV2.2). Recently, the liver-expressed antimicrobial peptide 2 (LEAP2) was recognized as a novel GHSR ligand, but the mechanism of action of LEAP2 on GHSR is not well understood. Here, we investigated the role of LEAP2 on the canonical and non-canonical modes of action of GHSR on CaV2.2 function. Using a heterologous expression system and patch-clamp recordings, we found that LEAP2 impairs the reduction of CaV2.2 currents induced by ghrelin-evoked and constitutive GHSR activities, acting as a GHSR antagonist and inverse agonist, respectively. We also found that LEAP2 prevents GHSR from modulating the effects of D2R signaling on CaV2.2 currents, and that the GHSR-binding N-terminal region LEAP2 underlies these effects. Using purified labeled receptors assembled into lipid nanodiscs and Forster Resonance Energy Transfer (FRET) assessments, we found that the N-terminal region of LEAP2 stabilizes an inactive conformation of GHSR that is dissociated from Gq protein and, consequently, reverses the effect of GHSR on D2R-dependent Gi activation. Thus, our results provide critical molecular insights into the mechanism mediating LEAP2 modulation of GHSR.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Santiago Cordisco González
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Renaud Wagner
- Plateforme IMPReSs, CNRS UMR7242, Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg, Strasbourg, France
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biothechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Mario Perelló
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| |
Collapse
|
17
|
McCarthy CI, Chou-Freed C, Rodríguez SS, Yaneff A, Davio C, Raingo J. Constitutive activity of dopamine receptor type 1 (D1R) increases CaV2.2 currents in PFC neurons. J Gen Physiol 2021; 152:151624. [PMID: 32259196 PMCID: PMC7201881 DOI: 10.1085/jgp.201912492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023] Open
Abstract
Alterations in dopamine receptor type 1 (D1R) density are associated with cognitive deficits of aging and schizophrenia. In the prefrontal cortex (PFC), D1R plays a critical role in the regulation of working memory, which is impaired in these cognitive deficit states, but the cellular events triggered by changes in D1R expression remain unknown. A previous report demonstrated that interaction between voltage-gated calcium channel type 2.2 (CaV2.2) and D1R stimulates CaV2.2 postsynaptic surface location in medial PFC pyramidal neurons. Here, we show that in addition to the occurrence of the physical receptor-channel interaction, constitutive D1R activity mediates up-regulation of functional CaV2.2 surface density. We performed patch-clamp experiments on transfected HEK293T cells and wild-type C57BL/6 mouse brain slices, as well as imaging experiments and cAMP measurements. We found that D1R coexpression led to ∼60% increase in CaV2.2 currents in HEK293T cells. This effect was occluded by preincubation with a D1/D5R inverse agonist, chlorpromazine, and by replacing D1R with a D1R mutant lacking constitutive activity. Moreover, D1R-induced increase in CaV2.2 currents required basally active Gs protein, as well as D1R-CaV2.2 interaction. In mice, intraperitoneal administration of chlorpromazine reduced native CaV currents’ sensitivity to ω-conotoxin-GVIA and their size by ∼49% in layer V/VI pyramidal neurons from medial PFC, indicating a selective effect on CaV2.2. Additionally, we found that reducing D1/D5R constitutive activity correlates with a decrease in the agonist-induced D1/D5R inhibitory effect on native CaV currents. Our results could be interpreted as a stimulatory effect of D1R constitutive activity on the number of CaV2.2 channels available for dopamine-mediated modulation. Our results contribute to the understanding of the physiological role of D1R constitutive activity and may explain the noncanonical postsynaptic distribution of functional CaV2.2 in PFC neurons.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Cambria Chou-Freed
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca 2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal 2021; 5:NS20200095. [PMID: 33664982 PMCID: PMC7905535 DOI: 10.1042/ns20200095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal voltage-gated Ca2+ (CaV) channels play a critical role in cellular excitability, synaptic transmission, excitation-transcription coupling and activation of intracellular signaling pathways. CaV channels are multiprotein complexes and their functional expression in the plasma membrane involves finely tuned mechanisms, including forward trafficking from the endoplasmic reticulum (ER) to the plasma membrane, endocytosis and recycling. Whether genetic or acquired, alterations and defects in the trafficking of neuronal CaV channels can have severe physiological consequences. In this review, we address the current evidence concerning the regulatory mechanisms which underlie precise control of neuronal CaV channel trafficking and we discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saloni Koshti
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Ribeiro LF, Catarino T, Carvalho M, Cortes L, Santos SD, Opazo PO, Ribeiro LR, Oliveiros B, Choquet D, Esteban JA, Peça J, Carvalho AL. Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Sci Signal 2021; 14:14/670/eabb1953. [PMID: 33593997 DOI: 10.1126/scisignal.abb1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845 Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor-dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning.
Collapse
Affiliation(s)
- Luís F Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Tatiana Catarino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Mário Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,MIT-Portugal Bioengineering Systems Doctoral Program, NOVA University of Lisbon, 1099-85, Lisboa, Portugal
| | - Luísa Cortes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Sandra D Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Patricio O Opazo
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France
| | - Lyn Rosenbrier Ribeiro
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, Cambridge CB2 0SL, UK
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France.,Bordeaux Imaging Center, UMS 3420, CNRS-Bordeaux University, US4 INSERM, 33000 Bordeaux, France
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
22
|
Cornejo MP, Mustafá ER, Cassano D, Banères JL, Raingo J, Perello M. The ups and downs of growth hormone secretagogue receptor signaling. FEBS J 2021; 288:7213-7229. [PMID: 33460513 DOI: 10.1111/febs.15718] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand. The existence of two ligands with contrary actions indicates that GHSR activity can be tightly regulated and that the receptor displays the capability to integrate such opposing inputs in order to provide a balanced intracellular signal. This article provides a summary of the current understanding of the biology of ghrelin, LEAP2 and GHSR and discusses the reconceptualization of the cellular and physiological implications of the ligand-regulated GHSR signaling, based on the latest findings.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier cedex 5, France
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| |
Collapse
|
23
|
Charalambous C, Lapka M, Havlickova T, Syslova K, Sustkova-Fiserova M. Alterations in Rat Accumbens Dopamine, Endocannabinoids and GABA Content During WIN55,212-2 Treatment: The Role of Ghrelin. Int J Mol Sci 2020; 22:ijms22010210. [PMID: 33379212 PMCID: PMC7795825 DOI: 10.3390/ijms22010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2–induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.
Collapse
Affiliation(s)
- Chrysostomos Charalambous
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 128 00 Prague 2, Czech Republic;
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics, Department of Organic Technology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic;
| | - Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
- Correspondence: ; Tel.: +420-267-102-450; Fax: +420-267-102-461
| |
Collapse
|
24
|
Xiao X, Bi M, Jiao Q, Chen X, Du X, Jiang H. A new understanding of GHSR1a--independent of ghrelin activation. Ageing Res Rev 2020; 64:101187. [PMID: 33007437 DOI: 10.1016/j.arr.2020.101187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled receptor (GPCR) family, is a functional receptor of ghrelin. The expression levels and activities of GHSR1a are affected by various factors. In past years, it has been found that the ghrelin-GHSR1a system can perform biological functions such as anti-inflammation, anti-apoptosis, and anti-oxidative stress. In addition to mediating the effect of ghrelin, GHSR1a also has abnormally high constitutive activity; that is, it can still transmit intracellular signals without activation of the ghrelin ligand. This constitutive activity affects brain functions, growth and development of the body; therefore, it has profound impacts on neurodegenerative diseases and some other age-related diseases. In addition, GHSR1a can also form homodimers or heterodimers with other GPCRs, affecting the release of neurotransmitters, appetite regulation, cell proliferation and insulin release. Therefore, further understanding of the constitutive activities and dimerization of GHSR1a will enable us to better clarify the characteristics of GHSR1a and provide more therapeutic targets for drug development. Here, we focus on the roles of GHSR1a in various biological functions and provide a comprehensive summary of the current research on GHSR1a to provide broader therapeutic prospects for age-related disease treatment.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
25
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Childs MD, Luyt LG. A Decade's Progress in the Development of Molecular Imaging Agents Targeting the Growth Hormone Secretagogue Receptor. Mol Imaging 2020; 19:1536012120952623. [PMID: 33104445 PMCID: PMC8865914 DOI: 10.1177/1536012120952623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The growth hormone secretagogue receptor 1a (GHSR), also called the ghrelin receptor, is a G protein-coupled receptor known to play an important metabolic role in the regulation of various physiological processes, including energy expenditure, growth hormone secretion, and cell proliferation. This receptor has been implicated in numerous health issues including obesity, gastrointestinal disorders, type II diabetes, and regulation of body weight in patients with Prader-Willi syndrome, and there has been growing interest in studying its mechanism of behavior to unlock further applications of GHSR-targeted therapeutics. In addition, the GHSR is expressed in various types of cancer including prostate, breast, and testicular cancers, while aberrant expression has been reported in cardiac disease. Targeted molecular imaging of the GHSR could provide insights into its role in biological processes related to these disease states. Over the past decade, imaging probes targeting this receptor have been discovered for the imaging modalities PET, SPECT, and optical imaging. High-affinity analogues of ghrelin, the endogenous ligand for the GHSR, as well as small molecule inhibitors have been developed and evaluated both in vitro and in pre-clinical models. This review provides a comprehensive overview of the molecular imaging agents targeting the GHSR reported to the end of 2019.
Collapse
Affiliation(s)
- Marina D Childs
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,Department of Medical Imaging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Meleine M, Mounien L, Atmani K, Ouelaa W, Bôle-Feysot C, Guérin C, Depoortere I, Gourcerol G. Ghrelin inhibits autonomic response to gastric distension in rats by acting on vagal pathway. Sci Rep 2020; 10:9986. [PMID: 32561800 PMCID: PMC7305309 DOI: 10.1038/s41598-020-67053-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Ghrelin is the only orexigenic peptide currently known and a potent prokinetic by promoting gastric motility but novel insights suggest that its role extends beyond satiety regulation. Whereas ghrelin was shown to provide somatic and colonic antinociception, its impact on gastric sensitivity is unknown even though stomach is a major ghrelin secreting tissue. Autonomic response to gastric mechanosensitivity was estimated by measuring blood pressure variation as a surrogate marker in response to gastric distension (GD) before and after ghrelin (or vehicle) administration. Involvement of spinal and vagal pathways in the ghrelin effect was studied by performing celiac ganglionectomy and subdiaphragmatic vagotomy respectively and by evaluating the expression of phosphorylated extracellular-regulated kinase 1/2 (p-ERK1/2) in dorsal root and nodose ganglia. Finally the phenotype of Ghrelin receptor expressing neurons within the nodose ganglia was determined by in situ hybridization and immunofluorescence. Ghrelin reduced blood pressure variation in response to GD except in vagotomized rats. Phosphorylated-ERK1/2 levels indicated that ghrelin reduced neuronal activation induced by GD in nodose ganglion. The effect of ghrelin on gastric mechanosensitivity was abolished by pre-treatment with antagonist [D-Lys3]-GHRP-6 (0.3 mg/kg i.v.). Immunofluorescence staining highlights the colocalization of Ghrelin receptor with ASIC3 and TRPV1 within gastric neurons of nodose ganglion. Ghrelin administration reduced autonomic response to gastric distension. This effect likely involved the Ghrelin receptor and vagal pathways.
Collapse
Affiliation(s)
- Mathieu Meleine
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and innovation, Rouen University, Rouen, France. .,Université Clermont Auvergne, Inserm U1107, NeuroDol, Clermont-Ferrand, France.
| | - Lourdes Mounien
- Center for Cardiovascular and Nutrition Research, (UMR 1260 INRA/1263 INSERM), Aix-Marseille University, Marseille, France
| | - Karim Atmani
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and innovation, Rouen University, Rouen, France
| | - Wassila Ouelaa
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and innovation, Rouen University, Rouen, France
| | - Christine Bôle-Feysot
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and innovation, Rouen University, Rouen, France
| | - Charlène Guérin
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and innovation, Rouen University, Rouen, France
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for GastroIntestinal Disorders, KU Leuven, Leuven, Belgium
| | - Guillaume Gourcerol
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and innovation, Rouen University, Rouen, France.,Department of Physiology, Rouen University Hospital, Rouen, France
| |
Collapse
|
28
|
Torz LJ, Osborne-Lawrence S, Rodriguez J, He Z, Cornejo MP, Mustafá ER, Jin C, Petersen N, Hedegaard MA, Nybo M, Damonte VM, Metzger NP, Mani BK, Williams KW, Raingo J, Perello M, Holst B, Zigman JM. Metabolic insights from a GHSR-A203E mutant mouse model. Mol Metab 2020; 39:101004. [PMID: 32339772 PMCID: PMC7242877 DOI: 10.1016/j.molmet.2020.101004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Binding of ghrelin to its receptor, growth hormone secretagogue receptor (GHSR), stimulates GH release, induces eating, and increases blood glucose. These processes may also be influenced by constitutive (ghrelin-independent) GHSR activity, as suggested by findings in short people with naturally occurring GHSR-A204E mutations and reduced food intake and blood glucose in rodents administered GHSR inverse agonists, both of which impair constitutive GHSR activity. In this study, we aimed to more fully determine the physiologic relevance of constitutive GHSR activity. Methods We generated mice with a GHSR mutation that replaces alanine at position 203 with glutamate (GHSR-A203E), which corresponds to the previously described human GHSR-A204E mutation, and used them to conduct ex vivo neuronal electrophysiology and in vivo metabolic assessments. We also measured signaling within COS-7 and HEK293T cells transfected with wild-type GHSR (GHSR-WT) or GHSR-A203E constructs. Results In COS-7 cells, GHSR-A203E resulted in lower baseline IP3 accumulation than GHSR-WT; ghrelin-induced IP3 accumulation was observed in both constructs. In HEK293T cells co-transfected with voltage-gated CaV2.2 calcium channel complex, GHSR-A203E had no effect on basal CaV2.2 current density while GHSR-WT did; both GHSR-A203E and GHSR-WT inhibited CaV2.2 current in the presence of ghrelin. In cultured hypothalamic neurons from GHSR-A203E and GHSR-deficient mice, native calcium currents were greater than those in neurons from wild-type mice; ghrelin inhibited calcium currents in cultured hypothalamic neurons from both GHSR-A203E and wild-type mice. In brain slices, resting membrane potentials of arcuate NPY neurons from GHSR-A203E mice were hyperpolarized compared to those from wild-type mice; the same percentage of arcuate NPY neurons from GHSR-A203E and wild-type mice depolarized upon ghrelin exposure. The GHSR-A203E mutation did not significantly affect body weight, body length, or femur length in the first ∼6 months of life, yet these parameters were lower in GHSR-A203E mice after 1 year of age. During a 7-d 60% caloric restriction regimen, GHSR-A203E mice lacked the usual marked rise in plasma GH and demonstrated an exaggerated drop in blood glucose. Administered ghrelin also exhibited reduced orexigenic and GH secretagogue efficacies in GHSR-A203E mice. Conclusions Our data suggest that the A203E mutation ablates constitutive GHSR activity and that constitutive GHSR activity contributes to the native depolarizing conductance of GHSR-expressing arcuate NPY neurons. Although the A203E mutation does not block ghrelin-evoked signaling as assessed using in vitro and ex vivo models, GHSR-A203E mice lack the usual acute food intake response to administered ghrelin in vivo. The GHSR-A203E mutation also blunts GH release, and in aged mice leads to reduced body length and femur length, which are consistent with the short stature of human carriers of the GHSR-A204E mutation. We generated mice with a GHSR mutation replacing Ala at position 203 with Glu. The A203E mutation ablates constitutive GHSR activity & hyperpolarizes NPY neurons. GHSR-A203E mice lack the usual orexigenic response to administered ghrelin. The GHSR-A203E mutation blunts GH release and causes reduced body length. This finding is consistent with short stature in human carriers of the GHSR-A204E mutation.
Collapse
Affiliation(s)
- Lola J Torz
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Juan Rodriguez
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhenyan He
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Emilio Román Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Chunyu Jin
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Nybo
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Martínez Damonte
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, La Plata, Buenos Aires, Argentina
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Chen X, Yu Y, Zheng P, Jin T, He M, Zheng M, Song X, Jones A, Huang XF. Olanzapine increases AMPK-NPY orexigenic signaling by disrupting H1R-GHSR1a interaction in the hypothalamic neurons of mice. Psychoneuroendocrinology 2020; 114:104594. [PMID: 32007669 DOI: 10.1016/j.psyneuen.2020.104594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Second generation antipsychotics, particularly olanzapine, induce severe obesity, which is associated with their antagonistic effect on the histamine H1 receptor (H1R). We have previously demonstrated that oral administration of olanzapine increases the concentration of neuropeptide Y (NPY) in the hypothalamus of rats, accompanied by hyperphagia and weight gain. However, it is unclear if the increased NPY after olanzapine administration is due to its direct effect on hypothalamic neurons and its H1R antagonistic property. In the present study, we showed that with an inverted U-shape dose-response curve, olanzapine increased NPY expression in the NPY-GFP hypothalamic neurons; however, this was not the case in the hypothalamic neurons of H1R knockout mice. Olanzapine inhibited the interaction of H1R and GHSR1a (ghrelin receptor) in the primary mouse hypothalamic neurons and NPY-GFP neurons examined by confocal fluorescence resonance energy transfer (FRET) technology. Furthermore, an H1R agonist, FMPH inhibited olanzapine activation of GHSR1a downstream signaling pAMPK and transcription factors of NPY (pFOXO1 and pCREB) in the hypothalamic NPY-GFP cell. However, an olanzapine analogue (E-Olan) with lower affinity to H1R presented negligible enhancement of pCREB within the nucleus of NPY neurons. These findings suggest that the H1R antagonist property of olanzapine inhibits the interaction of H1R and GHSR1a, activates GHSR1a downstream signaling pAMPK-FOXO1/pCREB and increases hypothalamic NPY: this could be one of the important molecular mechanisms of H1R antagonism of olanzapine-induced obesity in antipsychotic management of psychiatric disorders.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Endocrinology and Rheumatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Yinghua Yu
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, China.
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Tiantian Jin
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Meng He
- School of Chemistry, Wuhan University of Technology, Wuhan, China
| | - Mingxuan Zheng
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, China
| | - Xueqin Song
- School of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Alison Jones
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
30
|
Abizaid A, Hougland JL. Ghrelin Signaling: GOAT and GHS-R1a Take a LEAP in Complexity. Trends Endocrinol Metab 2020; 31:107-117. [PMID: 31636018 PMCID: PMC7299083 DOI: 10.1016/j.tem.2019.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Ghrelin and the growth hormone secretagogue receptor 1a (GHS-R1a) are important targets for disorders related to energy balance and metabolic regulation. Pharmacological control of ghrelin signaling is a promising avenue to address health issues involving appetite, weight gain, obesity, and related metabolic disorders, and may be an option for patients suffering from wasting conditions like cachexia. In this review, we summarize recent developments in the biochemistry of ghrelin and GHS-R1a signaling. These include unravelling the enzymatic transformations that generate active ghrelin and the discovery of multiple proteins that interact with ghrelin and GHS-R1a to regulate signaling. Furthermore, we propose that harnessing these processes will lead to highly selective treatments to address obesity, diabetes, and other metabolism-linked disorders.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
31
|
Cordisco Gonzalez S, Mustafá ER, Rodriguez SS, Perello M, Raingo J. Dopamine Receptor Type 2 and Ghrelin Receptor Coexpression Alters Ca V2.2 Modulation by G Protein Signaling Cascades. ACS Chem Neurosci 2020; 11:3-13. [PMID: 31808667 DOI: 10.1021/acschemneuro.9b00426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated calcium channels type 2.2 (CaV2.2) are activated by action potentials at presynaptic terminals, and their calcium current induces neurotransmitter release. In this context, regulating CaV2.2 is critical, and one of the most important mechanisms for doing so is through its G protein-coupled receptor (GPCR) activity. Two such GPCRs are the ghrelin (GHSR) and the dopamine type 2 (D2R) receptors. We previously demonstrated that constitutive GHSR activity reduces CaV2.2 forward trafficking and that ghrelin-induced GHSR activity inhibits CaV2.2 currents. On the other hand, dopamine-induced D2R activity also inhibits CaV2.2 currents. It has been recently shown that D2R and GHSR form heteromers in hypothalamic neurons. This interaction profoundly changes the signaling cascades activated by dopamine and is necessary for dopamine-dependent anorexia. Here we explored how D2R-GHSR coexpression in HEK293T cells modulates the effect that each GPCR has on CaV2.2. We found that D2R-GHSR coexpression reduces the inhibition of CaV2.2 currents by agonist-induced D2R activation and added a new source of basal CaV2.2 current inhibition to the one produced by GHSR solely expression. We investigated the signaling cascades implicated and found that constitutive GHSR activity, Gq protein, and Gβγ subunit play a critical role in these altered effects. Moreover, we found that the effect of D2R agonist on native calcium currents in hypothalamic neurons is reduced when both D2R and GHSR are overexpressed. In summary, our results allow us to propose a novel mechanism for controlling CaV2.2 currents involving the coexpression of two physiologically relevant GPCRs.
Collapse
|
32
|
Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN, Perello M. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner. Mol Metab 2019; 32:69-84. [PMID: 32029231 PMCID: PMC7005150 DOI: 10.1016/j.molmet.2019.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC→PVH projections are recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would promote morphological remodeling of the ARCAgRP/NPY→PVH projections in a GHSR-dependent manner. Methods We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the density and strength of ARCAgRP/NPY→PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the intensity of the fluorescent signal in the fluorescent area of the PVH. Results We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of the ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We also found that fasting-induced remodeling of ARCAgRP/NPY→PVH fibers and PVH activation are impaired in mice with pharmacological or genetic blockage of GHSR signaling. Conclusion This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon. The density and strength of ARCAgRP/NPY→PVH fibers increase in fasted mice. Remodeling of ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons. GHSR signaling is required for fasting-induced ARCAgRP/NPY→PVH projection remodeling.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - María J Tolosa
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Ángeles Rey Moggia
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gastón Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Torres-Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, El Aidy S, Ross P, Roy BL, Stanton C, Dinan TG, Cryan JF, Schellekens H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J 2019; 33:13546-13559. [DOI: 10.1096/fj.201901433r] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Shauna Wallace
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Silvia Arboleya
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Sahar El Aidy
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Barrile F, M'Kadmi C, De Francesco PN, Cabral A, García Romero G, Mustafá ER, Cantel S, Damian M, Mary S, Denoyelle S, Banères JL, Marie J, Raingo J, Fehrentz JA, Perelló M. Development of a novel fluorescent ligand of growth hormone secretagogue receptor based on the N-Terminal Leap2 region. Mol Cell Endocrinol 2019; 498:110573. [PMID: 31499133 DOI: 10.1016/j.mce.2019.110573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) was recently recognized as an endogenous ligand for the growth hormone secretagogue receptor (GHSR), which also is a receptor for the hormone ghrelin. LEAP2 blocks ghrelin-induced activation of GHSR and inhibits GHSR constitutive activity. Since fluorescence-based imaging and pharmacological analyses to investigate the biology of GHSR require reliable probes, we developed a novel fluorescent GHSR ligand based on the N-terminal LEAP2 sequence, hereafter named F-LEAP2. In vitro, F-LEAP2 displayed binding affinity and inverse agonism to GHSR similar to LEAP2. In a heterologous expression system, F-LEAP2 labeling was specifically observed in the surface of GHSR-expressing cells, in contrast to fluorescent ghrelin labeling that was mainly observed inside the GHSR-expressing cells. In mice, centrally-injected F-LEAP2 reduced ghrelin-induced food intake, in a similar fashion to LEAP2, and specifically labeled cells in GHSR-expressing brain areas. Thus, F-LEAP2 represents a valuable tool to study the biology of GHSR in vitro and in vivo.
Collapse
Affiliation(s)
- Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina
| | - Céline M'Kadmi
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Sophie Mary
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Séverine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Jacky Marie
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 34093, Montpellier, France.
| | - Mario Perelló
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Jeon SG, Hong SB, Nam Y, Tae J, Yoo A, Song EJ, Kim KI, Lee D, Park J, Lee SM, Kim JI, Moon M. Ghrelin in Alzheimer's disease: Pathologic roles and therapeutic implications. Ageing Res Rev 2019; 55:100945. [PMID: 31434007 DOI: 10.1016/j.arr.2019.100945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Ghrelin, which has many important physiological roles, such as stimulating food intake, regulating energy homeostasis, and releasing insulin, has recently been studied for its roles in a diverse range of neurological disorders. Despite the several functions of ghrelin in the central nervous system, whether it works as a therapeutic agent for neurological dysfunction has been unclear. Altered levels and various roles of ghrelin have been reported in Alzheimer's disease (AD), which is characterized by the accumulation of misfolded proteins resulting in synaptic loss and cognitive decline. Interestingly, treatment with ghrelin or with the agonist of ghrelin receptor showed attenuation in several cases of AD-related pathology. These findings suggest the potential therapeutic implications of ghrelin in the pathogenesis of AD. In the present review, we summarized the roles of ghrelin in AD pathogenesis, amyloid beta (Aβ) homeostasis, tau hyperphosphorylation, neuroinflammation, mitochondrial deficit, synaptic dysfunction and cognitive impairment. The findings from this review suggest that ghrelin has a novel therapeutic potential for AD treatment. Thus, rigorously designed studies are needed to establish an effective AD-modifying strategy.
Collapse
|
36
|
Mustafá ER, Cordisco Gonzalez S, Raingo J. Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels. Mol Neurobiol 2019; 57:722-735. [DOI: 10.1007/s12035-019-01738-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
|
37
|
Serrenho D, Santos SD, Carvalho AL. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front Cell Neurosci 2019; 13:205. [PMID: 31191250 PMCID: PMC6546032 DOI: 10.3389/fncel.2019.00205] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity of the neuronal circuits associated with feeding behavior is regulated by peripheral signals as a response to changes in the energy status of the body. These signals include glucose, free fatty acids, leptin and ghrelin and are released into circulation, being able to reach the brain. Ghrelin, a small peptide released from the stomach, is an orexigenic hormone produced in peripheral organs, and its action regulates food intake, body weight and glucose homeostasis. Behavioral studies show that ghrelin is implicated in the regulation of both hedonic and homeostatic feeding and of cognition. Ghrelin-induced synaptic plasticity has been described in neuronal circuits associated with these behaviors. In this review, we discuss the neuromodulatory mechanisms induced by ghrelin in regulating synaptic plasticity in three main neuronal circuits previously associated with feeding behaviors, namely hypothalamic (homeostatic feeding), ventral tegmental (hedonic and motivational feeding) and hippocampal (cognitive) circuits. Given the central role of ghrelin in regulating feeding behaviors, and the altered ghrelin levels associated with metabolic disorders such as obesity and anorexia, it is of paramount relevance to understand the effects of ghrelin on synaptic plasticity of neuronal circuits associated with feeding behaviors.
Collapse
Affiliation(s)
- Débora Serrenho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Sandra D Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Dos-Santos RC, Reis LC, Perello M, Ferguson AV, Mecawi AS. The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications. Ann N Y Acad Sci 2019; 1455:81-97. [PMID: 31008525 DOI: 10.1111/nyas.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, Argentina
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Martínez Damonte V, Rodríguez SS, Raingo J. Growth hormone secretagogue receptor constitutive activity impairs voltage-gated calcium channel-dependent inhibitory neurotransmission in hippocampal neurons. J Physiol 2018; 596:5415-5428. [PMID: 30199095 DOI: 10.1113/jp276256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Presynaptic CaV 2 voltage-gated calcium channels link action potentials arriving at the presynaptic terminal to neurotransmitter release. Hence, their regulation is essential to fine tune brain circuitry. CaV 2 channels are highly sensitive to G protein-coupled receptor (GPCR) modulation. Our previous data indicated that growth hormone secretagogue receptor (GHSR) constitutive activity impairs CaV 2 channels by decreasing their surface density. We present compelling support for the impact of CaV 2.2 channel inhibition by agonist-independent GHSR activity exclusively on GABA release in hippocampal cultures. We found that this selectivity arises from a high reliance of GABA release on CaV 2.2 rather than on CaV 2.1 channels. Our data provide new information on the effects of the ghrelin-GHSR system on synaptic transmission, suggesting a putative physiological role of the constitutive signalling of a GPCR that is expressed at high levels in brain areas with restricted access to its natural agonist. ABSTRACT Growth hormone secretagogue receptor (GHSR) displays high constitutive activity, independent of its endogenous ligand, ghrelin. Unlike ghrelin-induced GHSR activity, the physiological role of GHSR constitutive activity and the mechanisms that underlie GHSR neuronal modulation remain elusive. We previously demonstrated that GHSR constitutive activity modulates presynaptic CaV 2 voltage-gated calcium channels. Here we postulate that GHSR constitutive activity-mediated modulation of CaV 2 channels could be relevant in the hippocampus since this brain area has high GHSR expression but restricted access to ghrelin. We performed whole-cell patch-clamp in hippocampal primary cultures from E16- to E18-day-old C57BL6 wild-type and GHSR-deficient mice after manipulating GHSR expression with lentiviral transduction. We found that GHSR constitutive activity impairs CaV 2.1 and CaV 2.2 native calcium currents and that CaV 2.2 basal impairment leads to a decrease in GABA but not glutamate release. We postulated that this selective effect is related to a higher CaV 2.2 over CaV 2.1 contribution to GABA release (∼40% for CaV 2.2 in wild-type vs. ∼20% in wild-type GHSR-overexpressing cultures). This effect of GHSR constitutive activity is conserved in hippocampal brain slices, where GHSR constitutive activity reduces local GABAergic transmission of the granule cell layer (intra-granule cell inhibitory postsynaptic current (IPSC) size ∼-67 pA in wild-type vs. ∼-100 pA in GHSR-deficient mice), whereas the glutamatergic output from the dentate gyrus to CA3 remains unchanged. In summary, we found that GHSR constitutive activity impairs IPSCs both in hippocampal primary cultures and in brain slices through a CaV 2-dependent mechanism without affecting glutamatergic transmission.
Collapse
Affiliation(s)
- Valentina Martínez Damonte
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| | - Silvia Susana Rodríguez
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| | - Jesica Raingo
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| |
Collapse
|
40
|
Zhou J, Qin M, Wang H, He J, Fu H, Shi H, Liang Z, Tang G. Cav 1.2 and Cav 2.2 expression is regulated by different endogenous ghrelin levels in pancreatic acinar cells during acute pancreatitis. Int J Mol Med 2018; 41:2909-2916. [PMID: 29436604 DOI: 10.3892/ijmm.2018.3490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/07/2018] [Indexed: 11/05/2022] Open
Abstract
Ghrelin influences pancreatic endocrine and exocrine functions, regulates intracellular calcium [Ca2+]i levels, and has an anti-inflammatory role in acute pancreatitis. This study investigated the role of endogenous ghrelin in the expression of Cav 1.2 (L-type of Ca2+ channel) and Cav 2.2 (N-type of Ca2+ channel) in acute pancreatitis. For this purpose, acute edematous pancreatitis (AEP) and acute necrotizing pancreatitis (ANP) rat models were established. Cav 1.2 and Cav 2.2 expression was assessed by immunohistochemistry in the pancreatic tissues of rats; ghrelin, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) serum levels were detected using ELISA. Next, in AR42J cells with either knock-out or overexpression of ghrelin, Cav 1.2 and Cav 2.2 expression was examined using western blot analysis, and intracellular calcium [Ca2+]i was detected with confocal microscopy. In this study, the ghrelin serum level was highest in the ANP group and was higher in the AEP group than the normal group. Expression of Cav 1.2 and Cav 2.2 in the ANP and AEP groups was higher than in the respective control groups. The serum IL-1β and TNF-α levels were significantly higher in the ANP group compared to the other groups. Cav 1.2 and Cav 2.2 expression and [Ca2+]i decreased in ghrelin knockdown AR42J cells but increased in ghrelin overexpressing cells. In conclusion, Cav 1.2 and Cav 2.2 expression increased in ANP. The [Ca2+]i level, which is mediated by Cav 1.2 and Cav 2.2 expression, is directly regulated by ghrelin in pancreatic acinar cells, and serum ghrelin levels may be involved in the severity of acute pancreatitis.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Mengbin Qin
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huilin Wang
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiaping He
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hongzong Fu
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huirong Shi
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guodu Tang
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
41
|
Fernandez G, Cabral A, Andreoli MF, Labarthe A, M'Kadmi C, Ramos JG, Marie J, Fehrentz JA, Epelbaum J, Tolle V, Perello M. Evidence Supporting a Role for Constitutive Ghrelin Receptor Signaling in Fasting-Induced Hyperphagia in Male Mice. Endocrinology 2018; 159:1021-1034. [PMID: 29300858 DOI: 10.1210/en.2017-03101] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/21/2017] [Indexed: 01/22/2023]
Abstract
Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor highly expressed in the hypothalamus. In vitro studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions, we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were evaluated in ghrelin- or GHSR-deficient mice, only the latter displayed an ∼15% smaller hyperphagia, compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice treated with vehicle, whereas it was unaffected in mice centrally treated with the GHSR antagonists D-Lys3-growth hormone-releasing peptide 6 or JMV2959. Taken together, genetic models and pharmacological results support the notion that constitutive GHSR activity modulates the magnitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR signaling system could affect the set point of daily food intake, independently of plasma ghrelin levels, in situations of negative energy balance.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (Argentine Research Council, Scientific Research Commission of the Province of Buenos Aires and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (Argentine Research Council, Scientific Research Commission of the Province of Buenos Aires and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - María F Andreoli
- School of Biochemistry and Biological Sciences, National University of Litoral and Institute of Environmental Health, Santa Fe, Argentina
| | - Alexandra Labarthe
- Centre de Psychiatrie et Neurosciences Unité Mixte de Recherche Scientifique_S894 INSERM Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Céline M'Kadmi
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche Scientifique 5247 Centre National de la Recherche Scientifique-Université Montpellier-École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier, France
| | - Jorge G Ramos
- School of Biochemistry and Biological Sciences, National University of Litoral and Institute of Environmental Health, Santa Fe, Argentina
| | - Jacky Marie
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche Scientifique 5247 Centre National de la Recherche Scientifique-Université Montpellier-École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche Scientifique 5247 Centre National de la Recherche Scientifique-Université Montpellier-École Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neurosciences Unité Mixte de Recherche Scientifique_S894 INSERM Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Mécanismes Adaptatifs et Evolution, Unité Mixte de Recherche Scientifique 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France, Brunoy, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neurosciences Unité Mixte de Recherche Scientifique_S894 INSERM Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (Argentine Research Council, Scientific Research Commission of the Province of Buenos Aires and National University of La Plata), La Plata, Buenos Aires, Argentina
| |
Collapse
|
42
|
Sustkova-Fiserova M, Charalambous C, Havlickova T, Lapka M, Jerabek P, Puskina N, Syslova K. Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin. Int J Mol Sci 2017; 18:E2486. [PMID: 29165386 PMCID: PMC5713452 DOI: 10.3390/ijms18112486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
The opioid-induced rise of extracellular dopamine, endocannabinoid anandamide and γ-aminobutyric acid (GABA) concentrations triggered by opioids in the nucleus accumbens shell (NACSh) most likely participate in opioid reward. We have previously demonstrated that systemic administration of ghrelin antagonist (JMV2959) significantly decreased morphine-induced dopamine and anandamide (N-arachidonoylethanolamine, AEA) increase in the NACSh. Fentanyl is considered as a µ-receptor-selective agonist. The aim of this study was to test whether JMV2959, a growth hormone secretagogue receptor (GHS-R1A) antagonist, can influence the fentanyl-induced effects on anandamide, 2-arachidonoylglycerol (2-AG) and GABA in the NACSh and specify the involvement of GHS-R1A located in the ventral tegmental area (VTA) and nucleus accumbens (NAC). Using in vivo microdialysis in rats, we have found that pre-treatment with JMV2959 reversed dose dependently fentanyl-induced anandamide increases in the NACSh, resulting in a significant AEA decrease and intensified fentanyl-induced decreases in accumbens 2-AG levels, with both JMV2959 effects more expressed when administered into the NACSh in comparison to the VTA. JMV2959 pre-treatment significantly decreased the fentanyl-evoked accumbens GABA efflux and reduced concurrently monitored fentanyl-induced behavioural stimulation. Our current data encourage further investigation to assess if substances affecting GABA or endocannabinoid concentrations and action, such as GHS-R1A antagonists, can be used to prevent opioid-seeking behaviour.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Pavel Jerabek
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Nina Puskina
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 128 00 Prague 2, Czech Republic;
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT, Technicka 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
43
|
Mustafá ER, López Soto EJ, Martínez Damonte V, Rodríguez SS, Lipscombe D, Raingo J. Constitutive activity of the Ghrelin receptor reduces surface expression of voltage-gated Ca 2+ channels in a Ca Vβ-dependent manner. J Cell Sci 2017; 130:3907-3917. [PMID: 29038230 DOI: 10.1242/jcs.207886] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated Ca2+ (CaV) channels couple membrane depolarization to Ca2+ influx, triggering a range of Ca2+-dependent cellular processes. CaV channels are, therefore, crucial in shaping neuronal activity and function, depending on their individual temporal and spatial properties. Furthermore, many neurotransmitters and drugs that act through G protein coupled receptors (GPCRs), modulate neuronal activity by altering the expression, trafficking, or function of CaV channels. GPCR-dependent mechanisms that downregulate CaV channel expression levels are observed in many neurons but are, by comparison, less studied. Here we show that the growth hormone secretagogue receptor type 1a (GHSR), a GPCR, can inhibit the forwarding trafficking of several CaV subtypes, even in the absence of agonist. This constitutive form of GPCR inhibition of CaV channels depends on the presence of a CaVβ subunit. CaVβ subunits displace CaVα1 subunits from the endoplasmic reticulum. The actions of GHSR on CaV channels trafficking suggest a role for this signaling pathway in brain areas that control food intake, reward, and learning and memory.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Eduardo J López Soto
- Department of Neuroscience, Brown University; Sidney E. Frank Hall for Life Sciences, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Valentina Martínez Damonte
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Diane Lipscombe
- Department of Neuroscience, Brown University; Sidney E. Frank Hall for Life Sciences, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Jesica Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| |
Collapse
|
44
|
Berrout L, Isokawa M. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus. Brain Res 2017; 1678:20-26. [PMID: 28993142 DOI: 10.1016/j.brainres.2017.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/03/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers.
Collapse
Affiliation(s)
- Liza Berrout
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1W University Blvd., Brownsville, TX 78520, United States
| | - Masako Isokawa
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1W University Blvd., Brownsville, TX 78520, United States.
| |
Collapse
|
45
|
Cabral A, Cornejo MP, Fernandez G, De Francesco PN, Garcia-Romero G, Uriarte M, Zigman JM, Portiansky E, Reynaldo M, Perello M. Circulating Ghrelin Acts on GABA Neurons of the Area Postrema and Mediates Gastric Emptying in Male Mice. Endocrinology 2017; 158:1436-1449. [PMID: 28204197 DOI: 10.1210/en.2016-1815] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
Ghrelin is known to act on the area postrema (AP), a sensory circumventricular organ located in the medulla oblongata that regulates a variety of important physiological functions. However, the neuronal targets of ghrelin in the AP and their potential role are currently unknown. In this study, we used wild-type and genetically modified mice to gain insights into the neurons of the AP expressing the ghrelin receptor [growth hormone secretagogue receptor (GHSR)] and their role. We show that circulating ghrelin mainly accesses the AP but not to the adjacent nucleus of the solitary tract. Also, we show that both peripheral administration of ghrelin and fasting induce an increase of c-Fos, a marker of neuronal activation, in GHSR-expressing neurons of the AP, and that GHSR expression is necessary for the fasting-induced activation of AP neurons. Additionally, we show that ghrelin-sensitive neurons of the AP are mainly γ-aminobutyric acid (GABA)ergic, and that an intact AP is required for ghrelin-induced gastric emptying. Overall, we show that the capacity of circulating ghrelin to acutely induce gastric emptying in mice requires the integrity of the AP, which contains a population of GABA neurons that are a target of plasma ghrelin.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - María P Cornejo
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - Guadalupe Garcia-Romero
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - Jeffrey M Zigman
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Enrique Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata y Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1900 La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenas Aires, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Clarifying the Ghrelin System's Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int J Mol Sci 2017; 18:ijms18040859. [PMID: 28422060 PMCID: PMC5412441 DOI: 10.3390/ijms18040859] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin’s predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.
Collapse
|
47
|
Is Ghrelin Synthesized in the Central Nervous System? Int J Mol Sci 2017; 18:ijms18030638. [PMID: 28294994 PMCID: PMC5372651 DOI: 10.3390/ijms18030638] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.
Collapse
|
48
|
Agosti F, Cordisco Gonzalez S, Martinez Damonte V, Tolosa MJ, Di Siervi N, Schioth HB, Davio C, Perello M, Raingo J. Melanocortin 4 receptor constitutive activity inhibits L-type voltage-gated calcium channels in neurons. Neuroscience 2017; 346:102-112. [PMID: 28093215 DOI: 10.1016/j.neuroscience.2017.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.
Collapse
Affiliation(s)
- F Agosti
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - S Cordisco Gonzalez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - V Martinez Damonte
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - M J Tolosa
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - N Di Siervi
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - H B Schioth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - C Davio
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - M Perello
- Neurophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| | - J Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE) Universidad de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comision de Investigaciones de la Provincia de buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| |
Collapse
|
49
|
Shaban H, O’Connor R, Ovsepian SV, Dinan TG, Cryan JF, Schellekens H. Electrophysiological approaches to unravel the neurobiological basis of appetite and satiety: use of the multielectrode array as a screening strategy. Drug Discov Today 2017; 22:31-42. [DOI: 10.1016/j.drudis.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023]
|
50
|
Lufrano D, Trejo SA, Llovera RE, Salgueiro M, Fernandez G, Martínez Damonte V, González Flecha FL, Raingo J, Ermácora MR, Perelló M. Ghrelin binding to serum albumin and its biological impact. Mol Cell Endocrinol 2016; 436:130-40. [PMID: 27431015 DOI: 10.1016/j.mce.2016.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
Ghrelin is an octanoylated peptide hormone that plays a key role in the regulation of the body weight and glucose homeostasis. In plasma, ghrelin circulates bound to larger proteins whose identities are partially established. Here, we used size exclusion chromatography, mass spectrometry and isothermal titration microcalorimetry to show that ghrelin interacts with serum albumin. Furthermore, we found that such interaction displays an estimated dissociation constant (KD) in the micromolar range and involves albumin fatty-acid binding sites as well as the octanoyl moiety of ghrelin. Notably, albumin-ghrelin interaction reduces the spontaneous deacylation of the hormone. Both in vitro experiments-assessing ghrelin ability to inhibit calcium channels-and in vivo studies-evaluating ghrelin orexigenic effects-indicate that the binding to albumin affects the bioactivity of the hormone. In conclusion, our results suggest that ghrelin binds to serum albumin and that this interaction impacts on the biological activity of the hormone.
Collapse
Affiliation(s)
- Daniela Lufrano
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina
| | - Sebastián A Trejo
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina; Servei de Proteòmica i Biologia Estructural, Universitat Autònoma de Barcelona, Spain
| | - Ramiro E Llovera
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina
| | - Mariano Salgueiro
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Gimena Fernandez
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina
| | | | - F Luis González Flecha
- Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Jesica Raingo
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina
| | - Mario R Ermácora
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Mario Perelló
- Instituto Multidisciplinario de Biología Celular, Conicet, Argentina.
| |
Collapse
|