1
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024; 15:3800-3827. [PMID: 39392435 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, Columbus Ohio 43210, United States
| | - Janet M Sasso
- CAS, a division of the American Chemical Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
2
|
Shen Y, Timsina J, Heo G, Beric A, Ali M, Wang C, Yang C, Wang Y, Western D, Liu M, Gorijala P, Budde J, Do A, Liu H, Gordon B, Llibre-Guerra JJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Tarawneh R, McDade E, Morris JC, Bateman RJ, Goate A, Ibanez L, Sung YJ, Cruchaga C. CSF proteomics identifies early changes in autosomal dominant Alzheimer's disease. Cell 2024; 187:6309-6326.e15. [PMID: 39332414 PMCID: PMC11531390 DOI: 10.1016/j.cell.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Gyujin Heo
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Yueyao Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Anh Do
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Gordon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ezequiel I Surace
- Laboratory of Neurodegenerative Diseases, Institute of Neurosciences (INEU-Fleni-CONICET), Buenos Aires, Argentina
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30307, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ignacio Alvarez
- Department of Neurology, University Hospital Mútua de Terrassa and Fundació Docència i Recerca Mútua de Terrassa, Terrassa 08221, Barcelona, Spain
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich 80336, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich 80336, Germany
| | - John M Ringman
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Ricardo Francisco Allegri
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, FLENI, Buenos Aires, Argentina
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Gregg S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Rawan Tarawneh
- The University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Li M, Mo Y, Yu Q, Anayyat U, Yang H, Zhang F, Wei Y, Wang X. Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Neurol 2024; 383:115029. [PMID: 39461710 DOI: 10.1016/j.expneurol.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a geriatric disorder that can be roughly classified into sporadic AD and hereditary AD. The latter is strongly associated with genetic factors, and its treatment poses greater challenges compared to sporadic AD. Rotating magnetic fields (RMF) is a non-invasive treatment known to have diverse biological effects, including the modulation of the central nervous system and aging. However, the impact of RMF on hereditary AD and its underlying mechanism remain unexplored. In this study, we exposed APP/PS1 mice to RMF (2 h/day, 0.2 T, 4 Hz) for a duration of 6 months. The results demonstrated that RMF treatment significantly ameliorated their cognitive and memory impairments, attenuated neuronal damage, and reduced amyloid deposition. Furthermore, RNA-sequencing analysis revealed a significant enrichment of autophagy-related genes and the PI3K/AKT-mTOR signaling pathway. Western blotting further confirmed that RMF activated autophagy and suppressed the phosphorylation of proteins associated with the PI3K/AKT/mTOR signaling pathway in APP/PS1 mice. These protective effects and the underlying mechanism were also observed in Aβ25-35-exposed HT22 cells. Collectively, our findings indicate that RMF improves cognitive and memory dysfunction in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway, thus highlighting the potential of RMF as a clinical treatment for hereditary AD.
Collapse
Affiliation(s)
- Mengqing Li
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yaxian Mo
- Songgang People's Hospital, Shenzhen, Guangdong 518105, China
| | - Qinyao Yu
- School of Pharmacy, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Umer Anayyat
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Hua Yang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Fen Zhang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yunpeng Wei
- Songgang People's Hospital, Shenzhen, Guangdong 518105, China.
| | - Xiaomei Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China; International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518061, China.
| |
Collapse
|
4
|
Kaltschmidt B, Czaniera NJ, Schulten W, Kaltschmidt C. NF-κB in Alzheimer's Disease: Friend or Foe? Opposite Functions in Neurons and Glial Cells. Int J Mol Sci 2024; 25:11353. [PMID: 39518906 PMCID: PMC11545113 DOI: 10.3390/ijms252111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a devasting neurodegenerative disease afflicting mainly glutamatergic neurons together with a massive neuroinflammation mediated by the transcription factor NF-κB. A 65%-plus increase in Alzheimer's patients by 2050 might be a major threat to society. Hallmarks of AD are neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and amyloid beta (Aβ) plaques. Here, we review the potential involvement of transcription factor NF-κB by hereditary mutations of the tumor necrosis factor pathway in AD patients. One of the greatest genetic risk factors is APOE4. Recently, it was shown that the APOE4 allele functions as a null allele in human astrocytes not repressing NF-κB anymore. Moreover, NF-κB seems to be involved in the repair of DNA double-strand breaks during healthy learning and memory, a function blunted in AD. NF-κB could be a friend to healthy neurons by repressing apoptosis and necroptosis. But a loss of neuronal NF-κB and activation of glial NF-κB in AD makes it a foe of neuronal survival. Hopeful therapies include TNFR2 receptor bodies relieving the activation of glial NF-κB by TNFα.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| | - Nele Johanne Czaniera
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| |
Collapse
|
5
|
O'Connor A, Ryan NS, Belder CRS, Lynch DS, Lahiri N, Houlden H, Rohrer JD, Fox NC, O'Dowd S. Genetic testing in dementia. Pract Neurol 2024:pn-2024-004241. [PMID: 39288984 DOI: 10.1136/pn-2024-004241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
There is growing public awareness and concern regarding dementia risk. In addition, genetic testing is increasingly accessible and is at the point of being integrated into routine clinical practice. As a result, there is a pressing need for treating clinicians to have the appropriate knowledge base to request and consent for diagnostic genetic testing in cognitive clinics. We outline our approach to genetic testing in patients with Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies and vascular cognitive impairment. We discuss when to consider testing, the consenting process, and the interpretation and communication of genetic test results.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Christopher R S Belder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- The University of Adelaide, Adelaide, South Australia, Australia
| | - David S Lynch
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and National Hospital for Neurology & Neurosurgery, London, UK
| | - Nayana Lahiri
- St. George's, University of London & St George's University Hospitals NHS Foundation Trust, Cardiovascular and Genomics Institute, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and National Hospital for Neurology & Neurosurgery, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Sean O'Dowd
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
- National Dementia Services, Health Services Executive, Ireland
| |
Collapse
|
6
|
Ge Y, Chen S, Wu B, Zhang Y, Wang J, He X, Liu W, Chen Y, Ou Y, Shen X, Huang Y, Gan Y, Yang L, Ma L, Ma Y, Chen K, Chen S, Cui M, Tan L, Dong Q, Zhao Q, Wang Y, Jia J, Yu J. Genome-wide meta-analysis identifies ancestry-specific loci for Alzheimer's disease. Alzheimers Dement 2024; 20:6243-6256. [PMID: 39023044 PMCID: PMC11497642 DOI: 10.1002/alz.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.
Collapse
Affiliation(s)
- Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Jun Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Xiao‐Yu He
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Wei‐Shi Liu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Lin Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Nan Ou
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Han Gan
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Liu Yang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Ya‐Hui Ma
- Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ke‐Liang Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shu‐Fen Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Mei Cui
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Qian‐Hua Zhao
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Jian‐Ping Jia
- Innovation Center for Neurological Disorders and Department of NeurologyNational Clinical Research Center for Geriatric DiseasesXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| |
Collapse
|
7
|
van Heuvelen MJG, van der Lei MB, Alferink PM, Roemers P, van der Zee EA. Cognitive deficits in human ApoE4 knock-in mice: A systematic review and meta-analysis. Behav Brain Res 2024; 471:115123. [PMID: 38972485 DOI: 10.1016/j.bbr.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Apolipoprotein-E4 (ApoE4) is an important genetic risk factor for Alzheimer's disease. The development of targeted-replacement human ApoE knock-in mice facilitates research into mechanisms by which ApoE4 affects the brain. We performed meta-analyses and meta-regression analyses to examine differences in cognitive performance between ApoE4 and ApoE3 mice. We included 61 studies in which at least one of the following tests was assessed: Morris Water Maze (MWM), novel object location (NL), novel object recognition (NO) and Fear Conditioning (FC) test. ApoE4 vs. ApoE3 mice performed significantly worse on the MWM (several outcomes, 0.17 ≤ g ≤ 0.60), NO (exploration, g=0.33; index, g=0.44) and FC (contextual, g=0.49). ApoE4 vs. ApoE3 differences were not systematically related to sex or age. We conclude that ApoE4 knock-in mice in a non-AD condition show some, but limited cognitive deficits, regardless of sex and age. These effects suggest an intrinsic vulnerability in ApoE4 mice that may become more pronounced under additional brain load, as seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Mathijs B van der Lei
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands; Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium.
| | - Pien M Alferink
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Peter Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
8
|
Arutyunyan A, Seuma M, Faure AJ, Bolognesi B, Lehner B. Energetic portrait of the amyloid beta nucleation transition state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604935. [PMID: 39091732 PMCID: PMC11291115 DOI: 10.1101/2024.07.24.604935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Amyloid protein aggregates are pathological hallmarks of more than fifty human diseases including the most common neurodegenerative disorders. The atomic structures of amyloid fibrils have now been determined, but the process by which soluble proteins nucleate to form amyloids remains poorly characterised and difficult to study, even though this is the key step to understand to prevent the formation and spread of aggregates. Here we use massively parallel combinatorial mutagenesis, a kinetic selection assay, and machine learning to reveal the transition state of the nucleation reaction of amyloid beta, the protein that aggregates in Alzheimer's disease. By quantifying the nucleation of >140,000 proteins we infer the changes in activation energy for all 798 amino acid substitutions in amyloid beta and the energetic couplings between >600 pairs of mutations. This unprecedented dataset provides the first comprehensive view of the energy landscape and the first large-scale measurement of energetic couplings for a protein transition state. The energy landscape reveals that the amyloid beta nucleation transition state contains a short structured C-terminal hydrophobic core with a subset of interactions similar to mature fibrils. This study demonstrates the feasibility of using mutation-selection-sequencing experiments to study transition states and identifies the key molecular species that initiates amyloid beta aggregation and, potentially, Alzheimer's disease.
Collapse
Affiliation(s)
| | - Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Current address: Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andre J. Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Current address: ALLOX, C/Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Wellcome Sanger Institute, Cambridge, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
9
|
Xu C, Cao J, Qiang H, Liu Y, Wu J, Luo Q, Wan M, Wang Y, Wang P, Cheng Q, Zhou G, Sima J, Guo Y, Xu S. TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA. Genome Biol 2024; 25:179. [PMID: 38972974 PMCID: PMC11229350 DOI: 10.1186/s13059-024-03326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APPswe mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.
Collapse
Affiliation(s)
- Chong Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiyanuo Cao
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialin Wu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiudan Luo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng Wan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujie Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jian Sima
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
11
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
12
|
Cruchaga C, Bradley J, Western D, Wang C, Lucio Da Fonseca E, Neupane A, Kurup J, Ray NI, Jean-Francois M, Gorijala P, Bergmann K, Budde J, Martin E, Pericak-Vance M, Cuccaro M, Kunkle B, Morris J, Holtzman D, Perrin R, Naj A, Haines J, Schellenberg G, Fernandez V, Reitz C, Beecham G. Novel early-onset Alzheimer-associated genes influence risk through dysregulation of glutamate, immune activation, and intracell signaling pathways. RESEARCH SQUARE 2024:rs.3.rs-4480585. [PMID: 38883718 PMCID: PMC11177996 DOI: 10.21203/rs.3.rs-4480585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Alzheimer Disease (AD) is a highly polygenic disease that presents with relatively earlier onset (≤70yo; EOAD) in about 5% of cases. Around 90% of these EOAD cases remain unexplained by pathogenic mutations. Using data from EOAD cases and controls, we performed a genome-wide association study (GWAS) and trans-ancestry meta-analysis on non-Hispanic Whites (NHW, NCase=6,282, NControl=13,386), African Americans (AA NCase=782, NControl=3,663) and East Asians (NCase=375, NControl=838 CO). We identified eight novel significant loci: six in the ancestry-specific analyses and two in the trans-ancestry analysis. By integrating gene-based analysis, eQTL, pQTL and functional annotations, we nominate four novel genes that are involved in microglia activation, glutamate production, and signaling pathways. These results indicate that EOAD, although sharing many genes with LOAD, harbors unique genes and pathways that could be used to create better prediction models or target identification for this type of AD.
Collapse
Affiliation(s)
| | | | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Michael Cuccaro
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Odorčić I, Hamed MB, Lismont S, Chávez-Gutiérrez L, Efremov RG. Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform. Nat Commun 2024; 15:4479. [PMID: 38802343 PMCID: PMC11130327 DOI: 10.1038/s41467-024-48776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Deposition of amyloid-β (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Aβs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aβ peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aβ, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aβ46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aβ46 structure reveals an interaction between Aβ46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.
Collapse
Affiliation(s)
- Ivica Odorčić
- Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Mohamed Belal Hamed
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium.
| | - Rouslan G Efremov
- Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
14
|
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, Rabinovici GD. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2024; 6:fcae159. [PMID: 38784820 PMCID: PMC11114609 DOI: 10.1093/braincomms/fcae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge J Llibre-Guerra
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason Hassenstab
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Silvia Vazquez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Department of Neuroscience, Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, Indiana, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Stephen Salloway
- Memory & Aging Program, Butler Hospital, Brown University in Providence, RI 02906, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Homanics GE, Park JE, Bailey L, Schaeffer DJ, Schaeffer L, He J, Li S, Zhang T, Haber A, Spruce C, Greenwood A, Murai T, Schultz L, Mongeau L, Ha S, Oluoch J, Stein B, Choi SH, Huhe H, Thathiah A, Strick PL, Carter GW, Silva AC, Sukoff Rizzo SJ. Early molecular events of autosomal-dominant Alzheimer's disease in marmosets with PSEN1 mutations. Alzheimers Dement 2024; 20:3455-3471. [PMID: 38574388 PMCID: PMC11095452 DOI: 10.1002/alz.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically engineered marmosets that carry knock-in (KI) point mutations in the presenilin 1 (PSEN1) gene that can be studied from birth throughout lifespan. METHODS CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1. Founders and their germline offspring are comprehensively studied longitudinally using non-invasive measures including behavior, biomarkers, neuroimaging, and multiomics signatures. RESULTS Prior to adulthood, increases in plasma amyloid beta were observed in PSEN1 mutation carriers relative to non-carriers. Analysis of brain revealed alterations in several enzyme-substrate interactions within the gamma secretase complex prior to adulthood. DISCUSSION Marmosets carrying KI point mutations in PSEN1 provide the opportunity to study the earliest primate-specific mechanisms that contribute to the molecular and cellular root causes of AD onset and progression. HIGHLIGHTS We report the successful generation of genetically engineered marmosets harboring knock-in point mutations in the PSEN1 gene. PSEN1 marmosets and their germline offspring recapitulate the early emergence of AD-related biomarkers. Studies as early in life as possible in PSEN1 marmosets will enable the identification of primate-specific mechanisms that drive disease progression.
Collapse
Affiliation(s)
- Gregg E. Homanics
- Department of Anesthesiology & Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jung Eun Park
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Bailey
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - David J. Schaeffer
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Schaeffer
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jie He
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Shuoran Li
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingting Zhang
- Department of StatisticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | | | | | - Takeshi Murai
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Laura Schultz
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lauren Mongeau
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Seung‐Kwon Ha
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Oluoch
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brianne Stein
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sang Ho Choi
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hasi Huhe
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Amantha Thathiah
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter L. Strick
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Afonso C. Silva
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Stacey J. Sukoff Rizzo
- Department of NeurobiologyUniversity of Pittsburgh Brain InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of MedicineUniversity of Pittsburgh Aging Institute, University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
16
|
Tang AS, Rankin KP, Cerono G, Miramontes S, Mills H, Roger J, Zeng B, Nelson C, Soman K, Woldemariam S, Li Y, Lee A, Bove R, Glymour M, Aghaeepour N, Oskotsky TT, Miller Z, Allen IE, Sanders SJ, Baranzini S, Sirota M. Leveraging electronic health records and knowledge networks for Alzheimer's disease prediction and sex-specific biological insights. NATURE AGING 2024; 4:379-395. [PMID: 38383858 PMCID: PMC10950787 DOI: 10.1038/s43587-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Identification of Alzheimer's disease (AD) onset risk can facilitate interventions before irreversible disease progression. We demonstrate that electronic health records from the University of California, San Francisco, followed by knowledge networks (for example, SPOKE) allow for (1) prediction of AD onset and (2) prioritization of biological hypotheses, and (3) contextualization of sex dimorphism. We trained random forest models and predicted AD onset on a cohort of 749 individuals with AD and 250,545 controls with a mean area under the receiver operating characteristic of 0.72 (7 years prior) to 0.81 (1 day prior). We further harnessed matched cohort models to identify conditions with predictive power before AD onset. Knowledge networks highlight shared genes between multiple top predictors and AD (for example, APOE, ACTB, IL6 and INS). Genetic colocalization analysis supports AD association with hyperlipidemia at the APOE locus, as well as a stronger female AD association with osteoporosis at a locus near MS4A6A. We therefore show how clinical data can be utilized for early AD prediction and identification of personalized biological hypotheses.
Collapse
Affiliation(s)
- Alice S Tang
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco and Berkeley, CA, USA.
| | - Katherine P Rankin
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Cerono
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Silvia Miramontes
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hunter Mills
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn Roger
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Billy Zeng
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte Nelson
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Karthik Soman
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yaqiao Li
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Lee
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Riley Bove
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Glymour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Tomiko T Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sergio Baranzini
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
17
|
De Strooper B, Karran E. New precision medicine avenues to the prevention of Alzheimer's disease from insights into the structure and function of γ-secretases. EMBO J 2024; 43:887-903. [PMID: 38396302 PMCID: PMC10943082 DOI: 10.1038/s44318-024-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two phase-III clinical trials with anti-amyloid peptide antibodies have met their primary goal, i.e. slowing of Alzheimer's disease (AD) progression. However, antibody therapy may not be the optimal therapeutic modality for AD prevention, as we will discuss in the context of the earlier small molecules described as "γ-secretase modulators" (GSM). We review here the structure, function, and pathobiology of γ-secretases, with a focus on how mutations in presenilin genes result in early-onset AD. Significant progress has been made in generating compounds that act in a manner opposite to pathogenic presenilin mutations: they stabilize the proteinase-substrate complex, thereby increasing the processivity of substrate cleavage and altering the size spectrum of Aβ peptides produced. We propose the term "γ-secretase allosteric stabilizers" (GSAS) to distinguish these compounds from the rather heterogenous class of GSM. The GSAS represent, in theory, a precision medicine approach to the prevention of amyloid deposition, as they specifically target a discrete aspect in a complex cell biological signalling mechanism that initiates the pathological processes leading to Alzheimer's disease.
Collapse
Affiliation(s)
- Bart De Strooper
- Dementia Research Institute, Institute of Neurology, University College London, at the Francis Crick Institute, London, NW1 AT, UK.
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, and Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| | - Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| |
Collapse
|
18
|
O’Day DH. The Complex Interplay between Toxic Hallmark Proteins, Calmodulin-Binding Proteins, Ion Channels, and Receptors Involved in Calcium Dyshomeostasis in Neurodegeneration. Biomolecules 2024; 14:173. [PMID: 38397410 PMCID: PMC10886625 DOI: 10.3390/biom14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium dyshomeostasis is an early critical event in neurodegeneration as exemplified by Alzheimer's (AD), Huntington's (HD) and Parkinson's (PD) diseases. Neuronal calcium homeostasis is maintained by a diversity of ion channels, buffers, calcium-binding protein effectors, and intracellular storage in the endoplasmic reticulum, mitochondria, and lysosomes. The function of these components and compartments is impacted by the toxic hallmark proteins of AD (amyloid beta and Tau), HD (huntingtin) and PD (alpha-synuclein) as well as by interactions with downstream calcium-binding proteins, especially calmodulin. Each of the toxic hallmark proteins (amyloid beta, Tau, huntingtin, and alpha-synuclein) binds to calmodulin. Multiple channels and receptors involved in calcium homeostasis and dysregulation also bind to and are regulated by calmodulin. The primary goal of this review is to show the complexity of these interactions and how they can impact research and the search for therapies. A secondary goal is to suggest that therapeutic targets downstream from calcium dyshomeostasis may offer greater opportunities for success.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
19
|
Shen Y, Ali M, Timsina J, Wang C, Do A, Western D, Liu M, Gorijala P, Budde J, Liu H, Gordon B, McDade E, Morris JC, Llibre-Guerra JJ, Bateman RJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Goate A, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Ibanez L, Sung YJ, Cruchaga C. Systematic proteomics in Autosomal dominant Alzheimer's disease reveals decades-early changes of CSF proteins in neuronal death, and immune pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301242. [PMID: 38260583 PMCID: PMC10802763 DOI: 10.1101/2024.01.12.24301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aβ42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding Proteomic data generation was supported by NIH: RF1AG044546.
Collapse
|
20
|
Kovalenko EA, Makhnovich EV, Bogolepova AN, Osinovskaya NA, Beregov MM. [Features of the clinical and neuroimaging picture in patients with early-onset Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:56-63. [PMID: 38696152 DOI: 10.17116/jnevro202412404256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The most common cause of severe cognitive impairment in adults is Alzheimer's disease (AD). Depending on the age of onset, AD is divided into early (<65 years) and late (≥65 years) forms. Early-onset AD (EOAD) is significantly less common than later-onset AD (LOAD) and accounts for only about 5-10% of cases. However, its medical and social significance, as a disease leading to loss of ability to work and legal capacity, as well as premature death in patients aged 40-64 years, is extremely high. Patients with EOAD compared with LOAD have a greater number of atypical clinical variants - 25% and 6-12.5%, respectively, which complicates the differential diagnosis of EOAD with other neurodegenerative diseases. However, the typical classical amnestic variant predominates in both EOAD and LOAD. Also, patients with EOAD have peculiarities according to neuroimaging data: when performing MRI of the brain, patients with EOAD often have more pronounced parietal atrophy and less pronounced hippocampal atrophy compared to patients with LOAD. The article pays attention to the features of the clinical and neuroimaging data in patients with EOAD; a case of a patient with EOAD is presented.
Collapse
Affiliation(s)
- E A Kovalenko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - E V Makhnovich
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - N A Osinovskaya
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - M M Beregov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
21
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
22
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
23
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
24
|
Tobeh NS, Bruce KD. Emerging Alzheimer's disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions. Front Aging Neurosci 2023; 15:1259012. [PMID: 38020773 PMCID: PMC10630922 DOI: 10.3389/fnagi.2023.1259012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
More than 55 million people suffer from dementia, with this number projected to double every 20 years. In the United States, 1 in 3 aged individuals dies from Alzheimer's disease (AD) or another type of dementia and AD kills more individuals than breast cancer and prostate cancer combined. AD is a complex and multifactorial disease involving amyloid plaque and neurofibrillary tangle formation, glial cell dysfunction, and lipid droplet accumulation (among other pathologies), ultimately leading to neurodegeneration and neuronal death. Unfortunately, the current FDA-approved therapeutics do not reverse nor halt AD. While recently approved amyloid-targeting antibodies can slow AD progression to improve outcomes for some patients, they are associated with adverse side effects, may have a narrow therapeutic window, and are expensive. In this review, we evaluate current and emerging AD therapeutics in preclinical and clinical development and provide insight into emerging strategies that target brain lipid metabolism and microglial function - an approach that may synergistically target multiple mechanisms that drive AD neuropathogenesis. Overall, we evaluate whether these disease-modifying emerging therapeutics hold promise as interventions that may be able to reverse or halt AD progression.
Collapse
Affiliation(s)
- Nour S Tobeh
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
25
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Ray NR, Ayodele T, Jean-Francois M, Baez P, Fernandez V, Bradley J, Crane PK, Dalgard CL, Kuzma A, Nicaretta H, Sims R, Williams J, Cuccaro ML, Pericak-Vance MA, Mayeux R, Wang LS, Schellenberg GD, Cruchaga C, Beecham GW, Reitz C. The Early-Onset Alzheimer's Disease Whole-Genome Sequencing Project: Study design and methodology. Alzheimers Dement 2023; 19:4187-4195. [PMID: 37390458 PMCID: PMC10527497 DOI: 10.1002/alz.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
INTRODUCTION Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations, resulting in a lack of understanding of its molecular etiology. METHODS Whole-genome sequencing and harmonization of clinical, neuropathological, and biomarker data of over 5000 EOAD cases of diverse ancestries. RESULTS A publicly available genomics resource for EOAD with extensive harmonized phenotypes. Primary analysis will (1) identify novel EOAD risk loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. DISCUSSION This novel resource complements over 50,000 control and late-onset AD samples generated through the Alzheimer's Disease Sequencing Project (ADSP). The harmonized EOAD/ADSP joint call will be available through upcoming ADSP data releases and will allow for additional analyses across the full onset range. HIGHLIGHTS Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations. This results in a significant lack of understanding of the molecular etiology of this devastating form of the disease. The Early-Onset Alzheimer's Disease Whole-genome Sequencing Project is a collaborative initiative to generate a large-scale genomics resource for early-onset Alzheimer's disease with extensive harmonized phenotype data. Primary analyses are designed to (1) identify novel EOAD risk and protective loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. The harmonized genomic and phenotypic data from this initiative will be available through NIAGADS.
Collapse
Affiliation(s)
- Nicholas R. Ray
- Gertrude H. Sergievsky Center, Columbia University, New
York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Temitope Ayodele
- Gertrude H. Sergievsky Center, Columbia University, New
York, NY 10032, USA
| | - Melissa Jean-Francois
- The John P. Hussman Institute for Human Genomics,
University of Miami, Miami, FL 33136, USA
- Dr. John T. MacDonald Foundation Department of Human
Genetics, University of Miami, Coral Gables, FL 33146, USA
| | - Penelope Baez
- Gertrude H. Sergievsky Center, Columbia University, New
York, NY 10032, USA
| | - Victoria Fernandez
- Department of Psychiatry, Neurology and Genetics,
Washington University School of Medicine, St. Louis, MO 63130, USA
- Neurogenomics and Informatic (NGI) Center, Washington
University School of Medicine, St. Louis, MO 63130, USA
| | - Joseph Bradley
- Department of Psychiatry, Neurology and Genetics,
Washington University School of Medicine, St. Louis, MO 63130, USA
- Neurogenomics and Informatic (NGI) Center, Washington
University School of Medicine, St. Louis, MO 63130, USA
| | - Paul K. Crane
- Division of General Internal Medicine, University of
Washington, Seattle, WA 98195, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics,
Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- The American Genome Center, Uniformed Services University
of the Health Sciences, Bethesda, MD 20814, USA
| | - Amanda Kuzma
- Penn Neurodegeneration Genomics Center, Department of
Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA 19104, USA
| | - Heather Nicaretta
- Penn Neurodegeneration Genomics Center, Department of
Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA 19104, USA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical
Neurosciences, School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Julie Williams
- UK Dementia Research Institute, Cardiff University,
Cardiff CF10 3AT, UK
- Division of Psychological Medicine and Clinical
Neurosciences, School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - Michael L. Cuccaro
- The John P. Hussman Institute for Human Genomics,
University of Miami, Miami, FL 33136, USA
- Dr. John T. MacDonald Foundation Department of Human
Genetics, University of Miami, Coral Gables, FL 33146, USA
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics,
University of Miami, Miami, FL 33136, USA
- Dr. John T. MacDonald Foundation Department of Human
Genetics, University of Miami, Coral Gables, FL 33146, USA
| | - Richard Mayeux
- Gertrude H. Sergievsky Center, Columbia University, New
York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY
10032, USA
- Department of Epidemiology, Columbia University, New York,
NY 10032, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of
Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA 19104, USA
| | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of
Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA 19104, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Neurology and Genetics,
Washington University School of Medicine, St. Louis, MO 63130, USA
- Neurogenomics and Informatic (NGI) Center, Washington
University School of Medicine, St. Louis, MO 63130, USA
| | - Gary W. Beecham
- The John P. Hussman Institute for Human Genomics,
University of Miami, Miami, FL 33136, USA
- Dr. John T. MacDonald Foundation Department of Human
Genetics, University of Miami, Coral Gables, FL 33146, USA
| | - Christiane Reitz
- Gertrude H. Sergievsky Center, Columbia University, New
York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY
10032, USA
- Department of Epidemiology, Columbia University, New York,
NY 10032, USA
| |
Collapse
|
27
|
Silvaieh S, König T, Wurm R, Parvizi T, Berger-Sieczkowski E, Goeschl S, Hotzy C, Wagner M, Berutti R, Sammler E, Stögmann E, Zimprich A. Comprehensive genetic screening of early-onset dementia patients in an Austrian cohort-suggesting new disease-contributing genes. Hum Genomics 2023; 17:55. [PMID: 37330543 PMCID: PMC10276391 DOI: 10.1186/s40246-023-00499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Early-onset dementia (EOD), with symptom onset before age 65, has a strong genetic burden. Due to genetic and clinical overlaps between different types of dementia, whole-exome sequencing (WES) has emerged as an appropriate screening method for diagnostic testing and novel gene-finding approaches. We performed WES and C9orf72 repeat testing in 60 well-defined Austrian EOD patients. Seven patients (12%) carried likely disease-causing variants in monogenic genes, PSEN1, MAPT, APP, and GRN. Five patients (8%) were APOE4 homozygote carriers. Definite and possible risk variants were detected in the genes TREM2, SORL1, ABCA7 and TBK1. In an explorative approach, we cross-checked rare gene variants in our cohort with a curated neurodegeneration candidate gene list and identified DCTN1, MAPK8IP3, LRRK2, VPS13C and BACE1 as promising candidate genes. Conclusively, 12 cases (20%) carried variants relevant to patient counseling, comparable to previously reported studies, and can thus be considered genetically resolved. Reduced penetrance, oligogenic inheritance and not yet identified high-risk genes might explain the high number of unresolved cases. To address this issue, we provide complete genetic and phenotypic information (uploaded to the European Genome-phenome Archive), enabling other researchers to cross-check variants. Thereby, we hope to increase the chance of independently finding the same gene/variant-hit in other well-defined EOD patient cohorts, thus confirming new genetic risk variants or variant combinations.
Collapse
Affiliation(s)
- Sara Silvaieh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tandis Parvizi
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Evelyn Berger-Sieczkowski
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stella Goeschl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christoph Hotzy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Centrum, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Fominykh V, Shadrin AA, Jaholkowski PP, Bahrami S, Athanasiu L, Wightman DP, Uffelmann E, Posthuma D, Selbæk G, Dale AM, Djurovic S, Frei O, Andreassen OA. Shared genetic loci between Alzheimer's disease and multiple sclerosis: Crossroads between neurodegeneration and immune system. Neurobiol Dis 2023:106174. [PMID: 37286172 DOI: 10.1016/j.nbd.2023.106174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Neuroinflammation is involved in the pathophysiology of Alzheimer's disease (AD), including immune-linked genetic variants and molecular pathways, microglia and astrocytes. Multiple Sclerosis (MS) is a chronic, immune-mediated disease with genetic and environmental risk factors and neuropathological features. There are clinical and pathobiological similarities between AD and MS. Here, we investigated shared genetic susceptibility between AD and MS to identify putative pathological mechanisms shared between neurodegeneration and the immune system. METHODS We analysed GWAS data for late-onset AD (N cases = 64,549, N controls = 634,442) and MS (N cases = 14,802, N controls = 26,703). Gaussian causal mixture modelling (MiXeR) was applied to characterise the genetic architecture and overlap between AD and MS. Local genetic correlation was investigated with Local Analysis of [co]Variant Association (LAVA). The conjunctional false discovery rate (conjFDR) framework was used to identify the specific shared genetic loci, for which functional annotation was conducted with FUMA and Open Targets. RESULTS MiXeR analysis showed comparable polygenicities for AD and MS (approximately 1800 trait-influencing variants) and genetic overlap with 20% of shared trait-influencing variants despite negligible genetic correlation (rg = 0.03), suggesting mixed directions of genetic effects across shared variants. conjFDR analysis identified 16 shared genetic loci, with 8 having concordant direction of effects in AD and MS. Annotated genes in shared loci were enriched in molecular signalling pathways involved in inflammation and the structural organisation of neurons. CONCLUSIONS Despite low global genetic correlation, the current results provide evidence for polygenic overlap between AD and MS. The shared loci between AD and MS were enriched in pathways involved in inflammation and neurodegeneration, highlighting new opportunities for future investigation.
Collapse
Affiliation(s)
- Vera Fominykh
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Alexey A Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr P Jaholkowski
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lavinia Athanasiu
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Emil Uffelmann
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Geir Selbæk
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Vestfold Hospital Trust, Norwegian National Centre for Ageing and Health, Tonsberg, Vestfold, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, California, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, California, USA; Department of Psychiatry, University of California San Diego, La Jolla, California, USA; Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Srdjan Djurovic
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Informatics, Centre for Bioinformatics, University of Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
30
|
Kommaddi RP, Verma A, Muniz-Terrera G, Tiwari V, Chithanathan K, Diwakar L, Gowaikar R, Karunakaran S, Malo PK, Graff-Radford NR, Day GS, Laske C, Vöglein J, Nübling G, Ikeuchi T, Kasuga K, Ravindranath V. Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort. Transl Psychiatry 2023; 13:123. [PMID: 37045867 PMCID: PMC10097702 DOI: 10.1038/s41398-023-02411-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Women carry a higher burden of Alzheimer's disease (AD) compared to men, which is not accounted entirely by differences in lifespan. To identify the mechanisms underlying this effect, we investigated sex-specific differences in the progression of familial AD in humans and in APPswe/PS1ΔE9 mice. Activity dependent protein translation and associative learning and memory deficits were examined in APPswe/PS1ΔE9 mice and wild-type mice. As a human comparator group, progression of cognitive dysfunction was assessed in mutation carriers and non-carriers from DIAN (Dominantly Inherited Alzheimer Network) cohort. Female APPswe/PS1ΔE9 mice did not show recall deficits after contextual fear conditioning until 8 months of age. Further, activity dependent protein translation and Akt1-mTOR signaling at the synapse were impaired in male but not in female mice until 8 months of age. Ovariectomized APPswe/PS1ΔE9 mice displayed recall deficits at 4 months of age and these were sustained until 8 months of age. Moreover, activity dependent protein translation was also impaired in 4 months old ovariectomized APPswe/PS1ΔE9 mice compared with sham female APPswe/PS1ΔE9 mice. Progression of memory impairment differed between men and women in the DIAN cohort as analyzed using linear mixed effects model, wherein men showed steeper cognitive decline irrespective of the age of entry in the study, while women showed significantly greater performance and slower decline in immediate recall (LOGIMEM) and delayed recall (MEMUNITS) than men. However, when the performance of men and women in several cognitive tasks (such as Wechsler's logical memory) are compared with the estimated year from expected symptom onset (EYO) we found no significant differences between men and women. We conclude that in familial AD patients and mouse models, females are protected, and the onset of disease is delayed as long as estrogen levels are intact.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| | - Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graciela Muniz-Terrera
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- The Department of Social Medicine, Ohio University, Athens, OH, 45701, USA
| | - Vivek Tiwari
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Smitha Karunakaran
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Palash Kumar Malo
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases, Munich, Germany
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
31
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
32
|
Ringman JM, Dorrani N, Fernández SG, Signer R, Martinez-Agosto J, Lee H, Douine ED, Qiao Y, Shi Y, D’Orazio L, Pawar S, Robbie L, Kashani AH, Singer M, Byers JT, Magaki S, Guzman S, Sagare A, Zlokovic B, Cederbaum S, Nelson S, Sheikh-Bahaei N, Chui HC, Chávez-Gutiérrez L, Vinters HV. Characterization of spastic paraplegia in a family with a novel PSEN1 mutation. Brain Commun 2023; 5:fcad030. [PMID: 36895955 PMCID: PMC9991506 DOI: 10.1093/braincomms/fcad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/09/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Spastic paraparesis has been described to occur in 13.7% of PSEN1 mutations and can be the presenting feature in 7.5%. In this paper, we describe a family with a particularly young onset of spastic paraparesis due to a novel mutation in PSEN1 (F388S). Three affected brothers underwent comprehensive imaging protocols, two underwent ophthalmological evaluations and one underwent neuropathological examination after his death at age 29. Age of onset was consistently at age 23 with spastic paraparesis, dysarthria and bradyphrenia. Pseudobulbar affect followed with progressive gait problems leading to loss of ambulation in the late 20s. Cerebrospinal fluid levels of amyloid-β, tau and phosphorylated tau and florbetaben PET were consistent with Alzheimer's disease. Flortaucipir PET showed an uptake pattern atypical for Alzheimer's disease, with disproportionate signal in posterior brain areas. Diffusion tensor imaging showed decreased mean diffusivity in widespread areas of white matter but particularly in areas underlying the peri-Rolandic cortex and in the corticospinal tracts. These changes were more severe than those found in carriers of another PSEN1 mutation, which can cause spastic paraparesis at a later age (A431E), which were in turn more severe than among persons carrying autosomal dominant Alzheimer's disease mutations not causing spastic paraparesis. Neuropathological examination confirmed the presence of cotton wool plaques previously described in association with spastic parapresis and pallor and microgliosis in the corticospinal tract with severe amyloid-β pathology in motor cortex but without unequivocal disproportionate neuronal loss or tau pathology. In vitro modelling of the effects of the mutation demonstrated increased production of longer length amyloid-β peptides relative to shorter that predicted the young age of onset. In this paper, we provide imaging and neuropathological characterization of an extreme form of spastic paraparesis occurring in association with autosomal dominant Alzheimer's disease, demonstrating robust diffusion and pathological abnormalities in white matter. That the amyloid-β profiles produced predicted the young age of onset suggests an amyloid-driven aetiology though the link between this and the white matter pathology remains undefined.
Collapse
Affiliation(s)
- John M Ringman
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | | | - Sara Gutiérrez Fernández
- Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Rebecca Signer
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Hane Lee
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Emilie D Douine
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Yuchuan Qiao
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Los Angeles, CA 90033, USA
| | - Yonggang Shi
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Los Angeles, CA 90033, USA
| | - Lina D’Orazio
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Sanjay Pawar
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Leah Robbie
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Amir H Kashani
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Maxwell Singer
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua T Byers
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sam Guzman
- Department of Pathology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Abhay Sagare
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Berislav Zlokovic
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen Cederbaum
- Department of Pediatrics, UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Stanley Nelson
- Department of Pediatrics, UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, University of Southern California, Los Angeles, CA 90033, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Lucía Chávez-Gutiérrez
- Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA, Faqih YAH, Rashid H, Rashid SM, Bilal Ahmad S, Alexiou A, Rehman MU. The Future of Precision Medicine in the Cure of Alzheimer's Disease. Biomedicines 2023; 11:335. [PMID: 36830872 PMCID: PMC9953731 DOI: 10.3390/biomedicines11020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
This decade has seen the beginning of ground-breaking conceptual shifts in the research of Alzheimer's disease (AD), which acknowledges risk elements and the evolving wide spectrum of complicated underlying pathophysiology among the range of diverse neurodegenerative diseases. Significant improvements in diagnosis, treatments, and mitigation of AD are likely to result from the development and application of a comprehensive approach to precision medicine (PM), as is the case with several other diseases. This strategy will probably be based on the achievements made in more sophisticated research areas, including cancer. PM will require the direct integration of neurology, neuroscience, and psychiatry into a paradigm of the healthcare field that turns away from the isolated method. PM is biomarker-guided treatment at a systems level that incorporates findings of the thorough pathophysiology of neurodegenerative disorders as well as methodological developments. Comprehensive examination and categorization of interrelated and convergent disease processes, an explanation of the genomic and epigenetic drivers, a description of the spatial and temporal paths of natural history, biological markers, and risk markers, as well as aspects about the regulation, and the ethical, governmental, and sociocultural repercussions of findings at a subclinical level all require clarification and realistic execution. Advances toward a comprehensive systems-based approach to PM may finally usher in a new era of scientific and technical achievement that will help to end the complications of AD.
Collapse
Affiliation(s)
- Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Karan Nagar, Srinagar 190010, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mashoque Ahmad Rather
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | | | | | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar 190006, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar 190006, India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Haidingergasse 29, 1030 Vienna, Austria
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Morrissey ZD, Gao J, Zhan L, Li W, Fortel I, Saido T, Saito T, Bakker A, Mackin S, Ajilore O, Lazarov O, Leow AD. Hippocampal functional connectivity across age in an App knock-in mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 14:1085989. [PMID: 36711209 PMCID: PMC9878347 DOI: 10.3389/fnagi.2022.1085989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease. The early processes of AD, however, are not fully understood and likely begin years before symptoms manifest. Importantly, disruption of the default mode network, including the hippocampus, has been implicated in AD. Methods To examine the role of functional network connectivity changes in the early stages of AD, we performed resting-state functional magnetic resonance imaging (rs-fMRI) using a mouse model harboring three familial AD mutations (App NL-G-F/NL-G-F knock-in, APPKI) in female mice in early, middle, and late age groups. The interhemispheric and intrahemispheric functional connectivity (FC) of the hippocampus was modeled across age. Results We observed higher interhemispheric functional connectivity (FC) in the hippocampus across age. This was reduced, however, in APPKI mice in later age. Further, we observed loss of hemispheric asymmetry in FC in APPKI mice. Discussion Together, this suggests that there are early changes in hippocampal FC prior to heavy onset of amyloid β plaques, and which may be clinically relevant as an early biomarker of AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Scott Mackin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
36
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
37
|
Rudenskaya GE, Petukhova MS, Zabnenkova VV, Cherevatova TB, Ryzhkova OP. [Early-onset familial Alzheimer's disease with spastic paraparesis associated with PSEN1 gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:120-127. [PMID: 37994898 DOI: 10.17116/jnevro2023123111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A familial case of a rare autosomal dominant Alzheimer's disease (AD), related to PSEN1 gene (AD3, OMIM 607822), differing from common multifactorial form by earlier onset and, in part of cases, by accompanying neurological signs, spastic paraparesis particularly, is presented. The first sign in a female proband and in her son was paraparesis manifested at the age of 29 and 21 years, respectively. Cognitive disturbances developed soon; the former diagnosis was hereditary spastic paraplegia with cognitive impairment, In the proband examined in 2008 at 33 years old the diagnosis was not established. In the son examined in 2022 at 27 years old whole-exome sequencing detected a novel PSEN1 missense mutation p.Thr421Ala. The mutation was confirmed by Sanger sequencing in him, found out in the proband (who was severely disabled by that time) and excluded in her unaffected mother. Except for different age of onset, AD3 in two patients was similar, though in whole it is variable, also in relatives. The variability and rareness of the disease hampers clinical diagnostics. Massive parallel sequencing is a most reliable diagnostic method.
Collapse
Affiliation(s)
| | - M S Petukhova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
38
|
Wallon D, Nicolas G. Genetica della malattia di Alzheimer. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)47093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
39
|
Seuma M, Lehner B, Bolognesi B. An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation. Nat Commun 2022; 13:7084. [PMID: 36400770 PMCID: PMC9674652 DOI: 10.1038/s41467-022-34742-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Multiplexed assays of variant effects (MAVEs) guide clinical variant interpretation and reveal disease mechanisms. To date, MAVEs have focussed on a single mutation type-amino acid (AA) substitutions-despite the diversity of coding variants that cause disease. Here we use Deep Indel Mutagenesis (DIM) to generate a comprehensive atlas of diverse variant effects for a disease protein, the amyloid beta (Aβ) peptide that aggregates in Alzheimer's disease (AD) and is mutated in familial AD (fAD). The atlas identifies known fAD mutations and reveals that many variants beyond substitutions accelerate Aβ aggregation and are likely to be pathogenic. Truncations, substitutions, insertions, single- and internal multi-AA deletions differ in their propensity to enhance or impair aggregation, but likely pathogenic variants from all classes are highly enriched in the polar N-terminal region of Aβ. This comparative atlas highlights the importance of including diverse mutation types in MAVEs and provides important mechanistic insights into amyloid nucleation.
Collapse
Affiliation(s)
- Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
40
|
Dent P, Booth L, Roberts JL, Poklepovic A, Martinez J, Cridebring D, Reiman EM. AR12 increases BAG3 expression which is essential for Tau and APP degradation via LC3-associated phagocytosis and macroautophagy. Aging (Albany NY) 2022; 14:8221-8242. [PMID: 36227739 PMCID: PMC9648812 DOI: 10.18632/aging.204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
We defined the mechanisms by which the chaperone ATPase inhibitor AR12 and the multi-kinase inhibitor neratinib interacted to reduce expression of Tau and amyloid-precursor protein (APP) in microglia and neuronal cells. AR12 and neratinib interacted to increase the phosphorylation of eIF2A S51 and the expression of BAG3, Beclin1 and ATG5, and in parallel, enhanced autophagosome formation and autophagic flux. Knock down of BAG3, Beclin1 or ATG5 abolished autophagosome formation and significantly reduced degradation of p62, LAMP2, Tau, APP, and GRP78 (total and plasma membrane). Knock down of Rubicon, a key component of LC3-associated phagocytosis (LAP), significantly reduced autophagosome formation but not autophagic flux and prevented degradation of Tau, APP, and cell surface GRP78, but not ER-localized GRP78. Knock down of Beclin1, ATG5 or Rubicon or over-expression of GRP78 prevented the significant increase in eIF2A phosphorylation. Knock down of eIF2A prevented the increase in BAG3 expression and significantly reduced autophagosome formation, autophagic flux, and it prevented Tau and APP degradation. We conclude that AR12 has the potential to reduce Tau and APP levels in neurons and microglia via the actions of LAP, endoplasmic reticulum stress signaling and macroautophagy. We hypothesize that the initial inactivation of GRP78 catalytic function by AR12 facilitates an initial increase in eIF2A phosphorylation which in turn is essential for greater levels of eIF2A phosphorylation, greater levels of BAG3 and macroautophagy and eventually leading to significant amounts of APP/Tau degradation.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Martinez
- National Institute of Environmental Health Sciences, Inflammation and Autoimmunity Group, Triangle Park, Durham, NC 27709, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
41
|
Reyes‐Dumeyer D, Faber K, Vardarajan B, Goate A, Renton A, Chao M, Boeve B, Cruchaga C, Pericak‐Vance M, Haines JL, Rosenberg R, Tsuang D, Sweet RA, Bennett DA, Wilson RS, Foroud T, Mayeux R. The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. Alzheimers Dement 2022; 18:1889-1897. [PMID: 34978149 PMCID: PMC9250549 DOI: 10.1002/alz.12514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study (NIA-LOAD FBS) was established to study the genetic etiology of Alzheimer's disease (AD). METHODS Recruitment focused on families with two living affected siblings and a third first-degree relative similar in age with or without dementia. Uniform assessments were completed, DNA was obtained, as was neuropathology, when possible. Apolipoprotein E (APOE) genotypes, genome-wide single nucleotide polymorphism (SNP) arrays, and sequencing was completed in most families. RESULTS APOE genotype modified the age-at-onset in many large families. Novel variants and known variants associated with early- and late-onset AD and frontotemporal dementia were identified supporting an international effort to solve AD genetics. DISCUSSION The NIA-LOAD FBS is the largest collection of familial AD worldwide, and data or samples have been included in 123 publications addressing the genetic etiology of AD. Genetic heterogeneity and variability in the age-at-onset provides opportunities to investigate the complexity of familial AD.
Collapse
Affiliation(s)
- Dolly Reyes‐Dumeyer
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Kelley Faber
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Badri Vardarajan
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Alison Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan Renton
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael Chao
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Brad Boeve
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Margaret Pericak‐Vance
- John P. Hussman Institute for Human GenomicsDr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Roger Rosenberg
- Department of NeurologyUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Debby Tsuang
- GRECC VA Puget SoundDepartment of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Robert A. Sweet
- Departments of Psychiatry and NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Richard Mayeux
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| |
Collapse
|
42
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
43
|
Peng W, Xie Y, Liao C, Bai Y, Wang H, Li C. Spatiotemporal patterns of gliosis and neuroinflammation in presenilin 1/2 conditional double knockout mice. Front Aging Neurosci 2022; 14:966153. [PMID: 36185485 PMCID: PMC9521545 DOI: 10.3389/fnagi.2022.966153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence indicates that neuroinflammation contributes to and exacerbates the pathogenesis of Alzheimer’s disease (AD). Neuroinflammation is thought to be primarily driven by glial cells (microglia and astrocytes) and escalates with neurodegenerative progression in AD. However, the spatiotemporal change patterns of glial reactivity and neuroinflammatory response during different stages of neurodegeneration, especially early in disease, remain unknown. Here we found that gliosis and the up-regulation of substantial neuroinflammatory genes were primarily initiated in the cortex of presenilin 1/2 conditional double knockout (cDKO) mice, rather than in the hippocampus. Specifically, astrocyte activation preceding microglial activation was found in the somatosensory cortex (SS) of cDKO mice at 6 weeks of age. Over time, both astrocyte and microglial activation were found in the whole cortex, and age-related increases in gliosis activation were more pronounced in the cortex compared to hippocampus. Moreover, the age-associated increase in glial activation was accompanied by a gradual increase in the expression of cell chemokines Ccl3 and Ccl4, complement related factors C1qb, C3 and C4, and lysosomal proteases cathepsin S and Z. These findings suggest that astrocyte and microglial activation with a concurrent increase in inflammatory mediators such as chemokines might be an early event and contribute to the pathogenesis of neurodegeneration due to presenilin deficiency.
Collapse
Affiliation(s)
- Wenjun Peng
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuan Xie
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chongzheng Liao
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Huimin Wang,
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- *Correspondence: Chunxia Li,
| |
Collapse
|
44
|
Bartoletti-Stella A, Tarozzi M, Mengozzi G, Asirelli F, Brancaleoni L, Mometto N, Stanzani-Maserati M, Baiardi S, Linarello S, Spallazzi M, Pantieri R, Ferriani E, Caffarra P, Liguori R, Parchi P, Capellari S. Dementia-related genetic variants in an Italian population of early-onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:969817. [PMID: 36133075 PMCID: PMC9484406 DOI: 10.3389/fnagi.2022.969817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Early-onset Alzheimer’s disease (EOAD) is the most common form of early-onset dementia. Although three major genes have been identified as causative, the genetic contribution to the disease remains unsolved in many patients. Recent studies have identified pathogenic variants in genes representing a risk factor for developing Alzheimer’s disease (AD) and in causative genes for other degenerative dementias as responsible for EOAD. To study them further, we investigated a panel of candidate genes in 102 Italian EOAD patients, 45.10% of whom had a positive family history and 21.74% with a strong family history of dementia. We found that 10.78% of patients carried pathogenic or likely pathogenic variants, including a novel variant, in PSEN1, PSEN2, or APP, and 7.84% showed homozygosity for the ε4 APOE allele. Additionally, 7.84% of patients had a moderate risk allele in PSEN1, PSEN2, or TREM2 genes. Besides, we observed that 12.75% of our patients carried only a variant in genes associated with other neurodegenerative diseases. The combination of these variants contributes to explain 46% of cases with a definite familiarity and 32% of sporadic forms. Our results confirm the importance of extensive genetic screening in EOAD for clinical purposes, to select patients for future treatments and to contribute to the definition of overlapping pathogenic mechanisms between AD and other forms of dementia.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Tarozzi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Francesca Asirelli
- Department of Medical Science and Surgery (DIMEC), University of Bologna, Bologna, Italy
| | - Laura Brancaleoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Nicola Mometto
- UOC Neurologia, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | | | - Simone Baiardi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Simona Linarello
- Programma Cure Intermedie - Azienda USL di Bologna, Bologna, Italy
| | - Marco Spallazzi
- U.O. di Neurologia, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Roberta Pantieri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Elisa Ferriani
- UOC Psicologia Clinica Ospedaliera, Ospedale Bellaria, Azienda USL di Bologna, Bologna, Italy
| | - Paolo Caffarra
- Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- *Correspondence: Sabina Capellari,
| |
Collapse
|
45
|
Kalfon L, Paz R, Raveh-Barak H, Salama A, Samra N, Kaplun A, Chasnyk N, Kfir NC, Mousa NK, Biton ES, Tanus M, Aharon-Peretz J, Falik Zaccai TC. Familial Early-Onset Alzheimer's Caused by Novel Genetic Variant and APP Duplication: A Cross-Sectional Study. Curr Alzheimer Res 2022; 19:694-707. [PMID: 36278440 DOI: 10.2174/1567205020666221020095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.
Collapse
Affiliation(s)
- Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rotem Paz
- Rappaport Faculty of Medicine, Technion Medicine, Haifa, Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Hadas Raveh-Barak
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Areef Salama
- Department of Family Medicine, Sherutei Briut Clalit, Haifa and Western Galilee District, Tel Aviv, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Nehama Cohen Kfir
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Efrat Shuster Biton
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Mary Tanus
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Judith Aharon-Peretz
- Rappaport Faculty of Medicine, Technion, Haifa Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| |
Collapse
|
46
|
Herzig AF, Clerget-Darpoux F, Génin E. The False Dawn of Polygenic Risk Scores for Human Disease Prediction. J Pers Med 2022; 12:jpm12081266. [PMID: 36013215 PMCID: PMC9409868 DOI: 10.3390/jpm12081266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Polygenic risk scores (PRSs) are being constructed for many diseases and are presented today as a promising avenue in the field of human genetics. These scores aim at predicting the risk of developing a disease by leveraging the many genome-wide association studies (GWAS) conducted during the two last decades. Important investments are being made to improve score estimates by increasing GWAS sample sizes, by developing more sophisticated methods, and by proposing different corrections for potential biases. PRSs have entered the market with direct-to-consumer companies proposing to compute them from saliva samples and even recently to help parents select the healthiest embryos. In this paper, we recall how PRSs arose and question the credit they are given by revisiting underlying assumptions in light of the history of human genetics and by comparing them with estimated breeding values (EBVs) used for selection in livestock.
Collapse
Affiliation(s)
- Anthony F. Herzig
- Inserm, Université de Brest, EFS, CHU Brest, UMR 1078, GGB, F-29200 Brest, France;
| | - Françoise Clerget-Darpoux
- Université Paris Cité, Inserm, Institut Imagine, Laboratoire Embryologie et Génétique des Malformations, F-75015 Paris, France
- Correspondence: (F.C.-D.); (E.G.)
| | - Emmanuelle Génin
- Inserm, Université de Brest, EFS, CHU Brest, UMR 1078, GGB, F-29200 Brest, France;
- Correspondence: (F.C.-D.); (E.G.)
| |
Collapse
|
47
|
Tejada Moreno JA, Villegas Lanau A, Madrigal Zapata L, Baena Pineda AY, Velez Hernandez J, Campo Nieto O, Soto Ospina A, Araque Marín P, Rishishwar L, Norris ET, Chande AT, Jordan IK, Bedoya Berrio G. Mutations in SORL1 and MTHFDL1 possibly contribute to the development of Alzheimer's disease in a multigenerational Colombian Family. PLoS One 2022; 17:e0269955. [PMID: 35905044 PMCID: PMC9337667 DOI: 10.1371/journal.pone.0269955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 50 million people worldwide in 2020 and this number will triple to 152 million by 2050. Much of the increase will be in developing countries like Colombia. In familial forms, highly penetrant mutations have been identified in three genes, APP, PSEN1, and PSEN2, supporting a role for amyloid-β peptide. In sporadic forms, more than 30 risk genes involved in the lipid metabolism, the immune system, and synaptic functioning mechanisms. We used whole-exome sequencing (WES) to evaluate a family of 97 members, spanning three generations, with a familiar AD, and without mutations in APP, PSEN1, or PSEN2. We sequenced two affected and one unaffected member with the aim of identifying genetic variants that could explain the presence of the disease in the family and the candidate variants were validated in eleven members. We also built a structural model to try to determine the effect on protein function. WES analysis identified two rare variants in SORL1 and MTHFD1L genes segregating in the family with other potential risk variants in APOE, ABCA7, and CHAT, suggesting an oligogenic inheritance. Additionally, the structural 3D models of SORL1 and MTHFD1L variants shows that these variants produce polarity changes that favor hydrophobic interactions, resulting in local structural changes that could affect the protein function and may contribute to the development of the disease in this family.
Collapse
Affiliation(s)
| | | | | | | | | | - Omer Campo Nieto
- Molecular Genetics Research Group, University of Antioquia, Medellin, Colombia
| | | | - Pedronel Araque Marín
- Research and Innovation Group in Chemical Formulations, EIA University, Medellin, Colombia
| | - Lavanya Rishishwar
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Emily T. Norris
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Aroon T. Chande
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - I. King Jordan
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | |
Collapse
|
48
|
Mao S, Huang CP, Lan H, Lau HG, Chiang CP, Chen YW. Association of periodontitis and oral microbiomes with Alzheimer’s disease: A narrative systematic review. J Dent Sci 2022; 17:1762-1779. [PMID: 36299333 PMCID: PMC9588805 DOI: 10.1016/j.jds.2022.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia. The etiology for AD includes age, genetic susceptibility, neuropathology, and infection. Periodontitis is an infectious and inflammatory disease which mainly causes alveolar bone destruction and tooth loss. The evidence of a link between AD and periodontitis remains controversial. Thus far, studies reviewing the association between AD and periodontal disease have been insufficient from the viewpoint of the oral microbiome. The aim of this review was to focus on studies that have explored the relationship between the oral microbiome and AD development by using the next-generation sequencing technique. Materials and methods A comprehensive electronic search of MEDLINE via PubMed, EMBASE, Scopus, and Google Scholar was conducted. The keywords included dementia, Alzheimer’s disease, cognitive impairment, periodontitis, periodontal disease, and oral microbiome. Results This review included 26 articles based on the eligibility criteria. Epidemiologic researches and post-mortem studies showed that the presence of periodontitis is associated with cognitive decline, suggesting a possible role of periodontal pathogens in the pathogenesis of AD. The reported microbiome was inconsistent with those in gene sequencing studies. Nevertheless, Gram-negative species may be possible candidates. Conclusion This review suggests that periodontal infection is associated with AD. The contributing microbiome remains unconfirmed, possibly because of different microbiome sampling sites or methods. Additional large-scale studies with periodontal intervention and longitudinal follow-up are warranted to clarify the relationship between periodontal disease and AD.
Collapse
|
49
|
Schramm C, Charbonnier C, Zaréa A, Lacour M, Wallon D, Boland A, Deleuze JF, Olaso R, Alarcon F, Campion D, Nuel G, Nicolas G. Penetrance estimation of Alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes. Genome Med 2022; 14:69. [PMID: 35761418 PMCID: PMC9238165 DOI: 10.1186/s13073-022-01070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a common complex disorder with a high genetic component. Loss-of-function (LoF) SORL1 variants are one of the strongest AD genetic risk factors. Estimating their age-related penetrance is essential before putative use for genetic counseling or preventive trials. However, relative rarity and co-occurrence with the main AD risk factor, APOE-ε4, make such estimations difficult. METHODS We proposed to estimate the age-related penetrance of SORL1-LoF variants through a survival framework by estimating the conditional instantaneous risk combining (i) a baseline for non-carriers of SORL1-LoF variants, stratified by APOE-ε4, derived from the Rotterdam study (N = 12,255), and (ii) an age-dependent proportional hazard effect for SORL1-LoF variants estimated from 27 extended pedigrees (including 307 relatives ≥ 40 years old, 45 of them having genotyping information) recruited from the French reference center for young Alzheimer patients. We embedded this model into an expectation-maximization algorithm to accommodate for missing genotypes. To correct for ascertainment bias, proband phenotypes were omitted. Then, we assessed if our penetrance curves were concordant with age distributions of APOE-ε4-stratified SORL1-LoF variant carriers detected among sequencing data of 13,007 cases and 10,182 controls from European and American case-control study consortia. RESULTS SORL1-LoF variants penetrance curves reached 100% (95% confidence interval [99-100%]) by age 70 among APOE-ε4ε4 carriers only, compared with 56% [40-72%] and 37% [26-51%] in ε4 heterozygous carriers and ε4 non-carriers, respectively. These estimates were fully consistent with observed age distributions of SORL1-LoF variant carriers in case-control study data. CONCLUSIONS We conclude that SORL1-LoF variants should be interpreted in light of APOE genotypes for future clinical applications.
Collapse
Affiliation(s)
- Catherine Schramm
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, FHU-G4 Génomique, 22 boulevard Gambetta - CS 76183, Rouen, F-76000, France
| | - Camille Charbonnier
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, FHU-G4 Génomique, 22 boulevard Gambetta - CS 76183, Rouen, F-76000, France
| | - Aline Zaréa
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNRMAJ, FHU-G4 Génomique, Rouen, F-76000, France
| | - Morgane Lacour
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNRMAJ, FHU-G4 Génomique, Rouen, F-76000, France
| | - David Wallon
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNRMAJ, FHU-G4 Génomique, Rouen, F-76000, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Flora Alarcon
- MAP5, UMR-CNRS 8145, Paris University, 75270, Paris, France
| | - Dominique Campion
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, FHU-G4 Génomique, 22 boulevard Gambetta - CS 76183, Rouen, F-76000, France
- Department of Research, Rouvray Psychiatric Hospital, 76681, Sotteville-Lès-Rouen, France
| | - Grégory Nuel
- LPSM, CNRS 8001, Sorbonne University, 75005, Paris, France
| | - Gaël Nicolas
- Normandie Université, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, FHU-G4 Génomique, 22 boulevard Gambetta - CS 76183, Rouen, F-76000, France.
| |
Collapse
|
50
|
Reducing PDK1/Akt Activity: An Effective Therapeutic Target in the Treatment of Alzheimer's Disease. Cells 2022; 11:cells11111735. [PMID: 35681431 PMCID: PMC9179555 DOI: 10.3390/cells11111735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that leads to memory loss and cognitive function damage due to intracerebral neurofibrillary tangles (NFTs) and amyloid-β (Aβ) protein deposition. The phosphoinositide-dependent protein kinase (PDK1)/protein kinase B (Akt) signaling pathway plays a significant role in neuronal differentiation, synaptic plasticity, neuronal survival, and neurotransmission via the axon–dendrite axis. The phosphorylation of PDK1 and Akt rises in the brain, resulting in phosphorylation of the TNF-α-converting enzyme (TACE) at its cytoplasmic tail (the C-terminal end), changing its internalization as well as its trafficking. The current review aimed to explain the mechanisms of the PDK1/Akt/TACE signaling axis that exerts its modulatory effect on AD physiopathology. We provide an overview of the neuropathological features, genetics, Aβ aggregation, Tau protein hyperphosphorylation, neuroinflammation, and aging in the AD brain. Additionally, we summarized the phosphoinositide 3-kinase (PI3K)/PDK1/Akt pathway-related features and its molecular mechanism that is dependent on TACE in the pathogenesis of AD. This study reviewed the relationship between the PDK1/Akt signaling pathway and AD, and discussed the role of PDK1/Akt in resisting neuronal toxicity by suppressing TACE expression in the cell membrane. This work also provides a perspective for developing new therapeutics targeting PDK1/Akt and TACE for the treatment of AD.
Collapse
|