1
|
Hassan NE, Al-Janabi AA. Investigation of Interferon Gamma Activity Using Bioinformatics Methods. ARCHIVES OF RAZI INSTITUTE 2021; 76:1245-1253. [PMID: 35355749 PMCID: PMC8934094 DOI: 10.22092/ari.2021.356106.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/02/2021] [Indexed: 05/25/2023]
Abstract
Breast cancer grows from the breast tissue and is a severe health problem worldwide. Genetics is believed to be the primary cause of all cases of breast cancer via gene mutation. Bioinformatics methodology has been used to determine the sequences and structures of bioactive substances. This study aimed to analyze the function and structure of the Interferon Gamma (IFNγ) in healthy controls and patients with breast cancer using bioinformatics methods. Blood samples were collected from 75 patients with breast cancer and 25 healthy subjects as control samples. The results showed transition mutation (30%) and transversion mutation (70%) in patients with breast cancer. Moreover, missense mutations (84%) and silent mutations (16%) were detected by BLAST. In addition, the amino acid of the IFNγ protein consisting of alpha-helical, β-sheet, and coil of secondary structure was determined in this study using BioEdit. The results of the physicochemical properties of the IFNγ protein reflect the function, stability, molecular weight, isoelectric point, and instability index of the IFNγ protein using ProtParam. Moreover, the results of mutation affected the percentage of alpha-helix, β-turns, and coil in breast cancer patients compared to healthy groups with reference of NCBI using PSIpred program. Additionally, the PHYRE2 server and RasMol program showed a tertiary structure of the IFNγ protein in breast cancer patients. Furthermore, the STRING program revealed the poly IFNγ protein interacted with other proteins to perform its functions normally. From the recorded data in the current study, it was concluded that IFNγ is considered a marker for patients with breast cancer.
Collapse
Affiliation(s)
- N E Hassan
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - A A Al-Janabi
- Department of Applied Science, University of Technology, Baghdad, Iraq
| |
Collapse
|
2
|
Verkerk AJMH, Zeidler S, Breedveld G, Overbeek L, Huigh D, Koster L, van der Linde H, de Esch C, Severijnen LA, de Vries BBA, Swagemakers SMA, Willemsen R, Hoogeboom AJM, van der Spek PJ, Oostra BA. CXorf56, a dendritic neuronal protein, identified as a new candidate gene for X-linked intellectual disability. Eur J Hum Genet 2018; 26:552-560. [PMID: 29374277 DOI: 10.1038/s41431-017-0051-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
Intellectual disability (ID) comprises a large group of heterogeneous disorders, often without a known molecular cause. X-linked ID accounts for 5-10% of male ID cases. We investigated a large, three-generation family with mild ID and behavior problems in five males and one female, with a segregation suggestive for X-linked inheritance. Linkage analysis mapped a disease locus to a 7.6 Mb candidate region on the X-chromosome (LOD score 3.3). Whole-genome sequencing identified a 2 bp insertion in exon 2 of the chromosome X open reading frame 56 gene (CXorf56), resulting in a premature stop codon. This insertion was present in all intellectually impaired individuals and carrier females. Additionally, X-inactivation status showed skewed methylation patterns favoring the inactivation of the mutated allele in the unaffected carrier females. We demonstrate that the insertion leads to nonsense-mediated decay and that CXorf56 mRNA expression is reduced in the impaired males and female. In murine brain slices and primary hippocampal neuronal cultures, CXorf56 protein was present and localized in the nucleus, cell soma, dendrites, and dendritic spines. Although no other families have been identified with pathogenic variants in CXorf56, these results suggest that CXorf56 is the causative gene in this family, and thus a novel candidate gene for X-linked ID with behavior problems.
Collapse
Affiliation(s)
- Annemieke J M H Verkerk
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lydia Overbeek
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daphne Huigh
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Linda Koster
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Herma van der Linde
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Celine de Esch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lies-Anne Severijnen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Peter J van der Spek
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ben A Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Braathen GJ, Høyer H, Busk ØL, Tveten K, Skjelbred CF, Russell MB. Variants in the genes DCTN2, DNAH10, LRIG3, and MYO1A are associated with intermediate Charcot-Marie-Tooth disease in a Norwegian family. Acta Neurol Scand 2016; 134:67-75. [PMID: 26517670 PMCID: PMC5057358 DOI: 10.1111/ane.12515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
Introduction Charcot–Marie–Tooth disease (CMT) is a heterogeneous inherited neuropathy. The number of known CMT genes is rapidly increasing mainly due to next‐generation sequencing technology, at present more than 70 CMT‐associated genes are known. We investigated whether variants in the DCTN2 could cause CMT. Material and methods Fifty‐nine Norwegian CMT families from the general population with unknown genotype were tested by targeted next‐generation sequencing (NGS) for variants in DCTN2 along with 32 CMT genes and 19 other genes causing other inherited neuropathies or neuronopathies, due to phenotypic overlap. In the family with the DCTN2 variant, exome sequencing was then carried out on all available eight family members to rule out the presence of more potential variants. Results Targeted NGS identified in one family a variant of DCTN2, c.337C>T, segregating with the phenotype in five affected members, while it was not present in the three unaffected members. The DCTN2 variant c.337C>T; p.(His113Tyr) was neither found in in‐house controls nor in SNP databases. Exome sequencing revealed a singular heterozygous shared haplotype containing four genes, DCTN2,DNAH10,LRIG3, and MYO1A, with novel sequence variants. The haplotype was shared by all the affected members, while the unaffected members did not have it. Conclusions This is the first time a haplotype on chromosome 12 containing sequence variants in the genes DCTN2,DNAH10,LRIG3, and MYO1A has been linked to an inherited neuropathy in humans.
Collapse
Affiliation(s)
- G. J. Braathen
- Head and Neck Research Group Research Centre Akershus University Hospital Lørenskog Oslo Norway
- Institute of Clinical Medicine Campus Akershus University Hospital University of Oslo Nordbyhagen Oslo Norway
- Section of Medical Genetics Department of Laboratory Medicine Telemark Hospital Skien Norway
| | - H. Høyer
- Head and Neck Research Group Research Centre Akershus University Hospital Lørenskog Oslo Norway
- Institute of Clinical Medicine Campus Akershus University Hospital University of Oslo Nordbyhagen Oslo Norway
- Section of Medical Genetics Department of Laboratory Medicine Telemark Hospital Skien Norway
| | - Ø. L. Busk
- Section of Medical Genetics Department of Laboratory Medicine Telemark Hospital Skien Norway
| | - K. Tveten
- Section of Medical Genetics Department of Laboratory Medicine Telemark Hospital Skien Norway
| | - C. F. Skjelbred
- Section of Medical Genetics Department of Laboratory Medicine Telemark Hospital Skien Norway
| | - M. B. Russell
- Head and Neck Research Group Research Centre Akershus University Hospital Lørenskog Oslo Norway
- Institute of Clinical Medicine Campus Akershus University Hospital University of Oslo Nordbyhagen Oslo Norway
| |
Collapse
|
4
|
Kwong A, Shin VY, Au CH, Law FBF, Ho DN, Ip BK, Wong ATC, Lau SS, To RMY, Choy G, Ford JM, Ma ESK, Chan TL. Detection of Germline Mutation in Hereditary Breast and/or Ovarian Cancers by Next-Generation Sequencing on a Four-Gene Panel. J Mol Diagn 2016; 18:580-94. [PMID: 27157322 DOI: 10.1016/j.jmoldx.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 10/21/2022] Open
Abstract
Mutation in BRCA1/BRCA2 genes accounts for 20% of familial breast cancers, 5% to 10% of which may be due to other less penetrant genes which are still incompletely studied. Herein, a four-gene panel was used to examine the prevalence of BRCA1, BRCA2, TP53, and PTEN in hereditary breast and ovarian cancers in Southern Chinese population. In this cohort, 948 high-risk breast and/or ovarian patients were recruited for genetic screening by next-generation sequencing (NGS). The performance of our NGS pipeline was evaluated with 80 Sanger-validated known mutations and eight negative cases. With appropriate bioinformatics analysis pipeline, the detection sensitivity of NGS is comparable with Sanger sequencing. The prevalence of BRCA1/BRCA2 germline mutations was 9.4% in our Chinese cohort, of which 48.8% of the mutations arose from hotspot mutations. With the use of a tailor-made algorithm, HomopolymerQZ, more mutations were detected compared with single mutation detection algorithm. The frequencies of PTEN and TP53 were 0.21% and 0.53%, respectively, in the Southern Chinese patients with breast and/or ovarian cancers. High-throughput NGS approach allows the incorporation of control cohort that provides an ethnicity-specific data for polymorphic variants. Our data suggest that hotspot mutations screening such as SNaPshot could be an effective preliminary screening alternative adopted in a standard clinical laboratory without NGS setup.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong, People's Republic of China; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, People's Republic of China.
| | - Vivian Y Shin
- Department of Surgery, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Chun H Au
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Fian B F Law
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, People's Republic of China; Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Dona N Ho
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Bui K Ip
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Anthony T C Wong
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Silvia S Lau
- Department of Medical Physics and Research, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Rene M Y To
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Gigi Choy
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - James M Ford
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, People's Republic of China; Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, People's Republic of China; Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, People's Republic of China
| |
Collapse
|
5
|
Motley WW, Palaima P, Yum SW, Gonzalez MA, Tao F, Wanschitz JV, Strickland AV, Löscher WN, De Vriendt E, Koppi S, Medne L, Janecke AR, Jordanova A, Zuchner S, Scherer SS. De novo PMP2 mutations in families with type 1 Charcot-Marie-Tooth disease. Brain 2016; 139:1649-56. [PMID: 27009151 DOI: 10.1093/brain/aww055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/25/2016] [Indexed: 11/12/2022] Open
Abstract
We performed whole exome sequencing on a patient with Charcot-Marie-Tooth disease type 1 and identified a de novo mutation in PMP2, the gene that encodes the myelin P2 protein. This mutation (p.Ile52Thr) was passed from the proband to his one affected son, and segregates with clinical and electrophysiological evidence of demyelinating neuropathy. We then screened a cohort of 136 European probands with uncharacterized genetic cause of Charcot-Marie-Tooth disease and identified another family with Charcot-Marie-Tooth disease type 1 that has a mutation affecting an adjacent amino acid (p.Thr51Pro), which segregates with disease. Our genetic and clinical findings in these kindred demonstrate that dominant PMP2 mutations cause Charcot-Marie-Tooth disease type 1.
Collapse
Affiliation(s)
- William W Motley
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Department of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, Pennsylvania 19107, USA
| | - Paulius Palaima
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium
| | - Sabrina W Yum
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Michael A Gonzalez
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | - Feifei Tao
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | | | - Alleene V Strickland
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | | | - Els De Vriendt
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium
| | - Stefan Koppi
- Department of Neurology, State Hospital of Rankweil, Rankweil, Austria
| | - Livija Medne
- Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Andreas R Janecke
- Division of Human Genetics, Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Mutational spectrum of the SPAST and ATL1 genes in Korean patients with hereditary spastic paraplegia. J Neurol Sci 2015. [DOI: 10.1016/j.jns.2015.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Polla DL, Cardoso MTO, Silva MCB, Cardoso ICC, Medina CTN, Araujo R, Fernandes CC, Reis AMM, de Andrade RV, Pereira RW, Pogue R. Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders. PLoS One 2015; 10:e0138314. [PMID: 26380986 PMCID: PMC4575211 DOI: 10.1371/journal.pone.0138314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/28/2015] [Indexed: 01/19/2023] Open
Abstract
Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known.
Collapse
Affiliation(s)
- Daniel L. Polla
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria T. O. Cardoso
- Núcleo de Genética da Secretaria de Saúde do Distrito Federal, Brasília, Distrito Federal, Brazil
- Curso de Medicina, Universidade Católica de Brasília, Taguatinga, Distrito Federal, Brazil
| | - Mayara C. B. Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Isabela C. C. Cardoso
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Cristina T. N. Medina
- Núcleo de Genética da Secretaria de Saúde do Distrito Federal, Brasília, Distrito Federal, Brazil
| | - Rosenelle Araujo
- Núcleo de Genética da Secretaria de Saúde do Distrito Federal, Brasília, Distrito Federal, Brazil
| | - Camila C. Fernandes
- Departamento de Tecnologia, Laboratório Multiusuário Centralizado para Sequenciamento de DNA em Larga Escala e Análise de Expressão Gênica, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Campus Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Alessandra M. M. Reis
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Rosangela V. de Andrade
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Rinaldo W. Pereira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
8
|
Tuncer FN, Gormez Z, Calik M, Altiokka Uzun G, Sagiroglu MS, Yuceturk B, Yuksel B, Baykan B, Bebek N, Iscan A, Ugur Iseri SA, Ozbek U. A clinical variant in SCN1A inherited from a mosaic father cosegregates with a novel variant to cause Dravet syndrome in a consanguineous family. Epilepsy Res 2015; 113:5-10. [DOI: 10.1016/j.eplepsyres.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/12/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
|
9
|
Park H, Hong S, Cho SI, Cho TJ, Choi IH, Jin DK, Sohn YB, Park SW, Cho HH, Cheon JE, Kim SY, Kim JY, Park SS, Seong MW. Case of mild Schmid-type metaphyseal chondrodysplasia with novel sequence variation involving an unusual mutational site of the COL10A1 gene. Eur J Med Genet 2015; 58:175-9. [DOI: 10.1016/j.ejmg.2014.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|
10
|
Diggle CP, Moore DJ, Mali G, zur Lage P, Ait-Lounis A, Schmidts M, Shoemark A, Garcia Munoz A, Halachev MR, Gautier P, Yeyati PL, Bonthron DT, Carr IM, Hayward B, Markham AF, Hope JE, von Kriegsheim A, Mitchison HM, Jackson IJ, Durand B, Reith W, Sheridan E, Jarman AP, Mill P. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus. PLoS Genet 2014; 10:e1004577. [PMID: 25232951 PMCID: PMC4168999 DOI: 10.1371/journal.pgen.1004577] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.
Collapse
Affiliation(s)
| | - Daniel J. Moore
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Girish Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Geneva, Switzerland
| | - Miriam Schmidts
- Molecular Medicine Unit and Birth Defect Research Center, Institute of Child Health, University College London, London, United Kingdom
| | - Amelia Shoemark
- Paediatric Respiratory Department, Royal Brompton Hospital, London, United Kingdom
| | - Amaya Garcia Munoz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Mihail R. Halachev
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Patricia L. Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ian M. Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Bruce Hayward
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Jilly E. Hope
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Hannah M. Mitchison
- Molecular Medicine Unit and Birth Defect Research Center, Institute of Child Health, University College London, London, United Kingdom
| | - Ian J. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, UMR 5534 CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Geneva, Switzerland
| | - Eamonn Sheridan
- School of Medicine, University of Leeds, Leeds, United Kingdom
- * E-mail: (ES); (APJ); (PM)
| | - Andrew P. Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (ES); (APJ); (PM)
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (ES); (APJ); (PM)
| |
Collapse
|
11
|
Hall G, Gbadegesin RA, Lavin P, Wu G, Liu Y, Oh EC, Wang L, Spurney RF, Eckel J, Lindsey T, Homstad A, Malone AF, Phelan PJ, Shaw A, Howell DN, Conlon PJ, Katsanis N, Winn MP. A novel missense mutation of Wilms' Tumor 1 causes autosomal dominant FSGS. J Am Soc Nephrol 2014; 26:831-43. [PMID: 25145932 DOI: 10.1681/asn.2013101053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
FSGS is a clinical disorder characterized by focal scarring of the glomerular capillary tuft, podocyte injury, and nephrotic syndrome. Although idiopathic forms of FSGS predominate, recent insights into the molecular and genetic causes of FSGS have enhanced our understanding of disease pathogenesis. Here, we report a novel missense mutation of the transcriptional regulator Wilms' Tumor 1 (WT1) as the cause of nonsyndromic, autosomal dominant FSGS in two Northern European kindreds from the United States. We performed sequential genome-wide linkage analysis and whole-exome sequencing to evaluate participants from family DUK6524. Subsequently, whole-exome sequencing and direct sequencing were performed on proband DNA from family DUK6975. We identified multiple suggestive loci on chromosomes 6, 11, and 13 in family DUK6524 and identified a segregating missense mutation (R458Q) in WT1 isoform D as the cause of FSGS in this family. The identical mutation was found in family DUK6975. The R458Q mutation was not found in 1600 control chromosomes and was predicted as damaging by in silico simulation. We depleted wt1a in zebrafish embryos and observed glomerular injury and filtration defects, both of which were rescued with wild-type but not mutant human WT1D mRNA. Finally, we explored the subcellular mechanism of the mutation in vitro. WT1(R458Q) overexpression significantly downregulated nephrin and synaptopodin expression, promoted apoptosis in HEK293 cells and impaired focal contact formation in podocytes. Taken together, these data suggest that the WT1(R458Q) mutation alters the regulation of podocyte homeostasis and causes nonsyndromic FSGS.
Collapse
Affiliation(s)
- Gentzon Hall
- Division of Nephrology, Departments of Medicine, Duke Molecular Physiology Institute
| | | | - Peter Lavin
- Department of Transplant, Urology and Nephrology, Beaumont Hospital, Dublin, Ireland
| | | | - Yangfan Liu
- Cell Biology, Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Edwin C Oh
- Cell Biology, Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | | | | | - Jason Eckel
- Division of Nephrology, Departments of Medicine
| | | | | | - Andrew F Malone
- Division of Nephrology, Departments of Medicine, Duke Molecular Physiology Institute
| | - Paul J Phelan
- Division of Nephrology, Departments of Medicine, Duke Molecular Physiology Institute
| | - Andrey Shaw
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; and
| | | | - Peter J Conlon
- Department of Transplant, Urology and Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Nicholas Katsanis
- Departments of Medicine, Cell Biology, Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Michelle P Winn
- Division of Nephrology, Departments of Medicine, Duke Molecular Physiology Institute,
| |
Collapse
|
12
|
Siemiatkowska AM, Collin RWJ, den Hollander AI, Cremers FPM. Genomic approaches for the discovery of genes mutated in inherited retinal degeneration. Cold Spring Harb Perspect Med 2014; 4:a017137. [PMID: 24939053 PMCID: PMC4109577 DOI: 10.1101/cshperspect.a017137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In view of their high degree of genetic heterogeneity, inherited retinal diseases (IRDs) pose a significant challenge for identifying novel genetic causes. Thus far, more than 200 genes have been found to be mutated in IRDs, which together contain causal variants in >80% of the cases. Accurate genetic diagnostics is particularly important for isolated cases, in which X-linked and de novo autosomal dominant variants are not uncommon. In addition, new gene- or mutation-specific therapies are emerging, underlining the importance of identifying causative mutations in each individual. Sanger sequencing of selected genes followed by cost-effective targeted next-generation sequencing (NGS) can identify defects in known IRD-associated genes in the majority of the cases. Exome NGS in combination with genetic linkage or homozygosity mapping studies can aid the identification of the remaining causal genes. As these are thought to be mutated in <1% of the cases, validation through functional modeling in, for example, zebrafish and/or replication through the genotyping of large patient cohorts is required. In the near future, whole genome NGS in combination with transcriptome NGS may reveal mutations that are currently hidden in the noncoding regions of the human genome.
Collapse
Affiliation(s)
- Anna M Siemiatkowska
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Genetic diagnosis of Charcot-Marie-Tooth disease in a population by next-generation sequencing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:210401. [PMID: 25025039 PMCID: PMC4082881 DOI: 10.1155/2014/210401] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most prevalent inherited neuropathy. Today more than 40 CMT genes have been identified. Diagnosing heterogeneous diseases by conventional Sanger sequencing is time consuming and expensive. Thus, more efficient and less costly methods are needed in clinical diagnostics. We included a population based sample of 81 CMT families. Gene mutations had previously been identified in 22 families; the remaining 59 families were analysed by next-generation sequencing. Thirty-two CMT genes and 19 genes causing other inherited neuropathies were included in a custom panel. Variants were classified into five pathogenicity classes by genotype-phenotype correlations and bioinformatics tools. Gene mutations, classified certainly or likely pathogenic, were identified in 37 (46%) of the 81 families. Point mutations in known CMT genes were identified in 21 families (26%), whereas four families (5%) had point mutations in other neuropathy genes, ARHGEF10, POLG, SETX, and SOD1. Eleven families (14%) carried the PMP22 duplication and one family carried a MPZ duplication (1%). Most mutations were identified not only in known CMT genes but also in other neuropathy genes, emphasising that genetic analysis should not be restricted to CMT genes only. Next-generation sequencing is a cost-effective tool in diagnosis of CMT improving diagnostic precision and time efficiency.
Collapse
|
14
|
Molecular analysis and phenotypic study in 14 Chinese families with Bietti crystalline dystrophy. PLoS One 2014; 9:e94960. [PMID: 24739949 PMCID: PMC3989252 DOI: 10.1371/journal.pone.0094960] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the clinical features and cytochrome P450 family 4 subfamily V polypeptide 2 (CYP4V2) gene mutations in 14 Chinese families with Bietti crystalline dystrophy (BCD). Methods Seventeen patients from 14 unrelated Chinese families with BCD were recruited for complete clinical ophthalmic examination and genetic study. The 11 exons of CYP4V2 were amplified from genomic DNA of all patients and their family members by polymerase chain reaction (PCR) and then sequenced. Exons of TIMP3 were also sequenced in BCD patient associated with choroidal neovascularization (CNV). One hundred and seventy unrelated healthy Chinese subjects were screened for mutations in CYP4V2. Results All 17 patients with BCD had mutations in CYP4V2; one of these mutations was novel (c.219T>A, p.F73L) and four other mutations had been reported. The p.F73L mutation was a commonly detected mutation in our study (seven out of 34 alleles), either in the homozygous state or in the heterozygous state. Among the patients, considerable phenotypic variability was detected, both within and between families. Screening of TIMP3 did not find any mutation in the BCD patient associated with CNV. Conclusion The novel CYP4V2 c.219T>A (p.F73L) mutation may be another recurrent mutation in Chinese patients with BCD. Our study expands the mutation spectrum of CYP4V2 and characterizes novel genotype–phenotype associations in Chinese patients with BCD.
Collapse
|
15
|
Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, Wu G, Homstad A, Sparks MA, Gomez J, Jiang R, Alonso A, Lavin P, Conlon P, Korstanje R, Stander MC, Shamsan G, Barua M, Spurney R, Singhal PC, Kopp JB, Haller H, Howell D, Pollak MR, Shaw AS, Schiffer M, Winn MP. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 2014; 25:1991-2002. [PMID: 24676636 DOI: 10.1681/asn.2013090976] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1-associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm-associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton.
Collapse
Affiliation(s)
- Rasheed A Gbadegesin
- Departments of Pediatrics, Center for Human Genetics, Duke University Medical Center, Durham, North Carolina;
| | - Gentzon Hall
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina; Medicine, and
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nils Hanke
- Department of Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Irini Tossidou
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Guanghong Wu
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina; Medicine, and
| | - Alison Homstad
- Departments of Pediatrics, Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | | | | | - Ruiji Jiang
- Departments of Pediatrics, Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Andrea Alonso
- Departments of Pediatrics, Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Peter Lavin
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina; Medicine, and Trinity Health Kidney Centre, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - Peter Conlon
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Ron Korstanje
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; The Jackson Laboratory, Bar Harbor, Maine
| | - M Christine Stander
- Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Ghaidan Shamsan
- Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Moumita Barua
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Pravin C Singhal
- Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | | | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Andrey S Shaw
- Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Mario Schiffer
- Department of Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Michelle P Winn
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina; Medicine, and
| |
Collapse
|
16
|
Erken E, Köroğlu Ç, Yıldız F, Özer HTE, Gülek B, Tolun A. A novel recessive 15-hydroxyprostaglandin dehydrogenase mutation in a family with primary hypertrophic osteoarthropathy. Mod Rheumatol 2014; 25:315-21. [DOI: 10.3109/14397595.2013.874757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Ayhan Ö, Balkan M, Guven A, Hazan R, Atar M, Tok A, Tolun A. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet 2014; 51:239-44. [PMID: 24431330 DOI: 10.1136/jmedgenet-2013-102102] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Azoospermia is the absence of a measurable level of spermatozoa in the semen. It affects approximately 1% of all men, and the genetic basis of the majority of idiopathic cases is unknown. We investigated two unrelated consanguineous families with idiopathic azoospermia. In family 1, there were three azoospermic brothers and one oligozoospermic brother; and in family 2, there were three azoospermic brothers. Testis biopsy in the brothers in family 2 had led to the diagnosis of maturation arrest in the spermatid stage. METHODS Candidate disease loci were found via linkage mapping using data from single nucleotide polymorphism genome scans. Exome sequencing was applied to find the variants at the loci. RESULTS We identified two candidate loci in each family and homozygous truncating mutations p.R611X in TAF4B in family 1 and p.K507Sfs*3 in ZMYND15 in family 2. We did not detect any mutations in these genes in a cohort of 45 azoospermic and 15 oligozoospermic men. Expression studies for ZMYND15 showed that the highest expression was in the testis. CONCLUSIONS Both genes are known to have roles in spermatogenesis in mice but neither has been studied in humans. To our knowledge, they are the first genes identified for recessive idiopathic spermatogenic failure in men. Assuming that recessive genes for isolated azoospermia are as numerous in men as in mice, each gene is possibly responsible for only a small fraction of all cases.
Collapse
Affiliation(s)
- Özgecan Ayhan
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
18
|
van Zyl T, Jerling JC, Conradie KR, Feskens EJM. Common and rare single nucleotide polymorphisms in the LDLR gene are present in a black South African population and associate with low-density lipoprotein cholesterol levels. J Hum Genet 2013; 59:88-94. [DOI: 10.1038/jhg.2013.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 11/09/2022]
|
19
|
Seo JY, Jang MA, Kim HJ, Lee KO, Kim SH, Kim HJ. Sequence variation data of F8 and F9 genes in functionally validated control individuals: implications on the molecular diagnosis of hemophilia. Blood Res 2013; 48:206-10. [PMID: 24086941 PMCID: PMC3786281 DOI: 10.5045/br.2013.48.3.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 12/05/2022] Open
Abstract
Background The F8 and F9 genes encode for coagulation factor VIII (FVIII) and FIX, respectively, and mutations in these genes are the genetic basis of hemophilia A/B. To determine whether a sequence variation in F8/F9 is a disease-causing mutation, frequency data from a control population is needed. This study aimed to obtain data on sequence variation in F8/F9 in a set of functionally validated control chromosomes of Korean descent. Methods We re-sequenced F8 and F9 from DNA samples of 100 Korean male control individuals with normal PT, aPTT, and FVIII activity. PCR and direct sequencing analyses were performed using primer pairs to cover all coding regions and the flanking intronic sequences. Results Thirteen individuals (13%) were hemizygous for sequence variations in the coding region of F8. Six (6%) had c.3780C>G (p.Asp1260Glu), five (5%) had c.3864A>C (p.Ser1288=). One each individual (1%) had c.4794G>T (p.Glu1598Asp) and c.5069 A>G (p.Glu1690Gly). Asp1260Glu and Ser1288= were known SNPs (rs1800291 and rs1800292, respectively). Glu1598Asp was assigned as a missense mutation in public databases (HGMD and HAMSTeRS), and Glu1690Gly was a novel variation. Based on the normal FVIII activities in control individuals carrying these variations (109% and 148%, respectively), they were considered to be rare SNPs. No variation was observed in F9 of control individuals. Conclusion A significant proportion of control individuals carried sequence variations in F8, but not in F9. These results can be used as a reference dataset for molecular diagnosis of hemophilia A and B, particularly in Korea.
Collapse
Affiliation(s)
- Ja Young Seo
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
20
|
A homozygous 237-kb deletion at 1p31 identified as the locus for midline cleft of the upper and lower lip in a consanguineous family. Eur J Hum Genet 2013; 22:333-7. [PMID: 23860042 DOI: 10.1038/ejhg.2013.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023] Open
Abstract
Orofacial clefts are congenital defects that vary widely in type and severity, and can occur in isolation or in association with a variety of other defects. Herein, we describe a consanguineous family afflicted with a unique form of orofacial clefting manifesting as a facial midline defect that also involves mandibular and maxillary structures. All four affected sibs had median clefts of the upper and lower lips, tooth misalignment, and poor oral hygiene. Linkage analysis of 17 family members identified a 15.3-Mb pair recessive locus at 1p31 with a LOD score of 3.63. To the best of our knowledge, this is, to date, the first locus reported for facial midline clefting and the first recessive locus for an isolated orofacial defect. The locus harboured a novel intergenic deletion of 273 164 bp, for which all fully affected sibs were homozygous. We did not note any potentially pathogenic gene variant at the 1p31 locus via exome-sequencing analysis. The identified deletion could be harbouring a regulatory element for the gene associated with the orofacial defect. The best candidate for the putative target gene is LHX8, located 49 149 bp upstream of the deletion. The gene is known to be associated with facial development in several animals. Four other family members had a subclinical phenotype--a simple notch in the lower lip or an increase in the interdental distance between the lower incisors--indicative of very low-level expression of the trait.
Collapse
|
21
|
Köroğlu Ç, Seven M, Tolun A. Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. J Med Genet 2013; 50:515-20. [PMID: 23749988 DOI: 10.1136/jmedgenet-2013-101634] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Infantile neuroaxonal dystrophy (INAD) is a recessive disease that results in total neurological degeneration and death in childhood. PLA2G6 mutation is the underlying genetic defect, but rare genetic heterogeneity has been demonstrated. One of the five families we studied did not link to PLA2G6 locus, and in the family one of the two affected siblings additionally had atypical features including facial dysmorphism, pectus carinatum, scoliosis, pes varus, zygodactyly and bilateral cryptorchidism as well as cerebellar atrophy, as previously reported. METHODS Sural biopsy was investigated by electron microscopy. PLA2G6 was screened for mutations by Sanger sequencing. In the mutation-free family, candidate disease loci were found via linkage analysis using data from single nucleotide polymorphism genome scans. Exome sequencing was applied to find the variants at the loci. RESULTS PLA2G6 mutations were identified in four families including the one with an unusually severe phenotype that led to death within the first 2 years of life. In the remaining family, seven candidate loci totalling 15.2 Mb were found and a homozygous truncating mutation p.Q642X was identified in NALCN at 13q32.3. The patients are around 20-years-old. CONCLUSIONS NALCN is the gene responsible for INAD with facial dysmorphism. The patients have lived to adulthood despite severe growth and neuromotor retardation. NALCN forms a voltage-independent ion channel with a role in the regulation of neuronal excitability. Our findings broaden the spectrum of genes associated with neuroaxonal dystrophy. Testing infants with idiopathic severe growth retardation and neurodegeneration for NALCN mutations could benefit families.
Collapse
Affiliation(s)
- Çiğdem Köroğlu
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | |
Collapse
|
22
|
Cho Y, Kim J, Kim Y, Jeong J, Lee KA. A case of late-onset Li-Fraumeni-like syndrome with unilateral breast cancer. Ann Lab Med 2013; 33:212-6. [PMID: 23667851 PMCID: PMC3646199 DOI: 10.3343/alm.2013.33.3.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/28/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare, inherited syndrome associated with increased risk of various early-onset tumors. Since the introduction of classic LFS criteria, various criteria have been proposed to include patients with incomplete LFS features, which make up Li-Fraumeni-like syndromes (LFL). Germline missense mutations of TP53 are the primary cause of LFS and LFL. Mutations mostly reside in the DNA-binding domain of the gene and have a dominant-negative effect (DNE) over alternate wild-type alleles. Germline TP53 mutation c.566C>T results in the missense mutation GCC (Ala) to GTC (Val) at codon 189 (A189V) and has been reported in a case of multiple primary colon tumors. Herein we report a second case of the same mutation in a breast cancer patient, who has familial history of late-onset malignancies. Due to the relatively late onset of malignancies, neither case fulfils previously defined criteria for the syndrome. Mutational analysis for breast tissue in this patient showed a loss of heterozygosity. These clinical features may suggest a relatively weak DNE of A189V compared to other TP53 mutations, and in silico predictions and in vitro findings of the function of A189V mutant protein are conflicting. Considering the increased risk of malignancies and the therapeutic implications for patients who have a TP53 mutation, care must be taken when treating those who are suspected of possessing cancer-prone traits due to TP53 mutation, especially when there is a family history of late-onset cancer with low penetrance.
Collapse
Affiliation(s)
- Yonggeun Cho
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
23
|
Erken E, Köroğlu Ç, Yıldız F, Özer HTE, Gülek B, Tolun A. A novel recessive 15-hydroxyprostaglandin dehydrogenase mutation in a family with primary hypertrophic osteoarthropathy. Mod Rheumatol 2013. [DOI: 10.1007/s10165-013-0882-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Köroğlu Ç, Baysal L, Cetinkaya M, Karasoy H, Tolun A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 2012; 19:320-4. [PMID: 23211418 DOI: 10.1016/j.parkreldis.2012.11.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
Familial parkinson's disease is both clinically and genetically heterogeneous. By mapping the disease locus with a lod score of 5.13 to a < 3.5 Mbp region at 1p31.3 in a consanguineous family and subsequent exome sequencing analysis, we identified homozygous truncating mutation p.Q734X in DNAJC6. Four members of the family were afflicted with juvenile parkinsonism that presented with mental retardation, pyramidal signs and epilepsy, as well as varying degrees of a progressive neurological disease. Recently a splicing mutation in the same gene was reported in two brothers with juvenile parkinsonism that was not L-Dopa responsive and not accompanied by pyramidal signs or mental retardation. Also, an 80-kb deletion that included DNAJC6 sequences was identified in a boy reported as having obesity, epilepsy and mental retardation but not any signs of parkinsonism. The phenotype of our study family resembles both of those families, which among themselves do not share any clinical features. Our findings further establish DNAJC6 as a juvenile parkinsonism gene, and expand the spectrums of the parkinsonism phenotype and DNAJC6 mutation. DNAJC6 encodes the neuronal co-chaperone auxilin. We found that its transcript is highly significantly more abundant in brain as compared to the non-neural tissues assayed.
Collapse
Affiliation(s)
- Çiğdem Köroğlu
- Boğaziçi University, Department of Molecular Biology and Genetics, KP 301, Bebek, 34342 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
25
|
Bedoyan JK, Schaibley VM, Peng W, Bai Y, Mondal K, Shetty AC, Durham M, Micucci JA, Dhiraaj A, Skidmore JM, Kaplan JB, Skinner C, Schwartz CE, Antonellis A, Zwick ME, Cavalcoli JD, Li JZ, Martin DM. Disruption of RAB40AL function leads to Martin--Probst syndrome, a rare X-linked multisystem neurodevelopmental human disorder. J Med Genet 2012; 49:332-40. [PMID: 22581972 PMCID: PMC3350147 DOI: 10.1136/jmedgenet-2011-100575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIM Martin--Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. METHODS AND RESULTS Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. CONCLUSIONS This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development.
Collapse
|
26
|
McIntosh AM, Bennett C, Dickson D, Anestis SF, Watts DP, Webster TH, Fontenot MB, Bradley BJ. The apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes). PLoS One 2012; 7:e47760. [PMID: 23112842 PMCID: PMC3480407 DOI: 10.1371/journal.pone.0047760] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background The human apolipoprotein E (APOE) gene is polymorphic, with three primary alleles (E2, E3, E4) that differ at two key non-synonymous sites. These alleles are functionally different in how they bind to lipoproteins, and this genetic variation is associated with phenotypic variation for several medical traits, including cholesterol levels, cardiovascular health, Alzheimer’s disease risk, and longevity. The relative frequencies of these alleles vary across human populations, and the evolution and maintenance of this diversity is much debated. Previous studies comparing human and chimpanzee APOE sequences found that the chimpanzee sequence is most similar to the human E4 allele, although the resulting chimpanzee protein might function like the protein coded for by the human E3 allele. However, these studies have used sequence data from a single chimpanzee and do not consider whether chimpanzees, like humans, show intra-specific and subspecific variation at this locus. Methodology and Principal Findings To examine potential intraspecific variation, we sequenced the APOE gene of 32 chimpanzees. This sample included 20 captive individuals representing the western subspecies (P. troglodytes verus) and 12 wild individuals representing the eastern subspecies (P. t. schweinfurthii). Variation in our resulting sequences was limited to one non-coding, intronic SNP, which showed fixed differences between the two subspecies. We also compared APOE sequences for all available ape genera and fossil hominins. The bonobo APOE protein is identical to that of the chimpanzee, and the Denisovan APOE exhibits all four human-specific, non-synonymous changes and appears functionally similar to the human E4 allele. Conclusions We found no coding variation within and between chimpanzee populations, suggesting that the maintenance of functionally diverse APOE polymorphisms is a unique feature of human evolution.
Collapse
Affiliation(s)
- Annick M. McIntosh
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Calvin Bennett
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Dara Dickson
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Stephanie F. Anestis
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - David P. Watts
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Timothy H. Webster
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - M. Babette Fontenot
- Division of Behavioral Sciences, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Brenda J. Bradley
- Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A, Martins MS, Bunney TD, Santich BH, Moir S, Kuhns DB, Long Priel DA, Ombrello A, Stone D, Ombrello MJ, Khan J, Milner JD, Kastner DL, Aksentijevich I. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 2012; 91:713-20. [PMID: 23000145 DOI: 10.1016/j.ajhg.2012.08.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/11/2012] [Accepted: 08/08/2012] [Indexed: 12/13/2022] Open
Abstract
Whole-exome sequencing was performed in a family affected by dominantly inherited inflammatory disease characterized by recurrent blistering skin lesions, bronchiolitis, arthralgia, ocular inflammation, enterocolitis, absence of autoantibodies, and mild immunodeficiency. Exome data from three samples, including the affected father and daughter and unaffected mother, were filtered for the exclusion of reported variants, along with benign variants, as determined by PolyPhen-2. A total of eight transcripts were identified as possible candidate genes. We confirmed a variant, c.2120C>A (p.Ser707Tyr), within PLCG2 as the only de novo variant that was present in two affected family members and not present in four unaffected members. PLCG2 encodes phospholipase Cγ2 (PLCγ2), an enzyme with a critical regulatory role in various immune and inflammatory pathways. The p.Ser707Tyr substitution is located in an autoinhibitory SH2 domain that is crucial for PLCγ2 activation. Overexpression of the altered p.Ser707Tyr protein and ex vivo experiments using affected individuals' leukocytes showed clearly enhanced PLCγ2 activity, suggesting increased intracellular signaling in the PLCγ2-mediated pathway. Recently, our laboratory identified in individuals with cold-induced urticaria and immune dysregulation PLCG2 exon-skipping mutations resulting in protein products with constitutive phospholipase activity but with reduced intracellular signaling at physiological temperatures. In contrast, the p.Ser707Tyr substitution in PLCγ2 causes a distinct inflammatory phenotype that is not provoked by cold temperatures and that has different end-organ involvement and increased intracellular signaling at physiological temperatures. Our results highlight the utility of exome-sequencing technology in finding causal mutations in nuclear families with dominantly inherited traits otherwise intractable by linkage analysis.
Collapse
Affiliation(s)
- Qing Zhou
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, Lund J, Hedley PL, Camm AJ, Wettrell G, Fosdal I, Christiansen M, Børglum AD. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet 2012; 91:703-12. [PMID: 23040497 DOI: 10.1016/j.ajhg.2012.08.015] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/03/2012] [Accepted: 08/15/2012] [Indexed: 01/13/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.
Collapse
Affiliation(s)
- Mette Nyegaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huey ED, Nagy PL, Rodriguez-Murillo L, Manoochehri M, Goldman J, Lieberman J, Karayiorgou M, Mayeux R. C9ORF72 repeat expansions not detected in a group of patients with schizophrenia. Neurobiol Aging 2012; 34:1309.e9-10. [PMID: 23036583 DOI: 10.1016/j.neurobiolaging.2012.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
A hexanucleotide repeat expansion in C9ORF72 was recently found to cause some cases of frontotemporal lobar degeneration, frontotemporal dementia (FTD)-amyotrophic lateral sclerosis, and amyotrophic lateral sclerosis. Patients with frontotemporal lobar degeneration with the C9ORF72 repeat expansion are more likely than those without to present with psychosis. In this study, we screened DNA samples from 192 unrelated subjects with schizophrenia for the C9ORF72 repeat expansion. None of the subjects with schizophrenia had the pathogenic expansion. C9ORF72 repeat expansions either do not cause schizophrenia, or do so rarely (less than 1% of cases).
Collapse
Affiliation(s)
- Edward D Huey
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Guven A, Gunduz A, Bozoglu TM, Yalcinkaya C, Tolun A. Novel NDE1 homozygous mutation resulting in microhydranencephaly and not microlyssencephaly. Neurogenetics 2012; 13:189-94. [PMID: 22526350 DOI: 10.1007/s10048-012-0326-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
Abstract
Lissencephaly is characterized by deficient cortical lamination. Recently homozygous NDE1 mutations were reported in three kindred afflicted with extreme microcephaly with lissencephaly or microlissencephaly. Another severe developmental defect that involves the brain is microhydranencephaly which manifests with microcephaly, motor and mental retardation and brain malformations that include gross dilation of the ventricles with complete absence of the cerebral hemispheres or severe delay in their development. In the three related patients with microhydranencephaly that we had reported previously, we identified a homozygous deletion that encompasses NDE1 exon 2 containing the initiation codon. The mutation is predicted to result in a null allele. Herein we compare the clinical phenotypes of our research patients to those reported as microlissencephaly. The clinical findings in our patients having the fourth NDE1 mutation reported so far widen the spectrum of brain malformations resulting from mutations in NDE1.
Collapse
Affiliation(s)
- Ayse Guven
- Department of Molecular Biology and Genetics, Boğaziçi University, KP 301, Bebek, 34342 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
31
|
Grünert SC, Schwab KO, Pohl M, Sass JO, Santer R. Fanconi-Bickel syndrome: GLUT2 mutations associated with a mild phenotype. Mol Genet Metab 2012; 105:433-7. [PMID: 22214819 DOI: 10.1016/j.ymgme.2011.11.200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Fanconi-Bickel syndrome (FBS, OMIM #227810), a congenital disorder of carbohydrate metabolism, is caused by mutations in GLUT2 (SLC2A2), the gene encoding the glucose transporter protein-2. The typical clinical picture is characterized by hepatorenal glycogen accumulation resulting in hepato- and nephromegaly, impaired utilization of glucose and galactose, proximal tubular nephropathy, rickets, and severe short stature. We report on two siblings with FBS and an unusually mild clinical course. A 9.5-year-old boy with failure to thrive was diagnosed at the age of 9 months, his younger sister (4.5 years) was investigated in the first months of life and also diagnosed with FBS. Both patients were found to be compound heterozygous for the novel GLUT2 (SLC2A2) mutations c.457_462delCTTATA (p.153_4delLI) and c.1250C>G (p.P417R). On a diet restricted in free glucose and galactose, both children showed normal growth. Hepatomegaly, nephromegaly and hypophosphatemic rickets have never been observed. Glucosuria and tubular proteinuria were only mild compared to previously reported patients with FBS. This report describes an unusually mild phenotype of FBS expanding the spectrum of this disease. Some clinical signs that have been considered hallmarks of FBS like hepatomegaly and short stature may be absent in this condition. As a consequence, clinicians will have to look for GLUT2 mutations even in patients with isolated glucosuria.
Collapse
Affiliation(s)
- Sarah Catharina Grünert
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Lohmann E, Köroğlu Ç, Hanagasi HA, Dursun B, Taşan E, Tolun A. A homozygous frameshift mutation of sepiapterin reductase gene causing parkinsonism with onset in childhood. Parkinsonism Relat Disord 2012; 18:191-3. [DOI: 10.1016/j.parkreldis.2011.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 10/16/2022]
|
33
|
Estimation of carrier frequencies of six autosomal-recessive Mendelian disorders in the Korean population. J Hum Genet 2011; 57:139-44. [PMID: 22170460 DOI: 10.1038/jhg.2011.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although many studies have been performed to identify mutations in Korean patients with various autosomal-recessive Mendelian disorders (AR-MDs), little is known about the carrier frequencies of AR-MDs in the Korean population. Twenty common mutations from six AR-MDs, including Wilson disease (WD), non-syndromic hearing loss (NSHL), glycogen storage disease type Ia (GSD Ia), phenylketonuria (PKU), congenital hypothyroidism (CH), and congenital lipoid adrenal hyperplasia (CLAH) were selected to screen for based on previous studies. A total of 3057 Koreans were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed by confirmation using the Sanger sequencing. We found 201 and 8 carriers with either one or two mutations in different genes, respectively, yielding a total carrier frequency of 1 in 15 (6.7%). Of the six AR-MDs, NSHL has the highest carrier frequency followed by WD, CH, CLAH, GSD Ia, and PKU. As carrier screening tests are becoming prevalent and the number of mutations known and tested is rising, a priori data on the carrier frequencies in different ethnic groups is mandatory to plan a population screening program and to estimate its efficiency. In light of this, the present results can be used as a basis to establish a screening policy for common AR-MRs in the Korean population.
Collapse
|
34
|
Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome. Am J Hum Genet 2011; 89:668-74. [PMID: 22077972 PMCID: PMC3213389 DOI: 10.1016/j.ajhg.2011.10.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 01/23/2023] Open
Abstract
Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice.
Collapse
|
35
|
Chan YM, Broder-Fingert S, Paraschos S, Lapatto R, Au M, Hughes V, Bianco SDC, Min L, Plummer L, Cerrato F, De Guillebon A, Wu IH, Wahab F, Dwyer A, Kirsch S, Quinton R, Cheetham T, Ozata M, Ten S, Chanoine JP, Pitteloud N, Martin KA, Schiffmann R, Van der Kamp HJ, Nader S, Hall JE, Kaiser UB, Seminara SB. GnRH-deficient phenotypes in humans and mice with heterozygous variants in KISS1/Kiss1. J Clin Endocrinol Metab 2011; 96:E1771-81. [PMID: 21880801 PMCID: PMC3205899 DOI: 10.1210/jc.2011-0518] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT KISS1 is a candidate gene for GnRH deficiency. OBJECTIVE Our objective was to identify deleterious mutations in KISS1. PATIENTS AND METHODS DNA sequencing and assessment of the effects of rare sequence variants (RSV) were conducted in 1025 probands with GnRH-deficient conditions. RESULTS Fifteen probands harbored 10 heterozygous RSV in KISS1 seen in less than 1% of control subjects. Of the variants that reside within the mature kisspeptin peptide, p.F117L (but not p.S77I, p.Q82K, p.H90D, or p.P110T) reduces inositol phosphate generation. Of the variants that lie within the coding region but outside the mature peptide, p.G35S and p.C53R (but not p.A129V) are predicted in silico to be deleterious. Of the variants that lie outside the coding region, one (g.1-3659C→T) impairs transcription in vitro, and another (c.1-7C→T) lies within the consensus Kozak sequence. Of five probands tested, four had abnormal baseline LH pulse patterns. In mice, testosterone decreases with heterozygous loss of Kiss1 and Kiss1r alleles (wild-type, 274 ± 99, to double heterozygotes, 69 ± 16 ng/dl; r(2) = 0.13; P = 0.03). Kiss1/Kiss1r double-heterozygote males have shorter anogenital distances (13.0 ± 0.2 vs. 15.6 ± 0.2 mm at P34, P < 0.001), females have longer estrous cycles (7.4 ± 0.2 vs. 5.6 ± 0.2 d, P < 0.01), and mating pairs have decreased litter frequency (0.59 ± 0.09 vs. 0.71 ± 0.06 litters/month, P < 0.04) and size (3.5 ± 0.2 vs. 5.4 ± 0.3 pups/litter, P < 0.001) compared with wild-type mice. CONCLUSIONS Deleterious, heterozygous RSV in KISS1 exist at a low frequency in GnRH-deficient patients as well as in the general population in presumably normal individuals. As in Kiss1(+/-)/Kiss1r(+/-) mice, heterozygous KISS1 variants in humans may work with other genetic and/or environmental factors to cause abnormal reproductive function.
Collapse
|
36
|
Salzmann A, Guipponi M, Lyons PJ, Fricker LD, Sapio M, Lambercy C, Buresi C, Ouled Amar Bencheikh B, Lahjouji F, Ouazzani R, Crespel A, Chaigne D, Malafosse A. Carboxypeptidase A6 gene (CPA6) mutations in a recessive familial form of febrile seizures and temporal lobe epilepsy and in sporadic temporal lobe epilepsy. Hum Mutat 2011; 33:124-35. [DOI: 10.1002/humu.21613] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/25/2011] [Indexed: 11/10/2022]
|
37
|
Kim OH, Park H, Seong MW, Cho TJ, Nishimura G, Superti-Furga A, Unger S, Ikegawa S, Choi IH, Song HR, Kim HW, Yoo WJ, Shim JS, Chung CY, Oh CW, Jeong C, Song KS, Seo SG, Cho SI, Yeo IK, Kim SY, Park S, Park SS. Revisit of multiple epiphyseal dysplasia: Ethnic difference in genotypes and comparison of radiographic features linked to the COMP and MATN3 genes. Am J Med Genet A 2011; 155A:2669-80. [DOI: 10.1002/ajmg.a.34246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 07/14/2011] [Indexed: 01/15/2023]
|
38
|
Bennett TM, Shiels A. A recurrent missense mutation in GJA3 associated with autosomal dominant cataract linked to chromosome 13q. Mol Vis 2011; 17:2255-62. [PMID: 21897748 PMCID: PMC3164684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/16/2011] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To map and identify the genetic defect underlying autosomal dominant cataract segregating in a 5-generation Caucasian American family. METHODS Genomic DNA was prepared from blood leukocytes, genotyping was performed using microsatellite markers, and logarithm of the odds (LOD) scores were calculated using the LINKAGE programs. Mutation profiling was performed using direct exon cycle-sequencing and restriction fragment analysis. Protein function effects were evaluated using in silico prediction algorithms. RESULTS Significant evidence of linkage was obtained at marker D13S175 (maximum LOD score [Z(max)]=3.67; maximum recombination fraction [θ(max)]=0.04) and D13S1316 (Z(max)=2.80, θ(max)=0.0). Haplotyping indicated that the disease lay in the ~170 Kb physical interval between D13S1316 and D13S175, which contained the gene for gap-junction protein alpha-3 (GJA3) or connexin-46. Sequencing of GJA3 detected a heterozygous transition (c.130G>A) in exon-2 that resulted in gain of an Hsp92 II restriction site. Allele-specific PCR amplification and restriction analysis confirmed that the novel Hsp92 II site co-segregated with cataract in the family but was not detected in 192 normal unrelated individuals. The c.130G>A transition was predicted to result in a non-conservative substitution of valine-to-methionine at codon 44 (p.V44M) with damaging effects on protein function. CONCLUSIONS These data confirm GJA3 as one of the most frequently mutated genes that underlie autosomal dominant cataract in humans, and further emphasize the importance of connexin function in maintaining lens transparency.
Collapse
Affiliation(s)
- Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO
- Department of Genetics, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
39
|
Lee H, Kim DC, Lee JH, Cho YG, Lee HS, Choi SI, Kim DS. [Molecular genetic analysis of the ryanodine receptor gene (RYR1) in Korean malignant hyperthermia families]. Korean J Lab Med 2011; 30:702-10. [PMID: 21157159 DOI: 10.3343/kjlm.2010.30.6.702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) is genetically heterogeneous, with mutations in the gene encoding the skeletal muscle ryanodine receptor (RYR1) at 19q13.1 accounting for up to 80% of the cases. However, the search for known and novel mutations in the RYR1 gene is hampered by the fact that the gene contains 106 exons. We aimed to analyze mutations from the entire RYR1 coding region in Korean MH families. METHODS We investigated seven affected MH individuals and their family members. The entire RYR1 coding region from the genomic DNA was sequenced, and RYR1 haplotyping and mutational analysis were carried out. RESULTS We identified nine different RYR1 mutations or variations from seven Korean MH families. Among these, five previously reported mutations (p.Gly248Arg, p.Arg2435His, p.Arg2458His, p.Arg2676Trp, and p.Leu4838Val) and four novel variations of unknown significance (p.Arg2508Cys, p.Met4022Val, p.Glu2669Lys, and p.Ala4295Val) were identified. In two families, two variations (R2676W & M4022V, R2435H & A4295V, respectively) were identified simultaneously. Four of the observed nine mutations or variations were located outside the hotspot region of RYR1 mutations. CONCLUSIONS These data indicate that RYR1 is a main candidate gene in Korean MH families, and that comprehensive screening of the entire coding sequence of the RYR1 gene is necessary for molecular genetic investigations in MH-susceptible individuals, owing to the presence of RYR1 mutations or variations outside of the hotspot region.
Collapse
Affiliation(s)
- Ho Lee
- Department of Forensic Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Yıldırım Y, Orhan EK, Iseri SAU, Serdaroglu-Oflazer P, Kara B, Solakoğlu S, Tolun A. A frameshift mutation of ERLIN2 in recessive intellectual disability, motor dysfunction and multiple joint contractures. Hum Mol Genet 2011; 20:1886-92. [PMID: 21330303 DOI: 10.1093/hmg/ddr070] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We present a family afflicted with a novel autosomal recessive disease characterized by progressive intellectual disability, motor dysfunction and multiple joint contractures. No pathology was found by cranial imaging, electromyography and muscle biopsy, but electron microscopy in leukocytes revealed large vacuoles containing flocculent material. We mapped the disease gene by SNP genome scan and linkage analysis to an ∼0.80 cM and 1 Mb region at 8p11.23 with a multipoint logarithm of odds (LOD) score of 12. By candidate gene approach, we identified a homozygous two-nucleotide insertion in ERLIN2, predicted to lead to the truncation of the protein by about 20%. The gene encodes endoplasmic reticulum (ER) lipid raft-associated protein 2 that mediates the ER-associated degradation of activated inositol 1,4,5-trisphosphate receptors and other substrates.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul 34342, Turkey
| | | | | | | | | | | | | |
Collapse
|
41
|
Yildirim Y, Tolun A, Tüysüz B. The phenotype caused by PYCR1 mutations corresponds to geroderma osteodysplasticum rather than autosomal recessive cutis laxa type 2. Am J Med Genet A 2011; 155A:134-40. [PMID: 21204221 DOI: 10.1002/ajmg.a.33747] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 09/12/2010] [Indexed: 12/16/2022]
Abstract
Geroderma osteodysplasticum is a rare autosomal recessive disorder characterized by wrinkled skin on the dorsum of the hands and feet, osteopenia, prognathism, and an elongated and lax face. The mutated gene was identified as GORAB (SCYL1BP1). As well, the PYCR1 gene also was shown to be mutated in a similar disease, designated cutis laxa, autosomal recessive, type IIB (ARCL2B) or cutis laxa with progeroid features. We describe here the clinical findings in four affected individuals in a family with geroderma osteodysplasticum with mental retardation and a homozygous mutation in PYCR1. Although the disease resulting from recessive mutations in that gene has been recently designated ARCL2B, some clinical features, such as prognathism, elongated and lax face, osteopenia and limitation of skin wrinkling to the dorsum of hands and feet, in the patients reported here as well as in others reported with PYCR1 mutations, are generally more common in geroderma osteodysplasticum resulting from recessive GORAB mutations. While the patients with GORAB mutations have severe osteopenia, the patients with PYCR1 mutations have severe mental retardation. In conclusion, the phenotype caused by PYCR1 mutations corresponds to geroderma osteodysplasticum rather than ARCL2B.
Collapse
Affiliation(s)
- Yeşerin Yildirim
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | |
Collapse
|
42
|
Sass JO, Fischer K, Wang R, Christensen E, Scholl-Bürgi S, Chang R, Kapelari K, Walter M. D-glyceric aciduria is caused by genetic deficiency of D-glycerate kinase (GLYCTK). Hum Mutat 2010; 31:1280-5. [DOI: 10.1002/humu.21375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 09/24/2010] [Indexed: 11/06/2022]
|
43
|
Ugur Iseri SA, Durlu YK, Tolun A. A novel recessive GUCY2D mutation causing cone-rod dystrophy and not Leber's congenital amaurosis. Eur J Hum Genet 2010; 18:1121-6. [PMID: 20517349 PMCID: PMC2987461 DOI: 10.1038/ejhg.2010.81] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 11/09/2022] Open
Abstract
Cone-rod dystrophies are inherited retinal dystrophies that are characterized by progressive degeneration of cones and rods, causing an early decrease in central visual acuity and colour vision defects, followed by loss of peripheral vision in adolescence or early adult life. Both genetic and clinical heterogeneity are well known. In a family with autosomal recessive cone-rod dystrophy, genetic analyses comprising genome scan with microsatellite markers, fine mapping and candidate gene approach resulted in the identification of a homozygous missense GUCY2D mutation. This is the first GUCY2D mutation associated with autosomal recessive cone-rod dystrophy rather than Leber's congenital amaurosis (LCA), a severe disease leading to childhood blindness. This study hence establishes GUCY2D, which is a common cause for both recessive LCA and dominant cone-rod dystrophy, as a good candidate for autosomal recessive cone-rod dystrophy.
Collapse
Affiliation(s)
- Sibel A Ugur Iseri
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Yusuf K Durlu
- Retina Section, Dünya Eye Hospital, Altunizade, Istanbul, Turkey
| | - Aslihan Tolun
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
44
|
Two inborn errors of metabolism in a newborn: glutaric aciduria type I combined with isobutyrylglycinuria. Clin Chim Acta 2010; 411:2087-91. [PMID: 20836999 DOI: 10.1016/j.cca.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/05/2010] [Accepted: 09/06/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glutaric aciduria type 1 (GA1) is an inborn error in the metabolism of the amino acids tryptophan, lysine and hydroxylysine due to mutations in the GCDH gene coding for glutaryl-CoA dehydrogenase. Affected individuals often suffer from an encephalopathic crisis in infancy or childhood which results in acute striatal injury leading to a severe dystonic-dyskinetic movement disorder. Isobutyryl-coenzyme dehydrogenase (IBD) is an enzyme encoded by the ACAD8 gene and involved in the catabolism of the branched-chain amino acid valine. Both GA1 and IBD deficiency can be detected by expanded newborn screening using tandem-mass spectrometry, if they are considered screening targets. METHODS Tandem-mass spectrometry and gas-chromatography with mass-selective detection were used for the assessment of key metabolites in body fluids of a patient with abnormal findings in newborn screening. Mutations were investigated by direct sequencing and by restriction fragment lengths analysis. Valine metabolism was studied in vitro in immortalized lymphocytes. RESULTS Following accumulation of acylcarnitines C5DC and C4, of 3-hydroxyglutaric acid and isobutyrylglycine in body fluids, sequence analysis in the GCDH gene revealed homozygosity for a missense mutation in exon 6, c.482G>A, p.Arg161Gln, which had been reported in GA1 before. In the ACAD8 gene a novel mutation c.841+3G>C was identified, which results in loss of exon 7 and predicts a premature stop of translation. Impaired valine degradation was corroborated by the increased post-load level of acylcarnitine C4 in lymphocytes. CONCLUSION The molecular basis of two inborn errors of metabolism in a newborn was elucidated. The metabolite studies underline the use of urinary C4 acylcarnitine as a sensitive marker of IBD deficiency. A functional test of IBD activity in lymphocytes may replace more invasive fibroblast studies. In view of the combination of two organic acidurias, which may both affect the level of free carnitine, careful follow-up including regular assessment of the carnitine status of the patient appears prudent.
Collapse
|
45
|
Sequence Variations and Haplotypes of the GJB2 Gene Revealed by Resequencing of 192 Chromosomes from the General Population in Korea. Clin Exp Otorhinolaryngol 2010; 3:65-9. [PMID: 20607074 PMCID: PMC2896735 DOI: 10.3342/ceo.2010.3.2.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/04/2010] [Indexed: 11/08/2022] Open
Abstract
Objectives Hearing impairment (HI) is the most common sensory deficit in human. The Gap Junction Protein, Beta-2 (GJB2) gene encodes the protein connexin 26, and this gene accounts for up to half of the cases of autosomal recessive nonsyndromic HI. This study was conducted to obtain a set of sequence variations (SVs) of the GJB2 gene among Koreans from the general population for making molecular genetic diagnoses and performing genetic counseling. Methods We resequenced the GJB2 gene in 192 chromosomes from 96 adult individuals of Korean descent and who were without a history of hearing difficulty. The data of the SVs was obtained and the haplotypes were reconstructed from the data. Results Five SVs were observed, including a novel one (c.558G>A; p.T186T), with the allele frequencies ranging from 0.5% (1/192) to 41% (79/192). The linkage disequilibrium study and haplotype construction showed that some of the SVs are in tight linkage, resulting in a limited number of haplotypes. Conclusion We observed SVs of the GJB2 gene with different allele frequencies, and a limited number of haplotypes were constructed. The data from this study can be used as reference data for GJB2-related hearing genetic studies, including studies on the founder effect and population genetics, and this data is particularly relevant to people of East Asian decent.
Collapse
|
46
|
Song MJ, Yoo EH, Lee KO, Kim GN, Kim HJ, Kim SY, Kim SH. A novel initiation codon mutation in the ribosomal protein S17 gene (RPS17) in a patient with Diamond-Blackfan anemia. Pediatr Blood Cancer 2010; 54:629-31. [PMID: 19953637 DOI: 10.1002/pbc.22316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by pure red cell aplasia, various congenital anomalies, and cancer predisposition. We report a novel mutation in the RPS17 gene in a Korean patient with DBA. The mutation occurred in the translation initiation codon, changing Atg to Gtg (c.1A>G), thus disrupting the natural start of the RPS17 protein biosynthesis. This is the third case of DBA from a RPS17 mutation in the literature and is the second case of a RPS17 mutation in the translation initiation codon, following c.2T>G.
Collapse
Affiliation(s)
- Min-Jung Song
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Green P, Wiseman M, Crow YJ, Houlden H, Riphagen S, Lin JP, Raymond FL, Childs AM, Sheridan E, Edwards S, Josifova DJ. Brown-Vialetto-Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in c20orf54. Am J Hum Genet 2010; 86:485-9. [PMID: 20206331 DOI: 10.1016/j.ajhg.2010.02.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/18/2010] [Accepted: 02/05/2010] [Indexed: 12/30/2022] Open
Abstract
Brown-Vialetto-Van Laere syndrome is a rare neurological disorder with a variable age at onset and clinical course. The key features are progressive ponto-bulbar palsy and bilateral sensorineural deafness. A complex neurological phenotype with a mixed picture of upper and lower motor neuron involvement reminiscent of amyotrophic lateral sclerosis evolves with disease progression. We identified a candidate gene, C20orf54, by studying a consanguineous family with multiple affected individuals and subsequently demonstrated that mutations in this gene were the cause of disease in other, unrelated families.
Collapse
Affiliation(s)
- Peter Green
- Department of Medical and Molecular Genetics, Kings College, London, SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, Mackey DA, Kearns LS, Ruddle JB, Craig JE, Pierce EA, Downey LM, Mohamed MD, Markham AF, Inglehearn CF, Toomes C. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 2010; 86:248-53. [PMID: 20159112 DOI: 10.1016/j.ajhg.2010.01.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 12/01/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder of the retinal vascular system. Although mutations in three genes (LRP5, FZD4, and NDP) are known to cause FEVR, these account for only a fraction of FEVR cases. The proteins encoded by these FEVR genes form part of a signaling complex that activates the Norrin-beta-catenin signaling pathway. Recently, through a large-scale reverse genetic screen in mice, Junge and colleagues identified an additional member of this signaling complex, Tspan12. Here, we report that mutations in TSPAN12 also cause autosomal-dominant FEVR. We describe seven mutations identified in a cohort of 70 FEVR patients in whom we had already excluded the known FEVR genes. This study provides further evidence for the importance of the Norrin-beta-catenin signaling pathway in the development of the retinal vasculature and also indicates that more FEVR genes remain to be identified.
Collapse
Affiliation(s)
- James A Poulter
- Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL. Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 2010; 18:674-9. [PMID: 20087400 DOI: 10.1038/ejhg.2009.241] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spondylocostal dysostosis (SCD) is an inherited disorder with abnormal vertebral segmentation that results in extensive hemivertebrae, truncal shortening and abnormally aligned ribs. It arises during embryonic development by a disruption of formation of somites (the precursor tissue of the vertebrae, ribs and associated tendons and muscles). Four genes causing a subset of autosomal recessive forms of this disease have been identified: DLL3 (SCDO1: MIM 277300), MESP2 (SCDO2: MIM 608681), LFNG (SCDO3: MIM609813) and HES7 (SCDO4). These genes are all essential components of the Notch signalling pathway, which has multiple roles in development and disease. Previously, only a single SCD-causative missense mutation was described in HES7. In this study, we have identified two new missense mutations in the HES7 gene in a single family, with only individuals carrying both mutant alleles being affected by SCD. In vitro functional analysis revealed that one of the mutant HES7 proteins was unable to repress gene expression by DNA binding or protein heterodimerization.
Collapse
Affiliation(s)
- Duncan B Sparrow
- ] Developmental Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | | | | | | |
Collapse
|
50
|
Jurkat-Rott K, Lerche H, Weber Y, Lehmann-Horn F. Hereditary channelopathies in neurology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 686:305-34. [PMID: 20824453 DOI: 10.1007/978-90-481-9485-8_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion channelopathies are caused by malfunction or altered regulation of ion channel proteins due to hereditary or acquired protein changes. In neurology, main phenotypes include certain forms of epilepsy, ataxia, migraine, neuropathic pain, myotonia, and muscle weakness including myasthenia and periodic paralyses. The total prevalence of monogenic channelopathies in neurology is about 35:100,000. Susceptibility-related mutations further increase the relevance of channel genes in medicine considerably. As many disease mechanisms have been elucidated by functional characterization on the molecular level, the channelopathies are regarded as model disorders for pathogenesis and treatment of non-monogenic forms of epilepsy and migraine. As more than 35% of marketed drugs target ion channels, there is a high chance to identify compounds that counteract the effects of the mutations.
Collapse
|