1
|
Liu X, Bian Z, Hu S, Dickinson CF, Benjamin MM, Jia J, Tian Y, Place A, Hanna GS, Luesch H, Croot P, Reddy MM, Thomas OP, Hardiman G, Puglisi MP, Yang M, Zhong Z, Lemasters JJ, Korte JE, Waters AL, Heltzel CE, Williamson RT, Strangman WK, Valeriote F, Tius MA, DiTullio GR, Ferreira D, Alekseyenko A, Wang S, Hamann MT, Wang X. The Chemistry of Phytoplankton. Chem Rev 2024; 124:13099-13177. [PMID: 39571071 PMCID: PMC11638913 DOI: 10.1021/acs.chemrev.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Phytoplankton have a high potential for CO2 capture and conversion. Besides being a vital food source at the base of oceanic and freshwater food webs, microalgae provide a critical platform for producing chemicals and consumer products. Enhanced nutrient levels, elevated CO2, and rising temperatures increase the frequency of algal blooms, which often have negative effects such as fish mortalities, loss of flora and fauna, and the production of algal toxins. Harmful algal blooms (HABs) produce toxins that pose major challenges to water quality, ecosystem function, human health, tourism, and the food web. These toxins have complex chemical structures and possess a wide range of biological properties with potential applications as new therapeutics. This review presents a balanced and comprehensive assessment of the roles of algal blooms in generating fixed carbon for the food chain, sequestering carbon, and their unique secondary metabolites. The structural complexity of these metabolites has had an unprecedented impact on structure elucidation technologies and total synthesis, which are highlighted throughout this review. In addition, the influence of biogeochemical environmental perturbations on algal blooms and their influence on biospheric environments is discussed. Lastly, we summarize work on management strategies and technologies for the control and treatment of HABs.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Zhiwei Bian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Shian Hu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Cody F. Dickinson
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Menny M. Benjamin
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jia Jia
- School
of Life Sciences, Shanghai University, Shanghai 200031, China
| | - Yintai Tian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Allen Place
- Institute
of Marine Biotechnology and Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - George S. Hanna
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development, University of Florida, Gainesville, Florida 32610, United States
- Program
in Cancer and Stem Cell Technology, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Peter Croot
- Irish
Centre
for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan
Institute, School of Natural Sciences, University
of Galway, Galway H91TK33, Ireland
| | - Maggie M. Reddy
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Olivier P. Thomas
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Gary Hardiman
- School of
Biological Sciences Institute for Global Food Security, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, U.K.
| | - Melany P. Puglisi
- Department
of Pharmaceutical Sciences, Chicago State
University, Chicago, Illinois 60628, United States
| | - Ming Yang
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhi Zhong
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - John J. Lemasters
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeffrey E. Korte
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Amanda L. Waters
- Department
of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Carl E. Heltzel
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Wendy K. Strangman
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Fred Valeriote
- Henry
Ford Health Systems, Detroit, Michigan 48202, United States
| | - Marcus A. Tius
- Department
of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Giacomo R. DiTullio
- Department
of Oceanography, College of Charleston, Charleston, South Carolina 29403, United States
| | - Daneel Ferreira
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Alexander Alekseyenko
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Shengpeng Wang
- State Key
Laboratory of Quality Research in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Macau 999078, China
| | - Mark T. Hamann
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Xiaojuan Wang
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| |
Collapse
|
2
|
Zhu S, Shi J, Zhang Y, Chen X, Shi T, Li L. Combination administration of alprazolam and N-Ethylmaleimide synergistically enhances sleep behaviors in mice with no potential CNS side effects. PeerJ 2024; 12:e17342. [PMID: 38737745 PMCID: PMC11086308 DOI: 10.7717/peerj.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background N-Ethylmaleimide (NEM), an agonist of the potassium chloride cotransporters 2 (KCC2) receptor, has been correlated with neurosuppressive outcomes, including decreased pain perception and the prevention of epileptic seizures. Nevertheless, its relationship with sleep-inducing effects remains unreported. Objective The present study aimed to investigate the potential enhancement of NEM on the sleep-inducing properties of alprazolam (Alp). Methods The test of the righting reflex was used to identify the appropriate concentrations of Alp and NEM for inducing sleep-promoting effects in mice. Total sleep duration and sleep quality were evaluated through EEG/EMG analysis. The neural mechanism underlying the sleep-promoting effect was examined through c-fos immunoreactivity in the brain using immunofluorescence. Furthermore, potential CNS-side effects of the combination Alp and NEM were assessed using LABORAS automated home-cage behavioral phenotyping. Results Combination administration of Alp (1.84 mg/kg) and NEM (1.0 mg/kg) significantly decreased sleep latency and increased sleep duration in comparison to administering 1.84 mg/kg Alp alone. This effect was characterized by a notable increase in REM duration. The findings from c-fos immunoreactivity indicated that NEM significantly suppressed neuron activation in brain regions associated with wakefulness. Additionally, combination administration of Alp and NEM showed no effects on mouse neural behaviors during automated home cage monitoring. Conclusions This study is the first to propose and demonstrate a combination therapy involving Alp and NEM that not only enhances the hypnotic effect but also mitigates potential CNS side effects, suggesting its potential application in treating insomnia.
Collapse
Affiliation(s)
- Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
3
|
Delpire E, Terker AS, Gagnon KB. Pharmacology of Compounds Targeting Cation-Chloride Cotransporter Physiology. Handb Exp Pharmacol 2024; 283:249-284. [PMID: 37563251 PMCID: PMC10823342 DOI: 10.1007/164_2023_692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Andrew S Terker
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kenneth B Gagnon
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW We recently localized a new K-Cl cotransporters-3 (KCC3) transporter to the apical membrane of type-B intercalated cells. This gives us an opportunity to revisit the roles of the KCC3 in kidney and integrate the new findings to our current knowledge of the biology of the bicarbonate secreting cells. RECENT FINDINGS Here, we review the basic properties of the K-Cl cotransporter with a particular attention to the responsiveness of the transporter to cell swelling. We summarize what is already known about KCC3b and discuss new information gained from our localizing of KCC3a in type-B intercalated cells. We integrate the physiology of KCC3a with the main function of the type-B cell, that is, bicarbonate secretion through the well characterized apical Cl-/HCO3- exchanger and the basolateral Na-HCO3 cotransporter. SUMMARY Both KCC3b and KCC3a seem to be needed for maintaining cell volume during enhanced inward cotransport of Na-glucose in proximal tubule and Na-HCO3 in intercalated cells. In addition, apical KCC3a might couple to pendrin function to recycle Cl-, particularly in conditions of low salt diet and therefore low Cl- delivery to the distal tubule. This function is critical in alkalemia, and KCC3a function in the pendrin-expressing cells may contribute to the K+ loss which is observed in alkalemia.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
6
|
Gibson JS, Rees DC. Emerging drug targets for sickle cell disease: shedding light on new knowledge and advances at the molecular level. Expert Opin Ther Targets 2023; 27:133-149. [PMID: 36803179 DOI: 10.1080/14728222.2023.2179484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION In sickle cell disease (SCD), a single amino acid substitution at β6 of the hemoglobin (Hb) chain replaces glutamate with valine, forming HbS instead of the normal adult HbA. Loss of a negative charge, and the conformational change in deoxygenated HbS molecules, enables formation of HbS polymers. These not only distort red cell morphology but also have other profound effects so that this simple etiology belies a complex pathogenesis with multiple complications. Although SCD represents a common severe inherited disorder with life-long consequences, approved treatments remain inadequate. Hydroxyurea is currently the most effective, with a handful of newer treatments, but there remains a real need for novel, efficacious therapies. AREAS COVERED This review summarizes important early events in pathogenesis to highlight key targets for novel treatments. EXPERT OPINION A thorough understanding of early events in pathogenesis closely associated with the presence of HbS is the logical starting point for identification of new targets rather than concentrating on more downstream effects. We discuss ways of reducing HbS levels, reducing the impact of HbS polymers, and of membrane events perturbing cell function, and suggest using the unique permeability of sickle cells to target drugs specifically into those more severely compromised.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| |
Collapse
|
7
|
Lu DCY, Hannemann A, Gibson JS. Does Plasma Inhibit the Activity of KCl Cotransport in Red Cells From LK Sheep? Front Physiol 2022; 13:904280. [PMID: 35685289 PMCID: PMC9171837 DOI: 10.3389/fphys.2022.904280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Red cells from LK sheep represent an important paradigm for control of KCl cotransport activity, as well as being important to sheep erythroid function. A previous report (Godart et al., 1997) suggested that autologous plasma markedly inhibits red cell KCC activity and identified the presence of the bicarbonate/CO2 buffer system as the probable cause. Findings were restricted, however, to red cells from patients with sickle cell disease (SCD) swollen anisotonically and carried out at a very high O2 tension (c.700 mmHg). It was therefore important to investigate the generality of the effect described and whether it was also relevant to the two main stimuli for KCC activity encountered most often by circulating red cells in vivo - low pH in active muscle beds during exercise and high urea concentrations in the renal medulla during antidiuresis. Results confirm that inhibition was significant in response to anisotonic swelling with KCC activity in MOPS-buffered saline (MBS) vs. bicarbonate-buffered saline (BBS) and in MBS vs. plasma both reduced (by about 25 and 50%, respectively). By contrast, however, inhibition was absent at low pH and in high concentrations of urea. These findings suggest therefore that red cell KCC activity represents an important membrane permeability in vivo in red cells suspended in plasma. They are relevant, in particular, to sheep red cells, and may also be important by extension to those of other species and to the abnormal red cells found in human patients with SCD.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
9
|
Zhang J, Cordshagen A, Medina I, Nothwang HG, Wisniewski JR, Winklhofer M, Hartmann AM. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS One 2020; 15:e0232967. [PMID: 32413057 PMCID: PMC7228128 DOI: 10.1371/journal.pone.0232967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
The pivotal role of KCC2 and NKCC1 in development and maintenance of fast inhibitory neurotransmission and their implication in severe human diseases arouse interest in posttranscriptional regulatory mechanisms such as (de)phosphorylation. Staurosporine (broad kinase inhibitor) and N-ethylmalemide (NEM) that modulate kinase and phosphatase activities enhance KCC2 and decrease NKCC1 activity. Here, we investigated the regulatory mechanism for this reciprocal regulation by mass spectrometry and immunoblot analyses using phospho-specific antibodies. Our analyses revealed that application of staurosporine or NEM dephosphorylates Thr1007 of KCC2, and Thr203, Thr207 and Thr212 of NKCC1. Dephosphorylation of Thr1007 of KCC2, and Thr207 and Thr212 of NKCC1 were previously demonstrated to activate KCC2 and to inactivate NKCC1. In addition, application of the two agents resulted in dephosphorylation of the T-loop and S-loop phosphorylation sites Thr233 and Ser373 of SPAK, a critical kinase in the WNK-SPAK/OSR1 signaling module mediating phosphorylation of KCC2 and NKCC1. Taken together, these results suggest that reciprocal regulation of KCC2 and NKCC1 via staurosporine and NEM is based on WNK-SPAK/OSR1 signaling. The key regulatory phospho-site Ser940 of KCC2 is not critically involved in the enhanced activation of KCC2 upon staurosporine and NEM treatment, as both agents have opposite effects on its phosphorylation status. Finally, NEM acts in a tissue-specific manner on Ser940, as shown by comparative analysis in HEK293 cells and immature cultured hippocampal neurons. In summary, our analyses identified phospho-sites that are responsive to staurosporine or NEM application. This provides important information towards a better understanding of the cooperative interactions of different phospho-sites.
Collapse
Affiliation(s)
- Jinwei Zhang
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Antje Cordshagen
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Igor Medina
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Aix-Marseille University UMR 1249, Marseille, France
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jacek R. Wisniewski
- Department of Proteomics and Signal Transduction, Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Michael Winklhofer
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
11
|
Lu DCY, Hannemann A, Wadud R, Rees DC, Brewin JN, Low PS, Gibson JS. The role of WNK in modulation of KCl cotransport activity in red cells from normal individuals and patients with sickle cell anaemia. Pflugers Arch 2019; 471:1539-1549. [PMID: 31729557 PMCID: PMC6892352 DOI: 10.1007/s00424-019-02327-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022]
Abstract
Abnormal activity of red cell KCl cotransport (KCC) is involved in pathogenesis of sickle cell anaemia (SCA). KCC-mediated solute loss causes shrinkage, concentrates HbS, and promotes HbS polymerisation. Red cell KCC also responds to various stimuli including pH, volume, urea, and oxygen tension, and regulation involves protein phosphorylation. The main aim of this study was to investigate the role of the WNK/SPAK/OSR1 pathway in sickle cells. The pan WNK inhibitor WNK463 stimulated KCC with an EC50 of 10.9 ± 1.1 nM and 7.9 ± 1.2 nM in sickle and normal red cells, respectively. SPAK/OSR1 inhibitors had little effect. The action of WNK463 was not additive with other kinase inhibitors (staurosporine and N-ethylmaleimide). Its effects were largely abrogated by pre-treatment with the phosphatase inhibitor calyculin A. WNK463 also reduced the effects of physiological KCC stimuli (pH, volume, urea) and abolished any response of KCC to changes in oxygen tension. Finally, although protein kinases have been implicated in regulation of phosphatidylserine exposure, WNK463 had no effect. Findings indicate a predominant role for WNKs in control of KCC in sickle cells but an apparent absence of downstream involvement of SPAK/OSR1. A more complete understanding of the mechanisms will inform pathogenesis whilst manipulation of WNK activity represents a potential therapeutic approach.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Anke Hannemann
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Rasiqh Wadud
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - John N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
12
|
Garneau AP, Slimani S, Tremblay LE, Fiola MJ, Marcoux AA, Isenring P. K +-Cl - cotransporter 1 (KCC1): a housekeeping membrane protein that plays key supplemental roles in hematopoietic and cancer cells. J Hematol Oncol 2019; 12:74. [PMID: 31296230 PMCID: PMC6624878 DOI: 10.1186/s13045-019-0766-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
During the 1970s, a Na+-independent, ouabain-insensitive, N-ethylmaleimide-stimulated K+-Cl- cotransport mechanism was identified in red blood cells for the first time and in a variety of cell types afterward. During and just after the mid-1990s, three closely related isoforms were shown to account for this mechanism. They were termed K+-Cl- cotransporter 1 (KCC1), KCC3, and KCC4 according to the nomenclature of Gillen et al. (1996) who had been the first research group to uncover the molecular identity of a KCC, that is, of KCC1 in rabbit kidney. Since then, KCC1 has been found to be the most widely distributed KCC isoform and considered to act as a housekeeping membrane protein. It has perhaps received less attention than the other isoforms for this reason, but as will be discussed in the following review, there is probably more to KCC1 than meets the eye. In particular, the so-called housekeeping gene also appears to play crucial and specific roles in normal as well as pathological hematopoietic and in cancer cells.
Collapse
Affiliation(s)
- A P Garneau
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, 900, rue Saint-Denis, Montréal (Qc), H2X 0A9, Canada
| | - S Slimani
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - L E Tremblay
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - M J Fiola
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - A A Marcoux
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - P Isenring
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada.
- L'Hôtel-Dieu de Québec Institution, 10, rue McMahon, Québec (Qc), G1R 2J6, Canada.
| |
Collapse
|
13
|
Huang H, Song S, Banerjee S, Jiang T, Zhang J, Kahle KT, Sun D, Zhang Z. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases. Aging Dis 2019; 10:626-636. [PMID: 31165006 PMCID: PMC6538211 DOI: 10.14336/ad.2018.0928] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
In recent years, cation-chloride cotransporters (CCCs) have drawn attention in the medical neuroscience research. CCCs include the family of Na+-coupled Cl- importers (NCC, NKCC1, and NKCC2), K+-coupled Cl- exporters (KCCs), and possibly polyamine transporters (CCC9) and CCC interacting protein (CIP1). For decades, CCCs have been the targets of several commonly used diuretic drugs, including hydrochlorothiazide, furosemide, and bumetanide. Genetic mutations of NCC and NKCC2 cause congenital renal tubular disorders and lead to renal salt-losing hypotension, secondary hyperreninemia, and hypokalemic metabolic alkalosis. New studies reveal that CCCs along with their regulatory WNK (Kinase with no lysine (K)), and SPAK (Ste20-related proline-alanine-rich kinase)/OSR1(oxidative stress-responsive kinase-1) are essential for regulating cell volume and maintaining ionic homeostasis in the nervous system, especially roles of the WNK-SPAK-NKCC1 signaling pathway in ischemic brain injury and hypersecretion of cerebrospinal fluid in post-hemorrhagic hydrocephalus. In addition, disruption of Cl- exporter KCC2 has an effect on synaptic inhibition, which may be involved in developing pain, epilepsy, and possibly some neuropsychiatric disorders. Interference with KCC3 leads to peripheral nervous system neuropathy as well as axon and nerve fiber swelling and psychosis. The WNK-SPAK/OSR1-CCCs complex emerges as therapeutic targets for multiple neurological diseases. This review will highlight these new findings.
Collapse
Affiliation(s)
- Huachen Huang
- Department of Neurology, The First Affiliate Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Suneel Banerjee
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tong Jiang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK.
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, USA.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pittsburgh, PA, USA.
- Correspondence should be addressed to: Dr. Dandan Sun, Department of Neurology, University of Pittsburgh, Pittsburgh, USA. . Dr. Zhongling Zhang, The First Affiliated Hospital, Harbin Medical University, China.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliate Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
- Correspondence should be addressed to: Dr. Dandan Sun, Department of Neurology, University of Pittsburgh, Pittsburgh, USA. . Dr. Zhongling Zhang, The First Affiliated Hospital, Harbin Medical University, China.
| |
Collapse
|
14
|
Sitprija V, Sitprija S. Marine toxins and nephrotoxicity:Mechanism of injury. Toxicon 2019; 161:44-49. [PMID: 30826470 DOI: 10.1016/j.toxicon.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 02/06/2023]
Abstract
Marine toxins are known among several causes of toxin induced renal injury. Enzymatic mechanism by phospholipase A2 is responsible for acute kidney injury (AKI) in sea snake envenoming without any change in cardiac output and systemic vascular resistance. Cnidarian toxins form pores in the cell membrane with Ca influx storm resulting in cell death. Among plankton toxins domoic acid, palytoxin and maitotoxin cause renal injury by ion transport into the cell through ion channels resulting in renal cell swelling and lysis. Okadaic acid, calyculin A, microcystin LR and nodularin cause AKI by serine threonine phosphatase inhibition and hyperphosphorylation with increased activity of Ca2+/calmodulin - dependent protein kinase II, increased cytosolic Ca2+, reactive oxygen species, caspase and P53. Renal injury by plankons is mostly subclinical and requires sensitive biomarker for diagnosis. In this respect repeated consumption of plankton toxin contaminated seafood is a risk of developing chronic renal disease. The subject deserves more clinical study and scientific attention.
Collapse
Affiliation(s)
- Visith Sitprija
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Rama 4 Road, Bangkok, 10330, Thailand.
| | - Siravit Sitprija
- Department of Biology, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
15
|
Garneau AP, Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Mac-Way F, Isenring P. Physiological roles and molecular mechanisms of K + -Cl - cotransport in the mammalian kidney and cardiovascular system: where are we? J Physiol 2019; 597:1451-1465. [PMID: 30659612 DOI: 10.1113/jp276807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
In the early 80s, renal microperfusion studies led to the identification of a basolateral K+ -Cl- cotransport mechanism in the proximal tubule, thick ascending limb of Henle and collecting duct. More than ten years later, this mechanism was found to be accounted for by three different K+ -Cl- cotransporters (KCC1, KCC3 and KCC4) that are differentially distributed along the renal epithelium. Two of these isoforms (KCC1 and KCC3) were also found to be expressed in arterial walls, the myocardium and a variety of neurons. Subsequently, valuable insights have been gained into the molecular and physiological properties of the KCCs in both the mammalian kidney and cardiovascular system. There is now robust evidence indicating that KCC4 sustains distal renal acidification and that KCC3 regulates myogenic tone in resistance vessels. However, progress in understanding the functional significance of these transporters has been slow, probably because each of the KCC isoforms is not identically distributed among species and some of them share common subcellular localizations with other KCC isoforms or sizeable conductive Cl- pathways. In addition, the mechanisms underlying the process of K+ -Cl- cotransport are still ill defined. The present review focuses on the knowledge gained regarding the roles and properties of KCCs in renal and cardiovascular tissues.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, Montreal University, 900, rue Saint-Denis, Montréal, (Qc) H2X 0A9
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - S Slimani
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - L E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| |
Collapse
|
16
|
Lauf PK, Sharma N, Adragna NC. Kinetic studies of K-Cl cotransport in cultured rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C274-C284. [PMID: 30649919 DOI: 10.1152/ajpcell.00002.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During aging, and development of atherosclerosis and cardiovascular disease (CVD), aortic vascular smooth muscle cells (VSMCs) transition from healthy contractile to diseased synthetic phenotypes. K-Cl cotransport (KCC) maintains cell volume and ion homeostasis in growth and differentiation, and hence is important for VSMC proliferation and migration. Therefore, KCC activity may play a role in the contractile-to-synthetic VSMC phenotypic transition. Early, medium, and late synthetic passage VSMCs were tested for specific cytoskeletal protein expression. KCC-mediated ouabain- and bumetanide-insensitive Rb+ (a K+ congener) influx was determined as Cl--dependent Rb+ influx at different external Rb+ and Cl- ion concentrations, [Rb+]o and [Cl-]o. Expressions of the cytoskeletal proteins α-actin, vimentin, and desmin fell from early through late synthetic VSMCs. KCC kinetic parameters, such as maximum velocity ( Vm), and apparent Cl- and Rb+ affinities ( Km), were calculated with Lineweaver-Burk, Hanes-Woolf, and Hill approximations. Vm values of both Rb+- and Cl--dependent influxes were of equal magnitude, commensurate with a KCC stoichiometry of unity, and rose threefold from early to late synthetic VSMCs. Hill coefficients for Rb+ and Cl- correlated with cell passage number, suggesting increased KCC ligand cooperativity. However, Km values for [Cl-]o were strikingly bimodal with 60-80 mM in early, ~20-30 mM in medium, and 60 mM in late passage cells. In contrast, Km values for [Rb+]o remained steady at ~17 mM. Since total KCC isoform expression was similar with cell passage, structure/function changes of the KCC signalosome may accompany the transition of aortic VSMCs from a healthy to a diseased phenotype.
Collapse
Affiliation(s)
- Peter K Lauf
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Department of Pathology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Neelima Sharma
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Norma C Adragna
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| |
Collapse
|
17
|
Cordshagen A, Busch W, Winklhofer M, Nothwang HG, Hartmann AM. Phosphoregulation of the intracellular termini of K +-Cl - cotransporter 2 (KCC2) enables flexible control of its activity. J Biol Chem 2018; 293:16984-16993. [PMID: 30201606 DOI: 10.1074/jbc.ra118.004349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
The pivotal role of K+-Cl- cotransporter 2 (KCC2) in inhibitory neurotransmission and severe human diseases fosters interest in understanding posttranslational regulatory mechanisms such as (de)phosphorylation. Here, the regulatory role of the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and Thr1008 was investigated by the use of alanine and aspartate mutants. Tl+-based flux analyses in HEK-293 cells demonstrated increased transport activity for S932D (mimicking phosphorylation) and T1008A (mimicking dephosphorylation), albeit to a different extent. Increased activity was due to changes in intrinsic activity, as it was not caused by increased cell-surface abundance. Substitutions of Ser31, Thr34, or Thr999 had no effect. Additionally, we show that the indirect actions of the known KCC2 activators staurosporine and N-ethylmaleimide (NEM) involved multiple phosphosites. S31D, T34A, S932A/D, T999A, or T1008A/D abrogated staurosporine mediated stimulation, and S31A, T34D, or S932D abolished NEM-mediated stimulation. This demonstrates for the first time differential effects of staurosporine and NEM on KCC2. In addition, the staurosporine-mediated effects involved both KCC2 phosphorylation and dephosphorylation with Ser932 and Thr1008 being bona fide target sites. In summary, our data reveal a complex phosphoregulation of KCC2 that provides the transporter with a toolbox for graded activity and integration of different signaling pathways.
Collapse
Affiliation(s)
- Antje Cordshagen
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Wiebke Busch
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, and.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Anna-Maria Hartmann
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences, .,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
18
|
Jennings ML. Carriers, exchangers, and cotransporters in the first 100 years of the Journal of General Physiology. J Gen Physiol 2018; 150:1063-1080. [PMID: 30030301 PMCID: PMC6080889 DOI: 10.1085/jgp.201812078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jennings reviews the many contributions of JGP articles to our current understanding of solute transporter mechanisms. Transporters, pumps, and channels are proteins that catalyze the movement of solutes across membranes. The single-solute carriers, coupled exchangers, and coupled cotransporters that are collectively known as transporters are distinct from conductive ion channels, water channels, and ATP-hydrolyzing pumps. The main conceptual framework for studying transporter mechanisms is the alternating access model, which comprises substrate binding and release events on each side of the permeability barrier and translocation events involving conformational changes between inward-facing and outward-facing conformational states. In 1948, the Journal of General Physiology began to publish work that focused on the erythrocyte glucose transporter—the first transporter to be characterized kinetically—followed by articles on the rates, stoichiometries, asymmetries, voltage dependences, and regulation of coupled exchangers and cotransporters beginning in the 1960s. After the dawn of cDNA cloning and sequencing in the 1980s, heterologous expression systems and site-directed mutagenesis allowed identification of the functional roles of specific amino acid residues. In the past two decades, structures of transport proteins have made it possible to propose specific models for transporter function at the molecular level. Here, we review the contribution of JGP articles to our current understanding of solute transporter mechanisms. Whether the topic has been kinetics, energetics, regulation, mutagenesis, or structure-based modeling, a common feature of these articles has been a quantitative, mechanistic approach, leading to lasting insights into the functions of transporters.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
19
|
Wilson CS, Mongin AA. The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci Lett 2018; 689:33-44. [PMID: 29329909 DOI: 10.1016/j.neulet.2018.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl-) fluxes via the inhibitory GABAA and glycine receptors. Here, we discuss the putative contribution of Cl- fluxes and intracellular Cl- to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl- in cellular physiology, (ii) recaps molecular identities and properties of Cl- transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl- in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl- levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl- conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl- cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl-/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl-]i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABAA and glycine receptor/Cl- channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl-] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl- in information processing within the CNS is expected to be significantly updated.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
20
|
Conway LC, Cardarelli RA, Moore YE, Jones K, McWilliams LJ, Baker DJ, Burnham MP, Bürli RW, Wang Q, Brandon NJ, Moss SJ, Deeb TZ. N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation. J Biol Chem 2017; 292:21253-21263. [PMID: 29092909 PMCID: PMC5766942 DOI: 10.1074/jbc.m117.817841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
K+/Cl- cotransporter 2 (KCC2) is selectively expressed in the adult nervous system and allows neurons to maintain low intracellular Cl- levels. Thus, KCC2 activity is an essential prerequisite for fast hyperpolarizing synaptic inhibition mediated by type A γ-aminobutyric acid (GABAA) receptors, which are Cl--permeable, ligand-gated ion channels. Consistent with this, deficits in the activity of KCC2 lead to epilepsy and are also implicated in neurodevelopmental disorders, neuropathic pain, and schizophrenia. Accordingly, there is significant interest in developing activators of KCC2 as therapeutic agents. To provide insights into the cellular processes that determine KCC2 activity, we have investigated the mechanism by which N-ethylmaleimide (NEM) enhances transporter activity using a combination of biochemical and electrophysiological approaches. Our results revealed that, within 15 min, NEM increased cell surface levels of KCC2 and modulated the phosphorylation of key regulatory residues within the large cytoplasmic domain of KCC2 in neurons. More specifically, NEM increased the phosphorylation of serine 940 (Ser-940), whereas it decreased phosphorylation of threonine 1007 (Thr-1007). NEM also reduced with no lysine (WNK) kinase phosphorylation of Ste20-related proline/alanine-rich kinase (SPAK), a kinase that directly phosphorylates KCC2 at residue Thr-1007. Mutational analysis revealed that Thr-1007 dephosphorylation mediated the effects of NEM on KCC2 activity. Collectively, our results suggest that compounds that either increase the surface stability of KCC2 or reduce Thr-1007 phosphorylation may be of use as enhancers of KCC2 activity.
Collapse
Affiliation(s)
- Leslie C Conway
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts 02111
| | - Ross A Cardarelli
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts 02111
| | - Yvonne E Moore
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Karen Jones
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park SK10 4TG, United Kingdom
| | - Lisa J McWilliams
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - David J Baker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Matthew P Burnham
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park SK10 4TG, United Kingdom
| | - Roland W Bürli
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, United Kingdom, and
| | - Qi Wang
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts 02111
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451
| | - Nicholas J Brandon
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts 02111
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451
| | - Stephen J Moss
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts 02111,
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Tarek Z Deeb
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
21
|
Abstract
WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream targets (the SPAK/OSR1 kinases and the cation-Cl- cotransporters [CCCs]), comprise a signaling cascade essential for ion homeostasis in the kidney and nervous system. Recent work has furthered our understanding of the WNKs in epithelial transport, cell volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in immune cell function and cell proliferation.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jinwei Zhang
- Departments of Neurosurgery, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA.
| |
Collapse
|
22
|
Delpire E, Kahle KT. The KCC3 cotransporter as a therapeutic target for peripheral neuropathy. Expert Opin Ther Targets 2017; 21:113-116. [PMID: 28019725 DOI: 10.1080/14728222.2017.1275569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eric Delpire
- a Departments of Anesthesiology , Molecular Physiology & Biophysics, and Brain Institute, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Kristopher T Kahle
- b Departments of Neurosurgery , Pediatrics and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
23
|
Zhang J, Gao G, Begum G, Wang J, Khanna AR, Shmukler BE, Daubner GM, de los Heros P, Davies P, Varghese J, Bhuiyan MIH, Duan J, Zhang J, Duran D, Alper SL, Sun D, Elledge SJ, Alessi DR, Kahle KT. Functional kinomics establishes a critical node of volume-sensitive cation-Cl - cotransporter regulation in the mammalian brain. Sci Rep 2016; 6:35986. [PMID: 27782176 PMCID: PMC5080614 DOI: 10.1038/srep35986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation - a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl--sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl- uptake and stimulation of KCC3-mediated Cl- extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought "Cl-/volume-sensitive kinase" of the cation-Cl- cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.
Collapse
Affiliation(s)
- Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Geng Gao
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Arjun R. Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Boris E. Shmukler
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Gerrit M. Daubner
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paola de los Heros
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | - Jinjing Duan
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Jin Zhang
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Daniel Duran
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Seth L. Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115 USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Kristopher T. Kahle
- Departments of Pediatrics and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
24
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
25
|
Kahle KT, Delpire E. Kinase-KCC2 coupling: Cl- rheostasis, disease susceptibility, therapeutic target. J Neurophysiol 2016; 115:8-18. [PMID: 26510764 PMCID: PMC4760510 DOI: 10.1152/jn.00865.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023] Open
Abstract
The intracellular concentration of Cl(-) ([Cl(-)]i) in neurons is a highly regulated variable that is established and modulated by the finely tuned activity of the KCC2 cotransporter. Despite the importance of KCC2 for neurophysiology and its role in multiple neuropsychiatric diseases, our knowledge of the transporter's regulatory mechanisms is incomplete. Recent studies suggest that the phosphorylation state of KCC2 at specific residues in its cytoplasmic COOH terminus, such as Ser940 and Thr906/Thr1007, encodes discrete levels of transporter activity that elicit graded changes in neuronal Cl(-) extrusion to modulate the strength of synaptic inhibition via Cl(-)-permeable GABAA receptors. In this review, we propose that the functional and physical coupling of KCC2 to Cl(-)-sensitive kinase(s), such as the WNK1-SPAK kinase complex, constitutes a molecular "rheostat" that regulates [Cl(-)]i and thereby influences the functional plasticity of GABA. The rapid reversibility of (de)phosphorylation facilitates regulatory precision, and multisite phosphorylation allows for the control of KCC2 activity by different inputs via distinct or partially overlapping upstream signaling cascades that may become more or less important depending on the physiological context. While this adaptation mechanism is highly suited to maintaining homeostasis, its adjustable set points may render it vulnerable to perturbation and dysregulation. Finally, we suggest that pharmacological modulation of this kinase-KCC2 rheostat might be a particularly efficacious strategy to enhance Cl(-) extrusion and therapeutically restore GABA inhibition.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, Connecticut; Yale Neurogenetics Program, Yale School of Medicine, New Haven, Connecticut; and
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
26
|
Kahle KT, Khanna AR, Alper SL, Adragna NC, Lauf PK, Sun D, Delpire E. K-Cl cotransporters, cell volume homeostasis, and neurological disease. Trends Mol Med 2015; 21:513-23. [PMID: 26142773 PMCID: PMC4834970 DOI: 10.1016/j.molmed.2015.05.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
Abstract
K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02114, USA; Manton Center for Orphan Disease Research, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02114, USA.
| | - Arjun R Khanna
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Seth L Alper
- Renal Division and Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Norma C Adragna
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Peter K Lauf
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15217, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Adragna NC, Ravilla NB, Lauf PK, Begum G, Khanna AR, Sun D, Kahle KT. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis. Front Cell Neurosci 2015. [PMID: 26217182 PMCID: PMC4496573 DOI: 10.3389/fncel.2015.00255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.
Collapse
Affiliation(s)
- Norma C Adragna
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Nagendra B Ravilla
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Peter K Lauf
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA ; Department of Pathology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA
| | - Arjun R Khanna
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Harvard University Boston, MA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA ; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center Pittsburgh, PA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Harvard University Boston, MA, USA ; Manton Center for Orphan Disease Research, Children's Hospital Boston, Harvard University Boston, MA, USA
| |
Collapse
|
28
|
Silayeva L, Deeb TZ, Hines RM, Kelley MR, Munoz MB, Lee HHC, Brandon NJ, Dunlop J, Maguire J, Davies PA, Moss SJ. KCC2 activity is critical in limiting the onset and severity of status epilepticus. Proc Natl Acad Sci U S A 2015; 112:3523-8. [PMID: 25733865 PMCID: PMC4371976 DOI: 10.1073/pnas.1415126112] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The K(+)/Cl(-) cotransporter (KCC2) allows adult neurons to maintain low intracellular Cl(-) levels, which are a prerequisite for efficient synaptic inhibition upon activation of γ-aminobutyric acid receptors. Deficits in KCC2 activity are implicated in epileptogenesis, but how increased neuronal activity leads to transporter inactivation is ill defined. In vitro, the activity of KCC2 is potentiated via phosphorylation of serine 940 (S940). Here we have examined the role this putative regulatory process plays in determining KCC2 activity during status epilepticus (SE) using knockin mice in which S940 is mutated to an alanine (S940A). In wild-type mice, SE induced by kainate resulted in dephosphorylation of S940 and KCC2 internalization. S940A homozygotes were viable and exhibited comparable basal levels of KCC2 expression and activity relative to WT mice. However, exposure of S940A mice to kainate induced lethality within 30 min of kainate injection and subsequent entrance into SE. We assessed the effect of the S940A mutation in cultured hippocampal neurons to explore the mechanisms underlying this phenotype. Under basal conditions, the mutation had no effect on neuronal Cl(-) extrusion. However, a selective deficit in KCC2 activity was seen in S940A neurons upon transient exposure to glutamate. Significantly, whereas the effects of glutamate on KCC2 function could be ameliorated in WT neurons with agents that enhance S940 phosphorylation, this positive modulation was lost in S940A neurons. Collectively our results suggest that phosphorylation of S940 plays a critical role in potentiating KCC2 activity to limit the development of SE.
Collapse
Affiliation(s)
- Liliya Silayeva
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Tarek Z Deeb
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Rochelle M Hines
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Matt R Kelley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Michaelanne B Munoz
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111
| | - Henry H C Lee
- Department of Neurology, FM Kirby Neurobiology Center, Children's Hospital Boston-Harvard Medical School, Boston, MA 02115
| | - Nicholas J Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111; AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA 02421; and
| | - John Dunlop
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111; AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA 02421; and
| | - Jaime Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111; AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA 02421; and Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 2014; 7:ra41. [PMID: 24803536 DOI: 10.1126/scisignal.2005050] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade, leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. We found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride-binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation.
Collapse
Affiliation(s)
- Alexander T Piala
- 1Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
30
|
delos Heros P, Alessi D, Gourlay R, Campbell D, Deak M, Macartney T, Kahle K, Zhang J. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters. Biochem J 2014; 458:559-73. [PMID: 24393035 PMCID: PMC3940040 DOI: 10.1042/bj20131478] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.
Collapse
Key Words
- γ-aminobutyric acid (gaba)
- blood pressure/hypertension
- ion homoeostasis
- k+–cl− co-transporter 2 (kcc2)
- k+–cl− co-transporter 3 (kcc3)
- na+–cl− co-transporter (ncc)
- na+–k+–2cl− co-transporter 1 (nkcc1)
- protein kinase
- signal transduction
- ccc, cation–cl− co-transporter
- cct, conserved c-terminal
- ctd, c-terminal cytoplasmic domain
- erk1, extracellular-signal-regulated kinase 1
- es, embryonic stem
- hek, human embryonic kidney
- hrp, horseradish peroxidase
- kcc, k+–cl− co-transporter
- lds, lithium dodecyl sulfate
- ncc, na+–cl− co-transporter
- n[k]cc, na+–k+ ion co-transporter
- nkcc, na+–k+–2cl− co-transporter
- ntd, n-terminal cytoplasmic domain
- osr1, oxidative stress-responsive kinase 1
- slc12, solute carrier family 12
- spak, sps1-related proline/alanine-rich kinase
- ttbs, tris-buffered saline containing tween 20
- wnk, wnk lysine-deficient protein kinase
- xic, extracted ion chromatogram
Collapse
Affiliation(s)
- Paola delos Heros
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Dario R. Alessi
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
- 1Correspondence may be addressed to either of these authors (email or )
| | - Robert Gourlay
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - David G. Campbell
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Maria Deak
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Thomas J. Macartney
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Kristopher T. Kahle
- †Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, U.S.A
- ‡Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, MA 02115, U.S.A
| | - Jinwei Zhang
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
- 1Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
31
|
Ding J, Ponce-Coria J, Delpire E. A trafficking-deficient mutant of KCC3 reveals dominant-negative effects on K-Cl cotransport function. PLoS One 2013; 8:e61112. [PMID: 23593405 PMCID: PMC3617232 DOI: 10.1371/journal.pone.0061112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
The K-Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, does not move beyond the endoplasmic reticulum or the early Golgi, and thus fails to reach the plasma membrane. We establish through co-immunoprecipitation experiments that both wild-type and mutant KCC3 with KCC2 results in the formation of hetero-dimers. We further demonstrate that formation of these hetero-dimers prevents the proper trafficking of the cotransporter to the plasma membrane, resulting in a significant decrease in cotransporter function. This effect is due to interaction between the K-Cl cotransporter isoforms, as this was not observed when KCC3-E289G was co-expressed with NKCC1. Our studies also reveal that the glutamic acid residue is essential to K-Cl cotransporter function, as the corresponding mutation in KCC2 also leads to an absence of function. Interestingly, mutation of this conserved glutamic acid residue in the Na(+)-dependent cation-chloride cotransporters had no effect on NKCC1 function in isosmotic conditions, but diminished cotransporter activity under hypertonicity. Together, our data show that the glutamic acid residue (E289) is essential for proper trafficking and function of KCCs and that expression of a non-functional but full-length K-Cl cotransporter might results in dominant-negative effects on other K-Cl cotransporters.
Collapse
Affiliation(s)
- Jinlong Ding
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Molecular Physiology and Biophysics Graduate Program Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - José Ponce-Coria
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
32
|
A key role for KCl cotransport in cell volume regulation in human erythroleukemia cells. Life Sci 2011; 88:1001-8. [DOI: 10.1016/j.lfs.2011.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/11/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
|
33
|
|
34
|
Ortiz-Acevedo A, Rigor RR, Maldonado HM, Cala PM. Coordinated control of volume regulatory Na+/H+ and K+/H+ exchange pathways in Amphiuma red blood cells. Am J Physiol Cell Physiol 2009; 298:C510-20. [PMID: 19940069 DOI: 10.1152/ajpcell.00141.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)/H(+) and K(+)/H(+) exchange pathways of Amphiuma tridactylum red blood cells (RBCs) are quiescent at normal resting cell volume yet are selectively activated in response to cell shrinkage and swelling, respectively. These alkali metal/H(+) exchangers are activated by net kinase activity and deactivated by net phosphatase activity. We employed relaxation kinetic analyses to gain insight into the basis for coordinated control of these volume regulatory ion flux pathways. This approach enabled us to develop a model explaining how phosphorylation/dephosphorylation-dependent events control and coordinate the activity of the Na(+)/H(+) and K(+)/H(+) exchangers around the cell volume set point. We found that the transition between initial and final steady state for both activation and deactivation of the volume-induced Na(+)/H(+) and K(+)/H(+) exchange pathways in Amphiuma RBCs proceed as a single exponential function of time. The rate of Na(+)/H(+) exchange activation increases with cell shrinkage, whereas the rate of Na(+)/H(+) exchange deactivation increases as preshrunken cells are progressively swollen. Similarly, the rate of K(+)/H(+) exchange activation increases with cell swelling, whereas the rate of K(+)/H(+) exchange deactivation increases as preswollen cells are progressively shrunken. We propose a model in which the activities of the controlling kinases and phosphatases are volume sensitive and reciprocally regulated. Briefly, the activity of each kinase-phosphatase pair is reciprocally related, as a function of volume, and the volume sensitivities of kinases and phosphatases controlling K(+)/H(+) exchange are reciprocally related to those controlling Na(+)/H(+) exchange.
Collapse
|
35
|
Rinehart J, Maksimova YD, Tanis JE, Stone KL, Hodson CA, Zhang J, Risinger M, Pan W, Wu D, Colangelo CM, Forbush B, Joiner CH, Gulcicek EE, Gallagher PG, Lifton RP. Sites of regulated phosphorylation that control K-Cl cotransporter activity. Cell 2009; 138:525-36. [PMID: 19665974 PMCID: PMC2811214 DOI: 10.1016/j.cell.2009.05.031] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/29/2008] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.
Collapse
Affiliation(s)
- Jesse Rinehart
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale/National Heart, Lung, and Blood Institute Proteomics Center, Yale University, New Haven, CT 06511, USA
| | - Yelena D. Maksimova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jessica E. Tanis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kathryn L. Stone
- Yale/National Heart, Lung, and Blood Institute Proteomics Center, Yale University, New Haven, CT 06511, USA
- Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA
| | - Caleb A. Hodson
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Junhui Zhang
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mary Risinger
- Cincinnati Comprehensive Sickle Cell Center, Division of Hematology/Oncology, University of Cincinnati College of Medicine and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Weijun Pan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christopher M. Colangelo
- Yale/National Heart, Lung, and Blood Institute Proteomics Center, Yale University, New Haven, CT 06511, USA
- Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clinton H. Joiner
- Cincinnati Comprehensive Sickle Cell Center, Division of Hematology/Oncology, University of Cincinnati College of Medicine and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erol E. Gulcicek
- Yale/National Heart, Lung, and Blood Institute Proteomics Center, Yale University, New Haven, CT 06511, USA
- Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA
| | - Patrick G. Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P. Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale/National Heart, Lung, and Blood Institute Proteomics Center, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
36
|
Bergeron MJ, Frenette-Cotton R, Carpentier GA, Simard MG, Caron L, Isenring P. Phosphoregulation of K+-Cl−cotransporter 4 during changes in intracellular Cl−and cell volume. J Cell Physiol 2009; 219:787-96. [DOI: 10.1002/jcp.21725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Abstract
The present contribution reviews current knowledge of apparently oxygen-dependent ion transport in erythrocytes and presents modern hypotheses on their regulatory mechanisms and physiological roles. In addition to molecular oxygen as such, reactive oxygen species, nitric oxide, carbon monoxide, regional variations of cellular ATP and hydrogen sulphide may play a role in the regulation of transport, provided that they are affected by oxygen tension. It appears that the transporter molecules themselves do not have direct oxygen sensors. Thus, the oxygen level must be sensed elsewhere, and the effect transduced to the transporter. The possible pathways involved in the regulation of transport, including haemoglobin as a sensor, and phosphorylation/dephosphorylation reactions both in the transporter and its upstream effectors, are discussed.
Collapse
Affiliation(s)
- A Bogdanova
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology, University of Zurich, Wintherturerstrasse 260, Zurich, Switzerland.
| | | | | |
Collapse
|
38
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1044] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
39
|
Effects of phorbol 12-myristate 13-acetate on potassium transport in the red blood cells of frog Rana temporaria. J Comp Physiol B 2008; 179:443-50. [DOI: 10.1007/s00360-008-0324-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/20/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
40
|
Ortiz-Acevedo A, Rigor RR, Maldonado HM, Cala PM. Activation of Na+/H+ and K+/H+ exchange by calyculin A in Amphiuma tridactylum red blood cells: implications for the control of volume-induced ion flux activity. Am J Physiol Cell Physiol 2008; 295:C1316-25. [PMID: 18799654 DOI: 10.1152/ajpcell.00160.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.
Collapse
|
41
|
Garbarini N, Delpire E. The RCC1 domain of protein associated with Myc (PAM) interacts with and regulates KCC2. Cell Physiol Biochem 2008; 22:31-44. [PMID: 18769030 PMCID: PMC2535904 DOI: 10.1159/000149781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2008] [Indexed: 12/16/2022] Open
Abstract
GABAergic and glycinergic function is dependent on neuronal intracellular chloride. The neuron-specific electroneutral potassium (K(+)) and chloride (Cl(-)) cotransporter (KCC2), is a key regulator of neuronal Cl(-), yet little is known about KCC2 regulation. Using yeast two-hybrid, we identified Protein Associated with Myc (PAM) as a binding partner of KCC2. The RCC1 (Regulator of Chromatin Condensation) domain of PAM binds to the carboxyl terminus of KCC2, as demonstrated through yeast two-hybrid and GST-pull-down assays. RCC1/PAM and full-length KCC2 coimmunoprecipitate following heterologous co-expression in HEK293 cells. Additionally, (86)Rb/K(+) uptake assays in this model system show that RCC1/PAM causes increased KCC2-mediated flux. After narrowing down RCC1/PAM binding to a 20 amino acid region on the KCC2 carboxyl terminus, we created a point mutant in this region to eliminate interaction between the KCC2 carboxyl terminus and RCC1/PAM. This same mutation abolishes N-ethylmaleimide activation of KCC2, suggesting that PAM plays a role in modulating KCC2 function.
Collapse
Affiliation(s)
- Nicole Garbarini
- Neuroscience Graduate Program and Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
42
|
Adragna NC, Lauf PK. K-Cl cotransport function and its potential contribution to cardiovascular disease. ACTA ACUST UNITED AC 2007; 14:135-46. [PMID: 17949953 DOI: 10.1016/j.pathophys.2007.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster pace and the relationships between Mg, K-Cl cotransport, and cardiovascular disease is an area that awaits further experimentation. We envision that further studies on the role of K-Cl cotransport, and ideally on its specific isoforms, in mammalian cells will add missing links and help to understand the cellular mechanisms involved in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Norma C Adragna
- Cell Biophysics Group, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, United States; Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, United States
| | | |
Collapse
|
43
|
Joiner CH, Rettig RK, Jiang M, Risinger M, Franco RS. Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes. Blood 2006; 109:1728-35. [PMID: 17023583 PMCID: PMC1794068 DOI: 10.1182/blood-2006-04-018630] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
KCl cotransport (KCC) activity contributes to pathologic dehydration in sickle (SS) red blood cells (RBCs). KCC activation by urea was measured in SS and normal (AA) RBCs as Cl-dependent Rb influx. KCC-mediated volume reduction was assessed by measuring reticulocyte cellular hemoglobin concentration (CHC) cytometrically. Urea activated KCC fluxes in fresh RBCs to levels seen in swollen cells, although SS RBCs required lower urea concentrations than did normal (AA) RBCs. Little additional KCC stimulation by urea occurred in swollen AA or SS RBCs. The pH dependence of KCC in "euvolemic" SS RBCs treated with urea was similar to that in swollen cells. Urea triggered volume reduction in SS and AA reticulocytes, establishing a higher CHC. Volume reduction was Cl dependent and was limited by the KCC inhibitor, dihydro-indenyl-oxyalkanoic acid. Final CHC depended on urea concentration, but not on initial CHC. Under all activation conditions, volume reduction was exaggerated in SS reticulocytes and produced higher CHCs than in AA reticulocytes. The sulfhydryl-reducing agent, dithiothreitol, normalized the sensitivity of KCC activation to urea in SS RBCs and mitigated the urea-stimulated volume decrease in SS reticulocytes, suggesting that the dysfunctional activity of KCC in SS RBCs was due in part to reversible sulfhydryl oxidation.
Collapse
Affiliation(s)
- Clinton H Joiner
- Cincinnati Comprehensive Sickle Cell Center, Division of Hematology/Oncology, University of Cincinnati College of Medicine, and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH 45229, USA.
| | | | | | | | | |
Collapse
|
44
|
Bergeron MJ, Gagnon E, Caron L, Isenring P. Identification of key functional domains in the C terminus of the K+-Cl- cotransporters. J Biol Chem 2006; 281:15959-69. [PMID: 16595678 DOI: 10.1074/jbc.m600015200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The K+-Cl- cotransporter (KCC) isoforms constitute a functionally heterogeneous group of ion carriers. Emerging evidence suggests that the C terminus (Ct) of these proteins is important in conveying isoform-specific traits and that it may harbor interacting sites for 4beta-phorbol 12-myristate 13-acetate (PMA)-induced effectors. In this study, we have generated KCC2-KCC4 chimeras to identify key functional domains in the Ct of these carriers and single point mutations to determine whether canonical protein kinase C sites underlie KCC2-specific behaviors. Functional characterization of wild-type (wt) and mutant carriers in Xenopus laevis oocytes showed for the first time that the KCCs do not exhibit similar sensitivities to changes in osmolality and that this distinguishing feature as well as differences in transport activity under both hypotonic and isotonic conditions are in part determined by the residue composition of the distal Ct. At the same time, several mutations in this domain and in the proximal Ct of the KCCs were found to generate allosteric-like effects, suggesting that the regions analyzed are important in defining conformational ensembles and that isoform-specific structural configurations could thus account for variant functional traits as well. Characterization of the other mutants in this work showed that KCC2 is not inhibited by PMA through phosphorylation of its canonical protein kinase C sites. Intriguingly, however, the substitutions N728S and S940A were seen to alter the PMA effect paradoxically, suggesting again that allosteric changes in the Ct are important determinants of transport activity and, furthermore, that the structural configuration of this domain can convey specific functional traits by defining the accessibility of cotransporter sites to regulatory intermediates such as PMA-induced effectors.
Collapse
Affiliation(s)
- Marc J Bergeron
- Nephrology Research Group, L'Hôtel-Dieu de Québec Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
45
|
Cohen A, Zilberberg N. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements. J Neurosci Methods 2006; 153:62-70. [PMID: 16293314 DOI: 10.1016/j.jneumeth.2005.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Revised: 10/07/2005] [Accepted: 10/09/2005] [Indexed: 01/07/2023]
Abstract
The biophysical and pharmacological properties of ion channels and transporters are often studied in exogenous expression systems using either the two-electrode voltage clamp (TEVC) in Xenopus oocytes or the patch clamp techniques. Cells machinery is trusted to produce active proteins that are correctly phosphorylated and glycosylated. However, native physiological cellular processes that might be altered during the course of the experiment are often ignored. Here, we detected and quantified the effects of various electrophysiological recording conditions on the phosphorylation levels of Xenopus oocytes proteins, including membrane proteins, as phosphorylation/dephosphorylation events modulate ion channels gating and cell surface expression. Two strategies were chosen to determine relative protein phosphorylation levels: a direct detection with a phospho-Ser/Thr PKA substrate antibody, and a functional method employing two different leak potassium channels as indicators, chosen based on their opposite responses to protein kinase phosphorylation. We report that holding potential, and bath solution properties such as pH, osmolarity, temperature and ion composition, dramatically affect protein phosphorylation levels in Xenopus oocytes. Our results might explain some of the fluctuations in the biophysical properties of expressed channels, often observed during electrophysiological measurements. Minimizing possible misinterpretations could be achieved using either mutated, kinase insensitive, channels or kinases/phosphatases modulators.
Collapse
Affiliation(s)
- Asi Cohen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
46
|
Adragna NC, Ferrell CM, Zhang J, Di Fulvio M, Temprana CF, Sharma A, Fyffe REW, Cool DR, Lauf PK. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease. Acta Physiol (Oxf) 2006; 187:125-39. [PMID: 16734749 DOI: 10.1111/j.1748-1716.2006.01560.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used. Li+, used in the treatment of manic depression, stimulates volume-sensitive K+-Cl- COT of low K+ sheep red blood cells at cellular concentrations <1 mM and inhibits at >3 mM, causes cell swelling, and appears to regulate K+-Cl- COT through a protein kinase C-dependent pathway. PDGF, a potent serum mitogen for vascular smooth muscle cells (VSMCs), regulates membrane transport and is involved in atherosclerosis. PDGF stimulates VSM K+-Cl- COT in a time- and concentration-dependent manner, both acutely and chronically, through the PDGF receptor. The acute effect occurs at the post-translational level whereas the chronic effect may involve regulation through gene expression. Regulation by PDGF involves the signalling molecules phosphoinositides 3-kinase and protein phosphatase-1. Finally, the NO/cGMP/protein kinase G pathway, involved in vasodilation and hence cardiovascular disease, regulates K+-Cl- COT in VSMCs at the mRNA expression and transport levels. A complex and diverse array of mechanisms and effectors regulate K+-Cl- COT and thus cell volume homeostasis, setting the stage for abnormalities at the genetic and/or regulatory level thus effecting or being affected by various pathological conditions.
Collapse
Affiliation(s)
- N C Adragna
- Cell Biophysics Group, Wright State University School of Medicine, Dayton, OH 45435, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
De Franceschi L, Villa-Moruzzi E, Biondani A, Siciliano A, Brugnara C, Alper SL, Lowell CA, Berton G. Regulation of K-Cl cotransport by protein phosphatase 1alpha in mouse erythrocytes. Pflugers Arch 2006; 451:760-8. [PMID: 16283202 DOI: 10.1007/s00424-005-1502-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 07/23/2005] [Indexed: 10/25/2022]
Abstract
The K-Cl cotransport (KCC) is an electroneutral-gradient-driven-membrane transport system, which is involved in regulation of red cell volume. Although the regulatory cascade of KCC is largely unknown, a signaling pathway involving phosphatases and kinases has been proposed. Here, we investigated the expression and the activity of protein phosphatase 1(PP-1) isoforms in mouse red cells, focusing on two models of abnormally activated KCC: mice genetically lacking the two Src-family tyrosine kinases, Hck and Fgr, (hck-/-fgr-/-) and the SAD transgenic sickle-cell-mice. The PP-1alpha, PP-1gamma, PP-1delta isoforms were expressed at similar levels in wild-type, hck-/-fgr-/- and SAD mouse erythrocytes and in each case were predominantly localized to cytoplasm. The PP-1alpha activity was significantly higher in both membrane and cytosol fractions of hck-/-fgr-/- and of SAD erythrocytes than in those of wild-type red cells, suggesting PP-1alpha as a target of the Hck and Fgr kinases. The PP2, a specific inhibitor of Src-family kinase, significantly increased KCC activity in wild-type mouse red cells, but failed to modify the already increased KCC activity in SAD erythrocytes. The lag-time for activation of KCC was considerably reduced in both hck-/-fgr-/- and SAD erythrocytes, suggesting that the rate limiting activation steps in both strains are freed from their tonic inhibition. Sulfhydryl reduction by dithiothreitol (DTT) lowered KCC activity only in SAD red cells, but did not affect the PP2-treated erythrocytes. These data suggest up-regulation of KCC in SAD red cells is mainly secondary to oxidative damage, which most likely reduces or removes the tonic KCC inhibition resulting from PP-1alpha activity controlled in turn by Src-family kinases.
Collapse
Affiliation(s)
- Lucia De Franceschi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Policlinico GB Rossi, 10 P. le L Scuro, 37134 Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
de los Heros P, Kahle KT, Rinehart J, Bobadilla NA, Vázquez N, San Cristobal P, Mount DB, Lifton RP, Hebert SC, Gamba G. WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway. Proc Natl Acad Sci U S A 2006; 103:1976-81. [PMID: 16446421 PMCID: PMC1413675 DOI: 10.1073/pnas.0510947103] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SLC12A cation/Cl- cotransporters are mutated in human disease, are targets of diuretics, and are collectively involved in the regulation of cell volume, neuronal excitability, and blood pressure. This gene family has two major branches with different physiological functions and inverse regulation: K-Cl cotransporters (KCC1-KCC4) mediate cellular Cl- efflux, are inhibited by phosphorylation, and are activated by dephosphorylation; Na-(K)-Cl cotransporters (NCC and NKCC1/2) mediate cellular Cl- influx and are activated by phosphorylation. A single kinase/phosphatase pathway is thought to coordinate the activities of these cotransporters in a given cell; however, the mechanisms involved are as yet unknown. We previously demonstrated that WNK3, a paralog of serine-threonine kinases mutated in hereditary hypertension, is coexpressed with several cation/Cl- cotransporters and regulates their activity. Here, we show that WNK3 completely prevents the cell swelling-induced activation of KCC1-KCC4 in Xenopus oocytes. In contrast, catalytically inactive WNK3 abolishes the cell shrinkage-induced inhibition of KCC1-KCC4, resulting in a >100-fold stimulation of K-Cl cotransport during conditions in which transport is normally inactive. This activation is completely abolished by calyculin A and cyclosporine A, inhibitors of protein phosphatase 1 and 2B, respectively. Wild-type WNK3 activates Na-(K)-Cl cotransporters by increasing their phosphorylation, and catalytically inactive kinase inhibits Na-(K)-Cl cotransporters by decreasing their phosphorylation, such that our data suggest that WNK3 is a crucial component of the kinase/phosphatase signaling pathway that coordinately regulates the Cl- influx and efflux branches of the SLC12A cotransporter family.
Collapse
Affiliation(s)
- Paola de los Heros
- *Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, 14000, Mexico
| | - Kristopher T. Kahle
- Department of Genetics and
- Molecular and Cellular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | | | - Norma A. Bobadilla
- *Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, 14000, Mexico
| | - Norma Vázquez
- *Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, 14000, Mexico
| | - Pedro San Cristobal
- *Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, 14000, Mexico
| | - David B. Mount
- Renal Division, Brigham and Women’s Hospital and Division of General Internal Medicine, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA 02115
| | | | - Steven C. Hebert
- Molecular and Cellular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Gerardo Gamba
- *Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, 14000, Mexico
| |
Collapse
|
49
|
Strange K, Denton J, Nehrke K. Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume. Physiology (Bethesda) 2006; 21:61-8. [PMID: 16443823 DOI: 10.1152/physiol.00139.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ste20 serine/threonine kinases regulate fundamental cellular processes including the cell cycle, apoptosis, and stress responses. Recent studies in Caenorhabditis elegans and mammals demonstrate that Ste20 kinases also function in cell volume sensing and Cl- transport regulation. Yeast Ste20 initiates a shrinkage activated MAPK cascade that regulates organic osmolyte accumulation. Ste20 kinases thus play evolutionarily conserved roles in cellular volume sensing and regulation. They may also function in systemic osmotic homeostasis and to link cell-cycle events with cell volume.
Collapse
Affiliation(s)
- Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | |
Collapse
|
50
|
Gagnon KBE, England R, Delpire E. Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Am J Physiol Cell Physiol 2006; 290:C134-42. [PMID: 15930150 DOI: 10.1152/ajpcell.00037.2005] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we have demonstrated functional interaction between Ste20-related proline-alanine-rich kinase (SPAK), WNK4 [with no lysine (K)], and the widely expressed Na+-K+-2Cl- cotransporter type 1 (NKCC1). NKCC1 function, which we measured in Xenopus laevis oocytes under both isosmotic (basal) and hyperosmotic (stimulated) conditions, was unaffected when SPAK and WNK4 were expressed alone. In contrast, expression of both kinases with NKCC1 resulted in a significant increase in cotransporter activity and an insensitivity to external osmolarity or cell volume. NKCC1 activation is dependent on the catalytic activity of SPAK and likely also of WNK4, because mutations in their catalytic domains result in an absence of cotransporter stimulation. The results of our yeast two-hybrid experiments suggest that WNK4 does not interact directly with NKCC1 but does interact with SPAK. Functional experiments demonstrated that the binding of SPAK to WNK4 was also required because a SPAK-interaction-deficient WNK4 mutant (Phe997Ala) did not increase NKCC1 activity. We also have shown that the transport function of K+-Cl- cotransporter type 2 (KCC2), a neuron-specific KCl cotransporter, was diminished by the expression of both kinases under both isosmotic and hyposmotic conditions. Our data are consistent with WNK4 interacting with SPAK, which in turn phosphorylates and activates NKCC1 and phosphorylates and deactivates KCC2.
Collapse
Affiliation(s)
- Kenneth B E Gagnon
- Dept. of Anesthesiology, Vanderbilt Univ. Medical Center, T-4202 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA
| | | | | |
Collapse
|