1
|
Elliott J, Fulcher JA, Ibarrondo FJ, Tanner K, McGowan I, Anton PA. Comparative Assessment of Small and Large Intestine Biopsies for Ex Vivo HIV-1 Pathogenesis Studies. AIDS Res Hum Retroviruses 2018; 34:900-906. [PMID: 29631414 DOI: 10.1089/aid.2017.0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ex vivo mucosal explants have become a mainstay of HIV-1 studies using human tissue. In this study, we examine the baseline phenotypic and virologic differences between biopsies derived from the small intestine (SI) and large intestine (LI) for use in ex vivo explant studies. To do this, we collected endoscopic mucosal biopsies from both SI and LI from the same healthy, HIV-seronegative participants. Mucosal mononuclear cell phenotypes and quantity were compared using flow cytometry. Comparative HIV-1 infectibility of the explants was assessed using an ex vivo explant HIV-1 infection assay. We found that all biopsies had similar numbers of T cells per biopsy. While the percentage of CD4+ T cells from SI biopsies expressed significantly more activation markers (CD38, HLA-DR) and HIV coreceptors (CXCR4, CCR5), the absolute numbers of activated CD4+ T cells were similar between both sites. LI explants, however, supported more efficient HIV-1 infection, as evidenced by earlier rise in p24 accumulation and greater percent of infected explants at limiting infectious doses. These results suggest that explants from LI biopsies support more efficient HIV-1 infection than SI biopsies, despite similar numbers of available, activated HIV-1 target cells. These findings highlight important differences in LI and SI explants, which must be considered in designing and interpreting ex vivo HIV-1 infection studies, and suggest that factors within the tissue other than target cell number and activation state may play a role in regulating HIV-1 infection.
Collapse
Affiliation(s)
- Julie Elliott
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| | - F. Javier Ibarrondo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Tanner
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ian McGowan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter A. Anton
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
2
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
Yang Y, Zhu J, Hassink M, Jenkins LMM, Wan Y, Appella DH, Xu J, Appella E, Zhang X. A novel preventive strategy against HIV-1 infection: combinatorial use of inhibitors targeting the nucleocapsid and fusion proteins. Emerg Microbes Infect 2017; 6:e40. [PMID: 28588284 PMCID: PMC5520304 DOI: 10.1038/emi.2017.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/05/2017] [Accepted: 03/06/2017] [Indexed: 11/29/2022]
Abstract
The strategy of simultaneously attacking multiple targets is worthy of exploration in the field of microbicide development to combat HIV-1 sequence diversity and minimize the transmission of resistant variants. A combination of S-acyl-2-mercaptobenzamide thioester-10 (SAMT10), an inhibitor of the HIV-1 nucleocapsid protein (NCp7), and the fusion inhibitor sifuvirtide (SFT) may exert synergistic effects, since SFT can block viral fusion at an early stage of the viral cycle and SAMT10 can disrupt viral particles at a later stage. In this study, we investigated the effect of the combination of SAMT10 and SFT on HIV-1 infection using in vitro cell culture and ex vivo mucosal explant models. A range of doses for each compound was tested at 10-fold serial dilutions based on their 50% effective concentrations (EC50). We observed a synergistic effect of SAMT10 and SFT in vitro against both the laboratory-adapted HIV-1 strain HIV-1IIIB (subtype B, X4) and three pseudotyped viruses prevalent in Chinese sexually transmitted populations (SVPB16 (subtype B, R5), SVPC12 (subtype C, R5) and SH1.81 (CRF01_AE, R5)). In the ex vivo study, the EC50 values of the inhibitor combinations were reduced 1.5- to 2-fold in colorectal mucosal explants compared to treatment with SAMT10 or SFT alone by using with HIV-1IIIB. These results may provide a novel strategy for microbicide development against HIV-1 sexual transmission.
Collapse
Affiliation(s)
- Yu Yang
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Jingyu Zhu
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Matthew Hassink
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20814, USA
| | - Lisa M Miller Jenkins
- Chemical Immunology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yanmin Wan
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20814, USA
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Ettore Appella
- Chemical Immunology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
|
5
|
Xu H, Wang X, Veazey RS. Simian Immunodeficiency Virus Infection and Mucosal Immunity. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Gastrointestinal tract and the mucosal macrophage reservoir in HIV infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1469-73. [PMID: 25185575 DOI: 10.1128/cvi.00518-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is a primary site for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection, replication, and dissemination. After an initial explosive phase of infection, HIV establishes latency. In addition to CD4 T cells, macrophages are readily infected, which can persist for long periods of time. Though macrophages at various systemic sites are infected, those present in the GIT constitute a major cellular reservoir due to the abundance of these cells at mucosal sites. Here, we review some of the important findings regarding what is known about the macrophage reservoir in the gut and explore potential approaches being pursued in the field to reduce this reservoir. The development of strategies that can lead to a functional cure will need to incorporate approaches that can eradicate the macrophage reservoir in the GIT.
Collapse
|
7
|
Shen R, Richter HE, Smith PD. Interactions between HIV-1 and mucosal cells in the female reproductive tract. Am J Reprod Immunol 2014; 71:608-17. [PMID: 24689653 PMCID: PMC4073589 DOI: 10.1111/aji.12244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Worldwide, the heterosexual route is the prevalent mode of HIV-1 transmission, and the female reproductive tract accounts for approximately 40% of all HIV-1 transmissions. HIV-1 infection in the female reproductive tract involves three major events: entry through the mucosal epithelium, productive infection in subepithelial mononuclear cells, and delivery to lymph nodes to initiate systemic infection. Here, we provide a focused review of the interaction between HIV-1 and mucosal epithelial cells, lymphocytes, macrophages, and dendritic cells in female genital mucosa. Increased understanding of these interactions could illuminate new approaches for interdicting HIV-1 heterosexual transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly E. Richter
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
8
|
A comparison of methods for measuring rectal HIV levels suggests that HIV DNA resides in cells other than CD4+ T cells, including myeloid cells. AIDS 2014; 28:439-42. [PMID: 24322272 DOI: 10.1097/qad.0000000000000166] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We compared different techniques for measuring gut HIV reservoirs and assessed for HIV in non-CD4 T cells. HIV DNA levels were similar when measured from rectal biopsies and isolated rectal cells, while HIV RNA tended to be higher in rectal cells. HIV DNA levels in total rectal cells were greater than those predicted from levels in sorted CD4 T cells, suggesting a reservoir in non-CD4 T cells, and HIV DNA was detected in sorted myeloid cells (7/7 subjects).
Collapse
|
9
|
Abstract
The last few years have seen important progress in demonstrating the efficacy of oral pre-exposure prophylaxis, vaginal microbicides, and treatment as prevention as effective strategies for reducing the risk of acquiring or transmitting HIV infection. There has also been significant progress in the development of rectal microbicides. Preclinical non-human primate studies have demonstrated that antiretroviral microbicides can provide significant protection from rectal challenge with SIV or SHIV. Recent Phase 1 rectal microbicide studies have characterized the safety, acceptability, compartmental pharmacokinetics (PK), and pharmacodynamics (PD) of both UC781 and tenofovir gels. The tenofovir gel formulation used in vaginal studies was not well tolerated in the rectum and newer rectal-specific formulations have been developed and evaluated in Phase 1 studies. The PK/PD data generated in these Phase 1 studies may reduce the risk of advancing ineffective candidate rectal microbicides into late stage development. Tenofovir gel is currently poised to move into Phase 2 evaluation and it is possible that a Phase 2B/3 effectiveness study with this product could be initiated in the next 2-3 years.
Collapse
Affiliation(s)
- Ian McGowan
- University of Pittsburgh School of Medicine, 204 Craft Ave Room B621, Pittsburgh, PA, 15213, USA,
| | | |
Collapse
|
10
|
Comprehensive assessment of HIV target cells in the distal human gut suggests increasing HIV susceptibility toward the anus. J Acquir Immune Defic Syndr 2013; 63:263-71. [PMID: 23392465 DOI: 10.1097/qai.0b013e3182898392] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prevention of rectal HIV transmission is a high-priority goal for vaccines and topical microbicides because a large fraction of HIV transmissions occurs rectally. Yet, little is known about the specific target-cell milieu in the human rectum other than inferences made from the colon. METHODS We conducted a comprehensive comparative in situ fluorescence study of HIV target cells (CCR5-expressing T cells, macrophages, and putative dendritic cells) at 4 and 30 cm proximal of the anal canal in 29 healthy individuals, using computerized analysis of digitized combination stains. RESULTS Most strikingly, we find that more than 3 times as many CD68 macrophages express the HIV coreceptor CCR5 in the rectum than in the colon (P = 0.0001), and as such rectal macrophages seem biologically closer to the HIV-susceptible CCR5 phenotype in the vagina than the mostly HIV-resistant CCR5 phenotype in the colon. Putative CD209 dendritic cells are generally enriched in the colon compared with the rectum (P = 0.0004), though their CCR5 expression levels are similar in both compartments. CD3 T-cell densities and CCR5 expression levels are comparable in the colon and rectum. CONCLUSIONS Our study establishes the target-cell environment for HIV infection in the human distal gut and demonstrates in general terms that the colon and rectum are immunologically distinct anatomical compartments. Greater expression of CCR5 on rectal macrophages suggests that the most distal sections of the gut may be especially vulnerable to HIV infection. Our findings also emphasize that caution should be exercised when extrapolating data obtained from colon tissues to the rectum.
Collapse
|
11
|
Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques. Virology 2013; 446:77-85. [PMID: 24074569 DOI: 10.1016/j.virol.2013.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication.
Collapse
|
12
|
Matsuyama-Murata M, Inaba K, Horiuchi R, Fukazawa Y, Ibuki K, Hayami M, Miura T. Genetic similarity of circulating and small intestinal virus at the end stage of acute pathogenic simian-human immunodeficiency virus infection. Front Microbiol 2013; 4:204. [PMID: 23885255 PMCID: PMC3717482 DOI: 10.3389/fmicb.2013.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/01/2013] [Indexed: 11/13/2022] Open
Abstract
To understand the pathogenicity of acquired immune deficiency syndrome (AIDS), it is important to clarify where, when and how the virus replicates in the body of infected individuals. To identify the major virus replication site at the end stage of SHIV infection, we investigated the systemic tissues of SHIV-infected monkeys that developed AIDS-like disease. We quantified proviral DNA, and compared the mutation patterns of the viruses in various systemic tissues and in peripheral blood through phylogenetic analysis of the full genome sequence. We found that the amounts of proviral DNA detected in internal tissues were higher than those in peripheral blood mononuclear cells. In the sequence and phylogenetic tree analyses, the mutation patterns of the viruses in each tissue were generally different. However, the mutation pattern of the viruses in the jejunum and mesenteric lymph node were most similar to that of plasma viral RNA among the tissues examined in all three monkeys. In two of the three monkeys, which were euthanized earlier, viruses in the jejunum and mesenteric lymph node occupied the root position of the phylogenetic tree. Furthermore, in these tissues, more than 50% of SHIV-expressing cells were identified as macrophages based on co-expression of CD68. These results suggest that macrophages of the small intestine and/or mesenteric lymph node are the major virus production site at the end stage of SHIV infection of macaques.
Collapse
Affiliation(s)
- Megumi Matsuyama-Murata
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Cavarelli M, Foglieni C, Rescigno M, Scarlatti G. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5. EMBO Mol Med 2013; 5:776-94. [PMID: 23606583 PMCID: PMC3662319 DOI: 10.1002/emmm.201202232] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2013] [Accepted: 03/10/2013] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Unit of Viral Evolution and Transmission, DITID, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW HIV-1 infects tissue macrophages, microglia and other mononuclear phagocytes which represent an important cellular reservoir for viral replication and persistence in macrophage-rich tissue. This compartmentalization allows the virus to exist as genetically distinct quasi-species that can have capacities to use different coreceptors for cell entry. This review assesses the tropism of HIV-1 in different human compartments. RECENT FINDINGS The majority of HIV infection occurs with R5-tropic viruses probably due to the selective expression of the R5 cell-surface protein on the target cells in the genital muscosa. There is a large concordance of tropism use between blood cell-associated proviral DNA and RNA plasma viruses, allowing the use of CC chemokine receptor 5 (CCR5) antagonists in patients who have undetectable viral load and for whom HIV tropism was determined in DNA. Most of HIV strains in central nervous system remain R5-tropic allowing the use of CCR5 antagonists. SUMMARY There are many clinical situations in which the use of CCR5 antagonists can be used and several ways to determine HIV tropism in most of the compartments.
Collapse
|
15
|
Horiike M, Iwami S, Kodama M, Sato A, Watanabe Y, Yasui M, Ishida Y, Kobayashi T, Miura T, Igarashi T. Lymph nodes harbor viral reservoirs that cause rebound of plasma viremia in SIV-infected macaques upon cessation of combined antiretroviral therapy. Virology 2011; 423:107-18. [PMID: 22196013 DOI: 10.1016/j.virol.2011.11.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/06/2011] [Accepted: 11/29/2011] [Indexed: 12/16/2022]
Abstract
Attempts to find a cure for HIV infection are hindered by the presence of viral reservoirs that resist highly active antiretroviral therapy. To identify the properties of these reservoirs, four SIV239-infected Rhesus macaques were treated with combined antiretroviral therapy (cART) for 1 year. While plasma viral RNA (vRNA) was effectively suppressed, a systemic analysis revealed that vRNA was distributed in the following order: lymphatic tissues>lungs and intestine>other tissues. Histochemistry yielded no cells with viral signals. To increase the chance of detection, two additional SIV-infected animals were treated and analyzed on Day 10 after the cessation of cART. These animals exhibited similar vRNA distribution patterns to the former animals, and immunohistochemistry revealed Nef-positive T lymphocytes predominantly in the follicles of mesenteric lymph nodes (MLNs). These data suggest that lymphatic tissues, including MLNs, contain major cellular reservoirs that cause rebound of plasma viremia upon cessation of therapy.
Collapse
Affiliation(s)
- Mariko Horiike
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stromal down-regulation of macrophage CD4/CCR5 expression and NF-κB activation mediates HIV-1 non-permissiveness in intestinal macrophages. PLoS Pathog 2011; 7:e1002060. [PMID: 21637819 PMCID: PMC3102716 DOI: 10.1371/journal.ppat.1002060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/23/2011] [Indexed: 12/13/2022] Open
Abstract
Tissue macrophages are derived exclusively from blood monocytes, which as monocyte-derived macrophages support HIV-1 replication. However, among human tissue macrophages only intestinal macrophages are non-permissive to HIV-1, suggesting that the unique microenvironment in human intestinal mucosa renders lamina propria macrophages non-permissive to HIV-1. We investigated this hypothesis using blood monocytes and intestinal extracellular matrix (stroma)-conditioned media (S-CM) to model the exposure of newly recruited monocytes and resident macrophages to lamina propria stroma, where the cells take up residence in the intestinal mucosa. Exposure of monocytes to S-CM blocked up-regulation of CD4 and CCR5 expression during monocyte differentiation into macrophages and inhibited productive HIV-1 infection in differentiated macrophages. Importantly, exposure of monocyte-derived macrophages simultaneously to S-CM and HIV-1 also inhibited viral replication, and sorted CD4+ intestinal macrophages, a proportion of which expressed CCR5+, did not support HIV-1 replication, indicating that the non-permissiveness to HIV-1 was not due to reduced receptor expression alone. Consistent with this conclusion, S-CM also potently inhibited replication of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein, which provides CD4/CCR5-independent entry. Neutralization of TGF-β in S-CM and recombinant TGF-β studies showed that stromal TGF-β inhibited macrophage nuclear translocation of NF-κB and HIV-1 replication. Thus, the profound inability of intestinal macrophages to support productive HIV-1 infection is likely the consequence of microenvironmental down-regulation of macrophage HIV-1 receptor/coreceptor expression and NF-κB activation. Human intestinal macrophages, unlike lymphoid tissue macrophages, brain microglia and genital (vaginal) macrophages, are profoundly incapable of supporting productive HIV-1 infection. Intriguingly, all macrophages are derived exclusively from blood monocytes, which are HIV-1 permissive after differentiation into monocyte-derived macrophages. Therefore, the unique non-permissiveness of intestinal macrophages to HIV-1 must be conferred by the intestinal mucosal microenvironment. Here we report that intestinal stroma potently blocked up-regulation of HIV-1 receptor/coreceptor CD4 and CCR5 expression during monocyte differentiation into macrophages and macrophage nuclear translocation of NF-κB, which is a critical requirement for HIV-1 transcription. These two mechanisms work collaboratively to render intestinal macrophages non-permissive to HIV-1. Harnessing this natural antiviral defense may provide a novel strategy to exploit for the prevention of infection in HIV-1 permissive cells.
Collapse
|
17
|
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 2011; 4:31-42. [PMID: 20962772 PMCID: PMC3821935 DOI: 10.1038/mi.2010.66] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages in the gastrointestinal mucosa represent the largest pool of tissue macrophages in the body. In order to maintain mucosal homeostasis, resident intestinal macrophages uniquely do not express the lipopolysaccharide (LPS) co-receptor CD14 or the IgA (CD89) and IgG (CD16, 32, and 64) receptors, yet prominently display Toll-like receptors (TLRs) 3-9. Remarkably, intestinal macrophages also do not produce proinflammatory cytokines in response to TLR ligands, likely because of extracellular matrix (stromal) transforming growth factor-β (TGF-β) dysregulation of nuclear factor (NF)-κB signal proteins and, via Smad signaling, expression of IκBα, thereby inhibiting NF-κB-mediated activities. Thus, in noninflamed mucosa, resident macrophages are inflammation anergic but retain avid scavenger and host defense function, an ideal profile for macrophages in close proximity to gut microbiota. In the event of impaired epithelial integrity during intestinal infection or inflammation, however, blood monocytes also accumulate in the lamina propria and actively pursue invading microorganisms through uptake and degradation of the organism and release of inflammatory mediators. Consequently, resident intestinal macrophages are inflammation adverse, but when the need arises, they receive assistance from newly recruited circulating monocytes.
Collapse
Affiliation(s)
- PD Smith
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - LE Smythies
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - R Shen
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - T Greenwell-Wild
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - M Gliozzi
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - SM Wahl
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| |
Collapse
|
18
|
Miller TL, Cushman LL. Gastrointestinal Complications of Secondary Immunodeficiency Syndromes. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011. [PMCID: PMC7158192 DOI: 10.1016/b978-1-4377-0774-8.10042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight macrophages as central mediators of intestinal immune homeostasis and inflammation. RECENT FINDINGS We review recent developments elucidating distinct phenotypic adaptations in intestinal macrophages that determine their functional role in a microbe-rich environment. The involvement of intestinal macrophages in the pathogenesis of inflammatory bowel disease is also discussed. SUMMARY Intestinal macrophages represent the largest pool of tissue macrophages in the human body and a critical interface with the enteric microbiota. In normal physiology, luminal microbes breach the intestinal epithelial barrier and gain access to the lamina propria. Bacteria are efficiently phagocytosed by macrophages strategically located underneath the epithelium. The importance of functional adaptations of macrophages to perform their role in this unique environment is best illustrated by failure of these mechanisms during the development of chronic inflammatory bowel diseases. Compared with monocytes or macrophages from any other organ, intestinal macrophages express different phenotypic markers, efficiently eradicate intracellular bacteria, but do not mount potent inflammatory responses. Converging human genetic and functional findings suggest that dysregulation of macrophage-specific immune responses against an otherwise harmless enteric microbiota are key factors in the pathogenesis of inflammatory bowel disease.
Collapse
|
20
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Smythies LE, Shen R, Bimczok D, Novak L, Clements RH, Eckhoff DE, Bouchard P, George MD, Hu WK, Dandekar S, Smith PD. Inflammation anergy in human intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB inactivation. J Biol Chem 2010; 285:19593-604. [PMID: 20388715 PMCID: PMC2885238 DOI: 10.1074/jbc.m109.069955] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human intestinal macrophages contribute to tissue homeostasis in noninflamed mucosa through profound down-regulation of pro-inflammatory cytokine release. Here, we show that this down-regulation extends to Toll-like receptor (TLR)-induced cytokine release, as intestinal macrophages expressed TLR3-TLR9 but did not release cytokines in response to TLR-specific ligands. Likely contributing to this unique functional profile, intestinal macrophages expressed markedly down-regulated adapter proteins MyD88 and Toll interleukin receptor 1 domain-containing adapter-inducing interferon beta, which together mediate all TLR MyD88-dependent and -independent NF-kappaB signaling, did not phosphorylate NF-kappaB p65 or Smad-induced IkappaBalpha, and did not translocate NF-kappaB into the nucleus. Importantly, transforming growth factor-beta released from intestinal extracellular matrix (stroma) induced identical down-regulation in the NF-kappaB signaling and function of blood monocytes, the exclusive source of intestinal macrophages. Our findings implicate stromal transforming growth factor-beta-induced dysregulation of NF-kappaB proteins and Smad signaling in the differentiation of pro-inflammatory blood monocytes into noninflammatory intestinal macrophages.
Collapse
Affiliation(s)
| | - Ruizhong Shen
- From the Departments of Medicine (Gastroenterology) and
| | - Diane Bimczok
- From the Departments of Medicine (Gastroenterology) and
| | | | | | - Devin E. Eckhoff
- Transplantation, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | - Michael D. George
- the Department of Medical Microbiology, University of California School of Medicine, Davis, California 95616, and
| | - William K. Hu
- the Department of Medical Microbiology, University of California School of Medicine, Davis, California 95616, and
| | - Satya Dandekar
- the Department of Medical Microbiology, University of California School of Medicine, Davis, California 95616, and
| | - Phillip D. Smith
- From the Departments of Medicine (Gastroenterology) and
- the Veterans Affairs Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
22
|
Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl) 2010; 2:103-22. [PMID: 22096389 PMCID: PMC3218690 DOI: 10.2147/hiv.s6882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Even though the treatment of human immunodeficiency virus (HIV)-infected individuals with highly active antiretroviral therapy (HAART) provides a complete control of plasma viremia to below detectable levels (<40 copies/mL plasma), there is an unequal distribution of all antiretroviral drugs across diverse cellular and anatomic compartments in vivo. The main consequence of this is the acquisition of resistance by HIV to all known classes of currently prescribed antiretroviral drugs and the establishment of HIV reservoirs in vivo. HIV has a distinct advantage of surviving in the host via both pre-and postintegration latency. The postintegration latency is caused by inert and metabolically inactive provirus, which cannot be accessed either by the immune system or the therapeutics. This integrated provirus provides HIV with a safe haven in the host where it is incessantly challenged by its immune selection pressure and also by HAART. Thus, the provirus is one of the strategies for viral concealment in the host and the provirus can be rekindled, through unknown stimuli, to create progeny for productive infection of the host. Thus, the reservoir establishment remains the biggest impediment to HIV eradication from the host. This review provides an overview of HIV reservoir sites and discusses both the virtues and problems associated with therapies/strategies targeting these reservoir sites in vivo.
Collapse
Affiliation(s)
- Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Maly Soedjono
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Yung Shwen Ho
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Viviane Conceicao
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| |
Collapse
|
23
|
Macrophage HIV-1 infection in duodenal tissue of patients on long term HAART. Antiviral Res 2010; 87:269-71. [PMID: 20471997 DOI: 10.1016/j.antiviral.2010.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/10/2010] [Accepted: 05/07/2010] [Indexed: 11/21/2022]
Abstract
Mucosal surfaces play a major role in human immunodeficiency virus type 1 (HIV-1) transmission and pathogenesis. Since the role of intestinal macrophages as viral reservoirs during chronic HIV-1 infection has not been elucidated, we investigated the effects of successful therapy on intestinal HIV-1 persistence. Intestinal macrophage infection was demonstrated by the expression of p24 antigen by flow cytometry and by the presence of proviral DNA, assessed by PCR. Proviral DNA was detected in duodenal mucosa of HIV-infected patients under treatment with undetectable plasma viral load. These findings confirm that intestinal macrophages can act as viral reservoirs and permit HIV-1 production even after viral suppression following antiretroviral therapy.
Collapse
|
24
|
Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 2010; 7:33. [PMID: 20380696 PMCID: PMC2859752 DOI: 10.1186/1742-4690-7-33] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 01/09/2023] Open
Abstract
Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES EA 4266 Pathogens and Inflammation, IFR 133 INSERM, Franche-Comte University, CHU Besançon, Besançon, France.
| | | |
Collapse
|
25
|
Bergamaschi A, Pancino G. Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 2010; 7:31. [PMID: 20374633 PMCID: PMC2868797 DOI: 10.1186/1742-4690-7-31] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/07/2010] [Indexed: 11/29/2022] Open
Abstract
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France.
| | | |
Collapse
|
26
|
Human peritoneal macrophages from ascitic fluid can be infected by a broad range of HIV-1 isolates. J Acquir Immune Defic Syndr 2010; 53:292-302. [PMID: 20065862 DOI: 10.1097/qai.0b013e3181ca3401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Macrophages are major HIV target cells. They support both productive and latent HIV-1 infection. Susceptibility of primary macrophages to HIV depends on the anatomical location and activation state of the cells. We demonstrate that peritoneal macrophages (PMs) are abundant in ascitic fluid of patients with liver cirrhosis and are susceptible to HIV-1 infection. PMs expressed CD68, a differentiation marker, exhibited phagocytic activity, and survived in culture for 2 months without additional growth factors. Freshly isolated PMs were susceptible to HIV-1 R5 strains but not to X4-T-cell line-adapted strains. Interestingly, after 7 days in culture, PMs acquired susceptibility to X4-T-cell line-adapted strains. HIV entry inhibitors, TAK779 and AMD3100, blocked HIV infection of PMs, indicating that infection by R5 and X4 strains was mediated by CCR5 and CXCR4, respectively. Although PMs did not express detectable cell surface levels of CXCR4 and CCR5, they did express mRNAs of these HIV coreceptors and responded to stimulation by their natural ligands, SDF-1alpha and RANTES. PMs were susceptible to HIV-1 X4, R5, and X4R5 primary isolates. PMs after 7 days in culture produced greater amounts of X4 and X4R5 HIV than freshly isolated PMs. The day-7 PMs were more susceptible to R5 infection in a single-cycle infection assay, but there was no increase in viral production in a multiple-round infection assay. The level of CXCR4 mRNA and production of CC-chemokines (MIP-1alpha, MIP-1beta, and RANTES) increased significantly during 7 days in culture. Our results indicate that PMs are susceptible to receptor-mediated infection by a broad range of HIV strains. These primary macrophages could provide a valuable system for investigating the role of primary macrophages in HIV pathogenesis.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Here we present recent studies examining the gastrointestinal tract during primary HIV and simian immunodeficiency virus infections and emphasizing the onset of severe pathologic processes that are not adequately reflected in peripheral blood. We discuss these findings and hypotheses relating to the role of the gastrointestinal tract in HIV-1 pathogenesis. RECENT FINDINGS High levels of viral replication in the gastrointestinal mucosa during primary HIV and simian immunodeficiency virus infections lead to severe depletion of effector memory CD4 T cells coinciding with increased immune activation and mucosal damage. Viral reservoirs established at this stage appear to be persistent over the course of infection and during therapy. In the simian immunodeficiency virus model of AIDS, onset of the impaired intestinal epithelial barrier function and renewal was observed during primary viral infection. Dysfunction of the mucosal immune system and the epithelial barrier may contribute to viral persistence and impaired responses to microbial pathogens in infected individuals. SUMMARY A better understanding of the impact of HIV infection on the mucosal immune system may help in the development of newer preventive and therapeutic strategies directed against the virus.
Collapse
|
28
|
Shen R, Smythies LE, Clements RH, Novak L, Smith PD. Dendritic cells transmit HIV-1 through human small intestinal mucosa. J Leukoc Biol 2009; 87:663-70. [PMID: 20007245 DOI: 10.1189/jlb.0909605] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To dissect the early events in the transmission of HIV-1 from mother to child, we investigated whether DCs participate in HIV-1 entry into human small intestinal mucosa. We isolated human MNLs from jejunal lamina propria and identified a subpopulation of CD11c(+)HLA-DR(+) MNLs that expressed DC-SIGN, CD83, CD86, CD206, and CCR7, indicating a DC phenotype. Jejunal DCs also expressed the HIV-1 receptor CD4 and coreceptors CCR5 and CXCR4 and in suspension rapidly took up cell-free HIV-1. HIV-1 inoculated onto the apical surface of explanted jejunum was transported by lamina propria DCs through the mucosa and transmitted in trans to blood and intestinal lymphocytes. These findings indicate that in addition to intestinal epithelial cells, which we showed previously transcytose infectious HIV-1 to indicator cells, intestinal DCs play an important role in transporting HIV-1 through the intestinal mucosa and the subsequent transmission to T cells.
Collapse
Affiliation(s)
- Ruizhong Shen
- Departmentsof Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | |
Collapse
|
29
|
Mannioui A, Bourry O, Sellier P, Delache B, Brochard P, Andrieu T, Vaslin B, Karlsson I, Roques P, Le Grand R. Dynamics of viral replication in blood and lymphoid tissues during SIVmac251 infection of macaques. Retrovirology 2009; 6:106. [PMID: 19930655 PMCID: PMC2789052 DOI: 10.1186/1742-4690-6-106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/23/2009] [Indexed: 12/29/2022] Open
Abstract
Background Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied. Results The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT), with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected. Conclusion We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important implications for the targeting of HIV treatment to these diverse compartments.
Collapse
Affiliation(s)
- Abdelkrim Mannioui
- CEA, Division of Immuno-Virology, DSV/iMETI, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mueller YM, Do DH, Boyer JD, Kader M, Mattapallil JJ, Lewis MG, Weiner DB, Katsikis PD. CD8+ cell depletion of SHIV89.6P-infected macaques induces CD4+ T cell proliferation that contributes to increased viral loads. THE JOURNAL OF IMMUNOLOGY 2009; 183:5006-12. [PMID: 19786539 DOI: 10.4049/jimmunol.0900141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that depletion of CD8(+) cells during acute and chronic simian immunodeficiency virus (SIV) infection leads to increased viral replication, morbidity, and mortality, which have been attributed to loss of CD8(+) T cell-mediated control of SIV. However, these studies did not exclude that CD8(+) cell depletion increased homeostatic proliferation of CD4(+) T cells, resulting in increased viral targets and, therefore, viral rebound. Chronically SHIV89.6P-infected cynomolgus macaques were CD8(+) cell-depleted, and the frequency, cell number, and phenotype of CD4(+) T cells and viral infection were examined using flow cytometry and quantitative real-time PCR. The frequency and number of Ki-67-expressing CD4(+) T cells were increased with CD8(+) cell depletion. This proliferation of CD4(+) T cells occurred even in animals with no rebound of viral loads. Most of the proliferating cells were effector memory CD4(+) T cells. Plasma simian HIV (SHIV) RNA copies positively correlated with proliferating CD4(+) T cells and SHIV DNA copies in Ki-67(+) CD4(+) T cells. Although this study does not exclude an important role for virus-specific CD8(+) T cells in SIV and SHIV infection, our data suggest that homeostatic proliferation is an important contributor to increases in plasma viremia that follow CD8(+) cell depletion.
Collapse
Affiliation(s)
- Yvonne M Mueller
- Department of Microbiology and Immunology, and Center for Immunology and Vaccine Sciences, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Weber B, Saurer L, Mueller C. Intestinal macrophages: differentiation and involvement in intestinal immunopathologies. Semin Immunopathol 2009; 31:171-84. [PMID: 19533135 DOI: 10.1007/s00281-009-0156-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/11/2009] [Indexed: 12/11/2022]
Abstract
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.
Collapse
Affiliation(s)
- Benjamin Weber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
The small and large intestine contain the largest number of macrophages in the body and these cells are strategically located directly underneath the epithelial layer, enabling them to sample the lumen. Such intestinal macrophages have a different phenotype from other tissue macrophages in that they ingest and may kill microbes but they do not mediate strong pro-inflammatory responses upon microbial recognition. These properties are essential for maintaining a healthy intestine. It is generally accepted that tolerance to the intestinal flora is lost in inflammatory bowel diseases, and genes involved in microbial recognition, killing and macrophage activation have already been associated with these diseases. In this review, we shed light on the intestinal macrophage and how it influences intestinal immunity.
Collapse
|
33
|
Abstract
FoxP3(+)CD4(+)CD25(+) regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed.
Collapse
|
34
|
Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics. PLoS Pathog 2009; 5:e1000377. [PMID: 19360131 PMCID: PMC2661022 DOI: 10.1371/journal.ppat.1000377] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 03/12/2009] [Indexed: 11/22/2022] Open
Abstract
Elite suppressors (ES) are a rare subset of HIV-1–infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s) responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env) fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor) and CCR5 (co-receptor). In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals. The majority of HIV-1–infected individuals experience high plasma viral loads and CD4+ T cells loss in the absence of antiretroviral therapy. However, a very rare and important subset of individuals termed elite suppressors is able to maintain HIV-1 plasma viral loads below the limit of viral detection in the absence of treatment. The reasons behind this ability to control the virus are poorly understood, but they likely involve both an effective host immune response against HIV-1 and factors related to the virus itself. Here, we analyze the function of the HIV-1 coat protein or envelope glycoprotein from a group of elite suppressors. HIV-1 envelope mediates entry into the host cell via interaction with the cellular receptors CD4 and CCR5. Envelopes from elite controllers interacted with these receptors inefficiently compared to those from individuals with detectable viral loads. These inefficient interactions by elite suppressor envelopes led to slow rates of entry into host cells. Envelopes from acutely infected individuals were not significantly different from elite suppressors or chronically infected individuals. These findings suggest that the decreased envelope efficiency may contribute to viral control in elite suppressors.
Collapse
|
35
|
Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, Sankaran-Walters S, Dandekar S, Clapham PR, Smythies LE, Smith PD. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol 2009; 83:3258-67. [PMID: 19153236 PMCID: PMC2655566 DOI: 10.1128/jvi.01796-08] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/06/2009] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces play a major role in human immunodeficiency virus type 1 (HIV-1) transmission and pathogenesis, and yet the role of lamina propria macrophages in mucosal HIV-1 infection has received little investigative attention. We report here that vaginal and intestinal macrophages display distinct phenotype and HIV-1 permissiveness profiles. Vaginal macrophages expressed the innate response receptors CD14, CD89, CD16, CD32, and CD64 and the HIV-1 receptor/coreceptors CD4, CCR5, and CXCR4, similar to monocytes. Consistent with this phenotype, green fluorescent protein-tagged R5 HIV-1 entered macrophages in explanted vaginal mucosa as early as 30 min after inoculation of virus onto the epithelium, and purified vaginal macrophages supported substantial levels of HIV-1 replication by a panel of highly macrophage-tropic R5 viruses. In sharp contrast, intestinal macrophages expressed no detectable, or very low levels of, innate response receptors and HIV-1 receptor/coreceptors and did not support HIV-1 replication, although virus occasionally entered macrophages in intestinal tissue explants. Thus, vaginal, but not intestinal, macrophages are monocyte-like and permissive to R5 HIV-1 after the virus has translocated across the epithelium. These findings suggest that genital and gut macrophages have different roles in mucosal HIV-1 pathogenesis and that vaginal macrophages play a previously underappreciated but potentially important role in mucosal HIV-1 infection in the female genital tract.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamamoto T, Tsunetsugu-Yokota Y, Mitsuki YY, Mizukoshi F, Tsuchiya T, Terahara K, Inagaki Y, Yamamoto N, Kobayashi K, Inoue JI. Selective transmission of R5 HIV-1 over X4 HIV-1 at the dendritic cell-T cell infectious synapse is determined by the T cell activation state. PLoS Pathog 2009; 5:e1000279. [PMID: 19180188 PMCID: PMC2627922 DOI: 10.1371/journal.ppat.1000279] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/23/2008] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection. The cellular tropism of HIV-1 is determined by the binding of HIV-1 envelope to chemokine coreceptors, CCR5 or CXCR4, in addition to a major entry receptor, CD4. The mystery still now is that despite the mixed infection of CCR5-utilizing (R5) and CXCR4-utilizing (X4) HIV-1 in many AIDS patients, R5 is predominantly isolated from newly infected individuals whatever the mode of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced initially by antigen-presenting DCs, we postulated that the selective expansion of R5 may largely occur at the level of antigen-dependent DC–T cell interaction, called immunological synapse. Thus, the immunological synapse serves as an infectious synapse through which the virus can be rapidly disseminated in vivo. In this study, we prepared X4 and R5 HIV-1 expressing red or green fluorescence and showed that the selective expansion of R5 over X4 did occur, depending on the activation status of CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yu-ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Molecular Virology, Bio-Response, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Tsuchiya
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Inagaki
- Department of Molecular Virology, Bio-Response, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kazuo Kobayashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Jun-ichiro Inoue
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
37
|
Abstract
We determined the HIV-1 RNA and Gag p24 protein expression in gastrointestinal tract-associated lymphoid tissue (GALT), deep lymph nodes (LNs), and inflammatory lesions, acquired during surgery on HIV-infected patients. Surgically excised gastrointestinal tract specimens, LNs, and cervices removed from HIV-1-infected patients for various clinical conditions were studied by immunohistochemistry (IHC) for Gag p24 HIV protein and in situ hybridization (ISH) for HIV-specific RNA. Fragments of some specimens were also submitted in glutaraldehyde for TEM analysis. Germinal centers (GC) in the GALT had at least as much HIV RNA and p24 protein deposited on their follicular dendritic cell (FDC) networks as did GC in LNs draining or associated with areas of inflammation or ulceration. The level of viral expression in the deep LNs, e.g., mesenteric and retroperitoneal, was at least equivalent to that seen in superficial LNs, i.e., inguinal, axillary, and cervical, and tonsils and adenoids. HIV expressing T and B lymphocytes and macrophages were seen in GALT and LNs. Virus-expressing mononuclear cells (MNC) were also seen in inflammatory lesions such as gastrointestinal ulcers and acute appendicitis. Abundant virus was seen in the cervix of patients with and without cancer and in LNs of patients with metastatic cancer. Individual and clusters of mature HIV particles were identified by TEM in LN GC and in GALT. Gastrointestinal tract lymphoid tissue, inflammatory lesions, and deep LNs showed levels of HIV RNA and Gag p24 protein expression in the range seen in superficial LNs.
Collapse
Affiliation(s)
- Jan M. Orenstein
- George Washington University Medical Center, Washington, D.C. 20037
| |
Collapse
|
38
|
Abstract
For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention.
Collapse
|
39
|
Miles A, Liaskou E, Eksteen B, Lalor PF, Adams DH. CCL25 and CCL28 promote alpha4 beta7-integrin-dependent adhesion of lymphocytes to MAdCAM-1 under shear flow. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1257-67. [PMID: 18308860 DOI: 10.1152/ajpgi.00266.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease is characterized by the recruitment of lymphocytes to the gut via mucosal vessels. Chemokines are believed to trigger alpha(4)beta(1)- and alpha(4)beta(7)-integrin-mediated adhesion to vascular cell adhesion molecule-1 (VCAM-1) and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on mucosal vessels, although the contribution of each pathway and the chemokines involved are not well characterized. These interactions occur under conditions of hemodynamic shear, which is critical in determining how lymphocytes integrate chemokine signals to promote transmigration. To define the role of specific chemokines in mediating lymphocyte adhesion to VCAM-1 and MAdCAM-1, we studied the ability of immobilized chemokines to activate adhesion of human lymphocytes in a flow-based adhesion assay. Adhesion to immobilized MAdCAM-1 was alpha(4)beta(7) dependent, with no contribution from alpha(4)beta(1), whereas alpha(4)beta(1) mediated rolling and static adhesion on VCAM-1. Immobilized CC-chemokine ligand (CCL) 25 and CCL28 were both able to trigger alpha(4)beta(7)-dependent lymphocyte arrest on MAdCAM-1 under shear, highlighting a potential role for these chemokines in the arrest of lymphocytes on postcapillary venules in the gut. Neither had any effect on adhesion to VCAM-1, suggesting that they selectively trigger alpha(4)beta(7)-mediated adhesion. Immobilized CCL21, CCL25, CCL28, and CXC-chemokine ligand (CXCL) 12 all converted rolling adhesion to static arrest on MAdCAM-1 by activating lymphocyte integrins, but only CCL21 and CXCL12 also triggered a motile phenotype characterized by lamelipodia and uropod formation. Thus alpha(4)beta(1)/VCAM-1 and alpha(4)beta(7)/MAdCAM-1 operate independently to support lymphocyte adhesion from flow, and chemokines may act in concert with one chemokine triggering integrin-mediated arrest and a second chemokine promoting motility and transendothelial migration.
Collapse
Affiliation(s)
- Alice Miles
- Liver Research Group, Medical Research Council Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Maheshwari A, Smythies LE, Wu X, Novak L, Clements R, Eckhoff D, Lazenby AJ, Britt WJ, Smith PD. Cytomegalovirus blocks intestinal stroma-induced down-regulation of macrophage HIV-1 infection. J Leukoc Biol 2007; 80:1111-7. [PMID: 17056764 DOI: 10.1189/jlb.0306230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal macrophages, unlike macrophages from other tissues, do not support HIV-1 infection or produce proinflammatory cytokines. In vitro studies suggest this unique, functional phenotype is a result of the exposure of newly recruited blood monocytes to intestinal stromal products. However, in AIDS-related CMV colitis, mucosal macrophages express HIV-1 and proinflammatory cytokines. Therefore, we investigated the mechanism by which CMV confers permissiveness to HIV-1 and cytokine production on intestinal macrophages. We show that intestinal stroma-conditioned media (S-CM) down-regulated monocyte-derived macrophage infection by HIV-1 (pseudotyped with YU2 envelope or vesicular stomatitis virus glycoprotein) and production of TNF-alpha, but preinfection of the cells with CMV reversed this down-regulation, enhancing HIV-1 infection, p24 production, and TNF-alpha release. The ability of CMV to reverse S-CM down-regulation of macrophage HIV-1 infection was blocked by anti-TNF-alpha antibodies and over-ridden by exogenous TNF-alpha. Immunohistochemical analysis of monocyte-derived macrophages exposed to CMV and HIV-1 (YU2 pseudotype) revealed that the cells infrequently contained CMV and HIV-1 viral proteins. In addition, analysis of colon tissue sections from HIV-1-infected patients with CMV colitis showed that some macrophage-like cells contained CMV and TNF-alpha proteins, others contained HIV-1 and TNF-alpha proteins, but cells infrequently contained CMV and HIV-1 proteins. These results indicate that CMV blocks stromal product inhibition of HIV-1 infection in macrophages, and this inhibition is mediated, at least in part, by CMV-induced TNF-alpha acting in trans to enhance HIV-1 infection.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, University of Alabama at Birmingham (ZRB 633), 703 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Giacaman RA, Nobbs AH, Ross KF, Herzberg MC. Porphyromonas gingivalis selectively up-regulates the HIV-1 coreceptor CCR5 in oral keratinocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:2542-50. [PMID: 17675516 DOI: 10.4049/jimmunol.179.4.2542] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primary infection of oral epithelial cells by HIV-1, if it occurs, could promote systemic infection. Most primary systemic infections are associated with R5-type HIV-1 targeting the R5-specific coreceptor CCR5, which is not usually expressed on oral keratinocytes. Because coinfection with other microbes has been suggested to modulate cellular infection by HIV-1, we hypothesized that oral keratinocytes may up-regulate CCR5 in response to the oral endogenous pathogen Porphyromonas gingivalis by cysteine-protease (gingipains) activation of the protease-activated receptors (PARs) or LPS signaling through the TLRs. The OKF6/TERT-2-immortalized normal human oral keratinocyte line expressed CXCR4, whereas CCR5 was not detectable. When exposed to P. gingivalis ATCC 33277, TERT-2 cells induced greater time-dependent expression of CCR5-specific mRNA and surface coreceptors than CXCR4. By comparing arg- (Rgp) and lys-gingipain (Kgp) mutants, a mutant deficient in both proteases, and the action of trypsin, P. gingivalis Rgp was strongly suggested to cleave PAR-1 and PAR-2 to up-regulate CCR5. CCR5 was also slightly up-regulated by an isogenic gingipain-deficient mutant, suggesting the presence of a nongingipain-mediated mechanism. Purified P. gingivalis LPS also up-regulated CCR5. Blocking TLR2 and TLR4 receptors with Abs attenuated induction of CCR5, suggesting LPS signaling through TLRs. P. gingivalis, therefore, selectively up-regulated CCR5 by two independent signaling pathways, Rgp acting on PAR-1 and PAR-2, and LPS on TLR2 and TLR4. By inducing CCR5 expression, P. gingivalis coinfection could promote selective R5-type HIV-1 infection of oral keratinocytes.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- Adhesins, Bacterial/metabolism
- Antibodies/immunology
- Antibodies/pharmacology
- Bacteroidaceae Infections/genetics
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/pathology
- Cell Line, Transformed
- Cysteine Endopeptidases/deficiency
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/metabolism
- Gingipain Cysteine Endopeptidases
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/metabolism
- HIV Infections/pathology
- HIV-1/immunology
- HIV-1/metabolism
- Humans
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Lipopolysaccharides/pharmacology
- Mouth/immunology
- Mouth/metabolism
- Mouth/pathology
- Mutation/immunology
- Porphyromonas gingivalis/genetics
- Porphyromonas gingivalis/immunology
- Porphyromonas gingivalis/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, PAR-1/immunology
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/immunology
- Receptor, PAR-2/metabolism
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/immunology
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2/antagonists & inhibitors
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 4/antagonists & inhibitors
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Rodrigo A Giacaman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
43
|
Johansson-Lindbom B, Agace WW. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 2007; 215:226-42. [PMID: 17291292 DOI: 10.1111/j.1600-065x.2006.00482.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestinal mucosa represents the largest body surface toward the external environment and harbors numerous T lymphocytes that take up resident within the intestinal epithelium or in the underlying lamina propria (LP). The intraepithelial lymphocytes include subsets of 'unconventional' T cells with unclear ontogeny and reactivity that localize to this site independently of antigen-specific activation in secondary lymphoid organs. In contrast, the majority of the 'conventional' gut T cells are recruited into the intestinal mucosa subsequent to their activation in intestinal inductive sites, including Peyer's patches (PPs) and mesenteric lymph nodes (MLNs). T cells homing to the small intestine express a distinct pattern of homing molecules, allowing them to interact with and transmigrate across intestinal postcapillary endothelium. At least some of these homing molecules, including the integrin alpha(4)beta(7) and the chemokine receptor CCR9, are induced on T cells during their activation in PPs or MLNs. Mucosal dendritic cells (DCs) play a key role in this process, but not all intestinal DCs possess the ability to confer a gut-homing capacity to T cells. Instead, functionally specialized CD103(+) DCs derived from the small intestinal LP appear to selectively regulate T-cell homing to the small intestine.
Collapse
|
44
|
Centlivre M, Sala M, Wain-Hobson S, Berkhout B. In HIV-1 pathogenesis the die is cast during primary infection. AIDS 2007; 21:1-11. [PMID: 17148962 DOI: 10.1097/qad.0b013e3280117f7f] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The chronic stage of HIV-1 infection has been extensively described as a slowly evolving phase, in which the virus induces T-cell death slightly faster than the human body is able to recover. In contrast, T-cell and viral replication dynamics during primary infection have been less well studied. Recent studies in the SIV-macaque model and in HIV-positive patients during the acute infection period have highlighted the massive and irreversible depletion of CD4 memory T cells in the mucosa, particularly in the gut. Hence, gut-associated lymphoid tissue (GALT) plays a central role in the early stages of HIV-1 pathogenesis. Due to its particular cytokine expression pattern, GALT may favour the differential replication of certain HIV-1 subtypes during primary infection, particularly of subtype C. This could enhance the chance of a successful transmission. Moreover, these early events taking place in GALT during primary infection have major implications for therapy and vaccine design.
Collapse
|
45
|
Guadalupe M, Sankaran S, George MD, Reay E, Verhoeven D, Shacklett BL, Flamm J, Wegelin J, Prindiville T, Dandekar S. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol 2006; 80:8236-47. [PMID: 16873279 PMCID: PMC1563811 DOI: 10.1128/jvi.00120-06] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.
Collapse
Affiliation(s)
- Moraima Guadalupe
- Dept. of Medical Microbiology and Immunology, GBSF, Room 5511, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Choudhry V, Zhang MY, Harris I, Sidorov IA, Vu B, Dimitrov AS, Fouts T, Dimitrov DS. Increased efficacy of HIV-1 neutralization by antibodies at low CCR5 surface concentration. Biochem Biophys Res Commun 2006; 348:1107-15. [PMID: 16904645 PMCID: PMC2268024 DOI: 10.1016/j.bbrc.2006.07.163] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 07/27/2006] [Indexed: 11/18/2022]
Abstract
It has been observed that some antibodies, including the CD4-induced (CD4i) antibody IgG X5 and the gp41-specific antibody IgG 2F5, exhibit higher neutralizing activity in PBMC-based assays than in cell line based assays [J.M. Binley, T. Wrin, B. Korber, M.B. Zwick, M. Wang, C. Chappey, G. Stiegler, R. Kunert, S. Zolla-Pazner, H. Katinger, C.J. Petropoulos, D.R. Burton, Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies, J. Virol. 78 (2004) 13232-13252]. It has been hypothesized that the lower CCR5 concentration on the surface of the CD4 T lymphocytes compared to that on cell lines used for the neutralization assays could be a contributing factor to the observed differences in neutralizing activity. To test this hypothesis and to further elucidate the contribution of CCR5 concentration differences on antibody neutralizing activity, we used a panel of HeLa cell lines with well-defined and differential surface concentrations of CCR5 and CD4 in a pseudovirus-based assay. We observed that the CCR5 cell surface concentration but not the CD4 concentration had a significant effect on the inhibitory activity of X5 and several other CD4i antibodies including 17b and m9, as well as that of the gp41-specifc antibodies 2F5 and 4E10 but not on that of the CD4 binding site antibody (CD4bs), b12. The 50% inhibitory concentration (IC50) decreased up to two orders of magnitude in cell lines with low CCR5 concentration corresponding to that in CD4 T cells used in PBMC-based assays (about 10(3) per cell) compared to cell lines with high CCR5 concentration (about 10(4) or more). Our results suggest that the CCR5 cell surface concentration could be a contributing factor to the high neutralizing activities of some antibodies in PBMC-based-assays but other factors could also play an important role. These findings could have implications for development of vaccine immunogens based on the epitopes of X5 and other CD4i antibodies, for elucidation of the mechanisms of HIV-1 neutralization by antibodies, and for design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Vidita Choudhry
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH, Frederick, MD 21702
- Corresponding Authors: Vidita Choudhry, CCRNP, CCR, NCI-Frederick, NIH, Bldg 320, Rm 8, P.O. Box B, Miller Drive, Frederick, MD 21702-1201, Phone: 301-846-5472, FAX: 301-846-5598, e-mail:
| | - Mei-Yun Zhang
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH, Frederick, MD 21702
- BRP, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - Ilia Harris
- Profectus Bio Sciences, Inc., 1450 South Rolling Road, Baltimore, MD 21227
| | - Igor A. Sidorov
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH, Frederick, MD 21702
| | - Bang Vu
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH, Frederick, MD 21702
| | - Antony S. Dimitrov
- Profectus Bio Sciences, Inc., 1450 South Rolling Road, Baltimore, MD 21227
| | - Timothy Fouts
- Profectus Bio Sciences, Inc., 1450 South Rolling Road, Baltimore, MD 21227
| | - Dimiter S. Dimitrov
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH, Frederick, MD 21702
- Dimiter S. Dimitrov, CCRNP, CCR, NCI-Frederick, NIH, Bldg 469, Rm 105, P.O. Box B, Miller Drive, Frederick, MD 21702-1201, Phone: 301-846-1352, FAX: 301-846-5598, e-mail:
| |
Collapse
|
47
|
Kelleher AD, Zaunders JJ. Decimated or missing in action: CD4+ T cells as targets and effectors in the pathogenesis of primary HIV infection. Curr HIV/AIDS Rep 2006; 3:5-12. [PMID: 16522253 DOI: 10.1007/s11904-006-0002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV infection provides a unique challenge to the immune system. CD4+ T cells are targets of infection, whereas effective anti-HIV CD4+ T-cell responses are essential for sustained viral control. There is increasing evidence of preferential depletion of certain subsets of CD4+ T cells. Studies of tissues have demonstrated preferential depletion of CD4+ T cells from gastrointestinal lymphoid tissue (GALT). Simian immunodeficiency virus infection of macaques results in extensive depletion of CD4+ memory T cells from GALT within weeks of infection. Other macaque studies suggest this rapid, profound depletion is generalized across all lymphoid tissue. Although these models provide insight into possible pathogenic processes, these results cannot be directly extrapolated to HIV infection in humans. Although there is depletion of CD4+ T cell memory cells early in HIV infection, the mechanism of this depletion appears to be related to increased cell turnover, chronicity of antigen exposure, and ineffective production of central memory CD4+ T cells rather than only direct cell depletion.
Collapse
Affiliation(s)
- Anthony D Kelleher
- Immunovirology and Pathogenesis Program, National Centre in HIV Epidemiology and Clinical Research, University of North South Wales, Level 2, 376 Victoria Street, Darlinghurst, NSW, 2010, Australia.
| | | |
Collapse
|
48
|
Machado FR, Pagliari C, Caiafa H, Tapajós R, Duarte MIS. Immunopathology of the duodenal mucosa of HIV-positive patients during combined antiretroviral therapy. Braz J Med Biol Res 2006; 39:107-17. [PMID: 16400471 DOI: 10.1590/s0100-879x2006000100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of the present study was to evaluate the duodenal mucosa of HIV-infected patients during antiretroviral therapy. This was an observational study conducted on HIV-positive patients and a control group. Group 1 comprised 22 HIV-negative individuals while 38 HIV-positive individuals were classified according to the CDC 1993 classification into group 2 (A1 or A2) or group 3 (B2, A3, B3, C2, C3). All subjects were submitted to upper gastrointestinal endoscopy with duodenal biopsies. Qualitative, semi-quantitative and quantitative histological analyses were performed. Results were considered significant when P < 0.05. A higher prevalence of inflammatory infiltrate and eosinophilia was observed in the HIV group, together with a reduction in mucosal CD4+ lymphocyte (L) counts [median (lower-upper quartiles), 12.82 (8.30-20.33), 6.36 (1.75-11.66) and 1.75 (0.87-3.14) in groups 1, 2 and 3, respectively] which was not correlated with disease stage. The extent of CD4+L count reduction was similar in blood and duodenal mucosa. Normal CD8+L and CD45RO+L counts, and normal numbers of macrophages and antigen-presenting cells were also found in the HIV patients. The cytokine pattern did not differ among groups. Tissue HIV, assessed by p24 antigen, correlated with a higher CD45RO+L count (77.0 (61-79.8) and 43.6 (31.7-62.8) in p24+ and p24-, respectively, P = 0.003), and IL-4 positivity (100 and 48.2% in p24+ and p24-, respectively, P = 0.005). The duodenal mucosa of HIV+ patients showed a relatively preserved histological architecture. This finding may be characteristic of a population without opportunistic infections and treated with potent antiretroviral therapy, with a better preservation of the immune status.
Collapse
Affiliation(s)
- F R Machado
- Divisão de Doenças Infecciosas e Parasitárias, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Smith PD, Ochsenbauer-Jambor C, Smythies LE. Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 2005; 206:149-59. [PMID: 16048547 DOI: 10.1111/j.0105-2896.2005.00288.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gastrointestinal mucosa is the largest reservoir of macrophages in the body. These important effector cells are derived from blood monocytes that are recruited to the lamina propria by endogenous chemoattractants in the non-inflamed mucosa and by inflammatory chemokines and bacterial products during inflammation. In the non-inflamed mucosa, newly recruited pro-inflammatory monocytes are exposed to lamina propria stromal (extracellular matrix) factors that induce phenotypic and functional differentiation into non-inflammatory macrophages. As a consequence of this differentiation, resident lamina propria macrophages are strikingly downregulated for the expression of innate response receptors, such as the receptors for lipopolysaccharide, immunoglobulin G (IgG), and IgA, and the production of pro-inflammatory cytokines, including interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor-alpha. Despite downregulated pro-inflammatory function, strong phagocytic and bactericidal activities remain intact. Thus, in the non-inflamed intestinal mucosa, lamina propria macrophages are non-inflammatory but retain avid scavenger and host defense functions, a unique but ideal phenotype and functional profile for effector cells in close proximity to immunostimulatory microorganisms and products.
Collapse
Affiliation(s)
- Phillip D Smith
- Department of Medicine (Gastroenterology and Hepatology), University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
50
|
Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 2005. [PMID: 15630445 DOI: 10.1172/jci200519229] [Citation(s) in RCA: 629] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Intestinal macrophages, which are thought to orchestrate mucosal inflammatory responses, have received little investigative attention compared with macrophages from other tissues. Here we show that human intestinal macrophages do not express innate response receptors, including the receptors for LPS (CD14), Fcalpha (CD89), Fcgamma (CD64, CD32, CD16), CR3 (CD11b/CD18), and CR4 (CD11c/CD18); the growth factor receptors IL-2 (CD25) and IL-3 (CD123); and the integrin LFA-1 (CD11a/CD18). Moreover, resident intestinal macrophages also do not produce proinflammatory cytokines, including IL-1, IL-6, IL-10, IL-12, RANTES, TGF-beta, and TNF-alpha, in response to an array of inflammatory stimuli but retain avid phagocytic and bacteriocidal activity. Thus, intestinal macrophages are markedly distinct in phenotype and function from blood monocytes, although intestinal macrophages are derived from blood monocytes. To explain this paradox, we show that intestinal stromal cell-derived products downregulate both monocyte receptor expression and, via TGF-beta, cytokine production but not phagocytic or bacteriocidal activity, eliciting the phenotype and functional profile of intestinal macrophages. These findings indicate a mechanism in which blood monocytes recruited to the intestinal mucosa retain avid scavenger and host defense functions but acquire profound "inflammatory anergy," thereby promoting the absence of inflammation characteristic of normal intestinal mucosa despite the close proximity of immunostimulatory bacteria.
Collapse
Affiliation(s)
- Lesley E Smythies
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|