1
|
CRIVEI LA, MOUTAILLER S, GONZALEZ G, LOWENSKI S, CRIVEI IC, POREA D, ANITA DC, RATOI IA, ZIENTARA S, OSLOBANU LE, TOMAZATOS A, SAVUTA G, LECOLLINET S. Detection of West Nile Virus Lineage 2 in Eastern Romania and First Identification of Sindbis Virus RNA in Mosquitoes Analyzed using High-Throughput Microfluidic Real-Time PCR. Viruses 2023; 15:186. [PMID: 36680227 PMCID: PMC9860827 DOI: 10.3390/v15010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay. West Nile virus (WNV) was detected in 10/365 pools of Culex pipiens (n = 8), Culex modestus (n = 1) and Aedes vexans (n = 1) from both studied counties. We also report the first molecular detection of Sindbis virus (SINV) RNA in the country in one pool of Culex modestus. WNV infection was confirmed by real-time RT-PCR (10/10) and virus isolation on Vero or C6/36 cells (four samples). For the SINV-positive pool, no cytopathic effectwas observed after infection of Vero or C6/36 cells, but no amplification was obtained in conventional SINV RT-PCR. Phylogenetic analysis of WNV partial NS5 sequences revealed that WNV lineage 2 of theCentral-Southeast European clade, has a wider circulation in Romania than previously known.
Collapse
Affiliation(s)
- Luciana Alexandra CRIVEI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Sara MOUTAILLER
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Gaëlle GONZALEZ
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Steeve LOWENSKI
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ioana Cristina CRIVEI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Daniela POREA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Dragoș Constantin ANITA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Ioana Alexandra RATOI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Stéphan ZIENTARA
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Luanda Elena OSLOBANU
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Alexandru TOMAZATOS
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Gheorghe SAVUTA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Sylvie LECOLLINET
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Seroprevalence Rates against West Nile, Usutu, and Tick-Borne Encephalitis Viruses in Blood-Donors from North-Western Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138182. [PMID: 35805850 PMCID: PMC9266370 DOI: 10.3390/ijerph19138182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Introduction: West Nile virus (WNV), Usutu virus (USUV), and the tick-borne encephalitis virus (TBEV) are all arboviruses belonging to Flaviviridae family. All are characterized by vectorial transmission and sometimes associated with neuroinvasive infections. The circulation of these viruses is considered endemic in parts of Europe, with human cases reported in many countries. Among hosts, the viruses are vectored by hematophagous arthropods, such as mosquitoes (WNV, USUV) and ticks (TBEV). Considering the currently outdated knowledge regarding the epidemiology of these viruses in Romania, the aim of our study was to assess the seroprevalence rates of WNV, USUV, and TBEV among healthy blood donors in north-western Romania. Methods: Human blood samples from healthy donors were collected between November 2019 and February 2020 in six counties from the north-western region of Romania. The samples were serologically tested by ELISA and serum neutralization test. Results: Overall, we obtained a seroprevalence of 3.17% for WNV, 0.08% for TBEV, and 0% for USUV. Conclusion: Despite the low seroprevalence of WNV, USUV, and TBEV in our study, we highlight the need for continuous nationwide vector and disease surveillance and implementation of control measures. Further research is required for an optimal overview of the epidemiological status of the Romanian population regarding these flaviviruses together with countrywide awareness campaigns.
Collapse
|
3
|
Reemtsma H, Holicki CM, Fast C, Bergmann F, Eiden M, Groschup MH, Ziegler U. Pathogenesis of West Nile Virus Lineage 2 in Domestic Geese after Experimental Infection. Viruses 2022; 14:v14061319. [PMID: 35746790 PMCID: PMC9230372 DOI: 10.3390/v14061319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is an emerging infectious pathogen circulating between mosquitoes and birds but also infecting mammals. WNV has become autochthonous in Germany, causing striking mortality rates in avifauna and occasional diseases in humans and horses. We therefore wanted to assess the possible role of free-ranging poultry in the WNV transmission cycle and infected 15 goslings with WNV lineage 2 (German isolate). The geese were monitored daily and sampled regularly to determine viremia, viral shedding, and antibody development by molecular and serological methods. Geese were euthanized at various time points post-infection (pi). All infected geese developed variable degrees of viremia from day 1 to day 10 (maximum) and actively shed virus from days 2 to 7 post-infection. Depending on the time of death, the WN viral genome was detected in all examined tissue samples in at least one individual by RT-qPCR and viable virus was even re-isolated, except for in the liver. Pathomorphological lesions as well as immunohistochemically detectable viral antigens were found mainly in the brain. Furthermore, all of the geese seroconverted 6 days pi at the latest. In conclusion, geese are presumably not functioning as important amplifying hosts but are suitable sentinel animals for WNV surveillance.
Collapse
|
4
|
Mencattelli G, Iapaolo F, Monaco F, Fusco G, de Martinis C, Portanti O, Di Gennaro A, Curini V, Polci A, Berjaoui S, Di Felice E, Rosà R, Rizzoli A, Savini G. West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain? Viruses 2021; 14:v14010064. [PMID: 35062268 PMCID: PMC8780300 DOI: 10.3390/v14010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008-2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Correspondence:
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| |
Collapse
|
5
|
Human West Nile Meningo-Encephalitis in a Highly Endemic Country: A Complex Epidemiological Analysis on Biotic and Abiotic Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218250. [PMID: 33171693 PMCID: PMC7664930 DOI: 10.3390/ijerph17218250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
West Nile virus (WNV) is one of the most prevalent mosquito-borne viruses. Although the infection in humans is mostly asymptomatic, 15–20% of cases show flu-like symptoms with fever. In 1% of infections, humans develop severe nervous symptoms and even die, a condition known as West Nile neuroinvasive disease (WNND). The aim of our study was to analyze the influence of abiotic and biotic factors with the human WNND cases during the period 2015–2019. A database containing all the localities in Romania was developed. Abiotic and biotic predictors were included for each locality: geographic variables, climatic data, and biotic factors. Spatial distribution of the WNND infections was analyzed using directional distribution (DD). The Spearman’s rank correlation coefficient was employed to assess the strength of association between the WNND infections and predictors. A model was generated using the random forest ensemble learning method. A total number of 535 human WNND cases were confirmed in 308 localities. The DD showed a south-eastern geographical distribution. Weak correlation was observed between the number of human WNND cases for each year and the predictors. The highest predicted probability was around urbanized patches in the south and southeast. Increased surveillance and control measures of vectors in risk areas should be implemented and educational campaigns should be made available for the general public in order to raise awareness of the disease and inform the population about prophylactic measures.
Collapse
|
6
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
7
|
Imported Human West Nile Virus Lineage 2 Infection in Spain: Neurological and Gastrointestinal Complications. Viruses 2020; 12:v12020156. [PMID: 32013149 PMCID: PMC7077332 DOI: 10.3390/v12020156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 01/04/2023] Open
Abstract
We report the first human case of West Nile virus (WNV) lineage 2 infection imported to Spain by a traveler returning from Romania. Serum, cerebrospinal fluid and urine samples were analyzed and West Nile virus infection was identified by PCR and serological tests. The patient developed fever, diarrhea and neurological symptoms, accompanied by mild pancreatitis, described previously in very few cases as a complication of WNV infection and by alithiasic cholecystitis. Viral RNA was detected in urine until 30 days after the onset of symptoms and neutralizing antibodies were detected at very low titers. The phylogenetic analysis in a fragment of the NS5 gene of the virus showed a homology with sequences from WNV lineage 2 belonging to the monophyletic Central/Southern European group.
Collapse
|
8
|
Abstract
Eastern Europe (EE) has been severely affected by mosquito-borne viruses (moboviruses). In this review, we summarize the epidemiology of moboviruses, with particular attention to West Nile virus (WNV). The study of WNV human cases in EE between 2010 and 2016, revealed that the epidemiology of WNV in EE is complex with the combination of introduction of different WNV strains from lineages 1 and 2, and the establishment of endemic cycles. We found a positive correlation between the risk of WNV re-emergence in an area and the number of human cases reported in the previous year. We also report the main ecological and biological characteristics of the key mosquito species vectors of moboviruses. Recent expansion of invasive mosquito species in EE, mainly Aedes albopictus but also Aedes aegypti and Culex quinquefasciatus, may result in new scenarios with an increased risk of transmission of moboviruses. Main gaps of knowledge in relation to moboviruses and their vectors in EE are identified. Understanding the epidemiology of moboviruses in EE is essential for the improvement of their surveillance and the control of the diseases they cause.
Collapse
Affiliation(s)
- Sebastián Napp
- IRTA,Campus de la Universitat Autònoma de Barcelona,Bellaterra, Spain
| | - Dusan Petrić
- University of Novi Sad, Faculty of Agriculture, Laboratory for Medical Entomology, Novi Sad, Serbia
| | - Núria Busquets
- IRTA,Campus de la Universitat Autònoma de Barcelona,Bellaterra, Spain
| |
Collapse
|
9
|
The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020389. [PMID: 29473903 PMCID: PMC5858458 DOI: 10.3390/ijerph15020389] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
Abstract
Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.
Collapse
|
10
|
Chaintoutis SC, Dovas CI, Danis K, Gewehr S, Mourelatos S, Hadjichristodoulou C, Papanastassopoulou M. Surveillance and Early Warning of West Nile Virus Lineage 2 Using Backyard Chickens and Correlation to Human Neuroinvasive Cases. Zoonoses Public Health 2014; 62:344-55. [DOI: 10.1111/zph.12152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- S. C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases; School of Veterinary Medicine; Faculty of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - C. I. Dovas
- Laboratory of Microbiology and Infectious Diseases; School of Veterinary Medicine; Faculty of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - K. Danis
- Department of Surveillance and Intervention; Hellenic Centre for Disease Control and Prevention; Athens Greece
| | - S. Gewehr
- Ecodevelopment S.A. - Environmental Applications; Thessaloniki Greece
| | - S. Mourelatos
- Ecodevelopment S.A. - Environmental Applications; Thessaloniki Greece
| | - C. Hadjichristodoulou
- Department of Hygiene and Epidemiology; School of Medicine; Faculty of Health Sciences; University of Thessaly; Larissa Greece
| | - M. Papanastassopoulou
- Laboratory of Microbiology and Infectious Diseases; School of Veterinary Medicine; Faculty of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
11
|
Saegerman C, Alba-Casals A, García-Bocanegra I, Dal Pozzo F, van Galen G. Clinical Sentinel Surveillance of Equine West Nile Fever, Spain. Transbound Emerg Dis 2014; 63:184-93. [DOI: 10.1111/tbed.12243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- C. Saegerman
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - A. Alba-Casals
- Centre de Recerca en Sanitat Animal (CReSA); UAB-IRTA; Barcelona Spain
| | - I. García-Bocanegra
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3); Córdoba Spain
| | - F. Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - G. van Galen
- Large Animal Clinic, Internal Medicine and Surgery; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
12
|
Ludu (Oslobanu) EL, Mihu-Pintilie A, Anită D, Anita A, Lecollinet S, Savuta G. West Nile Virus Reemergence in Romania: A Serologic Survey in Host Species. Vector Borne Zoonotic Dis 2014; 14:330-7. [DOI: 10.1089/vbz.2013.1405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elena Luanda Ludu (Oslobanu)
- Public Health Department, Faculty of Veterinary Medicine, The University of Agricultural Sciences and Veterinary Medicine, Iaşi, Romania
| | - Alin Mihu-Pintilie
- Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza University, Iaşi, Romania
| | - Dragos Anită
- Public Health Department, Faculty of Veterinary Medicine, The University of Agricultural Sciences and Veterinary Medicine, Iaşi, Romania
| | - Adriana Anita
- Public Health Department, Faculty of Veterinary Medicine, The University of Agricultural Sciences and Veterinary Medicine, Iaşi, Romania
| | - Sylvie Lecollinet
- LNR/LR-UE West Nile UMR1161 Virologie INRA, ANSES, ENVA ANSES Laboratoire de Santé Animale, Maison Alfort, France
| | - Gheorghe Savuta
- Public Health Department, Faculty of Veterinary Medicine, The University of Agricultural Sciences and Veterinary Medicine, Iaşi, Romania
| |
Collapse
|
13
|
Chaintoutis SC, Dovas CI, Papanastassopoulou M, Gewehr S, Danis K, Beck C, Lecollinet S, Antalis V, Kalaitzopoulou S, Panagiotopoulos T, Mourelatos S, Zientara S, Papadopoulos O. Evaluation of a West Nile virus surveillance and early warning system in Greece, based on domestic pigeons. Comp Immunol Microbiol Infect Dis 2014; 37:131-41. [PMID: 24503179 DOI: 10.1016/j.cimid.2014.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
In the summer of 2010 an epidemic of West Nile virus (WNV) occurred in Central Macedonia, Greece, with 197 human neuroinvasive disease (WNND) cases. In the following years the virus spread to new areas, with a total of 76 WNND cases in 2011, and 109 WNND cases in 2012 (14 and 12 WNND cases, respectively, in Central Macedonia). We established a surveillance system based on serological testing of domestic pigeons, using cELISA confirmed by serum neutralization test. In Central Macedonia, pigeon seroprevalence was 54% (95% CI: 49-59%) and 31% (95% CI: 24-37%) at the end of the 2010 and 2011 epidemic seasons, respectively. One serum was positive for neutralizing antibodies directed against Usutu virus. Pigeon WNV seroprevalence and incidence rates of human WNND after the 2010 epidemic were positively correlated (ρ=0.94, at the regional unit level), while in 2011 the correlation (ρ=0.56) was not statistically significant, possibly due to small number of human WNND cases recorded. To evaluate the efficacy of the system at alerting upon WNV enzootic circulation before the onset of human cases, we tested 270 pigeons in 2011 and 240 pigeons in 2012. In Central Macedonia, the first seroconversions in pigeons were recorded 44 and 47 days, respectively, before the first human WNND cases. Pigeon surveillance was used successfully for identification of areas with WNV enzootic transmission and for early warning. Timely diffusion of information to health authorities facilitated the implementation of preparedness plans to protect public health.
Collapse
Affiliation(s)
- Serafeim C Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| | - Maria Papanastassopoulou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Sandra Gewehr
- Ecodevelopment S.A. - Environmental Applications, Filyro, 57010 Thessaloniki, Greece
| | - Kostas Danis
- Department of Surveillance and Intervention, Hellenic Centre for Disease Control and Prevention, 15123 Athens, Greece
| | - Cécile Beck
- European Reference Laboratory for Equine Diseases, UPEC, UMR 1161 Virology, INRA, ANSES, ENVA, 94704 Maisons-Alfort, France
| | - Sylvie Lecollinet
- European Reference Laboratory for Equine Diseases, UPEC, UMR 1161 Virology, INRA, ANSES, ENVA, 94704 Maisons-Alfort, France
| | - Vasilis Antalis
- Ecodevelopment S.A. - Environmental Applications, Filyro, 57010 Thessaloniki, Greece
| | - Stella Kalaitzopoulou
- Ecodevelopment S.A. - Environmental Applications, Filyro, 57010 Thessaloniki, Greece
| | - Takis Panagiotopoulos
- Department of Surveillance and Intervention, Hellenic Centre for Disease Control and Prevention, 15123 Athens, Greece; Department of Child Health, National School of Public Health, 11521 Athens, Greece
| | - Spiros Mourelatos
- Ecodevelopment S.A. - Environmental Applications, Filyro, 57010 Thessaloniki, Greece
| | - Stéphan Zientara
- European Reference Laboratory for Equine Diseases, UPEC, UMR 1161 Virology, INRA, ANSES, ENVA, 94704 Maisons-Alfort, France
| | - Orestis Papadopoulos
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Marka A, Diamantidis A, Papa A, Valiakos G, Chaintoutis SC, Doukas D, Tserkezou P, Giannakopoulos A, Papaspyropoulos K, Patsoula E, Badieritakis E, Baka A, Tseroni M, Pervanidou D, Papadopoulos NT, Koliopoulos G, Tontis D, Dovas CI, Billinis C, Tsakris A, Kremastinou J, Hadjichristodoulou C. West Nile virus state of the art report of MALWEST Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6534-610. [PMID: 24317379 PMCID: PMC3881129 DOI: 10.3390/ijerph10126534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022]
Abstract
During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen.
Collapse
Affiliation(s)
- Andriani Marka
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexandros Diamantidis
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - Anna Papa
- National Reference Center for Arboviruses, Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mail:
| | - George Valiakos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Serafeim C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Persefoni Tserkezou
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexios Giannakopoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Konstantinos Papaspyropoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Eleni Patsoula
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, Athens 11521, Greece; E-mail:
| | - Evangelos Badieritakis
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Agoritsa Baka
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Maria Tseroni
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Danai Pervanidou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - George Koliopoulos
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Dimitrios Tontis
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Chrysostomos I. Dovas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Charalambos Billinis
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Athanassios Tsakris
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-2410-565-007; Fax: +30-2410-565-051
| | - Jenny Kremastinou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | | |
Collapse
|
15
|
Exploring the spatio-temporal dynamics of reservoir hosts, vectors, and human hosts of West Nile virus: a review of the recent literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5399-432. [PMID: 24284356 PMCID: PMC3863852 DOI: 10.3390/ijerph10115399] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/22/2023]
Abstract
Over the last two decades West Nile Virus (WNV) has been responsible for significant disease outbreaks in humans and animals in many parts of the World. Its extremely rapid global diffusion argues for a better understanding of its geographic extent. The purpose of this inquiry was to explore spatio-temporal patterns of WNV using geospatial technologies to study populations of the reservoir hosts, vectors, and human hosts, in addition to the spatio-temporal interactions among these populations. Review of the recent literature on spatial WNV disease risk modeling led to the conclusion that numerous environmental factors might be critical for its dissemination. New Geographic Information Systems (GIS)-based studies are monitoring occurrence at the macro-level, and helping pinpoint areas of occurrence at the micro-level, where geographically-targeted, species-specific control measures are sometimes taken and more sophisticated methods of surveillance have been used.
Collapse
|
16
|
Chaskopoulou A, Dovas CI, Chaintoutis SC, Kashefi J, Koehler P, Papanastassopoulou M. Detection and Early Warning of West Nile Virus Circulation in Central Macedonia, Greece, Using Sentinel Chickens and Mosquitoes. Vector Borne Zoonotic Dis 2013; 13:723-32. [DOI: 10.1089/vbz.2012.1176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alexandra Chaskopoulou
- USDA-ARS European Biological Control Laboratory, Thessaloniki, Greece
- Department of Entomology, University of Florida, Gainesville, Florida
| | - Chrysostomos I. Dovas
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Serafeim C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Javid Kashefi
- USDA-ARS European Biological Control Laboratory, Thessaloniki, Greece
| | - Philip Koehler
- Department of Entomology, University of Florida, Gainesville, Florida
| | - Maria Papanastassopoulou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
[Detection of circulation of West Nile virus in equine in the north-west of Tunisia]. ACTA ACUST UNITED AC 2011; 104:266-71. [PMID: 22001953 DOI: 10.1007/s13149-011-0173-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/05/2011] [Indexed: 10/17/2022]
Abstract
Two outbreaks of West Nile Fever (FWN) were observed in the Sahel of Tunisia in 1997 and 2003. Several cases of meningitis and meningoencephalitis have been described in humans during these two outbreaks. However, no animal or clinical findings or seroconversion have been detected despite a high seroprevalence in human beings found around the affected areas. Few data are available regarding the spreading of this virus in other parts of the country. The purpose of this study was to detect a possible WNV spread in horses in some areas of Tunisia considered to be at risk for WNV but which had not been affected by previous outbreaks. A total of 133 equine blood samples were collected in six delegations from three governorates in the north-west of Tunisia. A second blood sampling was taken from animals that were tested negative after the first sampling for IgG to identify possible seroconversion. Detection of IgG was done using competitive ELISA. A significant viral spread was detected in the study area. Out of 133 samples tested for IgG during the first sampling, 36 samples were tested positive (27.1%). Two seroconversions were detected between September and October 2008 out of 84 samples tested. Statistical analysis showed a significant association between the presence of a wetland within 10 km and seroconversion. The presence of cattle seems to be a protective factor.
Collapse
|
18
|
Chevalier V, Lecollinet S, Durand B. West Nile Virus in Europe: A Comparison of Surveillance System Designs in a Changing Epidemiological Context. Vector Borne Zoonotic Dis 2011; 11:1085-91. [DOI: 10.1089/vbz.2010.0234] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Veronique Chevalier
- International Centre of Research in Agronomy for Development (CIRAD), Montpellier, France
| | - Sylvie Lecollinet
- European Union Reference Laboratory for Equine Diseases, Virology Unit, Maisons-Alfort, France
- Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Benoit Durand
- Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
19
|
Calistri P, Giovannini A, Hubalek Z, Ionescu A, Monaco F, Savini G, Lelli R. Epidemiology of west nile in europe and in the mediterranean basin. Open Virol J 2010; 4:29-37. [PMID: 20517490 DOI: 10.2174/1874357901004020029] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/08/2009] [Accepted: 12/11/2009] [Indexed: 01/06/2023] Open
Abstract
In the last 30 years several cases of West Nile (WN) virus infection were reported in horses and humans in Europe and in the Mediterranean Basin. Most of them were determined by strains of the Lineage 1 included in the European Mediterranean/Kenyan cluster. Strains of this cluster are characterised by a moderate pathogenicity for horses and humans and limited or no pathogenicity for birds. In recent years, however, WN cases determined by strains grouped in the Israeli/American cluster of Lineage 1 or in the lineage 2 have been reported in Hungary and Austria. The role of migrating birds in introducing new viruses to Europe has been often demonstrated. The migratory birds, which may be infected in their African wintering places, carry the virus northward to European sites during spring migrations. In the past, the virus introduction determined occasional cases of WN. In the recent years, new epidemiological scenarios are developing. In few occasions it has been evidenced the capability of WNV strains of overwintering by using local birds and mosquitoes. Species of Culex amongst mosquitoes and magpies (Pica pica), carrion crows (Corvus corone) and rock pigeons (Columba livia) amongst resident birds are the most probable species involved in this hypothetical WND endemic cycle.
Collapse
Affiliation(s)
- Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Calistri P, Giovannini A, Hubalek Z, Ionescu A, Monaco F, Savini G, Lelli R. Epidemiology of west nile in europe and in the mediterranean basin. Open Virol J 2010. [PMID: 20517490 PMCID: PMC2878979 DOI: 10.2174/1874357901004010029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the last 30 years several cases of West Nile (WN) virus infection were reported in horses and humans in Europe and in the Mediterranean Basin. Most of them were determined by strains of the Lineage 1 included in the European Mediterranean/Kenyan cluster. Strains of this cluster are characterised by a moderate pathogenicity for horses and humans and limited or no pathogenicity for birds. In recent years, however, WN cases determined by strains grouped in the Israeli/American cluster of Lineage 1 or in the lineage 2 have been reported in Hungary and Austria. The role of migrating birds in introducing new viruses to Europe has been often demonstrated. The migratory birds, which may be infected in their African wintering places, carry the virus northward to European sites during spring migrations. In the past, the virus introduction determined occasional cases of WN. In the recent years, new epidemiological scenarios are developing. In few occasions it has been evidenced the capability of WNV strains of overwintering by using local birds and mosquitoes. Species of Culex amongst mosquitoes and magpies (Pica pica), carrion crows (Corvus corone) and rock pigeons (Columba livia) amongst resident birds are the most probable species involved in this hypothetical WND endemic cycle.
Collapse
Affiliation(s)
- Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Durand B, Balança G, Baldet T, Chevalier V. A metapopulation model to simulate West Nile virus circulation in Western Africa, Southern Europe and the Mediterranean basin. Vet Res 2010; 41:32. [PMID: 20167194 PMCID: PMC2826092 DOI: 10.1051/vetres/2010004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 01/13/2010] [Indexed: 11/14/2022] Open
Abstract
In Europe, virological and epidemiological data collected in wild birds and horses suggest that a recurrent circulation of West Nile virus (WNV) could exist in some areas. Whether this circulation is permanent (due to overwintering mechanisms) or not remains unknown. The current conception of WNV epidemiology suggests that it is not: this conception combines an enzootic WNV circulation in tropical Africa with seasonal introductions of the virus in Europe by migratory birds. The objectives of this work were to (i) model this conception of WNV global circulation; and (ii) evaluate whether the model could reproduce data and patterns observed in Europe and Africa in vectors, horses, and birds. The model was calibrated using published seroprevalence data obtained from African (Senegal) and European (Spain) wild birds, and validated using independent, published data: seroprevalence rates in migratory and resident wild birds, minimal infection rates in vectors, as well as seroprevalence and incidence rates in horses. According to this model, overwintering mechanisms are not needed to reproduce the observed data. However, the existence of such mechanisms cannot be ruled out.
Collapse
Affiliation(s)
- Benoit Durand
- Afssa LERPAZ, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort Cedex, France.
| | | | | | | |
Collapse
|
22
|
Calistri P, Giovannini A, Savini G, Monaco F, Bonfanti L, Ceolin C, Terregino C, Tamba M, Cordioli P, Lelli R. West Nile virus transmission in 2008 in north-eastern Italy. Zoonoses Public Health 2009; 57:211-9. [PMID: 20042066 DOI: 10.1111/j.1863-2378.2009.01303.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After 10 years, West Nile virus (WNV) re-emerged in Italy in August 2008. As on 31 December 2008, the infection affected eight Provinces in three Regions (Emilia Romagna, Veneto, Lombardy), where a total of 794 cases of WNV infection in 251 equine stables were detected on the basis of the clinical signs and as a result of a serological screening in horses living in the area. Only 4.0% (32/794) of the serologically positive animals showed clinical signs, and the 32 clinical cases were reported in 18 different farms. The observed case-fatality rate was 15.6% (5/32). The confirmed clinical cases were detected from end August to mid October. Significant levels of positivity by RT-PCR were also observed in magpies (Pica pica) (9.1%, 95% confidence levels: 6.1-13.4%), carrion crows (Corvus corone) (7.4%, 95% confidence levels: 3.6-14.4%) and rock pigeons (Columba livia) (12.9%, 95% confidence levels: 7.6-21.2%).
Collapse
Affiliation(s)
- P Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kantzanou MN, Moschidis ZM, Kremastinou G, Levidiotou S, Karafoulidou A, Politis C, Marantidou O, Kavallierou L, Kaperoni A, Veneti C, Hatzakis A. Searching for West Nile virus (WNV) in Greece. Transfus Med 2009; 20:113-7. [PMID: 19719473 DOI: 10.1111/j.1365-3148.2009.00964.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
West Nile virus (WNV), a mosquito-borne flavivirus, has increasingly become a concern in both America and Europe due to its complex and unpredictable lifecycle. Transfusion-associated transmission of the WNV has been well documented during the last few years. This study aimed to detect the presence of WNV in: (i) cerebrospinal fluid (CSF) specimens derived from aseptic meningitis cases in Greece and (ii) Greek blood donations. A total of 115 CSF specimens from patients suffering from aseptic meningitis and 9590 blood samples were collected from seven Greek hospitals during the periods June to October 2006 and 2007 and tested for investigational purposes. Both blood and CSF samples were tested for the presence of WNV RNA by using the PROCLEIX WNV assay. None of 115 CSF and 9590 blood donor samples was found positive according to our testing algorithms. Despite the presence of WNV in Balkan countries, WNV has not reached significant levels in Greece.
Collapse
Affiliation(s)
- M N Kantzanou
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hrnjaković-Cvjetković I, Cvjetković D, Petrić D, Milosević V, Jerant-Patić V, Zgomba M. [Up-to-date knowledge of West Nile virus infection]. MEDICINSKI PREGLED 2009; 62:231-235. [PMID: 19650559 DOI: 10.2298/mpns0906231h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
UNLABELLED VIRUS: West Nile virus is a single-stranded RNA virus of the family Flaviviridae, genus Flavivirus. EPIDEMIOLOGY West Nile virus is maintained in the cycle involving culicine mosquitoes and birds. Humans typically acquire West Nile infection through a bite from infected adult mosquito. Person to person transmission can occur through organ transplantation, blood and blood product transfusions, transplacentally and via breast milk. Human cases of West Nile infections were recorded in Africa, Israel, Russia, India, Pakistan. In Romania in 1996 West Nile fever occurred with hundreds of neurologic cases and 17 fatalities. First human cases in the United States were in New York City where 59 persons were infected and had fever, meningitis, encephalitis and flaccid paralysis. CLINICAL MANIFESTATION: Most human cases are asymptomatic. The majority of symptomatic patients have a self limited febrile illness. Fatigue, nausea, vomiting, eye pain, headache, myalgias, artralgias, lymphadenopathy and rash are common complaints. Less than 1% of all infected persons develop more severe neurologic illness including meningitis, encefalitis and flaccid paralysis. LABORATORY DIAGNOSIS Diagnosis of West Nile virus infection is based on serologic testing, isolation of virus from patient samples and detection of viral antigen or viral genom. ELISA test and indirect immunofluorescence assay are used for detecting IgM and IgG antibodies in serum and cerebrospinal fluid. TREATMENT In vitro studies have suggested that ribavirin and interferon alfa-2b may be useful in the treatment of West Nile virus disease. PREVENTION The most important measures are mosquito control program and personal protective measures.
Collapse
|
25
|
Scotch M, Odofin L, Rabinowitz P. Linkages between animal and human health sentinel data. BMC Vet Res 2009; 5:15. [PMID: 19389228 PMCID: PMC2679002 DOI: 10.1186/1746-6148-5-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 04/23/2009] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION In order to identify priorities for building integrated surveillance systems that effectively model and predict human risk of zoonotic diseases, there is a need for improved understanding of the practical options for linking surveillance data of animals and humans. We conducted an analysis of the literature and characterized the linkage between animal and human health data. We discuss the findings in relation to zoonotic surveillance and the linkage of human and animal data. METHODS The Canary Database, an online bibliographic database of animal-sentinel studies was searched and articles were classified according to four linkage categories. RESULTS 465 studies were identified and assigned to linkage categories involving: descriptive, analytic, molecular, or no human outcomes of human and animal health. Descriptive linkage was the most common, whereby both animal and human health outcomes were presented, but without quantitative linkage between the two. Rarely, analytic linkage was utilized in which animal data was used to quantitatively predict human risk. The other two categories included molecular linkage, and no human outcomes, which present health outcomes in animals but not humans. DISCUSSION We found limited use of animal data to quantitatively predict human risk and listed the methods from the literature that performed analytic linkage. The lack of analytic linkage in the literature might not be solely related to technological barriers including access to electronic database, statistical software packages, and Geographical Information System (GIS). Rather, the problem might be from a lack of understanding by researchers of the importance of animal data as a 'sentinel' for human health. Researchers performing zoonotic surveillance should be aware of the value of animal-sentinel approaches for predicting human risk and consider analytic methods for linking animal and human data. Qualitative work needs to be done in order to examine researchers' decisions in linkage strategies between animal and human data.
Collapse
Affiliation(s)
- Matthew Scotch
- Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Lynda Odofin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Peter Rabinowitz
- Yale Occupational and Environmental Medicine Program, Yale School of Medicine, Yale University, New Haven, CT USA
| |
Collapse
|
26
|
Association of West Nile virus with lymphohistiocytic proliferative cutaneous lesions in American alligators (Alligator mississippiensis) detected by RT-PCR. J Zoo Wildl Med 2009; 39:562-6. [PMID: 19110697 DOI: 10.1638/2007-0133.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
West Nile virus (WNV) is known to affect captive populations of alligators and, in some instances, cause significant mortalities. Alligators have been shown to amplify the virus, serve as a reservoir host, and even represent a source of infection for humans. This study describes a cutaneous manifestation of WNV in captive-reared American alligators (Alligator mississippiensis), previously described as lymphohistiocytic proliferative syndrome of alligators (LPSA), based on the findings of gross examination, histopathologic evaluation, WNV antibody testing, and WNV reverse transcriptase polymerase chain reaction (RT-PCR). Forty alligators with LPSA and 41 controls were examined. There was a significant difference (P = 0.01(-21)) in the WNV serostatus between the treatment group (100%) and the control group (0%, 95% CI: 0-7.3%). In the treatment group, 97.5% (39/40) (95% CI: 92.7-102.3%) of the LPSA skin lesions were positive for WNV via RT-PCR. Of the skin sections within the treatment group that had no LPSA lesions, 7.5% (3/40) (95% CI: 0-15.7%) were positive for WNV. In the control group, all of the skin samples were negative for WNV (41/41) (0%; 95% CI: 0-7.3%). The LPSA skin lesions were significantly more likely to be WNV positive by RT-PCR when compared to control animals (P = 0.07(-20)) and normal skin sections from affected animals (P = 0.08(-16)). There was no significant difference in the WNV RT-PCR results between control animals and normal skin sections from affected animals (P = 0.24). These findings suggest that LPSA is a cutaneous manifestation of WNV in alligators.
Collapse
|
27
|
Rizzoli A, Rosà R, Rosso F, Buckley A, Gould E. West Nile virus circulation detected in northern Italy in sentinel chickens. Vector Borne Zoonotic Dis 2008; 7:411-7. [PMID: 17767411 DOI: 10.1089/vbz.2006.0626] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ninety percent (56/62) of sentinel chickens introduced to two regions within the Italian Alps seroconverted to West Nile virus (WNV) during the summer of 2005, showing a range of antibody titres from 1/20 to 1/320 in a virus neutralization test. Neutralization specificity for WNV antibodies was confirmed on an additional 34 sera that were tested in parallel against WNV (16/34 seropositivity), Usutu virus (3/34 seropositivity) and Koutango virus. The geometric mean neutralizing titre (GMT) calculated for WN-specific antibodies was 33.68 and did not differ significantly amongst sample sites, although the overall results indicate more active circulation of WNV at the higher elevations. Such high levels of seroconversion raise the possibility that many chickens may have been exposed to virus via routes other than mosquito transmission. No chickens or any other local animals were associated with illness due to WNV implying that WNV, and to a much lower extent Usutu virus, circulate harmlessly amongst wildlife species in northern Italy from late May onwards until early autumn.
Collapse
|
28
|
Cernescu C, Rutã S. Romanian experience in post‐event environment surveillance for West Nile virus infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL STUDIES 2008; 65:529-538. [DOI: 10.1080/00207230802259691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
|
29
|
Chevalier V, Lancelot R, Diaïte A, Mondet B, De Lamballerie X. Use of sentinel chickens to study the transmission dynamics of West Nile virus in a sahelian ecosystem. Epidemiol Infect 2007; 136:525-8. [PMID: 17559695 PMCID: PMC2870832 DOI: 10.1017/s0950268807008801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During the 2003 rainy season, a follow-up survey in sentinel chickens was undertaken to assess the seasonal transmission of West Nile virus (WNV) in a sahelian ecosystem: the Ferlo (Senegal). The estimated incidence rate in chickens was 14% (95% CI 7-29), with a very low level of transmission between July and September, and a transmission peak occurring between September and October. Comparing these results with the estimate obtained from a previous transversal serological study performed on horses the same year in the same area, the relevance of sentinel chickens in estimating the WNV transmission rate is highlighted. Conventionally adult mosquito populations disappear during the dry season but WN disease was shown to be endemic in the study area. The mechanisms of virus maintenance are discussed.
Collapse
Affiliation(s)
- V Chevalier
- CIRAD, UPR 'Epidemiology and ecology, Campus International de Baillarguet, Montpellier, France.
| | | | | | | | | |
Collapse
|
30
|
Rockx B, van Asten L, van den Wijngaard C, Godeke GJ, Goehring L, Vennema H, van der Avoort H, van Pelt W, Koopmans M. Syndromic surveillance in the Netherlands for the early detection of West Nile virus epidemics. Vector Borne Zoonotic Dis 2006; 6:161-9. [PMID: 16796513 DOI: 10.1089/vbz.2006.6.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is an arthropod-borne flavivirus that is endemic in Africa, Europe, and Eastern Asia. The recent introduction and rapid dissemination of the virus in the United States as well as an increase in WNV outbreaks in Europe, has raised concerns for its spread in Europe. A surveillance system was developed to allow timely detection of an introduction of WNV infections in The Netherlands. This program focuses on cases presenting with neurological disease and includes the monitoring of hospital discharge diagnoses, trends in cerebrospinal fluid (CSF) diagnostic requests, laboratory testing of CSF, and monitoring of neurological disease in horses. Retrospective data from the hospital discharge records showed yearly peaks of unexplained meningitis and (meningo)encephalitis in the summer. A total of 781 CSF samples from humans and 71 serum and/or CSF samples from horses presenting with neurological disease of suspected viral etiology tested negative for the presence of specific antibodies to WNV. With a coverage rate of 59% in 2003, the probability that a cluster of five WNV cases presenting with neurological symptoms would have been detected was 99%. We conclude that, from 1999 to 2004, no evidence of WNV infection could be found in either humans or horses in The Netherlands.
Collapse
Affiliation(s)
- Barry Rockx
- Diagnostic Laboratory for Infectious Diseases, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Deegan CS, Burns JE, Huguenin M, Steinhaus EY, Panella NA, Beckett S, Komar N. Sentinel pigeon surveillance for West Nile virus by using lard-can traps at differing elevations and canopy cover classes. JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:1039-44. [PMID: 16465746 DOI: 10.1093/jmedent/42.6.1039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sentinel pigeons, Columba livia, were installed in lard-can traps at heights of 1.5 m and 7.6-9.1 m within differing canopy cover classes in New York City. Adult mosquitoes were collected weekly from July to October 2002, as were serum samples from each pigeon. Culex pipiens L. and Culex restuans Theobald comprised 97% of mosquitoes collected and were most numerous in canopy-level, forested traps. The West Nile virus (family Flaviviridae, genus Flavivirus, WNV) seroconversion rate was significantly greater for pigeons in canopy-level traps, although seroconversions occurred concurrently with human cases in the city and were of little prognostic value to public health agencies. Our results indicate that sentinel pigeons were most effective for monitoring enzootic transmission of WNV when placed in single-sentinel caging 7.6-9.1 m above ground level.
Collapse
|
33
|
Anderson RC, Horn KB, Hoang MP, Gottlieb E, Bennin B. Punctate exanthem of West Nile Virus infection: report of 3 cases. J Am Acad Dermatol 2005; 51:820-3. [PMID: 15523368 DOI: 10.1016/j.jaad.2004.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The West Nile Virus (WNV) has rapidly emerged as an important etiology of meningoencephalitis in North America since 1999. Diagnosis of this infection on clinical grounds is difficult, as many signs and symptoms of infection are nonspecific. Although cutaneous manifestations are common in WNV-infected patients, these have not been described in detail nor are clinical images widely available. We describe 3 patients with WNV infections, two ambulatory, one hospitalized, who developed punctate erythematous, macular, and papular eruptions, most pronounced on the extremities. Histopathologic findings in one case showed a sparse superficial perivascular lymphocytic infiltrate, a feature commonly seen in viral exanthems but not previously reported with WNV infection. A literature review provides support that this punctate exanthem is a common cutaneous presentation of WNV infection.
Collapse
Affiliation(s)
- Robert C Anderson
- Department of Dermatology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
34
|
Dauphin G, Zientara S, Zeller H, Murgue B. West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis 2004; 27:343-55. [PMID: 15225984 DOI: 10.1016/j.cimid.2004.03.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2004] [Indexed: 11/27/2022]
Abstract
West Nile (WN) virus is a mosquito-borne flavivirus that is native to Africa, Europe, and Western Asia. It mainly circulates among birds, but can infect many species of mammals, as well as amphibians and reptiles. Epidemics can occur in rural as well as urban areas. Transmission of WN virus, sometimes involving significant mortality in humans and horses, has been documented at erratic intervals in many countries, but never in the New World until it appeared in New York City in 1999. During the next four summers it spread with incredible speed to large portions of 46 US states, and to Canada, Mexico, Central America and the Caribbean. In many respects, WN virus is an outstanding example of a zoonotic pathogen that has leaped geographical barriers and can cause severe disease in human and equine. In Europe, in the past two decades there have been a number of significant outbreaks in several countries. However, very little is known of the ecology and natural history of WN virus transmission in Europe and most WN outbreaks in humans and animals remain unpredictable and difficult to control.
Collapse
Affiliation(s)
- Gwenaëlle Dauphin
- AFSSA Alfort, UMR1161 (INRA-AFSSA-ENVA), 22 rue Pierre Curie, BP 63, 94703 Maisons-Alfort Cedex, France
| | | | | | | |
Collapse
|
35
|
Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int J Health Geogr 2004; 3:8. [PMID: 15099399 PMCID: PMC420251 DOI: 10.1186/1476-072x-3-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 04/20/2004] [Indexed: 11/30/2022] Open
Abstract
Background The outbreak of West Nile Virus (WNV) in and around Chicago in 2002 included over 680 cases of human illness caused by the virus within this region. The notable clustering of the cases in two well-defined areas suggests the existence of specific environmental and social factors that increase the risk for WNV infection and/or illness in these locations. This investigation sought to create an empirically based model to account for these factors and to assess their importance in explaining the possible processes that may have led to this pattern. Results The cluster pattern of high incidence of cases was statistically significant. The risk factors that were found to be important included the presence of vegetation, age, income, and race of the human population, distance to a WNV positive dead bird specimen, age of housing, mosquito abatement and geological factors. The effect of different mosquito abatement efforts was particularly notable. About 53 percent of the variation of the location of WNV clusters was explained by these factors. Conclusion The models developed indicate that differential mosquito abatement efforts are especially important risk factors, even when controlling for key environmental factors. Human population characteristics play a role in risk that is measurable in this ecological study but would require further research to associate causality with risk. The analysis of spatial clusters of case incidence indicates that this approach provides more insight into the focal nature of differential risk factors that tend to be associated with WNV than an analysis of all individual cases.
Collapse
Affiliation(s)
- Marilyn O Ruiz
- Department of Veterinary Pathobiology, University of Illinois, 2001 South Lincoln Ave, Urbana, IL, USA
| | - Carmen Tedesco
- Department of Geography, University of Illinois, 607 S. Matthews Ave, Urbana, IL, USA
| | - Thomas J McTighe
- Department of Veterinary Pathobiology, University of Illinois, 2001 South Lincoln Ave, Urbana, IL, USA
| | - Connie Austin
- Illinois Department of Public Health, 535 W. Jefferson St, Springfield, IL, USA
| | - Uriel Kitron
- Department of Veterinary Pathobiology, University of Illinois, 2001 South Lincoln Ave, Urbana, IL, USA
| |
Collapse
|
36
|
Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis 2004; 23:147-56. [PMID: 14986160 DOI: 10.1007/s10096-003-1085-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
West Nile (WN) virus is a mosquito-transmitted flavivirus. It is widely distributed in Africa, the Middle East, Asia, and southern Europe and was recently introduced to North America. Birds are involved in the cycle of transmission as amplifying hosts. Humans and horses are considered accidental dead-end hosts. WN fever was initially considered a minor arbovirosis, usually inducing a nonsymptomatic or a mild flu-like illness in humans, but some cases of encephalitis associated with fatalities were reported in Israel in the 1950s. After two silent decades, several human and equine outbreaks of fatal encephalitis occurred from 1996 to 2000 in Romania, Morocco, Tunisia, Italy, Russia, Israel, and France. In Romania, a few cases of WN encephalitis in humans are noticed every year, and in France, recent WN infections have been detected in monitored sentinel birds in 2001 and 2002. Phylogenetic studies have shown two main lineages of WN strains. Strains from lineage I are present in Africa, India, and Australia and are responsible for the outbreaks in Europe and in the Mediterranean basin, and strains from lineage II have been reported only in sub-Saharan Africa. In 1998, a virulent WN strain from lineage I was identified in dying migrating storks and domestic geese showing clinical symptoms of encephalitis and paralysis in Israel. A nearly identical WN strain suddenly emerged in New York in 1999, killing thousands of native birds and causing fatal cases in humans. The virus is now well established in the New World, and it disseminates rapidly. New modes of transmission through blood donations, organ transplants, and the intrauterine route have been reported. In Europe, an enhanced surveillance of WN infection in humans, horses, birds, and vectors may reveal the presence of the virus in different locations. Nevertheless, outbreaks of WN virus remain unpredictable. Further coordinated studies are needed for a better understanding of the ecology and the pathogenicity of the WN virus.
Collapse
Affiliation(s)
- H G Zeller
- Institut Pasteur, National Reference Center for Arboviruses, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France.
| | | |
Collapse
|
37
|
Affiliation(s)
- Arno Müllbacher
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National University, Canberra City, A.C.T. 2601, Australia
| | | | | |
Collapse
|
38
|
Weissenböck H, Kolodziejek J, Fragner K, Kuhn R, Pfeffer M, Nowotny N. Usutu virus activity in Austria, 2001–2002. Microbes Infect 2003; 5:1132-6. [PMID: 14554255 DOI: 10.1016/s1286-4579(03)00204-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Usutu virus (USUV), a member of the mosquito-borne clade within the Flaviviridae family, was responsible for avian mortality in Austria in 2001. In 2002, the virus continued to kill birds, predominantly blackbirds. High numbers of avian deaths were recorded within the city of Vienna and in surrounding districts of the federal state of Lower Austria, while single die-offs were noticed in the federal states of Styria and Burgenland. A total of 72 birds were submitted for laboratory examination, 30 of which tested positive for USUV by immunohistochemistry and/or polymerase chain reaction. Laboratory-confirmed cases of USUV infection originated from the federal states of Vienna and Lower Austria only. The data show that (i) USUV has managed to overwinter and has been able to establish a transmission cycle in Austria, (ii) the virus seems to have become a resident pathogen of Austria with a tendency to spread to other geographic areas, and (iii) the surveillance of dead blackbirds is a useful sentinel system for monitoring USUV activity.
Collapse
Affiliation(s)
- Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
39
|
Autorino GL, Battisti A, Deubel V, Ferrari G, Forletta R, Giovannini A, Lelli R, Murri S, Scicluna MT. West Nile virus epidemic in horses, Tuscany region, Italy. Emerg Infect Dis 2002; 8:1372-8. [PMID: 12498650 PMCID: PMC2738505 DOI: 10.3201/eid0812.020234] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the late summer of 1998, veterinary authorities in Tuscany, Italy, received reports of cases of neurologic disease among horses residing in a large wetland area located in the provinces of Florence and Pistoia. West Nile virus was isolated from two of the six horses that died or were euthanized. A retrospective epidemiologic study identified 14 clinical neurologic cases that occurred from August 20 to October 6 (attack rate of 2.8%). A serologic survey conducted over a 700-km2 area in stables with and without apparent clinical cases confirmed a wider spread of the infection, with an overall seroprevalence rate of 38% in the affected area. No significant differences in age-specific prevalence were observed, suggesting that the horses residing in the area had not been exposed previously to West Nile virus and supporting the hypothesis of its introduction in the wetland area during the first half of 1998.
Collapse
Affiliation(s)
- Gian Luca Autorino
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
West Nile virus (WNV) first appeared in the naive environment of the Western Hemisphere in 1999 in New York. Genetic analysis determined that the virus was introduced into the United States from the Mediterranean Basin. This review discusses the spread of the virus in 2001 from the initial focus in Queens, New York, to widespread activity in the eastern and midwestern United States. It concentrates on viral ecology, epizootiology, pathology, prediction, and prevention. Research questions to further our understanding of the transmission cycle of WNV are discussed, including host-preference studies, molecular confirmation of implicated mosquito vectors, and survival of WNV in the temperate environment of the United States. Comparisons are drawn with two other arboviruses enzootic in the United States, eastern equine encephalitis, and St. Louis encephalitis viruses. Although not recently introduced, these two viruses also demonstrated increased activity in the United States in 2001.
Collapse
Affiliation(s)
- K A Bernard
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Albany 12159, USA
| | | |
Collapse
|
41
|
Malkinson M, Banet C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr Top Microbiol Immunol 2002; 267:309-22. [PMID: 12082995 DOI: 10.1007/978-3-642-59403-8_15] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Surveys on wild birds conducted during the last two decades in Europe, notably Poland and the Czech Republic, to determine their infection rate with WN virus have revealed endemic foci of infection. Some species of seropositive birds were nonmigrators while others were hatchlings of migrating species. Persistently infected avian reservoirs are potential sources of viruses for mosquitoes that multiply in the temperate European zone in hot, wet summers. In the past, evidence for geographical circulation of WN viruses was based on antigenic analysis of strains from different countries while more recent epidemiological studies have relied on analysis of nucleotide sequences of the envelope gene. With the reappearance of epidemic WN fever in European countries, interest has been focused once again on the African origin of the causal agent carried by migrating wild birds. In some epidemics, isolates were made from human cases or mosquitoes and only serologic evidence for infection was available from domestic and wild bird populations. In this respect the unusual findings of anti-WN virus antibodies in a population of storks maintained in northern Germany could be interpreted as evidence for local infection. The unique susceptibility of young domestic geese in Israel in 1997-2000 to WN virus and the isolation of similar strains from migrating White storks in Israel and Egypt suggest that the recent isolates are more pathogenic for certain avain species and that migrating birds do play a crucial role in geographical spread of the virus. Knowledge of the routes taken by birds migrating between Africa and Europe will therefore help in selecting sites where attempts to isolate viruses will be most fruitful. The appearance of the disease in western European equine populations (Italy and France) requires that other birds and their migratory routes be investigated once more. It remains to be determined whether the European endemic foci of WN virus are in themselves sources of infection for other birds that migrate across Europe and do not necessarily reach sub-Saharan Africa. If this is the case it will be necessary to define the strategies for detection of virus overwintering in the European temperate climate.
Collapse
Affiliation(s)
- M Malkinson
- Kimron Veterinary Institute, Beit Dagan 50250, Israel
| | | |
Collapse
|
42
|
Murgue B, Zeller H, Deubel V. The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. Curr Top Microbiol Immunol 2002; 267:195-221. [PMID: 12082990 DOI: 10.1007/978-3-642-59403-8_10] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- B Murgue
- Institut Pasteur, Centre de Référence des Arbovirus et Fièvres Hémorragiques Virales, Unité de Biologie des Infections Virales Emergentes, Lyon, France
| | | | | |
Collapse
|
43
|
Scherret JH, Mackenzie JS, Hall RA, Deubel V, Gould EA. Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. Curr Top Microbiol Immunol 2002; 267:373-90. [PMID: 12082998 DOI: 10.1007/978-3-642-59403-8_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- J H Scherret
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | |
Collapse
|
44
|
Roehrig JT, Layton M, Smith P, Campbell GL, Nasci R, Lanciotti RS. The emergence of West Nile virus in North America: ecology, epidemiology, and surveillance. Curr Top Microbiol Immunol 2002; 267:223-40. [PMID: 12082991 DOI: 10.1007/978-3-642-59403-8_11] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In late summer 1999, the first domestically acquired human cases of WN encephalitis were documented in the USA. Aggressive vector-control and public education efforts by state and local public health officials limited the extent of human involvement. The discovery of virus-infected, overwintering mosquitoes during the winter of 1999-2000, predicted renewed virus activity for the following spring, and prompted early season vector-control activities and disease surveillance efforts in NYC and the surrounding areas. These surveillance efforts were focused on identifying WN virus infections in birds and mosquitoes as predictors of the potential risk of transmission to humans. By the end of the 2000 mosquito-borne disease transmission season, WN virus activity had been documented as far north as the states of Vermont and New Hampshire, and as far south as the state of North Carolina. The ongoing impacts that WN virus will have on wildlife, domestic animal and human populations of the western hemisphere are not yet known. Plans are in place for public health officials and scientists to monitor the further expansion of WN virus with the establishment or enhancement of vector-borne disease surveillance and control programs throughout the eastern seaboard. The valuable lessons learned from the detection and response to the introduction of WN virus into NYC should prove useful if and when subsequent intrusions of new disease agents occur.
Collapse
Affiliation(s)
- J T Roehrig
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Fort Collins, Colorado, USA
| | | | | | | | | | | |
Collapse
|
45
|
Malkinson M, Banet C, Weisman Y, Pokamunski S, King R, Drouet MT, Deubel V. Introduction of West Nile virus in the Middle East by migrating white storks. Emerg Infect Dis 2002; 8:392-7. [PMID: 11971773 PMCID: PMC2730252 DOI: 10.3201/eid0804.010217] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) was isolated in a flock of 1,200 migrating white storks that landed in Eilat, a town in southern Israel, on August 26, 1998. Strong, hot westerly winds had forced the storks to fly under considerable physical stress before reaching the agricultural land surrounding the town. Most of the flock were fledglings, <1 year old, which had hatched in Europe. Thirteen dead or dying storks were collected 2 days after arrival and submitted to the laboratory for examination. Four WNV isolates were obtained from their brains. Out of 11 storks tested six days after arrival, three had WNV-neutralizing antibodies. Comparative analysis of full-length genomic sequences of a stork isolate and a 1999 flamingo isolate from the USA showed 28 nucleotide (nt) (0.25%) and 10 amino acid (0.3%) changes. Sequence analysis of the envelope gene of the stork isolate showed almost complete identity with isolates from Israeli domestic geese in 1998 and 1999 and from a nonmigrating, white-eyed gull in 1999. Since these storks were migrating southwards for the first time and had not flown over Israel, we assume that they had become infected with WNV at some point along their route of migration in Europe.
Collapse
|
46
|
Ceianu CS, Ungureanu A, Nicolescu G, Cernescu C, Nitescu L, Tardei G, Petrescu A, Pitigoi D, Martin D, Ciulacu-Purcarea V, Vladimirescu A, Savage HM. West nile virus surveillance in Romania: 1997-2000. Viral Immunol 2002; 14:251-62. [PMID: 11572635 DOI: 10.1089/088282401753266765] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In response to the 1996 West Nile (WN) fever epidemic that occurred in Bucharest and southeastern Romania, a surveillance program was established. The surveillance system detected 39 clinical human WN fever cases during the period 1997-2000: 14 cases in 1997, 5 cases in 1998, 7 cases in 1999, and 13 cases in 2000. Thirty-eight of the 39 case-patients lived in the greater Danube Valley of southern Romania, and 1 case-patient resided in the district of Vaslui, located on the Moldavian plateau. The estimated annual case incidence rate for the surveillance area during the period 1997-2000 was 0.95 cases per million residents. Thirty-four cases were serologically confirmed, and 5 cases were classified as probable. Twenty-four case-patients presented with clinical symptoms of meningitis (62%), 12 with meningoencephalitis (31%), 1 with encephalitis (3%), and 2 with febrile exanthema (5%). Five of the 39 cases were fatal (13%). Fourteen case-patients resided in rural areas, and 25 in urban and suburban areas, including 7 case-patients who resided in Bucharest. The ages of case-patients ranged from 8 to 76 years with a median age of 45 years. Twenty-four case-patients were males and 15 were females. Dates of onset of illness occurred from May 24 through September 25, with 82% of onset dates occurring in August and September. Limited entomological surveillance failed to detect WN virus. Retrospective sampling of domestic fowl in the vicinity of case-patient residences during the years 1997-2000 demonstrated seroprevalence rates of 7.8%-29%. Limited wild bird surveillance demonstrated seroprevalence rates of 5%-8%. The surveillance data suggest that WN virus persists focally for several years in poorly understood transmission cycles after sporadic introductions or that WN virus is introduced into Romania at relatively high rates, and persists seasonally in small foci.
Collapse
Affiliation(s)
- C S Ceianu
- Reference Laboratory of Insect Vectors, Cantacuzino Institute, Bucharest, Romania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Significant advances have been made in our understanding of the natural history and pathogenesis of viral encephalitides. The development of PCR has greatly increased our ability to diagnose viral infections of the central nervous system, particularly for herpes and enteroviral infections. Advancing knowledge has led to the recognition that some encephalitides can be reliably prevented by vaccination (eg, Japanese encephalitis and rabies). For other pathogens such as the arboviruses, the focus has been on prevention by vector control. Finally, effective therapy has been established for a very limited number of viral infections (eg, acyclovir for herpes simplex encephalitis). Other potentially useful treatments, such as pleconaril for enteroviral meningoencephalitis are under clinical evaluation. We review current understanding of viral encephalitides with particular reference to emerging viral infections and the availability of existing treatment regimens.
Collapse
Affiliation(s)
- Richard J Whitley
- Department of Pediatrics, Microbiology and Medicine, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
48
|
Abstract
In 1963-1993, several strains of West Nile virus (WNV) were isolated from ticks, birds, and mosquitoes in the southern area of European Russia and western Siberia. In the same regions, anti-WNV antibody was found in 0.4-8% of healthy adult donors. Sporadic human clinical cases were observed in the delta of the Volga River. In spite of this, WNV infection was not considered by the health authorities as a potentially emerging infection, and the large WNV outbreak in southern Russia, started in late July 1999, was not recognized in a timely fashion. First evidence suggesting a WNV etiology of the outbreak was obtained by IgM ELISA on September 9. Two weeks later, the specific WNV RT-PCR was developed and WNV disease was confirmed in all 14 nonsurvivors from whom brain tissue samples were available. Retrospective studies of serum samples by IgM ELISA indicated WNV etiology in 326 of 463 survivors with aseptic meningitis or encephalitis. Moreover, 35 of 56 patients who contracted aseptic meningitis in 1998 had a high titer of WNV IgG antibody, so the WNV infection seems to have been introduced into the Volgograd region before 1999. A complete sequence (AF317203) of WN viral RNA, isolated from the brain of one Volgograd fatality, and partial sequences of an envelope E gene from other nonsurvivors showed that the Volgograd isolate had the greatest homology (99.6%) with WN-Romania-1996 mosquito strain RO97-50.
Collapse
Affiliation(s)
- A E Platonov
- Central Research Institute of Epidemiology, Moscow, Russia.
| |
Collapse
|
49
|
Abstract
Captive and free-ranging birds have been used for decades as living sentinels in arbovirus surveillance programs. This review summarizes information relevant to selecting sentinel bird species for use in surveillance of West Nile (WN) virus. Although experience using avian sentinels for WN virus surveillance is limited, sentinels should be useful for both detecting and monitoring WN virus transmission; however, sentinel bird surveillance systems have yet to be adequately tested for use with the North American strain of WN virus. Captive chickens are typically used for arbovirus surveillance, but other captive species may be used as well. Serosurvey and experimental infection data suggest that both chickens and pigeons show promise as useful captive sentinels; both species were naturally exposed during the epizootics in New York City, 1999-2000, and both species develop antibodies after infection without becoming highly infectious to Culex pipiens vectors. Wild bird species that should be targeted for use as free-ranging sentinels include house sparrows and pigeons. The ideal wild bird should be determined locally on the basis of seroprevalence studies. Interpreting serological data generated from studies using free-ranging sentinel birds is complex, however. Sentinel bird monitoring sites should be selected in enzootic transmission foci. Several years of observation may be required for selection of effective sentinel monitoring sites.
Collapse
Affiliation(s)
- N Komar
- Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
| |
Collapse
|
50
|
Marfin AA, Gubler DJ. West Nile encephalitis: an emerging disease in the United States. Clin Infect Dis 2001; 33:1713-9. [PMID: 11595987 DOI: 10.1086/322700] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Revised: 05/10/2001] [Indexed: 11/04/2022] Open
Abstract
In 1999, an epidemic of West Nile virus (WNV) encephalitis occurred in New York City (NYC) and 2 surrounding New York counties. Simultaneously, an epizootic among American crows and other bird species occurred in 4 states. Indigenous transmission of WNV had never been documented in the western hemisphere until this epidemic. In 2000, the epizootic expanded to 12 states and the District of Columbia, and the epidemic continued in NYC, 5 New Jersey counties, and 1 Connecticut county. In addition to these outbreaks, several large epidemics of WNV have occurred in other regions of the world where this disease was absent or rare >5 years ago. Many of the WNV strains isolated during recent outbreaks demonstrate an extremely high degree of homology that strongly suggests widespread circulation of potentially epidemic strains of WNV. The high rates of severe neurologic illness and death among humans, horses, and birds in these outbreaks are unprecedented and unexplained. We review the current status of WNV in the United States.
Collapse
Affiliation(s)
- A A Marfin
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522-2087, USA.
| | | |
Collapse
|