1
|
Kokiattrakool W, Saengcharatuaong N, Luapan J, Sroykham W, Kumsiri R, Kanchanaphum P. Differentiation between wild type and heterozygous albino ball pythons (Python regius) by PCR and qPCR. BRAZ J BIOL 2024; 84:e286676. [PMID: 39383416 DOI: 10.1590/1519-6984.286676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 10/11/2024] Open
Abstract
Python regius or ball pythons are the famous exotic pets because of their beautiful color and pattern. The albino ball python is one type of ball python, but it is very difficult to determine the difference of phenotype between wildtype and heterozygous genotype of albino (het albino). In this study, PCR and qPCR can distinguish between wildtype and het albino. The PCR product size of wildtype and het albino was 415 bp, but the intensity of PCR product of wildtype was more intense than that of het albinos. No PCR amplicon was found in albinos and the Ct value of wildtype was lower than Ct of het albinos. The molecular detection technique, especially PCR and qPCR, can determine the difference between wildtype and het albinos of ball pythons.
Collapse
Affiliation(s)
- W Kokiattrakool
- Rangsit University, Faculty of Science, Biomedical Science Program, Pathumthani, Thailand
| | - N Saengcharatuaong
- Rangsit University, Faculty of Science, Biomedical Science Program, Pathumthani, Thailand
| | - J Luapan
- Animal Space Exotic Pet Hospital, Bangkok, Thailand
| | - W Sroykham
- Navamindradhiraj University, Faculty of Science and Health Technology, Bangkok, Thailand
| | - R Kumsiri
- Rangsit University, Faculty of Science, Pathobiology Unit, Pathumthani, Thailand
| | - P Kanchanaphum
- Rangsit University, Faculty of Science, Biochemistry Unit, Pathumthani, Thailand
| |
Collapse
|
2
|
Zhou D, Eraslan Z, Miller D, Taylor I, You J, Grondin SJ, Vega M, Manga P, Goff PS, Sviderskaya EV, Gross SS, Chen Q, Zippin JH. Two-pore channel 2 is required for soluble adenylyl cyclase-dependent regulation of melanosomal pH and melanin synthesis. Pigment Cell Melanoma Res 2024; 37:656-666. [PMID: 38844435 PMCID: PMC11479823 DOI: 10.1111/pcmr.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Melanosomal pH is important for the synthesis of melanin as the rate-limiting enzyme, tyrosinase, is very pH-sensitive. The soluble adenylyl cyclase (sAC) signaling pathway was recently identified as a regulator of melanosomal pH in melanocytes; however, the melanosomal proteins critical for sAC-dependent regulation of melanosomal pH were undefined. We now systematically examine four well-characterized melanosomal membrane proteins to determine whether any of them are required for sAC-dependent regulation of melanosomal pH. We find that OA1, OCA2, and SLC45A2 are dispensable for sAC-dependent regulation of melanosomal pH. In contrast, TPC2 activity is required for sAC-dependent regulation of melanosomal pH and melanin synthesis. In addition, activation of TPC2 by NAADP-AM rescues melanosomal pH alkalinization and reduces melanin synthesis following pharmacologic or genetic inhibition of sAC signaling. These studies establish TPC2 as a critical melanosomal protein for sAC-dependent regulation of melanosomal pH and pigmentation.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zuhal Eraslan
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Isobel Taylor
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Jaewon You
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Samuel J Grondin
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Martha Vega
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Philip S Goff
- Cell Biology Research Section, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Elena V Sviderskaya
- Cell Biology Research Section, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College of Cornell University, New York, New York, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
3
|
Snyman M, Walsdorf RE, Wix SN, Gill JG. The metabolism of melanin synthesis-From melanocytes to melanoma. Pigment Cell Melanoma Res 2024; 37:438-452. [PMID: 38445351 PMCID: PMC11178461 DOI: 10.1111/pcmr.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Melanin synthesis involves the successful coordination of metabolic pathways across multiple intracellular compartments including the melanosome, mitochondria, ER/Golgi, and cytoplasm. While pigment production offers a communal protection from UV damage, the process also requires anabolic and redox demands that must be carefully managed by melanocytes. In this report we provide an updated review on melanin metabolism, including recent data leveraging new techniques, and technologies in the field of metabolism. We also discuss the many aspects of melanin synthesis that intersect with metabolic pathways known to impact melanoma phenotypes and behavior. By reviewing the metabolism of melanin synthesis, we hope to highlight outstanding questions and opportunities for future research that could improve patient outcomes in pigmentary and oncologic disease settings.
Collapse
Affiliation(s)
- Marelize Snyman
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Rachel E. Walsdorf
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Sophia N. Wix
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Jennifer G. Gill
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| |
Collapse
|
4
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
5
|
Brito S, Heo H, Cha B, Lee SH, Park G, Kwak BM, Seong JK, Lee H, Park JH, Weon BM, Bin BH. The Slc45a4 Gene Regulates Pigmentation in a Manner Distinct from that of the OCA4 Gene Slc45a2. J Invest Dermatol 2024; 144:720-722.e5. [PMID: 37775036 DOI: 10.1016/j.jid.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 10/01/2023]
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyojin Heo
- Department of Applied Bio Technology, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Byungsun Cha
- Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Sang Hun Lee
- Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Gunwoo Park
- Department of Applied Bio Technology, Graduate School, Ajou University, Suwon, Republic of Korea; Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Byeong-Mun Kwak
- Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Interdiscplinary Program for Bioinformatics, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Ho Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Hwan Park
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Byung Mook Weon
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Bio Technology, Graduate School, Ajou University, Suwon, Republic of Korea; Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Ghosh Roy S, Bakhrat A, Abdu M, Afonso S, Pereira P, Carneiro M, Abdu U. Mutations in SLC45A2 lead to loss of melanin in parrot feathers. G3 (BETHESDA, MD.) 2024; 14:jkad254. [PMID: 37943814 PMCID: PMC10849330 DOI: 10.1093/g3journal/jkad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.
Collapse
Affiliation(s)
- Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Moty Abdu
- ST Lab Hashita 240, Sede Tzvi 85340, Israel
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
7
|
He D, Liu X, Yao T, Hu J, Zheng X, Tang L, Fan X. Oculocutaneous albinism type 4: Novel compound heterozygous mutations in the SLC45A2 gene in a Chinese case. Mol Genet Genomic Med 2024; 12:e2385. [PMID: 38337174 PMCID: PMC10858317 DOI: 10.1002/mgg3.2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Oculocutaneous albinism type 4 (OCA4) is a rare autosomal recessive disorder characterized by a reduction of pigmentation in skin, hair, and eyes, and OCA4 is mainly seen in the SLC45A2 gene variants. OBJECTIVE To report a Chinese patient suspected of oculocutaneous albinism and identify the causing mutation. METHODS Genomic DNA was extracted from the peripheral blood samples of the patient, his parents, and elder brother. Whole exome sequencing was performed in the family, and Sanger sequencing was then used to verify the mutations. RESULTS Compound heterozygous variants, c.1304C>A (p.S435Y) and c.301C>G (p.R101G) in SLC45A2 gene, were detected in the proband, which were inherited from his father and mother respectively. Based on the ACMG guidelines, we can interpret the c.1304C>A (p.S435Y) variant as a suspected pathogenic variant and the c.301C>G (p.R101G) variant as a clinically significant unspecified variant. The diagnosis of OCA4 is confirmed. CONCLUSION We firstly reported this case of OCA4 with the compound heterozygous variants in the SLC45A2 gene. Our findings further enrich the reservoir of SLC45A2 mutations in OCA4.
Collapse
Affiliation(s)
- Danyue He
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Xiaonan Liu
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Tianyu Yao
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Jie Hu
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Xiaodong Zheng
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Lili Tang
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Xing Fan
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| |
Collapse
|
8
|
Choquet H, Jiang C, Yin J, Kim Y, Hoffmann TJ, Jorgenson E, Asgari MM. Multi-ancestry genome-wide meta-analysis identifies novel basal cell carcinoma loci and shared genetic effects with squamous cell carcinoma. Commun Biol 2024; 7:33. [PMID: 38182794 PMCID: PMC10770328 DOI: 10.1038/s42003-023-05753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Basal cell carcinoma (BCC) is one of the most common malignancies worldwide, yet its genetic determinants are incompletely defined. We perform a European ancestry genome-wide association (GWA) meta-analysis and a Hispanic/Latino ancestry GWA meta-analysis and meta-analyze both in a multi-ancestry GWAS meta-analysis of BCC, totaling 50,531 BCC cases and 762,234 controls from four cohorts (GERA, Mass-General Brigham Biobank, UK Biobank, and 23andMe research cohort). Here we identify 122 BCC-associated loci, of which 36 were novel, and subsequently fine-mapped these associations. We also identify an association of the well-known pigment gene SLC45A2 as well as associations at RCC2 and CLPTM1L with BCC in Hispanic/Latinos. We examine these BCC loci for association with cutaneous squamous cell carcinoma (cSCC) in 16,407 SCC cases and 762,486 controls of European ancestry, and 33 SNPs show evidence of association. Our study findings provide important insights into the genetic basis of BCC and cSCC susceptibility.
Collapse
Affiliation(s)
- Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA.
| | - Chen Jiang
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | | | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
9
|
Chong Y, Tu X, Lu Y, Gao Z, He X, Hong J, Wu J, Wu D, Xi D, Deng W. Two High-Quality Cygnus Genome Assemblies Reveal Genomic Variations Associated with Plumage Color. Int J Mol Sci 2023; 24:16953. [PMID: 38069278 PMCID: PMC10707585 DOI: 10.3390/ijms242316953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
As an exemplary model for examining molecular mechanisms responsible for extreme phenotypic variations, plumage color has garnered significant interest. The Cygnus genus features two species, Cygnus olor and Cygnus atratus, that exhibit striking disparities in plumage color. However, the molecular foundation for this differentiation has remained elusive. Herein, we present two high-quality genomes for C. olor and C. atratus, procured using the Illumina and Nanopore technologies. The assembled genome of C. olor was 1.12 Gb in size with a contig N50 of 26.82 Mb, while its counterpart was 1.13 Gb in size with a contig N50 of 21.91 Mb. A comparative analysis unveiled three genes (TYR, SLC45A2, and SLC7A11) with structural variants in the melanogenic pathway. Notably, we also identified a novel gene, PWWP domain containing 2A (PWWP2A), that is related to plumage color, for the first time. Using targeted gene modification analysis, we demonstrated the potential genetic effect of the PWWP2A variant on pigment gene expression and melanin production. Finally, our findings offer insight into the intricate pattern of pigmentation and the role of polygenes in birds. Furthermore, these two high-quality genome references provide a comprehensive resource and perspective for comparative functional and genetic studies of evolution within the Cygnus genus.
Collapse
Affiliation(s)
- Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Xiaoming He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| |
Collapse
|
10
|
Muromachi K, Hosomichi K, Park H, Yamaguchi T, Tani-Ishii N. Identification of Candidate Genes of Familial Multiple Idiopathic Cervical Root Resorption. J Endod 2023; 49:1537-1547. [PMID: 37742719 DOI: 10.1016/j.joen.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Multiple idiopathic cervical root resorption (MICRR) is a disease with an unknown etiology that causes invasive cervical root resorption in multiple teeth. Although previous MICRR genomic studies have identified candidate gene variants, the etiology of the condition remains poorly understood. In the present study, we investigated the genetic causality of MICRR to explore candidate variants. METHODS Saliva samples from a family containing 2 affected and two unaffected subjects with the dominant transmission of MICRR were subjected to whole-exome sequencing. RESULTS As a result, we identified novel candidate variants of 10 genes. Each variant was confirmed by Sanger sequencing. Among them, the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines classified doublecortin domain containing 1 (c.1099 C > T) and β-defensin 114 (c.189 T > G) as "pathogenic," and solute carrier family 45 member 2 (c.152_153del) as "likely pathogenic." CONCLUSIONS These results provide new insight to help clarify the pathogenesis of MICRR, and the variants could be applied for further investigation to understand invasive cervical root resorption.
Collapse
Affiliation(s)
- Koichiro Muromachi
- Department of Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan.
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Heetae Park
- Department of Orthodontics, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Tetsutaro Yamaguchi
- Department of Orthodontics, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan.
| | - Nobuyuki Tani-Ishii
- Department of Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| |
Collapse
|
11
|
Si S, Jia X, Xu L, Qin Q, Wu J, Ji W, Dong K, Zhang X, Cao L, Wang H, Liu P, Wang R, Bai J, Fu S, Huang Y, Sun W. Identification and characterization of the compound heterozygous variants of TYR gene in a northern Chinese family with Oculocutaneous albinism type 1. Pigment Cell Melanoma Res 2023; 36:472-480. [PMID: 37403904 DOI: 10.1111/pcmr.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Oculocutaneous albinism (OCA) is a genetically heterogeneous disease and is most inherited in an autosomal recessive manner. The characteristic manifestation of OCA is due to disfunction of melanin synthesis. OCA1 is the most severe subtype of OCA and is caused by homozygous or compound heterozygous variants in tyrosinase (TYR) gene, which is the key gene for melanin synthesis. This study aimed to identify the genetic variants of a northern Chinese family with OCA1. Clinical information and peripheral blood samples were collected. PCR amplification and Sanger sequencing were used to detect the entire exons and adjacent flanking sequences of TYR gene. Functional prediction of variants was performed by various bioinformatic analyses, while the pathogenicity classification of variants was evaluated according to ACMG standards and guidelines. A missense variant NM_000372.5:c.107G > C;NP_000363.1:p.C36S was discovered in TYR gene which converted cysteine to serine. Another variant in intron, NM_000372.5:c.1037-7 T > A, also affected the function of TYR gene. We verified the pathogenicity of the intron variant with a pCAS2 mini-gene based splicing assay and found that c.1037-7 T > A led to an insertion of 5 bp upstream from the common acceptor site of exon 3, which caused a frameshift TYR:c.1037-7 T > A:p.G346Efs*11. The results showed that the compound heterozygous variants c.107G > C:p.C36S and c.1037-7 T > A:p.G346Efs*11 of TYR gene were the pathogenic variants for this OCA1 family.
Collapse
Affiliation(s)
- Shuhan Si
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lidan Xu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Qian Qin
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Wei Ji
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Kexian Dong
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xuelong Zhang
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lin Cao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing Bai
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yun Huang
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Brancato D, Coniglio E, Bruno F, Agostini V, Saccone S, Federico C. Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes (Basel) 2023; 14:1604. [PMID: 37628655 PMCID: PMC10454093 DOI: 10.3390/genes14081604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the HERC2-OCA2 locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the HERC2-OCA2 locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates. Currently, there are some genetic panels to predict eye color by genomic DNA analysis, even if the exact role of the SNP variants in the formation of eye color is still poorly understood, with a low level of predictivity in the so-called intermediate eye color. Many variants in OCA2, HERC2, and other genes lie in introns or correspond to synonymous variants, highlighting greater complexity in the mechanism of action of such genes than a simple missense variation. Here, we show the main genes involved in oculocutaneous pigmentation and their structural and functional features, as well as which genetic variants show the highest level of eye color predictivity in currently used FDP assays. Despite the great recent advances and impact of FDP in criminal cases, it is necessary to enhance scientific research to better understand the mechanism of action behind each genetic variant involved in eye color, with the goal of obtaining higher levels of prediction.
Collapse
Affiliation(s)
- Desiree Brancato
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Elvira Coniglio
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Francesca Bruno
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Vincenzo Agostini
- Department Science and Technical Innovation, University of Eastern Piedmont, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Salvatore Saccone
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Concetta Federico
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| |
Collapse
|
13
|
Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, Pedersen BP. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. NATURE PLANTS 2023; 9:938-950. [PMID: 37188854 PMCID: PMC10281868 DOI: 10.1038/s41477-023-01421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose-proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.
Collapse
Affiliation(s)
- Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
14
|
Zhang C, Ren Z, Gong Z. Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:281-290. [PMID: 36917276 DOI: 10.1007/s10126-023-10204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
Albinism is the most common color variation described in fish and is a fascinating trait of some ornamental fish species. Albino mutants can be generated by knocking out core genes affecting melanin synthesis like slc45a2 in several fish species. However, genetic mutation remains challenging for species with unknown genome information. In this study, we generated albino mutants in two selected ornamental fish species, royal farlowella (Sturisoma panamense), and redhead cichlid (Vieja melanura). For this purpose, we carried out phylogenetic analyses of fish slc45a2 sequences and identified a highly conserved region among different fish species. A pair of degenerate primers spanning this region was designed and used to amplify a conserved slc45a2 fragment of 340 bp from the two fish species. Based on the amplified sequences, a target site in the 6th exon was used for designing guide RNA and this targeted site was first verified by the CRISPR/Cas9 system in the zebrafish (Danio rerio) model for the effectiveness. Then, specific guide RNAs were designed for the two ornamental fish species and tested. Most of the injected larvae completely lost black pigment over the whole body and eyes. DNA sequencing confirmed a high degree of mutation at the targeted site. Overall, we described a fast and efficient method to generate albino phenotype in fish species by targeting the conserved 6th exon of slc45a2 gene for genome editing via CRISPR/Cas9 and this approach could be a new genetic tool to generate desirable albino ornamental fish.
Collapse
Affiliation(s)
- Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, 250014, Jinan, China.
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore.
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore.
| |
Collapse
|
15
|
Bi H, Tranell J, Harper DC, Lin W, Li J, Hellström AR, Larsson M, Rubin CJ, Wang C, Sayyab S, Kerje S, Bed’hom B, Gourichon D, Ito S, Wakamatsu K, Tixier-Boichard M, Marks MS, Globisch D, Andersson L. A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken. PLoS Genet 2023; 19:e1010724. [PMID: 37068079 PMCID: PMC10138217 DOI: 10.1371/journal.pgen.1010724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
Collapse
Affiliation(s)
- Huijuan Bi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Tranell
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dawn C. Harper
- Department of Pathology & Laboratory Medicine and Department of Physiology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Weifeng Lin
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Anders R. Hellström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl-Johan Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Susanne Kerje
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bertrand Bed’hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350 Jouy-en-Josas, France
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Michael S. Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Globisch
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, United States of America
| |
Collapse
|
16
|
Guo Y, Wu W, Yang X. Coordinated microRNA/mRNA Expression Profiles Reveal Unique Skin Color Regulatory Mechanisms in Chinese Giant Salamander (Andrias davidianus). Animals (Basel) 2023; 13:ani13071181. [PMID: 37048437 PMCID: PMC10093658 DOI: 10.3390/ani13071181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Chinese giant salamander (Andrias davidianus) has been increasingly popular in the aquaculture market in China in recent years. In the breeding process of Andrias davidianus, we found that some albino individuals were extremely rare and could not be inherited stably, which severely limits their commercialization in the aquaculture market. In this study, we performed transcriptome and small RNA (sRNA) sequencing analyses in the skin samples of wild-type (WT) and albino (AL) Andrias davidianus. In total, among 5517 differentially expressed genes (DEGs), 2911 DEGs were down-regulated in AL, including almost all the key genes involved in melanin formation. A total of 25 miRNAs were differentially expressed in AL compared to WT, of which 17 were up-regulated. Through the integrated analysis, no intersection was found between the target genes of the differentially expressed miRNAs and the key genes for melanin formation. Gene Ontology (GO) and KEGG pathway analyses on DEGs showed that these genes involved multiple processes relevant to melanin synthesis and the key signal pathway MAPK. Interestingly, the transcription factors SOX10 and PAX3 and the Wnt signaling pathway that play a key role in other species were not included, while the other two transcription factors in the SOX family, SOX21 and SOX7, were included. After analyzing the key genes for melanin formation, it was interesting to note an alternative splicing form of the MITF in WT and a critical mutation of the SLC24A5 gene in AL, which might be the main reason for the skin color change of Andrias davidianus. The results contributed to understanding the molecular mechanism of skin pigmentation in Andrias davidianus and accelerating the acquisition process of individuals with specific body colors by genetic means.
Collapse
|
17
|
Fournier H, Calcagni N, Morice-Picard F, Quintard B. Psychosocial implications of rare genetic skin diseases affecting appearance on daily life experiences, emotional state, self-perception and quality of life in adults: a systematic review. Orphanet J Rare Dis 2023; 18:39. [PMID: 36823650 PMCID: PMC9951542 DOI: 10.1186/s13023-023-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Since the beginning of human genetic research, there are very few publications sharing insights of the negative impact of rare genetic skin diseases (RGSD) on patients' experiences. This systematic review assessed the psychosocial implications of these conditions in terms of daily life experiences, emotional state, self-perception, and Quality of Life (QoL). METHODOLOGY A systematic review was carried out on albinism, neurofibromatosis type 1 (NF1), birthmarks and inherited ichthyosis. The PubMed, Scopus, PsycArticle, PsychInfo, Psychology and Behavioral Sciences Collection, and SOCindex databases were queried. Inclusion criteria were adult patients with one of these RGSDs. Simple descriptive statistics and qualitative content analysis were conducted to summarize the main results reported by the authors. RESULTS Of the 9987 articles retrieved, 48 articles were included: albinism (16), NF1 (16), inherited ichthyosis (10), birthmarks (6). The majority of the studies on albinism were conducted in Africa. Twenty-seven studies quantitatively assessed diverse psychological parameters: 13 showed a significant impact of the disease on QoL, five on emotional state, two on self-representation and two others on psychiatric comorbidities. Disease severity and visibility were good predictors of QoL (except for albinism). Body image and appearance concerns were also associated with QoL and emotional state. The 19 qualitative studies highlighted recurring themes across each of these diseases: discrimination and stigma during childhood and adolescence, discomfort in social interactions, guilt of transmission, the importance of social support from family and friends, altered daily life functioning, altered romantic and sex life, limited academic and professional aspirations, lack of interest and support from the medical field, and the unpredictability of the evolution of the disease. The only two mixed-method studies in this review were unable to contribute to any inferential analyses but could corroborate some of the qualitative findings. CONCLUSION These results showed that RGSDs have a significant impact on different aspects of patients' lives. This review has demonstrated that there is a real need for support systems for patients with these diseases. Such systems should be developed to provide them with necessary information and to guide them through an appropriate care pathway.
Collapse
Affiliation(s)
- Hugo Fournier
- Laboratoire de Psychologie (LabPsy) EA4139, Univ. Bordeaux, 3 ter Place de la Victoire, Bâtiment A - 1er étage, 33000 Bordeaux, France
| | | | | | - Bruno Quintard
- Laboratoire de Psychologie (LabPsy) EA4139, Univ. Bordeaux, 3 ter Place de la Victoire, Bâtiment A - 1er étage, 33000 Bordeaux, France
| |
Collapse
|
18
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
20
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|
21
|
Ding C, Ma J, Yan H, Meng Y, Qi X, Qu K, Li F, Zhang J, Zhuzha B, Quji S, Chen N, Huang B, Lei C. Distribution of a missense mutation (rs525805167) within the SLC45A2 gene associated with climatic conditions in Chinese cattle. Gene X 2022; 835:146643. [PMID: 35710082 DOI: 10.1016/j.gene.2022.146643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
SLC45A2 is involved in the synthesis of melanin transporters. We investigated the association between single nucleotide polymorphisms (SNPs) of the SLC45A2 gene and humidity and hot conditions in indigenous cattle habitat. According to the Bovine Genome Variation Database and Selective Signatures (BGVD), we explored the frequency distribution of a missense mutation (NC_037347.1: c.1543A > G, p.ser515gly) in the SLC45A2 gene in Chinese indigenous cattle. This variation from serine to glycine caused a significant change in the protein modeling structure. PCR and partial DNA sequencing were used to genotype 541 individuals, including 28 Chinese indigenous cattle breeds as well as Angus and zebu. From our results, the mutant allele frequency of this SNP in Chinese native cattle increases gradually from north to south, which is consistent with the distribution of climatic conditions in China. In addition, according to association analysis of a missense mutation (NC_037347.1: c.1543A > G) (rs525805167) in Chinese cattle, it is closely related to the annual average temperature (T), relative humidity (RH), temperature and humidity index (THI) and solar radiation time (P < 0.01). Based on the statistical analysis of the data, we assumed that rs525805167 was associated with heat tolerance traits. Simple Summary: The characteristics of Chinese indigenous cattle are closely related to their climatic environment. In China, Bos taurus is mainly distributed in the northern regions; Bos indicus is mainly distributed in southern China. In addition, the average temperature is higher in the south than in the north, and there are many mixed ancestry breeds of B. taurus and B. indicus in the middle area. The SLC45A2 gene is related to melanin synthesis, which may be closely related to heat tolerance in cattle. The purpose of our study was to investigate whether the SLC45A2 gene is related to heat tolerance in Chinese indigenous cattle.
Collapse
Affiliation(s)
- Cong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junlin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huixuan Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yizhu Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan 675000, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Basang Zhuzha
- Institute of Animal Husbandry and Veterinary Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Suolang Quji
- Institute of Animal Husbandry and Veterinary Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
22
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
23
|
Characterization of a melanocyte progenitor population in human interfollicular epidermis. Cell Rep 2022; 38:110419. [PMID: 35235792 DOI: 10.1016/j.celrep.2022.110419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
Abstract
It is still unknown whether the human interfollicular epidermis harbors a reservoir of melanocyte precursor cells. Here, we clearly distinguish between three distinct types of melanocytes in human interfollicular epidermis: (1) cKit+CD90-, (2) cKit+CD90+, and (3) cKit-CD90+. Importantly, we identify the Kit tyrosine kinase receptor (cKit) as a marker expressed specifically in mature, melanin-producing melanocytes. Thus, both cKit+CD90- and cKit+CD90+ cells represent polydendritic, pigmented mature melanocytes, whereas cKit-CD90+ cells display bipolar, non-dendritic morphology with reduced melanin content. Additionally, using tissue-engineered pigmented dermo-epidermal skin substitutes (melDESSs), we reveal that the cKit expression also plays an important role during melanogenesis in melDESS in vivo. Interestingly, cKit-CD90+ cells lack the expression of markers such as HMB45, TYR, and TRP1 in vitro and in vivo. However, they co-express neural-crest progenitor markers and demonstrate multilineage differentiation potential in vitro. Hence, we propose that cKit-CD90+ cells constitute the precursor melanocyte reservoir in human interfollicular epidermis.
Collapse
|
24
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Evident hypopigmentation without other ocular deficits in Dutch patients with oculocutaneous albinism type 4. Sci Rep 2021; 11:11572. [PMID: 34078970 PMCID: PMC8172864 DOI: 10.1038/s41598-021-90896-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
To describe the phenotype of Dutch patients with oculocutaneous albinism type 4 (OCA4), we collected data on pigmentation (skin, hair, and eyes), visual acuity (VA), nystagmus, foveal hypoplasia, chiasmal misrouting, and molecular analyses of nine Dutch OCA4 patients from the Bartiméus Diagnostic Center for complex visual disorders. All patients had severely reduced pigmentation of skin, hair, and eyes with iris transillumination over 360 degrees. Three unrelated OCA4 patients had normal VA, no nystagmus, no foveal hypoplasia, and no misrouting of the visual pathways. Six patients had poor visual acuity (0.6 to 1.0 logMAR), nystagmus, severe foveal hypoplasia and misrouting. We found two novel variants in the SLC45A2 gene, c.310C > T; (p.Pro104Ser), and c.1368 + 3_1368 + 9del; (p.?). OCA4 patients of this Dutch cohort all had hypopigmentation of skin, hair, and iris translucency. However, patients were either severely affected with regard to visual acuity, foveal hypoplasia, and misrouting, or visually not affected at all. We describe for the first time OCA4 patients with an evident lack of pigmentation, but normal visual acuity, normal foveal development and absence of misrouting. This implies that absence of melanin does not invariably lead to foveal hypoplasia and abnormal routing of the visual pathways.
Collapse
|
26
|
Fernández A, Hayashi M, Garrido G, Montero A, Guardia A, Suzuki T, Montoliu L. Genetics of non-syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell Melanoma Res 2021; 34:786-799. [PMID: 33960688 DOI: 10.1111/pcmr.12982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Oculocutaneous albinism (OCA) is the most frequent presentation of albinism, a heterogeneous rare genetic condition generally associated with variable alterations in pigmentation and with a profound visual impairment. There are non-syndromic and syndromic types of OCA, depending on whether the gene product affected impairs essentially the function of melanosomes or, in addition, that of other lysosome-related organelles (LROs), respectively. Syndromic OCA can be more severe and associated with additional systemic consequences, beyond pigmentation and vision alterations. In addition to OCA, albinism can also be presented without obvious skin and hair pigmentation alterations, in ocular albinism (OA), and a related genetic condition known as foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA). In this review, we will focus only in the genetics of skin pigmentation in OCA, both in human and mouse, updating our current knowledge on this subject.
Collapse
Affiliation(s)
- Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Gema Garrido
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Andrea Montero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Ana Guardia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
27
|
Lavinda O, Manga P, Orlow SJ, Cardozo T. Biophysical Compatibility of a Heterotrimeric Tyrosinase-TYRP1-TYRP2 Metalloenzyme Complex. Front Pharmacol 2021; 12:602206. [PMID: 33995009 PMCID: PMC8114058 DOI: 10.3389/fphar.2021.602206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
Tyrosinase (TYR) is a copper-containing monooxygenase central to the function of melanocytes. Alterations in its expression or activity contribute to variations in skin, hair and eye color, and underlie a variety of pathogenic pigmentary phenotypes, including several forms of oculocutaneous albinism (OCA). Many of these phenotypes are linked to individual missense mutations causing single nucleotide variants and polymorphisms (SNVs) in TYR. We previously showed that two TYR homologues, TYRP1 and TYRP2, modulate TYR activity and stabilize the TYR protein. Accordingly, to investigate whether TYR, TYRP1, and TYRP2 are biophysically compatible with various heterocomplexes, we computationally docked a high-quality 3D model of TYR to the crystal structure of TYRP1 and to a high-quality 3D model of TYRP2. Remarkably, the resulting TYR-TYRP1 heterodimer was complementary in structure and energy with the TYR-TYRP2 heterodimer, with TYRP1 and TYRP2 docking to different adjacent surfaces on TYR that apposed a third realistic protein interface between TYRP1-TYRP2. Hence, the 3D models are compatible with a heterotrimeric TYR-TYRP1-TYRP2 complex. In addition, this heterotrimeric TYR-TYRP1-TYRP2 positioned the C-terminus of each folded enzymatic domain in an ideal position to allow their C-terminal transmembrane helices to form a putative membrane embedded three-helix bundle. Finally, pathogenic TYR mutations causing OCA1A, which also destabilize TYR biochemically, cluster on an unoccupied protein interface at the periphery of the heterotrimeric complex, suggesting that this may be a docking site for OCA2, an anion channel. Pathogenic OCA2 mutations result in similar phenotypes to those produced by OCA1A TYR mutations. While this complex may be difficult to detect in vitro, due to the complex environment of the vertebrate cellular membranous system, our results support the existence of a heterotrimeric complex in melanogenesis.
Collapse
Affiliation(s)
- Olga Lavinda
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Seth J Orlow
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
28
|
Scales JL, Koroma DC, Oancea E. Single organelle measurements of melanosome pH using the novel ratiometric indicator RpHiMEL. Methods Enzymol 2021; 654:315-344. [PMID: 34120720 DOI: 10.1016/bs.mie.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Melanocytes are specialized cells that produce melanin pigments responsible for skin, hair, and eye pigmentation. The synthesis and storage of melanin occurs in unique lysosome-related organelles called melanosomes, which regulate melanin production via complex regulatory mechanisms. Maintenance of the melanosome luminal ionic environment and pH is crucial for proper function of the main melanogenic enzymes. Defects in genes encoding pH-regulating melanosomal proteins result in oculocutaneous albinism, which is characterized by hypopigmentation, impaired vision, and increased susceptibility to skin and eye cancers. We recently uncovered several ion channels and transporters that modulate melanin synthesis by acidifying or neutralizing the luminal pH of melanosomes. However, our understanding of how melanosomes and other related organelles maintain their luminal pH is far from complete. The study of melanosome pH regulation requires robust imaging and quantification tools. Despite recent advances in the development of such methods, many limitations remain, particularly for quantitative analysis of individual organelle pH. In this chapter, we will provide an overview of the available methods used for melanosome pH determination, including their advantages, limitations, and challenges. To address the critical, unmet need for reliable melanosome pH quantification tools, we engineered a novel genetically encoded, ratiometric pH sensor for melanosomes that we named RpHiMEL. Here, we describe the design and optimization of RpHiMEL, and provide a pH quantification method for individual melanosomes in live cells. We demonstrate that RpHiMEL is a highly versatile tool with the potential to advance our understanding of pH regulation in melanosomes and related organelles.
Collapse
Affiliation(s)
- Jessica L Scales
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Donald C Koroma
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States.
| |
Collapse
|
29
|
Wakamatsu K, Zippin JH, Ito S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res 2021; 34:730-747. [PMID: 33751833 DOI: 10.1111/pcmr.12970] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Melanins are widely distributed in animals and plants; in vertebrates, most melanins are present on the body surface. The diversity of pigmentation in vertebrates is mainly attributed to the quantity and ratio of eumelanin and pheomelanin synthesis. Most natural melanin pigments in animals consist of both eumelanin and pheomelanin in varying ratios, and thus, their combined synthesis is called "mixed melanogenesis." Gene expression is an established mechanism for controlling melanin synthesis; however, there are multiple factors that affect melanin synthesis besides gene expression. Due to the differential sensitivity of the eumelanin and pheomelanin synthetic pathways to pH, melanosomal pH likely plays a major role in mixed melanogenesis. Here, we focused on various factors affecting mixed melanogenesis including (1) chemical regulation of melanin synthesis, (2) melanosomal pH regulation during normal melanogenesis and effect on mixed melanogenesis, and (3) mechanisms of melanosomal pH control (proton pumps, channels, transporters, and signaling pathways).
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| |
Collapse
|
30
|
Transcriptome analysis and candidate gene identification reveals insights into the molecular mechanisms of hypermelanosis in Chinese tongue sole (Cynoglossus semilaevis). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Kessel L, Kjer B, Lei U, Duno M, Grønskov K. Genotype-phenotype associations in Danish patients with ocular and oculocutaneous albinism. Ophthalmic Genet 2021; 42:230-238. [PMID: 33612058 DOI: 10.1080/13816810.2021.1881979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The study aimed to describe genotype-phenotype associations in patients with oculocutaneous and ocular-only albinism and to evaluate a set of diagnostic criteria proposed recently by Kruijt et al. MATERIALS AND METHODS Genotype-phenotype associations in patients with a clinical diagnosis of albinism were studied based on imaging of hair and ocular features (nystagmus, iris color and translucency, fundus pigmentation and foveal development) and self-evaluated skin type. Patients were sub-grouped based on genetic findings. RESULTS Patients with biallelic variants in TYR (n = 29), OCA2 (n = 22), other albinism genes (n = 13) or monoallelic variants in GPR143 (n = 13) were included as were 15 patients with a pure clinical diagnosis but no genetic findings. In descending order the most common findings were: foveal hypoplasia (any hypoplasia 95.2%, severe 88.0%), nystagmus (93.5%), iris translucency (any translucency 80.2%, moderate to severe 31.5%), misrouting on VEP (80.0%): fundus hypopigmentation (any hypopigmentation: 75.8%, severe 30.1%), fair skin type (73.8%), blue irides (62.0%), blonde hair (57.5%), and unpigmented eye lashes (39.1%). There were no phenotypic differences between the different genetic subgroups of albinism but patients with a pathogenic haplotype in TYR in combination with a classic variant had less iris translucency than patients with two classic variants in TYR. CONCLUSIONS Ocular developmental features were the most common findings whereas phenotypic features related to pigmentation were less common findings but there were no genotype-phenotype correlations. All patients with a genetically confirmed diagnosis of albinism fulfilled the diagnostic criteria by Kruijt irrespective of genetic subtype.
Collapse
Affiliation(s)
- Line Kessel
- Department of Ophthalmology, Rigshospitalet-Kennedy Center, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen Denmark
| | - Birgit Kjer
- Department of Ophthalmology, Rigshospitalet-Kennedy Center, Denmark
| | - Ulrikke Lei
- Department of Clinical Medicine, University of Copenhagen, Copenhagen Denmark.,Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet-Kennedy Center, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet-Kennedy Center, Denmark
| |
Collapse
|
32
|
Current and emerging treatments for albinism. Surv Ophthalmol 2020; 66:362-377. [PMID: 33129801 DOI: 10.1016/j.survophthal.2020.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Albinism is a group of rare inherited disorders arising from impairment of melanin biosynthesis. The reduction of melanin synthesis leads to hypopigmentation of the skin and eyes. A wide range of ophthalmic manifestations arise from albinism, including reduction of visual acuity, nystagmus, strabismus, iris translucency, foveal hypoplasia, fundus hypopigmentation, and abnormal decussation of retinal ganglion cell axons at the optic chiasm. Currently, albinism is incurable, and treatment aims either surgically or pharmacologically to optimize vision and protect the skin; however, novel therapies that aim to directly address the molecular errors of albinism, such as l-dihydroxyphenylalanine and nitisinone, are being developed and have entered human trials though with limited success. Experimental gene-based strategies for editing the genetic errors in albinism have also met early success in animal models. The emergence of these new therapeutic modalities represents a new era in the management of albinism. We focus on the known genetic subtypes, clinical assessment, and existing and emerging therapeutic options for the nonsyndromic forms of albinism.
Collapse
|
33
|
Okamura K, Suzuki T. Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell Melanoma Res 2020; 34:190-203. [PMID: 32969595 DOI: 10.1111/pcmr.12927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Oculocutaneous albinism (OCA), which is roughly divided into non-syndromic and syndromic OCA, is a group of autosomal recessive disorders caused by mutations in genes associated with pigmentation. Patients with OCA have hypopigmentation and ocular manifestations such as photophobia, amblyopia, and nystagmus. Hermansky-Pudlak syndrome (HPS), the most common syndromic OCA, is characterized by the additional features of a bleeding tendency and other critical systemic comorbidities such as pulmonary fibrosis and immunodeficiency. NGS-based gene analyses have identified several new causative genes for OCA and have detected rare subtypes of OCA with high accuracy including Japanese patients. In our survey of 190 Japanese OCA patients/families, OCA4 is the most common subtype (25.3%) followed by OCA1 (20.0%), HPS1 (14.7%), and OCA2 (8.4%). Similar to the A481T variant in OCA2, which is associated with a mild form of OCA2 and skin color variation, the c.-492_489delAATG variant located in the promoter region of SLC45A2 has been uniquely identified in Japanese patients with a mild form of OCA4. Further, rare OCA subtypes, including OCA3, HPS2, HPS3, HPS4, HPS5, HPS6, and HPS9, have also been identified in Japanese patients. The clinical characteristics and underlying molecular mechanisms of each subtype of OCA are concisely summarized in this review.
Collapse
Affiliation(s)
- Ken Okamura
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
34
|
Le L, Escobar IE, Ho T, Lefkovith AJ, Latteri E, Haltaufderhyde KD, Dennis MK, Plowright L, Sviderskaya EV, Bennett DC, Oancea E, Marks MS. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation. Mol Biol Cell 2020; 31:2687-2702. [PMID: 32966160 PMCID: PMC7927184 DOI: 10.1091/mbc.e20-03-0200] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Tina Ho
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ariel J Lefkovith
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily Latteri
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| | - Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Megan K Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Biology Department, Marist College, Poughkeepsie, NY 12601
| | - Lynn Plowright
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| |
Collapse
|
35
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
36
|
Schidlowski L, Liebert F, Iankilevich PG, Rebellato PRO, Rocha RA, Almeida NAP, Jain A, Wu Y, Itan Y, Rosati R, Prando C. Non-syndromic Oculocutaneous Albinism: Novel Genetic Variants and Clinical Follow Up of a Brazilian Pediatric Cohort. Front Genet 2020; 11:397. [PMID: 32411182 PMCID: PMC7198815 DOI: 10.3389/fgene.2020.00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Oculocutaneous albinism (OCA) is a genetic disorder characterized by skin, hair, and eye hypopigmentation due to a reduction or absence of melanin. Clinical manifestations include vision problems and a high susceptibility to skin cancer. In its non-syndromic form, OCA is associated with six genes and one chromosomal region. Because OCA subtypes are not always clinically distinguishable, molecular analysis has become an important tool for classifying types of OCA, which facilitates genetic counseling and can guide the development of new therapies. We studied eight Brazilian individuals aged 1.5–18 years old with clinical diagnosis of OCA. Assessment of ophthalmologic characteristics showed results consistent with albinism, including reduced visual acuity, nystagmus, and loss of stereoscopic vision. We also observed the appearance of the strabismus and changes in static refraction over a 2-year period. Dermatologic evaluation showed that no participants had preneoplastic skin lesions, despite half of the participants reporting insufficient knowledge about skin care in albinism. Whole-exome and Sanger sequencing revealed eight different mutations: six in the TYR gene and two in the SLC45A2 gene, of which one was novel and two were described in a population study but were not previously associated with the OCA phenotype. We performed two ophthalmological evaluations, 2 years apart; and one dermatological evaluation. To the best of our knowledge, this is the first study to perform clinical follow-up and genetic analysis of a Brazilian cohort with albinism. Here, we report three new OCA causing mutations.
Collapse
Affiliation(s)
- Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Fernando Liebert
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | | | | | | | | | - Aayushee Jain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Hospital Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
37
|
Wiriyasermkul P, Moriyama S, Nagamori S. Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183318. [PMID: 32333855 PMCID: PMC7175901 DOI: 10.1016/j.bbamem.2020.183318] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are unique organelles in melanocytes that produce melanin, the pigment for skin, hair, and eye color. Tyrosinase is the essential and rate-limiting enzyme for melanin production, that strictly requires neutral pH for activity. pH maintenance is a result of the combinational function of multiple ion transport proteins. Thus, ion homeostasis in melanosomes is crucial for melanin synthesis. Defect of the ion transport system causes various pigmentation phenotypes, from mild effect to severe disorders such as albinism. In this review, we summarize the up-to-date knowledge of the ion transport system, such as transport function, structure, and the physiological roles and mechanisms of the ion transport proteins in melanosomes. In addition, we propose a model of melanosomal ion transport system-how the functional coupling of multiple transport proteins modulates and maintains ion homeostasis. We discuss melanin synthesis in terms of the ion transport system.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Satomi Moriyama
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Shushi Nagamori
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
38
|
Abstract
Of all the big cats, or perhaps of all the endangered wildlife, the tiger may be both the most charismatic and most well-recognized flagship species in the world. The rapidly changing field of molecular genetics, particularly advances in genome sequencing technologies, has provided new tools to reconstruct what characterizes a tiger. Here we review how applications of molecular genomic tools have been used to depict the tiger's ancestral roots, phylogenetic hierarchy, demographic history, morphological diversity, and genetic patterns of diversification on both temporal and geographical scales. Tiger conservation, stabilization, and management are important areas that benefit from use of these genome resources for developing survival strategies for this charismatic megafauna both in situ and ex situ.
Collapse
Affiliation(s)
- Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
39
|
Wu KC, Lv JN, Yang H, Yang FM, Lin R, Lin Q, Shen RJ, Wang JB, Duan WH, Hu M, Zhang J, He ZL, Jin ZB. Nonhuman Primate Model of Oculocutaneous Albinism with TYR and OCA2 Mutations. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1658678. [PMID: 32259106 PMCID: PMC7086374 DOI: 10.34133/2020/1658678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
Human visual acuity is anatomically determined by the retinal fovea. The ontogenetic development of the fovea can be seriously hindered by oculocutaneous albinism (OCA), which is characterized by a disorder of melanin synthesis. Although people of all ethnic backgrounds can be affected, no efficient treatments for OCA have been developed thus far, due partly to the lack of effective animal models. Rhesus macaques are genetically homologous to humans and, most importantly, exhibit structures of the macula and fovea that are similar to those of humans; thus, rhesus macaques present special advantages in the modeling and study of human macular and foveal diseases. In this study, we identified rhesus macaque models with clinical characteristics consistent with those of OCA patients according to observations of ocular behavior, fundus examination, and optical coherence tomography. Genomic sequencing revealed a biallelic p.L312I mutation in TYR and a homozygous p.S788L mutation in OCA2, both of which were further confirmed to affect melanin biosynthesis via in vitro assays. These rhesus macaque models of OCA will be useful animal resources for studying foveal development and for preclinical trials of new therapies for OCA.
Collapse
Affiliation(s)
- Kun-Chao Wu
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Ji-Neng Lv
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Hui Yang
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Feng-Mei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Rui Lin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Qiang Lin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jun-Bin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Wen-Hua Duan
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
| | - Jun Zhang
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
- Laboratory of Retinal Physiology & Disease, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhan-Long He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| |
Collapse
|
40
|
Lewis SS, Girisha KM. Whole exome sequencing identifies a novel pathogenic variation [p.(Gly194valfs*7)] in SLC45A2 in the homozygous state in multiple members of a family with oculocutaneous albinism in southern India. Clin Exp Dermatol 2019; 45:409-413. [PMID: 31630438 DOI: 10.1111/ced.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 01/16/2023]
Abstract
Deleterious mutations within the SLC45A2 gene, encoding membrane-associated transporter protein (MATP), are responsible for type 4 oculocutaneous albinism. The cytogenetic location of SLC45A2 is 5p13.2 and it comprises seven exons located over around 40 kb. Its encoded protein, MATP, is 530 amino acids long and has 12 putative transmembrane domains. MATP is synthesized within melanocytes. It is in these cells that melanogenesis takes place and the melanin is contained within specialized organelles called melanosomes. Previous studies have shown that when MATP expression was reduced using small interfering RNA in MNT-1 melanoma cells, pH was lowered within melanosomes, they became poorly melanized and tyrosinase activity within melanocytes was also reduced. This type of albinism produces a broad spectrum of phenotypes, ranging from complete absence of melanin to brown hair and brown irides. In the current study, blood was collected from a family in which four members had oculocutaneous albinism, showing a complete absence of melanin in skin, hair and eyes. Screening of the TYR gene using the extracted DNA showed no mutation and therefore whole exome sequencing analysis was performed. A novel deletion mutation c.579delG [p.(Gly194Valfs*7)] in the SLC45A2 gene, predicted to be pathogenic and to result in both frameshift and premature termination of the MATP chain, was identified. These data add to the information pertaining to the mutation spectrum of OCA4.
Collapse
Affiliation(s)
- S S Lewis
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
41
|
Yao L, Bao A, Hong W, Hou C, Zhang Z, Liang X, Aniwashi J. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin. PeerJ 2019; 7:e8077. [PMID: 31772839 PMCID: PMC6875393 DOI: 10.7717/peerj.8077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the molecular mechanisms determining the coat color of native breed sheep in Xinjiang. Methods Bashibai sheep, Yemule white sheep and Tulufan black sheep were selected. Illumina HiSeq X Ten sequencing technology was used to detect the genes responsible for the white, light brown, black and cyan gray coat colors in sheep. Sequence analysis and functional gene annotation analysis were performed to analyze the results. The signal pathways and differentially expressed genes related to sheep hair color production regulation were screened and finally verified by real-time polymerase chain reaction. Results Functional annotation by Kyoto Encyclopedia of Genes and Genomes analysis revealed significant differences in enrichment of immunity-related pathways as well as melanogenesis synthetic and tyrosine metabolism pathways. Our results showed that the DCT, TYR, TYRP1, PMEL, SLC45A2 and MLANA six genes may be associated with the regulation of coat color development and provide a theoretical basis for selecting natural coat colors of sheep.
Collapse
Affiliation(s)
- Lidan Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Aodungerile Bao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wenjuan Hong
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Chenxi Hou
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zhenliang Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaopeng Liang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jueken Aniwashi
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
42
|
Nathan V, Johansson PA, Palmer JM, Howlie M, Hamilton HR, Wadt K, Jönsson G, Brooks KM, Pritchard AL, Hayward NK. Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma. Pigment Cell Melanoma Res 2019; 32:854-863. [PMID: 31233279 DOI: 10.1111/pcmr.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022]
Abstract
Approximately 1%-2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next-generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four-case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.
Collapse
Affiliation(s)
- Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley R Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Highlands and Islands, Inverness, Scotland
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Zhong Z, Gu L, Zheng X, Ma N, Wu Z, Duan J, Zhang J, Chen J. Comprehensive analysis of spectral distribution of a large cohort of Chinese patients with non-syndromic oculocutaneous albinism facilitates genetic diagnosis. Pigment Cell Melanoma Res 2019; 32:672-686. [PMID: 31077556 PMCID: PMC6852118 DOI: 10.1111/pcmr.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/31/2019] [Accepted: 05/05/2019] [Indexed: 12/25/2022]
Abstract
Non-syndromic oculocutaneous albinism (nsOCA) is a group of genetically heterogeneous autosomal recessive disorders with complete lack or decrease pigmentation in skin, hair, and eyes. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, and LRMDA were reported to cause OCA1-4 and OCA6-7, respectively. By sequencing all the known nsOCA genes in 114 unrelated Chinese nsOCA patients combined with In silico analyses, splicing assay, and classification of variants according to the standards and guidelines of American College of Medical Genetics and Genomics, we detected seventy-one different OCA-causing variants separately in TYR, OCA2, SLC45A2, and SLC24A5, including thirty-one novel variants (13 in TYR, 11 in OCA2, and 7 in SLC45A2). This study shows that OCA1 is the most common (75/114) and OCA2 ranks the second most common (16/114) in Chinese. 99 patients of our cohort were caused by variants of all the known nsOCA genes. Cutaneous phenotypes of OCA1, OCA2, and OCA4 patients were shown in this study. The second OCA6 case in China was identified here. These data expand the spectrum of OCA variants as well phenotype and facilitate clinical implement of Chinese OCA patients.
Collapse
Affiliation(s)
- Zilin Zhong
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China.,Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Li Gu
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujie Zheng
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Nengjun Ma
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Zehua Wu
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Juan Duan
- Department of Auxiliary Reproductive, Jiujiang Maternal and Child Health Hospital, Jiujiang, China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Chen
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China.,Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
45
|
Onojafe IF, Megan LH, Melch MG, Aderemi JO, Alur RP, Abu-Asab MS, Chan CC, Bernardini IM, Albert JS, Cogliati T, Adams DR, Brooks BP. Minimal Efficacy of Nitisinone Treatment in a Novel Mouse Model of Oculocutaneous Albinism, Type 3. Invest Ophthalmol Vis Sci 2019; 59:4945-4952. [PMID: 30347088 PMCID: PMC6181301 DOI: 10.1167/iovs.16-20293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Oral nitisinone has been shown to increase fur and ocular pigmentation in a mouse model of oculocutaneous albinism (OCA) due to hypomorphic mutations in tyrosinase (TYR), OCA1B. This study determines if nitisinone can improve ocular and/or fur pigmentation in a mouse model of OCA type 3 (OCA3), caused by mutation of the tyrosinase-related protein 1 (Tyrp1) gene. Methods Mice homozygous for a null allele in the Tyrp1 gene (C57BL/6J-Tyrp1 b-J/J) were treated with 8 mg/kg nitisinone or vehicle every other day by oral gavage. Changes in fur and ocular melanin pigmentation were monitored. Mature ocular melanosome number and size were quantified in pigmented ocular structures by electron microscopy. Results C57BL/6J-Tyrp1 b-J/J mice carry a novel c.403T>A; 404delG mutation in Tyrp1, predicted to result in premature truncation of the TYRP1 protein. Nitisinone treatment resulted in an approximately 7-fold increase in plasma tyrosine concentrations without overt toxicity. After 1 month of treatment, no change in the color of fur or pigmented ocular structures was observed. The distribution of melanosome cross-sectional area was unchanged in ocular tissues. There was no significant difference in the number of pigmented melanosomes in the RPE/choroid of nitisinone-treated and control groups. However, there was a significant difference in the number of pigmented melanosomes in the iris. Conclusions Treatment of a mouse model of OCA3 with oral nitisinone did not have a favorable clinical effect on melanin production and minimally affected the number of pigmented melanosomes in the iris stroma. As such, treatment of OCA3 patients with nitisinone is unlikely to be therapeutic.
Collapse
Affiliation(s)
- Ighovie F Onojafe
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lucyanne H Megan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Madeline G Melch
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Joseph O Aderemi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ramakrishna P Alur
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mones S Abu-Asab
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Isa M Bernardini
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jessica S Albert
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
46
|
Baxter LL, Watkins-Chow DE, Pavan WJ, Loftus SK. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res 2019; 32:348-358. [PMID: 30339321 PMCID: PMC10413850 DOI: 10.1111/pcmr.12743] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Over the past century, studies of human pigmentary disorders along with mouse and zebrafish models have shed light on the many cellular functions associated with visible pigment phenotypes. This has led to numerous genes annotated with the ontology term "pigmentation" in independent human, mouse, and zebrafish databases. Comparisons among these datasets revealed that each is individually incomplete in documenting all genes involved in integument-based pigmentation phenotypes. Additionally, each database contained inherent species-specific biases in data annotation, and the term "pigmentation" did not solely reflect integument pigmentation phenotypes. This review presents a comprehensive, cross-species list of 650 genes involved in pigmentation phenotypes that was compiled with extensive manual curation of genes annotated in OMIM, MGI, ZFIN, and GO. The resulting cross-species list of genes both intrinsic and extrinsic to integument pigment cells provides a valuable tool that can be used to expand our knowledge of complex, pigmentation-associated pathways.
Collapse
Affiliation(s)
- Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Holl HM, Pflug KM, Yates KM, Hoefs‐Martin K, Shepard C, Cook DG, Lafayette C, Brooks SA. A candidate gene approach identifies variants in
SLC
45A2
that explain dilute phenotypes, pearl and sunshine, in compound heterozygote horses. Anim Genet 2019; 50:271-274. [DOI: 10.1111/age.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2019] [Indexed: 02/06/2023]
Affiliation(s)
- H. M. Holl
- Etalon Inc Menlo Park CA 94025 USA
- Department of Animal Sciences University of Florida Gainesville FL 32607 USA
| | - K. M. Pflug
- Department of Animal Sciences University of Florida Gainesville FL 32607 USA
| | - K. M. Yates
- Department of Animal Sciences University of Florida Gainesville FL 32607 USA
| | | | | | - D. G. Cook
- Etalon Inc Menlo Park CA 94025 USA
- Biology Department Morehead State University Morehead KY 40351 USA
| | | | - S. A. Brooks
- Etalon Inc Menlo Park CA 94025 USA
- Department of Animal Sciences University of Florida Gainesville FL 32607 USA
| |
Collapse
|
48
|
McKay BS. Pigmentation and vision: Is GPR143 in control? J Neurosci Res 2019; 97:77-87. [PMID: 29761529 PMCID: PMC6235735 DOI: 10.1002/jnr.24246] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
Albinism, typically characterized by decreased melanin synthesis, is associated with significant visual deficits owing to developmental changes during neurosensory retina development. All albinism is caused by genetic mutations in a group of diverse genes including enzymes, transporters, G-protein coupled receptor. Interestingly, these genes are not expressed in the neurosensory retina. Further, regardless of cause of albinism, all forms of albinism have the same retinal pathology, the extent of which is variable. In this review, we explore the possibility that this similarity in retinal phenotype is because all forms of albinism funnel through the same final common pathway. There are currently seven known genes linked to the seven forms of ocular cutaneous albinism. These types of albinism are the most common, and result in changes to all pigmented tissues (hair, skin, eyes). We will discuss the incidence and mechanism, where known, to develop a picture as to how the mutations cause albinism. Next, we will examine the one form of albinism which causes tissue-specific pathology, ocular albinism, where the eye exhibits the retinal albinism phenotype despite near normal melanin synthesis. We will discuss a potential way to treat the disease and restore normal retinal development. Finally, we will briefly discuss the possibility that this same pathway may intersect with the most common cause of permanent vision loss in the elderly.
Collapse
Affiliation(s)
- Brian S McKay
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
49
|
Iwanishi S, Zaitsu S, Shibata H, Nitasaka E. An albino mutant of the Japanese rat snake (Elaphe climacophora) carries a nonsense mutation in the tyrosinase gene. Genes Genet Syst 2018; 93:163-167. [PMID: 30158334 DOI: 10.1266/ggs.18-00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Japanese rat snake (Elaphe climacophora) is a common species in Japan and is widely distributed across the Japanese islands. An albino mutant of the Japanese rat snake ("pet trade" albino) has been bred and traded by hobbyists for around two decades because of its remarkable light-yellowish coloration with red eyes, attributable to a lack of melanin. Another albino Japanese rat snake mutant found in a natural population of the Japanese rat snake at high frequency in Iwakuni City, Yamaguchi Prefecture is known as "Iwakuni no Shirohebi". It has been conserved by the government as a natural monument. The Iwakuni albino also lacks melanin, having light-yellowish body coloration and red eyes. Albino mutants of several organisms have been studied, and mutation of the tyrosinase gene (TYR) is responsible for this phenotype. By determining the sequence of the TYR coding region of the pet trade albino, we identified a nonsense mutation in the second exon. Furthermore, RT-PCR revealed that TYR transcripts were not detected in this snake. These findings suggest that mutation of TYR is responsible for the albino phenotype of the pet trade line of the Japanese rat snake. However, the Iwakuni albino did not share this TYR mutation; thus, these two albino lines differ in their origins.
Collapse
Affiliation(s)
- Shuzo Iwanishi
- Graduate School of Systems Life Sciences, Kyushu University
| | - Shohei Zaitsu
- Graduate School of Systems Life Sciences, Kyushu University
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University
| | - Eiji Nitasaka
- Department of Biological Science, Faculty of Science, Kyushu University
| |
Collapse
|
50
|
Comprehensive Review of the Genetics of Albinism. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2018. [DOI: 10.1177/0145482x1811200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction It is important to understand albinism, since it is a disorder associated with visual impairment, predisposition to malignant melanomas, and social stigma. The main objective of this article is to review the genetics and biologic mechanisms of the non-syndromic albinism subtypes and to describe associated clinical manifestations. We also discuss research on its treatments. Methods A review of the published literature on albinism subtypes was performed, spanning basic laboratory research, published case reports, and experiences of people with albinism. Results Clear progress has been made in comprehending the causes of albinism; research has shed light on the complexity of the disorder and has led to the molecular classification of subtypes. Discussion Despite the increase in knowledge with regards to albinism, gaps still exist. It is important to continue the pursuit of unraveling the mechanism of the disorder and to monitor the frequency of the subtypes worldwide in order to aid in the development of treatments. Furthermore, disseminating knowledge of albinism is crucial for future progress. Implications for practitioners Albinism is a disorder characterized by hypopigmentation of the hair, skin, and eyes, with accompanying ocular abnormalities that remain relatively stable throughout life. The disorder is defined by a spectrum of pigmentation where albinism is more evident among individuals of dark complexion than their lighter-pigmented peers. Patients with albinism require protection against sun exposure and special resources to address visual impairments. When albinism patients are diagnosed and properly accommodated, they generally report a positive quality of life.
Collapse
|