1
|
Ingold N, Zhu G, Duffy DL, Mothershaw A, Martin NG, MacGregor S, Law MH. Counting nevi on the outer arm provides an accurate and feasible alternative to total body nevus count. J Eur Acad Dermatol Venereol 2023; 37:e1302-e1304. [PMID: 37328921 PMCID: PMC10615689 DOI: 10.1111/jdv.19279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Affiliation(s)
- N Ingold
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - G Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - D L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - A Mothershaw
- Frazer Institute, University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - N G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - S MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - M H Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Stătescu L, Cojocaru E, Trandafir LM, Ţarcă E, Tîrnovanu MC, Heredea RE, Săveanu CI, Tarcău BM, Popescu IA, Botezat D. Catching Cancer Early: The Importance of Dermato-Oncology Screening. Cancers (Basel) 2023; 15:3066. [PMID: 37370677 DOI: 10.3390/cancers15123066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The European Society for Medical Oncology experts have identified the main components of the long-term management of oncological patients. These include early diagnosis through population screening and periodic control of already diagnosed patients to identify relapses, recurrences, and other associated neoplasms. There are no generally accepted international guidelines for the long-term monitoring of patients with skin neoplasms (nonmelanoma skin cancer, malignant melanoma, precancerous-high-risk skin lesions). Still, depending on the experience of the attending physician and based on the data from the literature, one can establish monitoring intervals to supervise these high-risk population groups, educate the patient and monitor the general population.
Collapse
Affiliation(s)
- Laura Stătescu
- Department of Dermatology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- 'Saint Spiridon' County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I-Pathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child Medicine-Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Ţarcă
- Department of Surgery II-Pediatric Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Camelia Tîrnovanu
- Department of Mother and Child Medicine-Obstetrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Rodica Elena Heredea
- Department of Clinical Practical Skills, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timişoara, Romania
| | - Cătălina Iulia Săveanu
- Surgical Department, Discipline of Preventive Dentistry, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Marian Tarcău
- Department of Dermatology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- 'Saint Spiridon' County Emergency Clinical Hospital, 700111 Iasi, Romania
| | | | - Doru Botezat
- Department of Preventive Medicine and Interdisciplinarity-Behavioral Sciences, Faculty of Medicine, "Grigore. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
3
|
Seviiri M, Scolyer RA, Bishop DT, Newton-Bishop JA, Iles MM, Lo SN, Stretch JR, Saw RPM, Nieweg OE, Shannon KF, Spillane AJ, Gordon SD, Olsen CM, Whiteman DC, Landi MT, Thompson JF, Long GV, MacGregor S, Law MH. Higher polygenic risk for melanoma is associated with improved survival in a high ultraviolet radiation setting. J Transl Med 2022; 20:403. [PMID: 36064556 PMCID: PMC9446843 DOI: 10.1186/s12967-022-03613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The role of germline genetic factors in determining survival from cutaneous melanoma (CM) is not well understood. OBJECTIVE To perform a genome-wide association study (GWAS) meta-analysis of melanoma-specific survival (MSS), and test whether a CM-susceptibility polygenic risk score (PRS) is associated with MSS. METHODS We conducted two Cox proportional-hazard GWAS of MSS using data from the Melanoma Institute Australia, a high ultraviolet (UV) radiation setting (MIA; 5,762 patients with melanoma; 800 melanoma deaths) and UK Biobank (UKB: 5,220 patients with melanoma; 241 melanoma deaths), and combined them in a fixed-effects meta-analysis. Significant (P < 5 × 10-8) results were investigated in the Leeds Melanoma Cohort (LMC; 1,947 patients with melanoma; 370 melanoma deaths). We also developed a CM-susceptibility PRS using a large independent GWAS meta-analysis (23,913 cases, 342,870 controls). The PRS was tested for an association with MSS in the MIA and UKB cohorts. RESULTS Two loci were significantly associated with MSS in the meta-analysis of MIA and UKB with lead SNPs rs41309643 (G allele frequency 1.6%, HR = 2.09, 95%CI = 1.61-2.71, P = 2.08 × 10-8) on chromosome 1, and rs75682113 (C allele frequency 1.8%, HR = 2.38, 95%CI = 1.77-3.21, P = 1.07 × 10-8) on chromosome 7. While neither SNP replicated in the LMC, rs75682113 was significantly associated in the combined discovery and replication sets. After adjusting for age at diagnosis, sex and the first ten principal components, a one standard deviation increase in the CM-susceptibility PRS was associated with improved MSS in the discovery meta-analysis (HR = 0.88, 95% CI = 0.83-0.94, P = 6.93 × 10-5; I2 = 88%). However, this was only driven by the high UV setting cohort (MIA HR = 0.84, 95% CI = 0.78-0.90). CONCLUSION We found two loci potentially associated with MSS. Increased genetic susceptibility to develop CM is associated with improved MSS in a high UV setting.
Collapse
Affiliation(s)
- Mathias Seviiri
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia
- Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW Australia
- NSW Health Pathology, Sydney, NSW Australia
| | - D. Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James’, University of Leeds, Leeds, UK
| | - Julia A. Newton-Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James’, University of Leeds, Leeds, UK
| | - Mark M. Iles
- St James’s Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Institute of Data Analytics, University of Leeds, Leeds, UK
| | - Serigne N. Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| | - Johnathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Omgo E. Nieweg
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Kerwin F. Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
- Sydney Head & Neck Cancer Institute, Chris O’Brien Lifehouse Cancer Center, Sydney, NSW Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Breast and Melanoma Surgery, Royal North Shore Hospital, Sydney, NSW Australia
| | - Scott D. Gordon
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Catherine M. Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - David C. Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
- Department of Medical Oncology, Mater Hospital, North Sydney, NSW Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW Australia
| | - Stuart MacGregor
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia
| | - Matthew H. Law
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
4
|
Muse ME, Bergman DT, Salas LA, Tom LN, Tan JM, Laino A, Lambie D, Sturm RA, Schaider H, Soyer HP, Christensen BC, Stark MS. Genome-scale DNA methylation analysis identifies repeat element alterations that modulate the genomic stability of melanocytic nevi. J Invest Dermatol 2021; 142:1893-1902.e7. [PMID: 34871578 DOI: 10.1016/j.jid.2021.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022]
Abstract
Acquired melanocytic nevi grow and persist in a stable form into adulthood. Using genome-wide methylation profiling, we evaluated 32 histopathologically and dermoscopically characterized nevi, to identify key epigenetic regulatory mechanisms involved in nevogenesis. Benign (69% globular and 31% non-specific dermoscopic pattern) and dysplastic (95% reticular/nonspecific dermoscopic pattern) nevi were dissimilar with only two shared differentially methylated (DM) loci. Benign nevi demonstrated an increase in both genome-scale methylation and methylation of Alu/LINE-1 retrotransposable elements, a marker of genomic stability, as well as global methylation. In contrast, dysplastic nevi showed evidence for genomic instability via hypomethylation of Alu/LINE-1 (Alu; P=0.00019 and LINE-1; P=0.000035). Using dermoscopic classifications, reticular/non-specific patterned nevi had 59,572 CpG DM loci (Q < 0.05), whereas globular nevi had no significant DM loci. In reticular/non-specific patterned nevi, the tumor suppressor PTEN had the greatest proportion of hypermethylated CpG loci in its promoter region compared to all other assayed gene promoters. The relative activity of reticular/non-specific nevi was evidenced by 50,720 hypomethylated loci being enriched for accessible chromatin, and 8,852 hypermethylated loci strongly enriched, for example, marks of active gene promoters, which suggests that gain of DNA methylation observed in these nevus types plays a role in gene regulation.
Collapse
Affiliation(s)
- Meghan E Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Drew T Bergman
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lisa N Tom
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Jean-Marie Tan
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Antonia Laino
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Duncan Lambie
- IQ Pathology, Brisbane, Australia; Pathology Queensland, Princess Alexandra Hospital, Brisbane, Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Helmut Schaider
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia; Department of Dermatology, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia; Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, USA; Department of Community & Family Medicine, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Mitchell S Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia.
| |
Collapse
|
5
|
Dusingize JC, Law MH, Pandeya N, Neale RE, Ong JS, MacGregor S, Whiteman DC, Olsen CM. Genetically determined cutaneous nevi and risk of cancer. Int J Cancer 2021; 150:961-968. [PMID: 34778946 DOI: 10.1002/ijc.33874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
Numerous epidemiologic studies have reported positive associations between higher nevus counts and internal cancers. Whether this association represents a true relationship or is due to bias or confounding by factors associated with both nevus counts and cancer remains unclear. We used germline genetic variants for nevus count to test whether this phenotypic trait is a risk-marker for cancer. We calculated polygenic risk scores (PRS) for nevus counts using individual-level data in the UK Biobank (n = 394 306) and QSkin cohort (n = 17 427). The association between the nevus PRS and each cancer site was assessed using logistic regression adjusted for the effects of age, sex and the first five principal components. In both cohorts, those in the highest nevus PRS quartile had higher risks of melanoma than those in the lowest quartile (UK Biobank odds ratio [OR] 1.42, 95% confidence interval [CI]: 1.29-1.55; QSkin OR 1.58, 95% CI: 1.29-1.94). We also observed increases in risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) associated with higher nevus PRS quartiles (BCC UK Biobank OR 1.38, 95% CI: 1.33-1.44; QSkin OR 1.20, 95% CI: 1.05-1.38 and SCC UK Biobank OR 1.41, 95% CI: 1.28-1.55; QSkin OR 1.44, 95% CI: 1.19-1.77). We found no consistent evidence that nevus count PRS were associated with risks of developing internal cancers. We infer that associations between nevus counts and internal cancers reported in earlier observational studies arose because of unmeasured confounding or other biases.
Collapse
Affiliation(s)
- Jean Claude Dusingize
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Matthew H Law
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nirmala Pandeya
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Public Health, University of Queensland, Brisbane, Australia
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Public Health, University of Queensland, Brisbane, Australia
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stuart MacGregor
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - David C Whiteman
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Gene Discovery Using Twins. Twin Res Hum Genet 2021; 23:90-93. [PMID: 32638676 DOI: 10.1017/thg.2020.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
One of Nick's key early achievements at QIMR was to establish a twin study on melanoma risk factors. The Brisbane Twin Nevus Study (BTNS) had an initial focus on nevus (mole) count in adolescents but, reflecting Nick's broad interests, expanded in scope enormously over the decades. In the skin cancer arena, BTNS was essential to genetic discoveries in melanoma, eye color and pigmentation. Later studies amassed data on thousands of phenotypes, ranging from molecular phenotypes such as gene expression to studies where gene mapping findings in adolescents turned out to have translational potential in late-onset diseases. Nick's twin data have formed the basis for an enormous range of discoveries, with Nick and his colleagues continuing to capitalize on these data.
Collapse
|
7
|
Pozzobon FC, Tell-Marti G, Calbet-Llopart N, Barreiro A, Espinosa N, Potrony M, Alejo B, Podlipnik S, Combalia M, Puig-Butillé JA, Carrera C, Malvehy J, Puig S. Influence of germline genetic variants on dermoscopic features of melanoma. Pigment Cell Melanoma Res 2021; 34:618-628. [PMID: 33342058 DOI: 10.1111/pcmr.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023]
Abstract
Nevus count is highly determined by inherited variants and has been associated with the origin of melanoma. De novo melanomas (DNMMs) are more prevalent in patients with a low nevus count and have distinctive dermoscopic features than nevus-associated melanomas. We evaluated the impact of nine single nucleotide polymorphisms (SNPs) of MTAP (rs10811629, rs2218220, rs7023329 and rs751173), PLA2G6 (rs132985 and rs2284063), IRF4 (rs12203592), and PAX3 (rs10180903 and rs7600206) genes associated with nevus count and melanoma susceptibility, and the MC1R variants on dermoscopic features of 371 melanomas from 310 patients. All MTAP variants associated with a low nevus count were associated with regression structures (peppering and mixed regression), blue-whitish veil, shiny white structures, and pigment network. SNPs of PLA2G6 (rs132985), PAX3 (rs7600206), and IRF4 (rs12203592) genes were also associated with either shiny white structures or mixed regression (all corrected p-values ≤ .06). Melanomas from red hair color MC1R variants carriers showed lower total dermoscopy score (p-value = .015) and less blotches than melanomas from non-carriers (p-value = .048). Our results provide evidence that germline variants protective for melanoma risk and/or associated with a low nevus count are associated with certain dermoscopic features, more characteristic of de novo and worse prognosis melanomas.
Collapse
Affiliation(s)
- Flavia Carolina Pozzobon
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gemma Tell-Marti
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Neus Calbet-Llopart
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Alicia Barreiro
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Natalia Espinosa
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Míriam Potrony
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Beatriz Alejo
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Sebastian Podlipnik
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Marc Combalia
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.,Biochemical and Molecular Genetics Service, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Cristina Carrera
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.,Medicine Department, Universitat de Barcelona, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.,Medicine Department, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Barsoum R, Harrison SL. Clinical Characteristics in Early Childhood Associated with a Nevus-Prone Phenotype in Adults from Tropical Australia: Two Decades of Follow-Up of the Townsville Preschool Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228680. [PMID: 33238422 PMCID: PMC7700251 DOI: 10.3390/ijerph17228680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022]
Abstract
Having numerous melanocytic nevi increases melanoma risk. Few studies have enumerated nevi in children and re-examined them as adults. We aimed to determine if childhood nevus-counts predict nevus-prone adults, and further explore the relevance of host-factors and sun-exposure. Fifty-one Caucasian residents of Townsville (19.16° S, Queensland, Australia) had full-body nevus-counts aged 1–6 and 21–31 years-old. Sun-exposure was determined from questionnaires. Children in the upper-quartile of nevus-counts acquired nevi more rapidly than those in the bottom-quartile (13.3 versus 4.7 nevi/year; p < 0.0005). Children sunburnt before 7 years-old acquired more incident nevi by adulthood (238 versus 126, p = 0.003) particularly if sunburn was severe (321 versus 157.5, p = 0.003) or erythema occurred annually (380 versus 132, p = 0.008). Fair-skinned, freckled children with some nevi ≥ 3 mm, solar lentigines, or a family history of melanoma acquired more incident nevi than children without these attributes. Nevus-prone adults exhibit distinguishing features earlier in life (<7 years-old in Queensland) than has been shown previously. In addition to intervening with sun-protection counselling early enough to reduce risk, being able to reliably triage children into high- and low melanoma-risk groups may inform more efficacious and cost-effective targeted-screening in melanoma-prone populations. Further longitudinal research is needed to confirm that these attributes can reliably separate risk-groups.
Collapse
Affiliation(s)
- Ramez Barsoum
- Skin Cancer Research Unit, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
- College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
- Princess Alexandra Hospital, Queensland Health, Woolloongabba, Brisbane 4102, Australia
| | - Simone L. Harrison
- Skin Cancer Research Unit, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
- College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
- Correspondence: ; Tel.: +61-(0)423-489-083
| |
Collapse
|
9
|
Law MH, Aoude LG, Duffy DL, Long GV, Johansson PA, Pritchard AL, Khosrotehrani K, Mann GJ, Montgomery GW, Iles MM, Cust AE, Palmer JM, Shannon KF, Spillane AJ, Stretch JR, Thompson JF, Saw RPM, Scolyer RA, Martin NG, Hayward NK, MacGregor S. Multiplex melanoma families are enriched for polygenic risk. Hum Mol Genet 2020; 29:2976-2985. [PMID: 32716505 PMCID: PMC7566496 DOI: 10.1093/hmg/ddaa156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/04/2023] Open
Abstract
Cancers, including cutaneous melanoma, can cluster in families. In addition to environmental etiological factors such as ultraviolet radiation, cutaneous melanoma has a strong genetic component. Genetic risks for cutaneous melanoma range from rare, high-penetrance mutations to common, low-penetrance variants. Known high-penetrance mutations account for only about half of all densely affected cutaneous melanoma families, and the causes of familial clustering in the remainder are unknown. We hypothesize that some clustering is due to the cumulative effect of a large number of variants of individually small effect. Common, low-penetrance genetic risk variants can be combined into polygenic risk scores. We used a polygenic risk score for cutaneous melanoma to compare families without known high-penetrance mutations with unrelated melanoma cases and melanoma-free controls. Family members had significantly higher mean polygenic load for cutaneous melanoma than unrelated cases or melanoma-free healthy controls (Bonferroni-corrected t-test P = 1.5 × 10-5 and 6.3 × 10-45, respectively). Whole genome sequencing of germline DNA from 51 members of 21 families with low polygenic risk for melanoma identified a CDKN2A p.G101W mutation in a single family but no other candidate high-penetrance melanoma susceptibility genes. This work provides further evidence that melanoma, like many other common complex disorders, can arise from the joint action of multiple predisposing factors, including rare high-penetrance mutations, as well as via a combination of large numbers of alleles of small effect.
Collapse
Affiliation(s)
- Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Lauren G Aoude
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Surgical Oncology Group, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - David L Duffy
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Medical Oncology, Mater Hospital, North Sydney, NSW 2060, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Peter A Johansson
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Antonia L Pritchard
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Genetics and Immunology, University of the Highlands and Islands, Inverness IV2 5NA, UK
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Grant W Montgomery
- Molecular Biology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark M Iles
- Leeds Institute for Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jane M Palmer
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW 2050, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
10
|
Melanocytic lesion in children and adolescents: an Italian observational study. Sci Rep 2020; 10:8594. [PMID: 32451385 PMCID: PMC7248059 DOI: 10.1038/s41598-020-65690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/21/2020] [Indexed: 11/29/2022] Open
Abstract
Malignant melanoma is a rare neoplasm in the pediatric age group. One of the main risks factors is represented by the presence of a high number of melanocytic nevi. Sun exposure in pediatric age represents a predictor of melanocytic nevi number in the adult age and there is a direct correlation between the presence of melanocytic moles in early childhood and the development of many nevi in adults, suggesting that a high number of nevi in childhood should be considered as a predictor of melanoma development during adult life. The predominance of dermoscopic types of melanocytic nevi varies according to the individual’s age and depends on endogenous or exogenous signaling, suggesting different pathways of nevogenesis. We evaluated the total amount of melanocytic nevi of pediatric patients and their prevalent dermoscopic pattern. We investigated the reasons for dermatological examination, pointing out the role of older parents’ populations in the decision to refer to a dermatological consultant. We performed a prospective observational study on 295 pediatric outpatients consecutively enrolled from July 2018 to July 2019. Descriptive and inferential statistical analyses were performed using logistic and linear regression. 49% of children were characterized by less than 10 nevi, 45% of children by a number of nevi between 10 and 30, whilst 17 patients (5%) had a number of nevi between 30 and 50. The most prevalent dermoscopic pattern was the globular one. An older parenting age was correlated with an autonomous reason for referral and a later first visit. Our data agreed with previous suggestions demonstrating a strong influence of latitude, sun exposure and ethnic background in the development of the number of nevi. To our knowledge, this is the first study, which evaluated the reasons for dermatological examination and the role of older parents’ populations in the decision to refer to a dermatological consultant
Collapse
|
11
|
Dudding T, Haworth S, Lind PA, Sathirapongsasuti JF, Tung JY, Mitchell R, Colodro-Conde L, Medland SE, Gordon S, Elsworth B, Paternoster L, Franks PW, Thomas SJ, Martin NG, Timpson NJ. Genome wide analysis for mouth ulcers identifies associations at immune regulatory loci. Nat Commun 2019; 10:1052. [PMID: 30837455 PMCID: PMC6400940 DOI: 10.1038/s41467-019-08923-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
Mouth ulcers are the most common ulcerative condition and encompass several clinical diagnoses, including recurrent aphthous stomatitis (RAS). Despite previous evidence for heritability, it is not clear which specific genetic loci are implicated in RAS. In this genome-wide association study (n = 461,106) heritability is estimated at 8.2% (95% CI: 6.4%, 9.9%). This study finds 97 variants which alter the odds of developing non-specific mouth ulcers and replicate these in an independent cohort (n = 355,744) (lead variant after meta-analysis: rs76830965, near IL12A, OR 0.72 (95% CI: 0.71, 0.73); P = 4.4e−483). Additional effect estimates from three independent cohorts with more specific phenotyping and specific study characteristics support many of these findings. In silico functional analyses provide evidence for a role of T cell regulation in the aetiology of mouth ulcers. These results provide novel insight into the pathogenesis of a common, important condition. Oral ulcerations are sores of the mucous membrane of the mouth and highly prevalent in the population. Here, in a genome-wide association study, the authors identify 97 loci associated with mouth ulcers highlighting genes involved in T cell-mediated immunity and TH1 responses.
Collapse
Affiliation(s)
- Tom Dudding
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.,Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | - Simon Haworth
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.,Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | - Penelope A Lind
- Department of Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | | | | | - Joyce Y Tung
- Research, 23andMe, Inc, Mountain View, 94041, CA, USA
| | - Ruth Mitchell
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Lucía Colodro-Conde
- Department of Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Sarah E Medland
- Department of Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Scott Gordon
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Benjamin Elsworth
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Malmö, 221 00, Sweden.,Department of Public Health & Clinical Medicine, Umeå University, Umeå, 901 87, Sweden.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, 02115, MA, USA
| | - Steven J Thomas
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | - Nicholas G Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
12
|
Smith DJM. The Melanocortin 1 receptor and its influence on naevi and melanoma in dark-skinned phenotypes. Australas J Dermatol 2018; 60:192-199. [PMID: 30585306 DOI: 10.1111/ajd.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/20/2018] [Indexed: 12/19/2022]
Abstract
It is well appreciated that melanocortin 1 receptor variants can produce a fair skinned and red-haired phenotype that has a strong association with increased melanoma risk. These patients are easily recognised and given appropriate attention. What may not be appreciated is that darker-skinned individuals may also carry melanocortin 1 receptor variant alleles and that they can also be at increased risk of melanoma. Considering that melanocortin 1 receptor is crucial for melanocyte proliferation, regulation and differentiation do the naevi of these darker-skinned individuals have specific features that help identify them as carrying one of these melanocortin 1 receptor variants and do melanomas that develop in dark-skinned melanocortin 1 receptor variant carriers have particular characteristics?
Collapse
|
13
|
Duffy DL, Zhu G, Li X, Sanna M, Iles MM, Jacobs LC, Evans DM, Yazar S, Beesley J, Law MH, Kraft P, Visconti A, Taylor JC, Liu F, Wright MJ, Henders AK, Bowdler L, Glass D, Ikram MA, Uitterlinden AG, Madden PA, Heath AC, Nelson EC, Green AC, Chanock S, Barrett JH, Brown MA, Hayward NK, MacGregor S, Sturm RA, Hewitt AW, Kayser M, Hunter DJ, Newton Bishop JA, Spector TD, Montgomery GW, Mackey DA, Smith GD, Nijsten TE, Bishop DT, Bataille V, Falchi M, Han J, Martin NG. Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways. Nat Commun 2018; 9:4774. [PMID: 30429480 PMCID: PMC6235897 DOI: 10.1038/s41467-018-06649-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
The total number of acquired melanocytic nevi on the skin is strongly correlated with melanoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands, UK, and USA comprising 52,506 individuals. We confirm known loci including MTAP, PLA2G6, and IRF4, and detect novel SNPs in KITLG and a region of 9q32. In a bivariate analysis combining the nevus results with a recent melanoma GWAS meta-analysis (12,874 cases, 23,203 controls), SNPs near GPRC5A, CYP1B1, PPARGC1B, HDAC4, FAM208B, DOCK8, and SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a suggestive level. Overall, we conclude that most nevus genes affect melanoma risk (KITLG an exception), while many melanoma risk loci do not alter nevus count. For example, variants in TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis.
Collapse
Affiliation(s)
- David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 63110, USA
| | - Marianna Sanna
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Leonie C Jacobs
- Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Seyhan Yazar
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Australia
| | | | - Matthew H Law
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - John C Taylor
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Anjali K Henders
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lisa Bowdler
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dan Glass
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Pamela A Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adele C Green
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer H Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | | | | | - Richard A Sturm
- Dermatology Research Centre, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Alex W Hewitt
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Julia A Newton Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David A Mackey
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Australia
| | | | - Tamar E Nijsten
- Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 63110, USA
| | | |
Collapse
|
14
|
Laino AM, Berry EG, Jagirdar K, Lee KJ, Duffy DL, Soyer HP, Sturm RA. Iris pigmented lesions as a marker of cutaneous melanoma risk: an Australian case-control study. Br J Dermatol 2018; 178:1119-1127. [PMID: 29315480 DOI: 10.1111/bjd.16323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iris naevi and iris freckles have a frequency of 4% and 50% in the European population, respectively. They are associated with dysplastic naevi, but few studies have examined their link to cutaneous melanoma. OBJECTIVES To assess whether iris pigmented lesions are a predictive indicator for cutaneous melanoma. METHODS This is a melanoma case-control study of 1254 European-background Australians. Sun exposure and melanoma history, a saliva sample for DNA analysis and eye photographs taken with a digital camera were collected from 1117 participants. Iris images were assessed by up to four trained observers for the number of iris pigmented lesions. The data were analysed for correlations between iris pigmented lesions and melanoma history. RESULTS Case participants over the age of 40 had similar numbers of iris pigmented lesions to age matched controls (mean 5·7 vs. 5·2, P = 0·02), but in younger case and control participants there was a greater difference (mean 3·96 vs. 2·19, P = 0·004). A logistic regression adjusted for age, sex, skin, hair and eye colour, skin freckling and naevus count found that the presence of three or more iris pigmented lesions increases the melanoma risk 1·45-fold [95% confidence interval (CI) 1·07-1·95]. HERC2/OCA2 rs12913832 and IRF4 rs12203592 influenced both eye colour and the number of iris pigmented lesions. On the HERC2/OCA2 A/A and A/G genotype background there was an increasing proportion of blue eye colour when carrying the IRF4 T allele (P = 3 × 10-4 ) and a higher number of iris pigmented lesions with the IRF4 T/T homozygote (P = 3 × 10-9 ). CONCLUSIONS Iris pigmented lesion count provides additional predictive information for melanoma risk above that from conventional risk factors.
Collapse
Affiliation(s)
- A M Laino
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| | - E G Berry
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia.,Department of Dermatology, Emory University School of Medicine, Atlanta, 30309, GA, U.S.A
| | - K Jagirdar
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| | - K J Lee
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| | - D L Duffy
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - H P Soyer
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - R A Sturm
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| |
Collapse
|
15
|
Couvy-Duchesne B, O’Callaghan V, Parker R, Mills N, Kirk KM, Scott J, Vinkhuyzen A, Hermens DF, Lind PA, Davenport TA, Burns JM, Connell M, Zietsch BP, Scott J, Wright MJ, Medland SE, McGrath J, Martin NG, Hickie IB, Gillespie NA. Nineteen and Up study (19Up): understanding pathways to mental health disorders in young Australian twins. BMJ Open 2018; 8:e018959. [PMID: 29550775 PMCID: PMC5875659 DOI: 10.1136/bmjopen-2017-018959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The Nineteen and Up study (19Up) assessed a range of mental health and behavioural problems and associated risk factors in a genetically informative Australian cohort of young adult twins and their non-twin siblings. As such, 19Up enables detailed investigation of genetic and environmental pathways to mental illness and substance misuse within the Brisbane Longitudinal Twin Sample (BLTS). PARTICIPANTS Twins and their non-twin siblings from Queensland, Australia; mostly from European ancestry. Data were collected between 2009 and 2016 on 2773 participants (age range 18-38, 57.8% female, 372 complete monozygotic pairs, 493 dizygotic pairs, 640 non-twin siblings, 403 singleton twins). FINDINGS TO DATE A structured clinical assessment (Composite International Diagnostic Interview) was used to collect lifetime prevalence of diagnostic statistical manual (4th edition) (DSM-IV) diagnoses of major depressive disorder, (hypo)mania, social anxiety, cannabis use disorder, alcohol use disorder, panic disorder and psychotic symptoms. Here, we further describe the comorbidities and ages of onset for these mental disorders. Notably, two-thirds of the sample reported one or more lifetime mental disorder.In addition, the 19Up study assessed general health, drug use, work activity, education level, personality, migraine/headaches, suicidal thoughts, attention deficit hyperactivity disorder (ADHD) symptomatology, sleep-wake patterns, romantic preferences, friendships, familial environment, stress, anorexia and bulimia as well as baldness, acne, asthma, endometriosis, joint flexibility and internet use.The overlap with previous waves of the BLTS means that 84% of the 19Up participants are genotyped, 36% imaged using multimodal MRI and most have been assessed for psychological symptoms at up to four time points. Furthermore, IQ is available for 57%, parental report of ADHD symptomatology for 100% and electroencephalography for 30%. FUTURE PLANS The 19Up study complements a phenotypically rich, longitudinal collection of environmental and psychological risk factors. Future publications will explore hypotheses related to disease onset and development across the waves of the cohort. A follow-up study at 25+years is ongoing.
Collapse
Affiliation(s)
- Baptiste Couvy-Duchesne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Victoria O’Callaghan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natalie Mills
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Katherine M Kirk
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jan Scott
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Anna Vinkhuyzen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel F Hermens
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tracey A Davenport
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jane M Burns
- Young and Well CRC, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa Connell
- UQCCR, The University of Queensland, Brisbane, Queensland, Australia
| | - Brendan P Zietsch
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - James Scott
- UQCCR, The University of Queensland, Brisbane, Queensland, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John McGrath
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan A Gillespie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
16
|
Pandeya N, Kvaskoff M, Olsen CM, Green AC, Perry S, Baxter C, Davis MB, Mortimore R, Westacott L, Wood D, Triscott J, Williamson R, Whiteman DC. Factors Related to Nevus-Associated Cutaneous Melanoma: A Case-Case Study. J Invest Dermatol 2018. [PMID: 29524457 DOI: 10.1016/j.jid.2017.12.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A proportion of cutaneous melanomas display neval remnants on histologic examination. Converging lines of epidemiologic and molecular evidence suggest that melanomas arising from nevus precursors differ from melanomas arising de novo. In a large, population-based study comprising 636 cutaneous melanomas subjected to dermatopathology review, we explored the molecular, host, and environmental factors associated with the presence of neval remnants. We found that nevus-associated melanomas were significantly associated with younger age at presentation, non-brown eye color, trunk site, thickness of less than 0.5 mm, and BRAFV600E mutation. Compared with patients with de novo melanomas, those with nevus-associated tumors were more likely to self-report many moles on their skin as a teenager (odds ratio = 1.94, 95% confidence interval = 1.01-3.72) but less likely to report many facial freckles (odds ratio = 0.49, 95% confidence interval = 0.25-0.96). They also had high total nevus counts (odds ratio = 2.18, 95% confidence interval = 1.26-3.78). On histologic examination, nevus-associated melanomas exhibited less dermal elastosis in adjacent skin compared with de novo melanomas (odds ratio = 0.55, 95% confidence interval = 0.30-1.01). These epidemiologic data accord with the emerging molecular paradigm that nevus-associated melanomas arise through a distinct sequence of causal events that differ from those leading to other cutaneous melanomas.
Collapse
Affiliation(s)
- Nirmala Pandeya
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Public Health, The University of Queensland, Herston, Queensland, Australia
| | - Marina Kvaskoff
- Centre de recherche en Epidémiologie et Santé des Populations, Faculté de médecine-Université Paris-Sud, Faculté de médecine-Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Catherine M Olsen
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Public Health, The University of Queensland, Herston, Queensland, Australia
| | - Adèle C Green
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan Perry
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Catherine Baxter
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Marcia B Davis
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Lorraine Westacott
- Princess Alexandra Hospital, Metro South Health, Brisbane, Queensland, Australia
| | | | | | | | - David C Whiteman
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
17
|
Taylor NJ, Mitra N, Goldstein AM, Tucker MA, Avril MF, Azizi E, Bergman W, Bishop DT, Bressac-de Paillerets B, Bruno W, Calista D, Cannon-Albright LA, Cuellar F, Cust AE, Demenais F, Elder DE, Gerdes AM, Ghiorzo P, Grazziotin TC, Hansson J, Harland M, Hayward NK, Hocevar M, Höiom V, Ingvar C, Landi MT, Landman G, Larre-Borges A, Leachman SA, Mann GJ, Nagore E, Olsson H, Palmer JM, Perić B, Pjanova D, Pritchard A, Puig S, van der Stoep N, Wadt KAW, Whitaker L, Yang XR, Newton Bishop JA, Gruis NA, Kanetsky PA. Germline Variation at CDKN2A and Associations with Nevus Phenotypes among Members of Melanoma Families. J Invest Dermatol 2017; 137:2606-2612. [PMID: 28830827 PMCID: PMC5701856 DOI: 10.1016/j.jid.2017.07.829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022]
Abstract
Germline mutations in CDKN2A are frequently identified among melanoma kindreds and are associated with increased atypical nevus counts. However, a clear relationship between pathogenic CDKN2A mutation carriage and other nevus phenotypes including counts of common acquired nevi has not yet been established. Using data from GenoMEL, we investigated the relationships between CDKN2A mutation carriage and 2-mm, 5-mm, and atypical nevus counts among blood-related members of melanoma families. Compared with individuals without a pathogenic mutation, those who carried one had an overall higher prevalence of atypical (odds ratio = 1.64; 95% confidence interval = 1.18-2.28) nevi but not 2-mm nevi (odds ratio = 1.06; 95% confidence interval = 0.92-1.21) or 5-mm nevi (odds ratio = 1.26; 95% confidence interval = 0.94-1.70). Stratification by case status showed more pronounced positive associations among non-case family members, who were nearly three times (odds ratio = 2.91; 95% confidence interval = 1.75-4.82) as likely to exhibit nevus counts at or above the median in all three nevus categories simultaneously when harboring a pathogenic mutation (vs. not harboring one). Our results support the hypothesis that unidentified nevogenic genes are co-inherited with CDKN2A and may influence carcinogenesis.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Department of Epidemiology and Biostatistics, Texas A&M Health Science Center, College Station, Texas, USA
| | - Nandita Mitra
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alisa M Goldstein
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin et Université Paris Descartes, Paris, France
| | - Esther Azizi
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wilma Bergman
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Cancer Research UK Clinical Centre at Leeds, St James's University Hospital, Leeds, UK
| | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Université Paris-Saclay, Département de Biologie et Pathologie Médicales, INSERM, U1186, Villejuif, France
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS AOU San Martino-IST Genoa, Italy
| | - Donato Calista
- Dermatology Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Lisa A Cannon-Albright
- Departments of Genetic Epidemiology and Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - Francisco Cuellar
- Melanoma Unit, Dermatology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Raras, Barcelona, Spain
| | - Anne E Cust
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia; Melanoma Institute Australia, Westmead, New South Wales, Australia
| | - Florence Demenais
- Genetic Variation and Human Diseases Unit, UMR-946, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - David E Elder
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Paola Ghiorzo
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Cancer Research UK Clinical Centre at Leeds, St James's University Hospital, Leeds, UK
| | - Thais C Grazziotin
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Cancer Research UK Clinical Centre at Leeds, St James's University Hospital, Leeds, UK
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Marko Hocevar
- Institute of Oncology Ljubljana, Zaloska, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Ingvar
- Departments of Clinical Sciences and Surgery, Lund University, Lund, Sweden
| | - Maria Teresa Landi
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Gilles Landman
- Department of Pathology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Alejandra Larre-Borges
- Unidad de Lesiones Pigmentadas, Cátedra de Dermatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Graham J Mann
- Melanoma Institute Australia, Westmead, New South Wales, Australia; Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, New South Wales, Australia
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Håkan Olsson
- Departments of Clinical Sciences and Surgery, Lund University, Lund, Sweden
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Barbara Perić
- Institute of Oncology Ljubljana, Zaloska, Ljubljana, Slovenia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Antonia Pritchard
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Raras, Barcelona, Spain
| | - Nienke van der Stoep
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Linda Whitaker
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Cancer Research UK Clinical Centre at Leeds, St James's University Hospital, Leeds, UK
| | - Xiaohong R Yang
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia A Newton Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Cancer Research UK Clinical Centre at Leeds, St James's University Hospital, Leeds, UK
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
18
|
Genome-Wide Association Shows that Pigmentation Genes Play a Role in Skin Aging. J Invest Dermatol 2017; 137:1887-1894. [DOI: 10.1016/j.jid.2017.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023]
|
19
|
Couvy-Duchesne B, Davenport TA, Martin NG, Wright MJ, Hickie IB. Validation and psychometric properties of the Somatic and Psychological HEalth REport (SPHERE) in a young Australian-based population sample using non-parametric item response theory. BMC Psychiatry 2017; 17:279. [PMID: 28764680 PMCID: PMC5540428 DOI: 10.1186/s12888-017-1420-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Somatic and Psychological HEalth REport (SPHERE) is a 34-item self-report questionnaire that assesses symptoms of mental distress and persistent fatigue. As it was developed as a screening instrument for use mainly in primary care-based clinical settings, its validity and psychometric properties have not been studied extensively in population-based samples. METHODS We used non-parametric Item Response Theory to assess scale validity and item properties of the SPHERE-34 scales, collected through four waves of the Brisbane Longitudinal Twin Study (N = 1707, mean age = 12, 51% females; N = 1273, mean age = 14, 50% females; N = 1513, mean age = 16, 54% females, N = 1263, mean age = 18, 56% females). We estimated the heritability of the new scores, their genetic correlation, and their predictive ability in a sub-sample (N = 1993) who completed the Composite International Diagnostic Interview. RESULTS After excluding items most responsible for noise, sex or wave bias, the SPHERE-34 questionnaire was reduced to 21 items (SPHERE-21), comprising a 14-item scale for anxiety-depression and a 10-item scale for chronic fatigue (3 items overlapping). These new scores showed high internal consistency (alpha > 0.78), moderate three months reliability (ICC = 0.47-0.58) and item scalability (Hi > 0.23), and were positively correlated (phenotypic correlations r = 0.57-0.70; rG = 0.77-1.00). Heritability estimates ranged from 0.27 to 0.51. In addition, both scores were associated with later DSM-IV diagnoses of MDD, social anxiety and alcohol dependence (OR in 1.23-1.47). Finally, a post-hoc comparison showed that several psychometric properties of the SPHERE-21 were similar to those of the Beck Depression Inventory. CONCLUSIONS The scales of SPHERE-21 measure valid and comparable constructs across sex and age groups (from 9 to 28 years). SPHERE-21 scores are heritable, genetically correlated and show good predictive ability of mental health in an Australian-based population sample of young people.
Collapse
Affiliation(s)
- Baptiste Couvy-Duchesne
- Queensland Brain Institute, the University of Queensland, Brisbane, Australia. .,Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia. .,Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Tracey A. Davenport
- 0000 0004 1936 834Xgrid.1013.3Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Nicholas G. Martin
- 0000 0001 2294 1395grid.1049.cGenetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Margaret J. Wright
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, the University of Queensland, Brisbane, Australia
| | - Ian B. Hickie
- 0000 0004 1936 834Xgrid.1013.3Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Armstrong BK, Cust AE. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American Journal of Epidemiology 1977; 105: 420-427. Cancer Epidemiol 2017; 48:147-156. [PMID: 28478931 DOI: 10.1016/j.canep.2017.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/19/2022]
Abstract
Sunlight has been known as an important cause of skin cancer since around the turn of the 20th Century. A 1977 landmark paper of US scientists Fears, Scotto, and Schneiderman advanced a novel hypothesis whereby cutaneous melanoma was primarily caused by intermittent sun exposure (i.e. periodic, brief episodes of exposure to high-intensity ultraviolet radiation) while the keratinocyte cancers, squamous cell carcinoma and basal cell carcinoma, were primarily caused by progressive accumulation of sun exposure. With respect to cutaneous melanoma, this became known as the intermittent exposure hypothesis. The hypothesis stemmed from analysis of measured ambient ultraviolet radiation and age-specific incidence rates of melanoma and keratinocyte cancers collected as an extension to the US Third National Cancer Survey in several US States. In this perspective paper, we put this novel hypothesis into the context of knowledge at the time, and describe subsequent epidemiological and molecular research into melanoma that elaborated the intermittent exposure hypothesis and ultimately replaced it with a dual pathway hypothesis. Our present understanding is of two distinct biological pathways by which cutaneous melanoma might develop; a nevus prone pathway initiated by early sun exposure and promoted by intermittent sun exposure or possibly host factors; and a chronic sun exposure pathway in sun sensitive people who progressively accumulate sun exposure to the sites of future melanomas.
Collapse
Affiliation(s)
- Bruce K Armstrong
- Cancer Epidemiology and Prevention Research Group, School of Public Health, The University of Sydney, NSW, Australia; School of Global and Population Health, The University of Western Australia, Perth, WA, Australia.
| | - Anne E Cust
- Cancer Epidemiology and Prevention Research Group, School of Public Health, The University of Sydney, NSW, Australia; The Melanoma Institute Australia, North Sydney, NSW, Australia
| |
Collapse
|
21
|
Taylor NJ, Thomas NE, Anton-Culver H, Armstrong BK, Begg CB, Busam KJ, Cust AE, Dwyer T, From L, Gallagher RP, Gruber SB, Nishri DE, Orlow I, Rosso S, Venn AJ, Zanetti R, Berwick M, Kanetsky PA. Nevus count associations with pigmentary phenotype, histopathological melanoma characteristics and survival from melanoma. Int J Cancer 2016; 139:1217-22. [PMID: 27101944 PMCID: PMC4939099 DOI: 10.1002/ijc.30157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
Although nevus count is an established risk factor for melanoma, relationships between nevus number and patient and tumor characteristics have not been well studied and the influence of nevus count on melanoma-specific survival is equivocal. Using data from the Genes, Environment and Melanoma (GEM) study, a large population-based study of primary cutaneous melanoma, we evaluated associations between number of nevi and patient features, including sun-sensitivity summarized in a phenotypic index, and tumor characteristics. We also assessed the association of nevus count with melanoma-specific survival. Higher nevus counts were independently and positively associated with male gender and younger age at diagnosis, and they were inversely associated with lentigo maligna histology. We observed a borderline significant trend of poorer melanoma-specific survival with increasing quartile of nevus count, but little or no association between number of nevi and pigmentary phenotypic characteristics or prognostic tumor features.
Collapse
Affiliation(s)
- Nicholas J. Taylor
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nancy E. Thomas
- Department of Dermatology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California, Irvine, CA, USA
| | | | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klaus J. Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne E. Cust
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Terence Dwyer
- George Institute for Global Health Research, University of Oxford, 34 Broad St. OX1 3BD, Oxford, UK
| | - Lynn From
- Women’s College Hospital, Toronto, ON, Canada
| | | | - Stephen B. Gruber
- Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alison J. Venn
- Menzies Centre for Population Health, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Marianne Berwick
- Departments of Internal Medicine and Dermatology, University of New Mexico, Albuquerque, NM, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
22
|
Lee S, Duffy DL, McClenahan P, Lee KJ, McEniery E, Burke B, Jagirdar K, Martin NG, Sturm RA, Soyer HP, Schaider H. Heritability of naevus patterns in an adult twin cohort from the Brisbane Twin Registry: a cross-sectional study. Br J Dermatol 2016; 174:356-63. [PMID: 26871925 DOI: 10.1111/bjd.14291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Heritability of naevi counts is widely acknowledged as a potential surveillance parameter for prevention purposes. The contribution of heritability to the changes seen in naevus number and morphology over time and their corresponding dermoscopic characteristics is unknown, but is important to understand in order to account for adequate prevention measures. OBJECTIVES To identify naevus characteristics that are strongly influenced by heritability. METHODS This cross-sectional study included 220 individuals [76 monozygotic (MZ), 144 dizygotic (DZ)], recruited from the Brisbane Twin Naevus Study. Participants received full body imaging and dermoscopy of naevi ≥ 5 mm in diameter. Dermoscopic type, total naevus count (TNC), change in TNC with age, and naevus distribution, size, colour and profile were compared between MZ and DZ twins. Heritability of these traits was assessed via Falconer's estimate. RESULTS Significant differences were found in comparing MZ and DZ twins for TNC, numbers of naevi 5·0-7·9 mm in diameter, counts of light-brown naevi, naevi on the back and sun-protected sites, and naevi with the 'nonspecific' dermoscopic pattern. CONCLUSIONS This study strongly supports a heritable component to TNC, as well as changes in TNC, and the number of medium-sized naevi, light-brown naevi, specific sites and certain dermoscopic features in adults. These characteristics should be taken into account by naevus surveillance programmes and further studied to identify candidate gene associations for clinical and dermoscopic patterns in conjunction with melanoma risk stratification.
Collapse
Affiliation(s)
- S Lee
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - D L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P McClenahan
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - K J Lee
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - E McEniery
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - B Burke
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - K Jagirdar
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - N G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - R A Sturm
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | - H P Soyer
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - H Schaider
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
23
|
Bennett DC. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 2015; 29:122-40. [PMID: 26386262 DOI: 10.1111/pcmr.12422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, Cranmer Terrace, London, UK
| |
Collapse
|
24
|
Gharahkhani P, Burdon KP, Hewitt AW, Law MH, Souzeau E, Montgomery GW, Radford-Smith G, Mackey DA, Craig JE, MacGregor S. Accurate Imputation-Based Screening of Gln368Ter Myocilin Variant in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2015; 56:5087-93. [PMID: 26237198 DOI: 10.1167/iovs.15-17305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Myocilin (MYOC) is a well-established primary open-angle glaucoma (POAG) risk gene, with rare variants known to have high penetrance. The most common clinically relevant risk variant, Gln368Ter, has an allele frequency of 0.1% to 0.3% in populations of European ancestry. Detection of rare MYOC variants has traditionally been conducted using Sanger sequencing. Here we report the use of genotyping arrays and imputation to assess whether rare variants including Gln368Ter can be reliably detected. METHODS A total of 1155 cases with advanced POAG and 1992 unscreened controls genotyped on common variant arrays participated in this study. Accuracy of imputation of Gln368Ter variants was compared with direct sequencing. A genome-wide association study was performed using additive model adjusted for sex and the first six principal components. RESULTS We found that although the arrays we used were designed to tag common variants, we could reliably impute the Gln368Ter variant (rs74315329). When tested in 1155 POAG cases and 1992 controls, rs74315329 was strongly associated with risk (odds ratio = 15.53, P = 1.07 × 10-9). All POAG samples underwent full sequencing of the MYOC gene, and we found a sensitivity of 100%, specificity of 99.91%, positive predictive value of 95.65%, and negative predictive value of 100% between imputation and sequencing. Gln368Ter was also accurately imputed in a further set of 1801 individuals without POAG. Among the total set of 3793 (1992 + 1801) individuals without POAG, six were predicted (probability > 95%) to carry the risk variant. CONCLUSIONS We demonstrate that some clinically important rare variants can be reliably detected using arrays and imputation. These results have important implications for the detection of clinically relevant incidental findings in ongoing and future studies using arrays.
Collapse
Affiliation(s)
- Puya Gharahkhani
- Queensland Institute of Medical Research Berghofer Medical Research Institute Brisbane, Queensland, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia 3Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia 4Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Matthew H Law
- Queensland Institute of Medical Research Berghofer Medical Research Institute Brisbane, Queensland, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Grant W Montgomery
- Queensland Institute of Medical Research Berghofer Medical Research Institute Brisbane, Queensland, Australia
| | - Graham Radford-Smith
- Queensland Institute of Medical Research Berghofer Medical Research Institute Brisbane, Queensland, Australia 5School of Medicine, University of Queensland, Herston Campus, Brisbane, Queensland, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia 6Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia 7South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart MacGregor
- Queensland Institute of Medical Research Berghofer Medical Research Institute Brisbane, Queensland, Australia
| |
Collapse
|
25
|
A common genetic influence on human intensity ratings of sugars and high-potency sweeteners. Twin Res Hum Genet 2015; 18:361-7. [PMID: 26181574 DOI: 10.1017/thg.2015.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The perception of sweetness varies among individuals but the sources of this variation are not fully understood. Here, in a sample of 1,901 adolescent and young adults (53.8% female; 243 MZ and 452 DZ twin pairs, 511 unpaired individuals; mean age 16.2±2.8, range 12–26 years), we studied the variation in the perception of sweetness intensity of two monosaccharides and two high-potency sweeteners: glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame. Perceived intensity for all sweeteners decreased with age (2–5% per year) and increased with the history of otitis media (6–9%). Males rated aspartame slightly stronger than females (7%). We found similar heritabilities for sugars (glucose: h2=0.31, fructose: h2=0.34) and high-potency sweeteners (NHDC: h2=0.31, aspartame: h2=0.30); all were in the modest range. Multivariate modeling showed that a common genetic factor accounted for >75% of the genetic variance in the four sweeteners, suggesting that individual differences in perceived sweet intensity, which are partly due to genetic factors, may be attributed to a single set of genes. This study provided evidence of the shared genetic pathways between the perception of sugars and high-potency sweeteners.
Collapse
|
26
|
Coelho SG, Valencia JC, Yin L, Smuda C, Mahns A, Kolbe L, Miller SA, Beer JZ, Zhang G, Tuma PL, Hearing VJ. UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin. J Pathol 2015; 236:17-29. [PMID: 25488118 DOI: 10.1002/path.4497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022]
Abstract
Human skin colour, ie pigmentation, differs widely among individuals, as do their responses to various types of ultraviolet radiation (UV) and their risks of skin cancer. In some individuals, UV-induced pigmentation persists for months to years in a phenomenon termed long-lasting pigmentation (LLP). It is unclear whether LLP is an indicator of potential risk for skin cancer. LLP seems to have similar features to other forms of hyperpigmentation, eg solar lentigines or age spots, which are clinical markers of photodamage and risk factors for precancerous lesions. To investigate what UV-induced molecular changes may persist in individuals with LLP, clinical specimens from non-sunburn-inducing repeated UV exposures (UVA, UVB or UVA + UVB) at 4 months post-exposure (short-term LLP) were evaluated by microarray analysis and dataset mining. Validated targets were further evaluated in clinical specimens from six healthy individuals (three LLP+ and three LLP-) followed for more than 9 months (long-term LLP) who initially received a single sunburn-inducing UVA + UVB exposure. The results support a UV-induced hyperpigmentation model in which basal keratinocytes have an impaired ability to remove melanin that leads to a compensatory mechanism by neighbouring keratinocytes with increased proliferative capacity to maintain skin homeostasis. The attenuated expression of SOX7 and other hemidesmosomal components (integrin α6β4 and plectin) leads to increased melanosome uptake by keratinocytes and points to a spatial regulation within the epidermis. The reduced density of hemidesmosomes provides supporting evidence for plasticity at the epidermal-dermal junction. Altered hemidesmosome plasticity, and the sustained nature of LLP, may be mediated by the role of SOX7 in basal keratinocytes. The long-term sustained subtle changes detected are modest, but sufficient to create dramatic visual differences in skin colour. These results suggest that the hyperpigmentation phenomenon leading to increased interdigitation develops in order to maintain normal skin homeostasis in individuals with LLP.
Collapse
Affiliation(s)
- Sergio G Coelho
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Orlow I, Satagopan JM, Berwick M, Enriquez HL, White KAM, Cheung K, Dusza SW, Oliveria SA, Marchetti MA, Scope A, Marghoob AA, Halpern AC. Genetic factors associated with naevus count and dermoscopic patterns: preliminary results from the Study of Nevi in Children (SONIC). Br J Dermatol 2015; 172:1081-9. [PMID: 25307738 PMCID: PMC4382400 DOI: 10.1111/bjd.13467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Melanocytic naevi are an important risk factor for melanoma. Naevi with distinct dermoscopic patterns can differ in size, distribution and host pigmentation characteristics. OBJECTIVES We examined MC1R and 85 other candidate loci in a cohort of children to test the hypothesis that the development and dermoscopic type of naevi are modulated by genetic variants. METHODS Buccal DNAs were obtained from a cohort of 353 fifth graders (mean age 10·4 years). Polymorphisms were chosen based on a known or anticipated role in naevi and melanoma. Associations between single-nucleotide polymorphisms (SNPs) and baseline naevus count were determined by multivariate regression adjusting for sex, race/ethnicity and sun sensitivity. Dermoscopic images were available for 853 naevi from 290 children. Associations between SNPs and dermoscopic patterns were determined by polytomous regression. RESULTS Four SNPs were significantly associated with increasing (IRF4) or decreasing (PARP1, CDK6 and PLA2G6) naevus count in multivariate shrinkage analyses with all SNPs included in the model; IRF4 rs12203952 showed the strongest association with log naevus count (relative risk 1·56, P < 0·001). Using homogeneous naevi as the reference, IRF4 rs12203952 and four other SNPs in TERT, CDKN1B, MTAP and PARP1 were associated with either globular or reticular dermoscopic patterns (P < 0·05). CONCLUSIONS Our results provide evidence that subsets of naevi defined by dermoscopic patterns differ in their associations with germline genotypes and support the hypothesis that dermoscopically defined subsets of naevi are biologically distinct. These results require confirmation in larger cohorts. If confirmed, these findings will improve the current knowledge of naevogenesis and assist in the identification of individuals with high-risk phenotypes.
Collapse
Affiliation(s)
- I Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ribero S, Glass D, Aviv A, Spector TD, Bataille V. Height and bone mineral density are associated with naevus count supporting the importance of growth in melanoma susceptibility. PLoS One 2015; 10:e0116863. [PMID: 25612317 PMCID: PMC4303431 DOI: 10.1371/journal.pone.0116863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022] Open
Abstract
Naevus count is the strongest risk factor for melanoma. Body Mass Index (BMI) has been linked to melanoma risk. In this study, we investigate the link between naevus count and height, weight and bone mineral density (BMD) in the TwinsUK cohort (N = 2119). In addition we adjusted for leucocyte telomere length (LTL) as LTL is linked to both BMD and naevus count. Naevus count was positively associated with height (p = 0.001) but not with weight (p = 0.187) despite adjusting for age and twin relatedness. This suggests that the previously reported melanoma association with BMI may be explained by height alone. Further adjustment for LTL did not affect the significance of the association between height and naevus count so LTL does not fully explain these results. BMD was associated with naevus count at the spine (coeff 18.9, p = 0.01), hip (coeff = 18.9, p = 0.03) and forearm (coeff = 32.7, p = 0.06) despite adjusting for age, twin relatedness, weight, height and LTL. This large study in healthy individuals shows that growth via height, probably in early life, and bone mass are risk factors for melanoma via increased naevus count. The link between these two phenotypes may possibly be explained by telomere biology, differentiation genes from the neural crests but also other yet unknown factors which may influence both bones and melanocytes biology.
Collapse
Affiliation(s)
- Simone Ribero
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Section of Dermatology, Departments of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel Glass
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Dermatology Department, Northwick Park Hospital, Middlesex, United Kingdom
| | - Abraham Aviv
- Centre of Human Development and Ageing, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Timothy David Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Dermatology Department, West Herts NHS Trust, Herts, United Kingdom
| |
Collapse
|
29
|
Contrast Effects and Sex Influence Maternal and Self-Report Dimensional Measures of Attention-Deficit Hyperactivity Disorder. Behav Genet 2014; 45:35-50. [DOI: 10.1007/s10519-014-9670-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022]
|
30
|
Painter JN, Nyholt DR, Krause L, Zhao ZZ, Chapman B, Zhang C, Medland S, Martin NG, Kennedy S, Treloar S, Zondervan K, Montgomery GW. Common variants in the CYP2C19 gene are associated with susceptibility to endometriosis. Fertil Steril 2014; 102:496-502.e5. [PMID: 24796765 PMCID: PMC4150687 DOI: 10.1016/j.fertnstert.2014.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To follow-up previous studies highlighting a possible role for cytochrome P450, family 2, subfamily C, 19 (CYP2C19) in susceptibility to endometriosis by searching for additional variants in the CYP2C19 gene that may be associated with the disease. DESIGN Case-control study. SETTING Academic research. SUBJECT(S) The cases comprised 2,271 women with surgically confirmed endometriosis; the controls comprised 939 women with self-report of no endometriosis and 1,770 unscreened population samples. INTERVENTION(S) Sequencing of the CYP2C19 region and follow-up of 80 single nucleotide polymorphisms (SNPs) in two case-control samples. MAIN OUTCOME MEASURE(S) Allele frequency differences between cases and controls. RESULT(S) Sequencing of the CYP2C19 gene region resulted in the detection of a large number of known and novel SNPs. Genotyping of 80 polymorphic SNPs in 901 endometriosis cases and 939 controls resulted in study-wide significant association signals for SNPs in moderate or complete linkage disequilibrium with rs4244285, a functional SNP in exon 5 that abrogates CYP2C19 function through the creation of an alternative splice site. Evidence of association was also detected for another functional SNP in the CYP2C19 promoter, rs12248560, which was highlighted in our previous study. CONCLUSION(S) Functional variants in CYP2C19 may contribute to endometriosis susceptibility in both familial and sporadic cases.
Collapse
Affiliation(s)
- Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lutz Krause
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Zhen Z Zhao
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Brett Chapman
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Christine Zhang
- Mater Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen Kennedy
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Susan Treloar
- Centre for Military and Veterans' Health, University of Queensland, Mayne Medical School, Queensland, Australia
| | - Krina Zondervan
- Genetic and Genomic Epidemiology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Variants Close to NTRK2 Gene Are Associated With Birth Weight in Female Twins. Twin Res Hum Genet 2014; 17:254-61. [DOI: 10.1017/thg.2014.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low weight at birth has previously been shown to be associated with a number of adult diseases such as type 2 diabetes, cardiovascular disease, high blood pressure, and obesity later in life. Genome-wide association studies (GWAS) have been published for singleton-born individuals, but the role of genetic variation in birth weight (BW) in twins has not yet been fully investigated. A GWAS was performed in 4,593 female study participants with BW data available from the TwinsUK cohort. A genome-wide significant signal was found in chromosome 9, close to the NTRK2 gene (OMIM: 600456). QIMR, an Australian twin cohort (n = 3,003), and UK-based singleton-birth individuals from the Hertfordshire cohort (n = 2,997) were used as replication for the top two single nucleotide polymorphism (SNPs) underpinning this signal, rs12340987 and rs7849941. The top SNP, rs12340987, was found to be in the same direction in the Australian twins and in the singleton-born females (fixed effects meta-analysis beta = -0.13, SE = 0.02, and p = 1.48 × 10−8) but not in the singleton-born males tested. These findings provide an important insight into the genetic component of BW in twins who are normally excluded due to their lower BW when compared with singleton births, as well as the difference in BW between twins. The NTRK2 gene identified in this study has previously been associated with obesity.
Collapse
|
32
|
Abstract
The association between various measures of sun exposure and melanoma risk is quite complex to dissect as many case-control studies of melanoma included different subtypes of melanomas which are likely to be biologically different, so interpretation of the data is difficult. Screening bias in countries with high levels of sun exposure is also an issue. Now that progress is being made in the genetic subclassification of melanoma tumours, it is apparent that melanomas have different somatic changes according to body sites/histological subtypes and that UV exposure may be relevant for some but not all types of melanomas. Melanoma behaviour also points to non-sun-related risk factors, and complex gene-environment interactions are likely. As UV exposure is the only environmental factor ever linked to melanoma, it is still prudent to avoid excessive sun exposure and sunburn especially in poor tanners. However, the impact of strict sun avoidance, which should not be recommended, may take years to be apparent as vitamin D deficiency is a now a common health issue in Caucasian populations, with a significant impact on health in general.
Collapse
Affiliation(s)
- Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, King's College, London, UK,
| |
Collapse
|
33
|
Jiang H, Wortsman J, Matsuoka L, Granese J, Carlson JA, Mihm M, Slominski A. Molecular spectrum of pigmented skin lesions: from nevus to melanoma. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.5.679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Ogbah Z, Badenas C, Harland M, Puig-Butille JA, Elliot F, Bonifaci N, Guino E, Randerson-Moor J, Chan M, Iles MM, Glass D, Brown AA, Carrera C, Kolm I, Bataille V, Spector TD, Malvehy J, Newton-Bishop J, Pujana MA, Bishop T, Puig S. Evaluation ofPAX3genetic variants and nevus number. Pigment Cell Melanoma Res 2013; 26:666-76. [DOI: 10.1111/pcmr.12130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 06/07/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Zighereda Ogbah
- Melanoma Unit; Department of Dermatology Hospital Clínic de Barcelona; IDIBAPS; Barcelona University; Barcelona; Spain
| | | | - Mark Harland
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | | | - Fay Elliot
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - Nuria Bonifaci
- Breast Cancer and Systems Biology Unit; Translational Research Laboratory; Catalan Institute of Oncology; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet; Barcelona; Spain
| | - Elisabet Guino
- Biomarkers and Susceptibility Unit; Catalan Institute of Oncology; IDIBELL; L'Hospitalet; Barcelona; Spain
| | - Julie Randerson-Moor
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - May Chan
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - Mark M. Iles
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | | | - Andrew A. Brown
- Department of Twin Research & Genetic Epidemiology; Kings College London; St. Thomas’ Hospital Campus; London; UK
| | | | - Isabel Kolm
- Melanoma Unit; Department of Dermatology Hospital Clínic de Barcelona; IDIBAPS; Barcelona University; Barcelona; Spain
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology; Kings College London; St. Thomas’ Hospital Campus; London; UK
| | - Timothy D. Spector
- Department of Twin Research & Genetic Epidemiology; Kings College London; St. Thomas’ Hospital Campus; London; UK
| | | | - Julia Newton-Bishop
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - Miquel A. Pujana
- Breast Cancer and Systems Biology Unit; Translational Research Laboratory; Catalan Institute of Oncology; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet; Barcelona; Spain
| | - Tim Bishop
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | | |
Collapse
|
35
|
Abstract
OBJECTIVES Ecological studies have suggested an inverse relationship between latitude and risks of some cancers. However, associations between solar ultraviolet radiation (UVR) exposure and esophageal cancer risk have not been fully explored. We therefore investigated the association between nevi, freckles, and measures of ambient UVR over the life-course with risks of esophageal cancers. METHODS We compared estimated lifetime residential ambient UVR among Australian patients with esophageal cancer (330 esophageal adenocarcinoma (EAC), 386 esophago-gastric junction adenocarcinoma (EGJAC), and 279 esophageal squamous cell carcinoma (ESCC)), and 1471 population controls. We asked people where they had lived at different periods of their life, and assigned ambient UVR to each location based on measurements from NASA's Total Ozone Mapping Spectrometer database. Freckling and nevus burden were self-reported. We used multivariable logistic regression models to estimate the magnitude of associations between phenotype, ambient UVR, and esophageal cancer risk. RESULTS Compared with population controls, patients with EAC and EGJAC were less likely to have high levels of estimated cumulative lifetime ambient UVR (EAC odds ratio (OR) 0.59, 95% confidence interval (CI) 0.35-0.99, EGJAC OR 0.55, 0.34-0.90). We found no association between UVR and risk of ESCC (OR 0.91, 0.51-1.64). The associations were independent of age, sex, body mass index, education, state of recruitment, frequency of reflux, smoking status, alcohol consumption, and H. pylori serostatus. Cases with EAC were also significantly less likely to report high levels of nevi than controls. CONCLUSIONS These data show an inverse association between ambient solar UVR at residential locations and risk of EAC and EGJAC, but not ESCC.
Collapse
|
36
|
Baxter LL, Pavan WJ. The etiology and molecular genetics of human pigmentation disorders. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:379-92. [PMID: 23799582 DOI: 10.1002/wdev.72] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pigmentation, defined as the placement of pigment in skin, hair, and eyes for coloration, is distinctive because the location, amount, and type of pigmentation provides a visual manifestation of genetic heterogeneity in pathways regulating the pigment-producing cells, melanocytes. The scope of this genetic heterogeneity in humans ranges from normal to pathological pigmentation phenotypes. Clinically, normal human pigmentation encompasses a variety of skin and hair color as well as punctate pigmentation such as melanocytic nevi (moles) or ephelides (freckles), while abnormal human pigmentation exhibits markedly reduced or increased pigment levels, known as hypopigmentation and hyperpigmentation, respectively. Elucidation of the molecular genetics underlying pigmentation has revealed genes important for melanocyte development and function. Furthermore, many pigmentation disorders show additional defects in cells other than melanocytes, and identification of the genetic insults in these disorders has revealed pleiotropic genes, where a single gene is required for various functions in different cell types. Thus, unravelling the genetics of easily visualized pigmentation disorders has identified molecular similarities between melanocytes and less visible cell types/tissues, arising from a common developmental origin and/or shared genetic regulatory pathways. Herein we discuss notable human pigmentation disorders and their associated genetic alterations, focusing on the fact that the developmental genetics of pigmentation abnormalities are instructive for understanding normal pathways governing development and function of melanocytes.
Collapse
Affiliation(s)
- Laura L Baxter
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
37
|
Evidence of differential allelic effects between adolescents and adults for plasma high-density lipoprotein. PLoS One 2012; 7:e35605. [PMID: 22530058 PMCID: PMC3329456 DOI: 10.1371/journal.pone.0035605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/22/2012] [Indexed: 01/22/2023] Open
Abstract
A recent meta-analysis of genome-wide association (GWA) studies identified 95 loci that influence lipid traits in the adult population and found that collectively these explained about 25–30% of heritability for each trait. Little is known about how these loci affect lipid levels in early life, but there is evidence that genetic effects on HDL- and LDL-cholesterol (HDL-C, LDL-C) and triglycerides vary with age. We studied Australian adults (N = 10,151) and adolescents (N = 2,363) who participated in twin and family studies and for whom we have lipid phenotypes and genotype information for 91 of the 95 genetic variants. Heterogeneity tests between effect sizes in adult and adolescent cohorts showed an excess of heterogeneity for HDL-C (pHet<0.05 at 5 out of 37 loci), but no more than expected by chance for LDL-C (1 out of 14 loci), or trigycerides (0 out 24). There were 2 (out of 5) with opposite direction of effect in adolescents compared to adults for HDL-C, but none for LDL-C. The biggest difference in effect size was for LDL-C at rs6511720 near LDLR, adolescents (0.021±0.033 mmol/L) and adults (0.157±0.023 mmol/L), pHet = 0.013; followed by ZNF664 (pHet = 0.018) and PABPC4 (pHet = 0.034) for HDL-C. Our findings suggest that some of the previously identified variants associate differently with lipid traits in adolescents compared to adults, either because of developmental changes or because of greater interactions with environmental differences in adults.
Collapse
|
38
|
Middelberg RPS, Martin NG, Whitfield JB. A Longitudinal Genetic Study of Plasma Lipids in Adolescent Twins. Twin Res Hum Genet 2012; 10:127-35. [PMID: 17539372 DOI: 10.1375/twin.10.1.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractPlasma lipids such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol and triglyceride levels contribute to variation in the risk of cardiovascular disease. The early stages of atherosclerosis in childhood have also been associated with changes in triglycerides, LDL and HDL. Heritability estimates for lipids and lipoproteins for adolescents are in the range .71 to .82, but little is known about changes of genetic and environmental influences over time in adolescence. We have investigated the contribution of genetic and environmental influences to variation in lipids in adolescent twins and their nontwin siblings using longitudinal twin and family data. Plasma HDL and LDL cholesterol, total cholesterol and triglycerides data from 965 twin pairs at 12, 14 and 16 years of age and their siblings have been analyzed. Longitudinal genetic models that included effects of age, sex and their interaction were fitted to assess whether the same or different genes influence each trait at different ages. Results suggested that more than one genetic factor influences HDL, LDL, total cholesterol and triglycerides over time at ages 12, 14 and 16 years. There was no evidence of shared environmental effects except for HDL and little evidence of long-term nonshared environmental effects was found. Our study suggested that there are developmental changes in the genes affecting plasma lipid concentrations across adolescence.
Collapse
Affiliation(s)
- Rita P S Middelberg
- Genetic Epidemiology Unit, Queensland Institute of Medical Research, Royal Brisbane Hospital, Australia.
| | | | | |
Collapse
|
39
|
Middelberg RPS, Medland SE, Martin NG, Whitfield JB. A Longitudinal Genetic Study of Uric Acid and Liver Enzymes in Adolescent Twins. Twin Res Hum Genet 2012; 10:757-64. [PMID: 17903117 DOI: 10.1375/twin.10.5.757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractBiochemical traits such as plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyltransferase (GGT) and uric acid are associated with obesity, and with risk of cardiovascular disease, metabolic syndrome and diabetes. Each is subject to genetic influences, but little is known about changes in genetic and environmental influences on these traits over time. We investigated the contribution of genetic and environmental influences to variation in these biochemical traits in adolescent twins and their nontwin siblings from 965 twin families. Twins were studied at ages 12, 14 and 16 years. Multivariate genetic models that included effects of age and sex were fitted to determine whether the same or different genetic or environmental factors influence each trait at different ages. Results showed that the genetic factors influencing AST, ALT, GGT and uric acid change over time during adolescence, and that the magnitude of these effects differs between males and females. The nonshared environment effects were generally time specific. There are developmental changes in genes affecting these traits during adolescence.
Collapse
Affiliation(s)
- Rita P S Middelberg
- Genetic Epidemiology Unit, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
40
|
Wright M, De Geus E, Ando J, Luciano M, Posthuma D, Ono Y, Hansell N, Van Baal C, Hiraishi K, Hasegawa T, Smith G, Geffen G, Geffen L, Kanba S, Miyake A, Martin N, Boomsma D. Genetics of Cognition: Outline of a Collaborative Twin Study. ACTA ACUST UNITED AC 2012. [DOI: 10.1375/twin.4.1.48] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAmultidisciplinary collaborative study examining cognition in a large sample of twins is outlined. A common experimental protocol and design is used in The Netherlands, Australia and Japan to measure cognitive ability using traditional IQ measures (i.e., psychometric IQ), processing speed (e.g., reaction time [RT] and inspection time [IT]), and working memory (e.g., spatial span, delayed response [DR] performance). The main aim is to investigate the genetic covariation among these cognitive phenotypes in order to use the correlated biological markers in future linkage and association analyses to detect quantitativetrait loci (QTLs). We outline the study and methodology, and report results from our preliminary analyses that examines the heritability of processing speed and working memory indices, and their phenotypic correlation with IQ. Heritability of Full Scale IQ was 87% in the Netherlands, 83% in Australia, and 71% in Japan. Heritability estimates for processing speed and working memory indices ranged from 33–64%. Associations of IQ with RT and IT (−0.28 to −0.36) replicated previous findings with those of higher cognitive ability showing faster speed of processing. Similarly, significant correlations were indicated between IQ and the spatial span working memory task (storage [0.31], executive processing [0.37]) and the DR working memory task (0.25), with those of higher cognitive ability showing better memory performance. These analyses establish the heritability of the processing speed and working memory measures to be used in our collaborative twin study of cognition, and support the findings that individual differences in processing speed and working memory may underlie individual differences in psychometric IQ.
Collapse
|
41
|
Medland SE, Loehlin JC. Multivariate Genetic Analyses of the 2D:4D Ratio: Examining the Effects of Hand and Measurement Technique in Data from 757 Twin Families. Twin Res Hum Genet 2012; 11:335-41. [DOI: 10.1375/twin.11.3.335] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe ratio of the lengths of the second to fourth digits of the hand (2D:4D) is a sexually dimorphic trait that has been proposed as a measure of prenatal testosterone exposure and a putative correlate of a variety of later behavioral and physiological outcomes including personality, fitness and sexual orientation. We present analyses of 2D:4D ratios collected from twins (1413 individuals) and their nontwin siblings (328 individuals) from 757 families. In this sample 2D:4D was measured from photocopies using digital calipers, and for a subset of participants, computer-aided measurement. Multivariate modeling of the left- and right-hand measurements revealed significant genetic and environmental covariation between hands. The two methods yielded very similar results, and the majority of variance was explained by factors shared by both measurement methods. Neither common environmental nor dominant genetic effects were found, and the covariation between siblings could be accounted for by additive genetic effects accounting for 80% and 71% of the variance for the left and right hands, respectively. There was no evidence of sex differences in the total variance, nor in the magnitude or source of genetic and environmental influences, suggesting that X-linked effects (such as the previously identified association with the Androgen receptor) are likely to be small. However, there were also nonshared environmental effects specific to each hand, which, in addition to measurement error, may in part explain why some studies within in the literature find effects for the 2D:4D ratio of one hand but not the other.
Collapse
|
42
|
Evans DM, Frazer IH, Martin NG. Genetic and environmental causes of variation in basal levels of blood cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1375/twin.2.4.250] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Hur YM, Luciano M, Martin NG, Boomsma DI, Iacono WG, McGue M, Shin JS, Jun JK, Ooki S, van Beijsterveldt CEM, Han JY. A Comparison of Twin Birthweight Data From Australia, the Netherlands, the United States, Japan, and South Korea: Are Genetic and Environmental Variations in Birthweight Similar in Caucasians and East Asians? Twin Res Hum Genet 2012. [DOI: 10.1375/twin.8.6.638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractBirthweight has implications for physical and mental health in later life. Using data from Caucasian twins collected in Australia, the Netherlands and the United States, and from East Asian twins collected in Japan and South Korea, we compared the total phenotypic, genetic and environmental variances of birthweight between Caucasians and East Asians. Model-fitting analyses yielded four major findings. First, for both males and females, the total phenotypic variances of birthweight were about 45% larger in Caucasians than in East Asians. The larger phenotypic variances were mainly attributable to a greater shared environmental variance of birth- weight in Caucasians (ranging from 62% to 67% of variance) than Asians (48% to 53%). Second, the genetic variance of birthweight was equal in Caucasians and East Asians for both males and females, explaining a maximum of 17% of variance. Third, small variations in total phenotypic variances of birthweight within Caucasians and within East Asians were mainly due to differences in nonshared environmental variances. We speculate that maternal effects (both genetic and environmental) explain the large shared environmental variance in birthweight and may account for the differences in phenotypic variance in birthweight between Caucasians and East Asians. Recent molecular findings and specific environmental factors that are subsumed by maternal effects are discussed.
Collapse
|
44
|
Dubois L, Ohm Kyvik K, Girard M, Tatone-Tokuda F, Pérusse D, Hjelmborg J, Skytthe A, Rasmussen F, Wright MJ, Lichtenstein P, Martin NG. Genetic and environmental contributions to weight, height, and BMI from birth to 19 years of age: an international study of over 12,000 twin pairs. PLoS One 2012; 7:e30153. [PMID: 22347368 PMCID: PMC3275599 DOI: 10.1371/journal.pone.0030153] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/11/2011] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To examine the genetic and environmental influences on variances in weight, height, and BMI, from birth through 19 years of age, in boys and girls from three continents. DESIGN AND SETTINGS Cross-sectional twin study. Data obtained from a total of 23 twin birth-cohorts from four countries: Canada, Sweden, Denmark, and Australia. Participants were Monozygotic (MZ) and dizygotic (DZ) (same- and opposite-sex) twin pairs with data available for both height and weight at a given age, from birth through 19 years of age. Approximately 24,036 children were included in the analyses. RESULTS Heritability for body weight, height, and BMI was low at birth (between 6.4 and 8.7% for boys, and between 4.8 and 7.9% for girls) but increased over time, accounting for close to half or more of the variance in body weight and BMI after 5 months of age in both sexes. Common environmental influences on all body measures were high at birth (between 74.1-85.9% in all measures for boys, and between 74.2 and 87.3% in all measures for girls) and markedly reduced over time. For body height, the effect of the common environment remained significant for a longer period during early childhood (up through 12 years of age). Sex-limitation of genetic and shared environmental effects was observed. CONCLUSION Genetics appear to play an increasingly important role in explaining the variation in weight, height, and BMI from early childhood to late adolescence, particularly in boys. Common environmental factors exert their strongest and most independent influence specifically in pre-adolescent years and more significantly in girls. These findings emphasize the need to target family and social environmental interventions in early childhood years, especially for females. As gene-environment correlation and interaction is likely, it is also necessary to identify the genetic variants that may predispose individuals to obesity.
Collapse
Affiliation(s)
- Lise Dubois
- Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bataille V, Lens M, Spector T. The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J Eur Acad Dermatol Venereol 2012; 26:1067-73. [DOI: 10.1111/j.1468-3083.2011.04444.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Kvaskoff M, Whiteman DC, Zhao ZZ, Montgomery GW, Martin NG, Hayward NK, Duffy DL. Polymorphisms in nevus-associated genes MTAP, PLA2G6, and IRF4 and the risk of invasive cutaneous melanoma. Twin Res Hum Genet 2012; 14:422-32. [PMID: 21962134 DOI: 10.1375/twin.14.5.422] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An evolving hypothesis postulates that melanomas may arise through 'nevus-associated' and 'chronic sun exposure' pathways. We explored this hypothesis by examining associations between nevus-associated loci and melanoma risk across strata of body site and histological subtype. We genotyped 1028 invasive case patients and 1469 controls for variants in methylthioadenosine phosphorylase (MTAP), phospholipase A2, group VI (PLA2G6), and Interferon regulatory factor 4 (IRF4), and compared allelic frequencies globally and by anatomical site and histological subtype of melanoma. Odds-ratios (ORs) and 95% confidence intervals (CIs) were calculated using classical and multinomial logistic regression models. Among controls, MTAP rs10757257, PLA2G6 rs132985 and IRF4 rs12203592 were the variants most significantly associated with number of nevi. In adjusted models, a significant association was found between MTAP rs10757257 and overall melanoma risk (OR = 1.32, 95% CI = 1.14-1.53), with no evidence of heterogeneity across sites (Phomogeneity =.52). In contrast, MTAP rs10757257 was associated with superficial spreading/nodular melanoma (OR = 1.34, 95% CI = 1.15- 1.57), but not with lentigo maligna melanoma (OR = 0.79, 95% CI = 0.46-1.35) (Phomogeneity =.06), the subtype associated with chronic sun exposure. Melanoma was significantly inversely associated with rs12203592 in children (OR = 0.35, 95% CI = 0.16-0.77) and adolescents (OR = 0.61, 95% CI = 0.42-0.91), but not in adults (Phomogeneity =.0008). Our results suggest that the relationship between MTAP and melanoma is subtype-specific, and that the association between IRF4 and melanoma is more evident for cases with a younger age at onset. These findings lend some support to the 'divergent pathways' hypothesis and may provide at least one candidate gene underlying this model. Further studies are warranted to confirm these findings and improve our understanding of these relationships.
Collapse
Affiliation(s)
- Marina Kvaskoff
- Centre for Research in Epidemiology and Population Health, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Manganoni AM, Rossi MT, Sala R, Venturini M, Sereni E, Ungari M, Marocolo D, Lonardi S, Calzavara-Pinton P. Dermoscopic, histological and immunohistochemical evaluation of cancerous features in acquired melanocytic nevi that have been repeatedly exposed to UVA or UVB. Exp Dermatol 2011; 21:86-90. [DOI: 10.1111/j.1600-0625.2011.01397.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Whiteman DC, Pavan WJ, Bastian BC. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res 2011; 24:879-97. [PMID: 21707960 PMCID: PMC3395885 DOI: 10.1111/j.1755-148x.2011.00880.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Converging lines of evidence from varied scientific disciplines suggest that cutaneous melanomas comprise biologically distinct subtypes that arise through multiple causal pathways. Understanding the respective relationships of each subtype with etiologic factors such as UV radiation and constitutional factors is the first necessary step toward developing refined prevention strategies for the specific forms of melanoma. Furthermore, classifying this disease precisely into biologically distinct subtypes is the key to developing mechanism-based treatments, as highlighted by recent discoveries. In this review, we outline the historical developments that underpin our understanding of melanoma heterogeneity, and we do this from the perspectives of clinical presentation, histopathology, epidemiology, molecular genetics, and developmental biology. We integrate the evidence from these separate trajectories to catalog the emerging major categories of melanomas and conclude with important unanswered questions relating to the development of melanoma and its cells of origin.
Collapse
Affiliation(s)
- David C Whiteman
- Cancer Control Group, Queensland Institute of Medical Research, Brisbane, Qld, Australia.
| | | | | |
Collapse
|
49
|
Middelberg RPS, Ferreira MAR, Henders AK, Heath AC, Madden PAF, Montgomery GW, Martin NG, Whitfield JB. Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC MEDICAL GENETICS 2011; 12:123. [PMID: 21943158 PMCID: PMC3189113 DOI: 10.1186/1471-2350-12-123] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/24/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have become a major strategy for genetic dissection of human complex diseases. Analysing multiple phenotypes jointly may improve both our ability to detect genetic variants with multiple effects and our understanding of their common features. Allelic associations for multiple biochemical traits (serum alanine aminotransferase, aspartate aminotransferase, butrylycholinesterase (BCHE), C-reactive protein (CRP), ferritin, gamma glutamyltransferase (GGT), glucose, high-density lipoprotein cholesterol (HDL), insulin, low-density lipoprotein cholesterol (LDL), triglycerides and uric acid), and body-mass index, were examined. METHODS We aimed to identify common genetic variants affecting more than one of these traits using genome-wide association analysis in 2548 adolescents and 9145 adults from 4986 Australian twin families. Multivariate and univariate associations were performed. RESULTS Multivariate analyses identified eight loci, and univariate association analyses confirmed two loci influencing more than one trait at p < 5 × 10-8. These are located on chromosome 8 (LPL gene affecting HDL and triglycerides) and chromosome 19 (TOMM40/APOE-C1-C2-C4 gene cluster affecting LDL and CRP). A locus on chromosome 12 (OASL gene) showed effects on GGT, LDL and CRP. The loci on chromosomes 12 and 19 unexpectedly affected LDL cholesterol and CRP in opposite directions. CONCLUSIONS We identified three possible loci that may affect multiple traits and validated 17 previously-reported loci. Our study demonstrated the usefulness of examining multiple phenotypes jointly and highlights an anomalous effect on CRP, which is increasingly recognised as a marker of cardiovascular risk as well as of inflammation.
Collapse
Affiliation(s)
- Rita P S Middelberg
- Genetic Epidemiology Unit, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Richmond-Sinclair N, van der Pols J, Green A. Melanocytic naevi and basal cell carcinoma: is there an association? J Eur Acad Dermatol Venereol 2011; 26:1092-6. [DOI: 10.1111/j.1468-3083.2011.04213.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|