1
|
Messina M, Vaz FM, Rahman S. Mitochondrial membrane synthesis, remodelling and cellular trafficking. J Inherit Metab Dis 2024. [PMID: 38872485 DOI: 10.1002/jimd.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are dynamic cellular organelles with complex roles in metabolism and signalling. Primary mitochondrial disorders are a group of approximately 400 monogenic disorders arising from pathogenic genetic variants impacting mitochondrial structure, ultrastructure and/or function. Amongst these disorders, defects of complex lipid biosynthesis, especially of the unique mitochondrial membrane lipid cardiolipin, and membrane biology are an emerging group characterised by clinical heterogeneity, but with recurrent features including cardiomyopathy, encephalopathy, neurodegeneration, neuropathy and 3-methylglutaconic aciduria. This review discusses lipid synthesis in the mitochondrial membrane, the mitochondrial contact site and cristae organising system (MICOS), mitochondrial dynamics and trafficking, and the disorders associated with defects of each of these processes. We highlight overlapping functions of proteins involved in lipid biosynthesis and protein import into the mitochondria, pointing to an overarching coordination and synchronisation of mitochondrial functions. This review also focuses on membrane interactions between mitochondria and other organelles, namely the endoplasmic reticulum, peroxisomes, lysosomes and lipid droplets. We signpost disorders of these membrane interactions that may explain the observation of secondary mitochondrial dysfunction in heterogeneous pathological processes. Disruption of these organellar interactions ultimately impairs cellular homeostasis and organismal health, highlighting the central role of mitochondria in human health and disease.
Collapse
Affiliation(s)
- Martina Messina
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Frédéric M Vaz
- Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
van Wijngaarden V, de Wilde H, Mink van der Molen D, Petter J, Stegeman I, Gerrits E, Smit AL, van den Boogaard MJ. Genetic outcomes in children with developmental language disorder: a systematic review. Front Pediatr 2024; 12:1315229. [PMID: 38298611 PMCID: PMC10828955 DOI: 10.3389/fped.2024.1315229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction Developmental language disorder (DLD) is a common childhood condition negatively influencing communication and psychosocial development. An increasing number of pathogenic variants or chromosomal anomalies possibly related to DLD have been identified. To provide a base for accurate clinical genetic diagnostic work-up for DLD patients, understanding the specific genetic background is crucial. This study aims to give a systematic literature overview of pathogenic variants or chromosomal anomalies causative for DLD in children. Methods We conducted a systematic search in PubMed and Embase on available literature related to the genetic background of diagnosed DLD in children. Included papers were critically appraised before data extraction. An additional search in OMIM was performed to see if the described DLD genes are associated with a broader clinical spectrum. Results The search resulted in 15,842 papers. After assessing eligibility, 47 studies remained, of which 25 studies related to sex chromosome aneuploidies and 15 papers concerned other chromosomal anomalies (SCAs) and/or Copy Number Variants (CNVs), including del15q13.1-13.3 and del16p11.2. The remaining 7 studies displayed a variety of gene variants. 45 (candidate) genes related to language development, including FOXP2, GRIN2A, ERC1, and ATP2C2. After an additional search in the OMIM database, 22 of these genes were associated with a genetic disorder with a broader clinical spectrum, including intellectual disability, epilepsy, and/or autism. Conclusion Our study illustrates that DLD can be related to SCAs and specific CNV's. The reported (candidate) genes (n = 45) in the latter category reflect the genetic heterogeneity and support DLD without any comorbidities and syndromic language disorder have an overlapping genetic etiology.
Collapse
Affiliation(s)
| | - Hester de Wilde
- Department of Pediatric Otorhinolaryngology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jildo Petter
- Faculty of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ellen Gerrits
- Research Group Speech and Language Therapy, HU University of Applied Sciences Utrecht, Utrecht, Netherlands
- Department of Languages, Literature and Communication, Faculty of Humanities, Utrecht University, Utrecht, Netherlands
| | - Adriana L. Smit
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Research Group Speech and Language Therapy, HU University of Applied Sciences Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
3
|
Selvanathan A, Demetriou K, Lynch M, Lipke M, Bursle C, Elliott A, Inwood A, Foyn L, McWhinney B, Coman D, McGill J. N-acetylglutamate synthase deficiency with associated 3-methylglutaconic aciduria: A case report. JIMD Rep 2022; 63:420-424. [PMID: 36101823 PMCID: PMC9458610 DOI: 10.1002/jmd2.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022] Open
Abstract
N-acetylglutamate synthase (NAGS) deficiency is a rare autosomal recessive disorder, which results in the inability to activate the key urea cycle enzyme, carbamoylphosphate synthetase 1 (CPS1). Patients often suffer life-threatening episodes of hyperammonaemia, both in the neonatal period and also at subsequent times of catabolic stress. Because NAGS generates the cofactor for CPS1, these two disorders are difficult to distinguish biochemically. However, there have now been numerous case reports of 3-methylglutaconic aciduria (3-MGA), a marker seen in mitochondrial disorders, occurring in CPS1 deficiency. Previously, this had not been reported in NAGS deficiency. We report a four-day-old neonate who was noted to have 3-MGA at the time of significant hyperammonaemia and lactic acidosis. Low plasma citrulline and borderline orotic aciduria were additional findings that suggested a proximal urea cycle disorder. Subsequent molecular testing identified bi-allelic pathogenic variants in NAGS. The 3-MGA was present at the time of persistent lactic acidosis, but improved with normalization of serum lactate, suggesting that it may reflect secondary mitochondrial dysfunction. NAGS deficiency should therefore also be considered in patients with hyperammonaemia and 3-MGA. Studies in larger numbers of patients are required to determine whether it could be a biomarker for severe decompensations.
Collapse
Affiliation(s)
- Arthavan Selvanathan
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Matthew Lynch
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Carolyn Bursle
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Aoife Elliott
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
| | - Leanne Foyn
- Chemical Pathology, Central LaboratoryPathology QueenslandHerstonAustralia
| | - Brett McWhinney
- Chemical Pathology, Central LaboratoryPathology QueenslandHerstonAustralia
| | - David Coman
- Queensland Lifespan Metabolic Medicine ServiceQueensland Children's HospitalBrisbaneAustralia
- School of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Jim McGill
- Chemical Pathology, Central LaboratoryPathology QueenslandHerstonAustralia
| |
Collapse
|
4
|
Jones DE, Jennings EA, Ryan RO. Diversion of Acetyl CoA to 3-Methylglutaconic Acid Caused by Discrete Inborn Errors of Metabolism. Metabolites 2022; 12:metabo12050377. [PMID: 35629880 PMCID: PMC9146172 DOI: 10.3390/metabo12050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
A growing number of inborn errors of metabolism (IEM) have been identified that manifest 3-methylglutaconic (3MGC) aciduria as a phenotypic feature. In primary 3MGC aciduria, IEM-dependent deficiencies in leucine pathway enzymes prevent catabolism of trans-3MGC CoA. Consequently, this metabolite is converted to 3MGC acid and excreted in urine. In secondary 3MGC aciduria, however, no leucine metabolism pathway enzyme deficiencies exist. These IEMs affect mitochondrial membrane structure, electron transport chain function or ATP synthase subunits. As a result, acetyl CoA oxidation via the TCA cycle slows and acetyl CoA is diverted to trans-3MGC CoA, and then to 3MGC acid. Whereas the trans diastereomer of 3MGC CoA is the only biologically relevant diastereomer, the urine of affected subjects contains both cis- and trans-3MGC acids. Studies have revealed that trans-3MGC CoA is susceptible to isomerization to cis-3MGC CoA. Once formed, cis-3MGC CoA undergoes intramolecular cyclization, forming an anhydride that, upon hydrolysis, yields cis-3MGC acid. Alternatively, cis-3MGC anhydride can acylate protein lysine side chains. Once formed, cis-3MGCylated proteins can be deacylated by the NAD+-dependent enzyme, sirtuin 4. Taken together, the excretion of 3MGC acid in secondary 3MGC aciduria represents a barometer of defective mitochondrial function.
Collapse
|
5
|
3-Methylglutaconic Aciduria Type I Due to AUH Defect: The Case Report of a Diagnostic Odyssey and a Review of the Literature. Int J Mol Sci 2022; 23:ijms23084422. [PMID: 35457240 PMCID: PMC9029672 DOI: 10.3390/ijms23084422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 01/29/2023] Open
Abstract
3-Methylglutaconic aciduria type I (MGCA1) is an inborn error of the leucine degradation pathway caused by pathogenic variants in the AUH gene, which encodes 3-methylglutaconyl-coenzyme A hydratase (MGH). To date, MGCA1 has been diagnosed in 19 subjects and has been associated with a variable clinical picture, ranging from no symptoms to severe encephalopathy with basal ganglia involvement. We report the case of a 31-month-old female child referred to our center after the detection of increased 3-hydroxyisovalerylcarnitine levels at newborn screening, which were associated with increased urinary excretion of 3-methylglutaconic acid, 3-hydroxyisovaleric acid, and 3-methylglutaric acid. A next-generation sequencing (NGS) panel for 3-methylglutaconic aciduria failed to establish a definitive diagnosis. To further investigate the strong biochemical indication, we measured MGH activity, which was markedly decreased. Finally, single nucleotide polymorphism array analysis disclosed the presence of two microdeletions in compound heterozygosity encompassing the AUH gene, which confirmed the diagnosis. The patient was then supplemented with levocarnitine and protein intake was slowly decreased. At the last examination, the patient showed mild clumsiness and an expressive language disorder. This case exemplifies the importance of the biochemical phenotype in the differential diagnosis of metabolic diseases and the importance of collaboration between clinicians, biochemists, and geneticists for an accurate diagnosis.
Collapse
|
6
|
Jones DE, Klacking E, Ryan RO. Inborn errors of metabolism associated with 3-methylglutaconic aciduria. Clin Chim Acta 2021; 522:96-104. [PMID: 34411555 PMCID: PMC8464523 DOI: 10.1016/j.cca.2021.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
A growing number of inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism manifest an unusual phenotypic feature: 3-methylglutaconic (3MGC) aciduria. Two major categories of 3MGC aciduria, primary and secondary, have been described. In primary 3MGC aciduria, IEMs in 3MGC CoA hydratase (AUH) or HMG CoA lyase block leucine catabolism, resulting in a buildup of pathway intermediates, including 3MGC CoA. Subsequent thioester hydrolysis yields 3MGC acid, which is excreted in urine. In secondary 3MGC aciduria, no deficiencies in leucine catabolism enzymes exist and 3MGC CoA is formed de novo from acetyl CoA. In the "acetyl CoA diversion pathway", when IEMs directly, or indirectly, interfere with TCA cycle activity, acetyl CoA accumulates in the matrix space. This leads to condensation of two acetyl CoA to form acetoacetyl CoA, followed by another condensation between acetyl CoA and acetoacetyl CoA to form 3-hydroxy, 3-methylglutaryl (HMG) CoA. Once formed, HMG CoA serves as a substrate for AUH, producing trans-3MGC CoA. Non enzymatic isomerization of trans-3MGC CoA to cis-3MGC CoA precedes intramolecular cyclization to cis-3MGC anhydride plus CoA. Subsequent hydrolysis of cis-3MGC anhydride gives rise to cis-3MGC acid, which is excreted in urine. In reviewing 20 discrete IEMs that manifest secondary 3MGC aciduria, evidence supporting the acetyl CoA diversion pathway was obtained. This biochemical pathway serves as an "overflow valve" in muscle / brain tissue to redirect acetyl CoA to 3MGC CoA when entry to the TCA cycle is impeded.
Collapse
Affiliation(s)
- Dylan E Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Emma Klacking
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
7
|
Bizjak N, Zerjav Tansek M, Avbelj Stefanija M, Repic Lampret B, Mezek A, Drole Torkar A, Battelino T, Groselj U. Precocious puberty in a girl with 3-methylglutaconic aciduria type 1 (3-MGA-I) due to a novel AUH gene mutation. Mol Genet Metab Rep 2020; 25:100691. [PMID: 33304818 PMCID: PMC7718479 DOI: 10.1016/j.ymgmr.2020.100691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022] Open
Abstract
3-methylglutaconic aciduria type 1 (3-MGA-I) (MIM ID #250950) is an ultra-rare, autosomal recessive organic aciduria, resulting from mutated AUH gene, leading to the deficient 3-methylglutaconyl-CoA hydratase (3-MGH). Only around 40 cases are previously reported, caused by a spectrum of 10 mutations. The clinical spectrum of 3-MGA-I in children is heterogeneous, varying from asymptomatic individuals to mild neurological impairment, speech delay, quadriplegia, dystonia, choreoathetoid movements, severe encephalopathy, psychomotor retardation, basal ganglia involvement. Early dietary treatment with leucine restriction and carnitine supplementation may be effective in improving neurological state in pediatric patients with 3-MGA-I. We presented a girl with 3-MGA-I due to novel AUH gene mutation (homozygous variant c.330 + 5G > A) and confirmed by almost undetectable 3-MGH-enzyme activity, who initially presented with central precocious puberty at an early age of 4.5 years. Precocious puberty might be associated with the 3-MGA-I, as is reported previously in some other metabolic disorders that result in pathologic accumulation of metabolites or toxic brain damage. Therapy with GnRH agonist triptorelin effectively arrested pubertal development. Girl with 3-MGA-I presented with central precocious puberty. Novel AUH gene mutation and almost undetectable 3-MGH-enzyme activity were detected. GnRH agonist triptorelin effectively arrested pubertal development. Precocious puberty is reported in some other metabolic disorders.
Collapse
Key Words
- 3-HIVA, 3-hydroxyisovaleric acid
- 3-MG, 3-methylglutaric acid
- 3-MGA-I
- 3-MGA-I, 3-methylglutaconic aciduria type I
- 3-MGH, 3-methylglutaconyl-CoA hydratase
- 3-methylglutaconic aciduria type 1
- AUH gene
- C5-OH, 3-hydroxyisovaleryl-carnitine
- GnRH agonist
- GnRH, Gonadotropin-releasing hormone
- IEM, inborn errors of metabolism
- LC-MS/MS, Tandem mass spectrometry
- LH, luteinizing hormone
- MRI, Magnetic resonance imaging
- NBS, newborn screening
- Precocious puberty
- ToL, The Tower of London test
- Triptorelin
- UCHL, University Children's Hospital Ljubljana
Collapse
Affiliation(s)
- Neli Bizjak
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, Ljubljana, Slovenia
| | - Mojca Zerjav Tansek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Barbka Repic Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Ajda Mezek
- Unit for Clinical Dietetics, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Ana Drole Torkar
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Dudipala SC, M P, B KC, Chenalla LK. Acute Encephalopathic Presentation of 3-Methylglutaconic Aciduria Type I With a Novel Mutation in AUH Gene. Cureus 2020; 12:e11951. [PMID: 33425530 PMCID: PMC7785470 DOI: 10.7759/cureus.11951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
3-Methylglutaconic aciduria type I (3-MGA I) is a rare inherited disorder of the leucine metabolism pathway due to mutations in the AUH gene for 3-methylglutaconyl-CoA hydratase enzyme and enzyme deficiency. It has a variable phenotypic presentation from infancy to adulthood. Here, we report a three-year-old female patient with normal development presented with acute encephalopathy and status dystonicus. Neuroimaging was normal. Urine organic acid analysis showed high levels of 3-methylglutaconic acid, 3-hydroxyisovaleric acid. Next-generation sequencing revealed a novel homozygous mutation of variant c.505+1G>C (5' splice site) in intron 4 of the AUH gene that was compatible with the diagnosis of 3-MGA I. The child was asymptomatic on follow-up with a low leucine diet. Clinicians should suspect rare inherited metabolic disorders in acute onset unexplainable neurological symptoms and evaluate with urine organic acid analysis.
Collapse
Affiliation(s)
- Sai Chandar Dudipala
- Pediatric Neurology, Star Women and Children Hospital, Karimnagar, IND.,Pediatrics, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Prashanthi M
- Pediatrics, Prathima Institute of Medical Sciences, Karimnagar, IND
| | | | | |
Collapse
|
9
|
Zhang X, Zhang J, Gao F, Fan S, Dai L, Zhang J. KPNA2-Associated Immune Analyses Highlight the Dysregulation and Prognostic Effects of GRB2, NRAS, and Their RNA-Binding Proteins in Hepatocellular Carcinoma. Front Genet 2020; 11:593273. [PMID: 33193737 PMCID: PMC7649362 DOI: 10.3389/fgene.2020.593273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Karyopherin α2 (KPNA2) was reported to be overexpressed and have unfavorable prognostic effects in many malignancies including hepatocellular carcinoma (HCC). Although its contributions to inflammatory response were reported in many studies, its specific associations with immune infiltrations and immune pathways during cancer progression were unclear. Here, we aimed to identify new markers for HCC diagnosis and prognosis through KPNA2-associated immune analyses. RNA-seq expression data of HCC datasets were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. The gene expressions were counts per million normalized. The infiltrations of 24 kinds of immune cells in the samples were evaluated with ImmuCellAI (Immune Cell Abundance Identifier). The Spearman correlations of the immune infiltrations with KPNA2 expression were investigated, and the specific positive correlation of B-cell infiltration with KPNA2 expression in HCC tumors was identified. Fifteen genes in KEGG (Kyoto Encyclopedia of Genes and Genomes) B-cell receptor signaling pathway presented significant correlations with KPNA2 expression in HCC. Among them, GRB2 and NRAS were indicated to be independent unfavorable prognostic factors for HCC overall survival. Clinical Proteomic Tumor Analysis Consortium HCC dataset was investigated to validate the results at protein level. The upregulation and unfavorable prognostic effects of KPNA2 and GRB2 were confirmed, whereas, unlike its mRNA form, NRAS protein was presented to be downregulated and have favorable prognostic effects. Through receiver operating characteristic curve analysis, the diagnostic potential of the three proteins was shown. The RNA-binding proteins (RBPs) of KPNA2, NRAS, and GRB2, downloaded via The Encyclopedia of RNA Interactomes, were investigated for their clinical significance in HCC at protein level. An eight-RBP signature with independent prognostic value and dysregulations in HCC was identified. All the RBPs were significantly correlated with MKI67 expression and at least one of KPNA2, GRB2, and NRAS at protein level in HCC, indicating their roles in HCC progression and the regulation of the three proteins. We concluded that KPNA2, GRB2, NRAS, and their RBPs might have coordinating roles in HCC immunoregulation and progression. They might be new markers for HCC diagnosis and prognosis predication and new targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Jialing Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Fenglan Gao
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Shasha Fan
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinzhong Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
10
|
Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat Commun 2020; 11:3148. [PMID: 32561715 PMCID: PMC7305105 DOI: 10.1038/s41467-020-16886-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (“autophagy”) is the main lysosomal catabolic process that becomes activated under nutrient-depleted conditions, like amino acid (AA) starvation. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-conserved negative regulator of autophagy. While leucine (Leu) is a critical mTORC1 regulator under AA-starved conditions, how Leu regulates autophagy is poorly understood. Here, we describe that in most cell types, including neurons, Leu negatively regulates autophagosome biogenesis via its metabolite, acetyl-coenzyme A (AcCoA). AcCoA inhibits autophagy by enhancing EP300-dependent acetylation of the mTORC1 component raptor, with consequent activation of mTORC1. Interestingly, in Leu deprivation conditions, the dominant effects on autophagy are mediated by decreased raptor acetylation causing mTORC1 inhibition, rather than by altered acetylation of other autophagy regulators. Thus, in most cell types we examined, Leu regulates autophagy via the impact of its metabolite AcCoA on mTORC1, suggesting that AcCoA and EP300 play pivotal roles in cell anabolism and catabolism. Leucine is a critical amino acid that inhibits autophagy. Here, the authors show that the leucine inhibits autophagy in most cell types, predominantly via its catabolite acetyl CoA, which drives acetylation of raptor, which activates mTORC1, a negative regulator of this catabolic process.
Collapse
|
11
|
Alagoz M, Kherad N, Turkmen S, Bulut H, Yuksel A. A novel mutation in the SERAC1 gene correlates with the severe manifestation of the MEGDEL phenotype, as revealed by whole-exome sequencing. Exp Ther Med 2020; 19:3505-3512. [PMID: 32346411 PMCID: PMC7185166 DOI: 10.3892/etm.2020.8658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/10/2020] [Indexed: 11/05/2022] Open
Abstract
The condition 3-methylglutaconic aciduria (3-MGA) with deafness, encephalopathy and Leigh-like (MEGDEL) syndrome, also known as 3-MGA IV, is one of a group of five rare metabolic disorders characterized by mitochondrial dysfunction, resulting in a series of phenotypic abnormalities. It is a rare, recessive inherited disorder with a limited number of cases reported worldwide; hence, it is important to study each case to understand its genetic complexity. An impaired activity of serine active site-containing protein 1 (SERAC1), caused by mutations, leads to defects in phosphatidylglycerol remodelling, which is important for mitochondrial function and intracellular cholesterol trafficking. In the present study, the patients (two male siblings of consanguineous Turkish parents) were analysed, whose multisystem dysfunctions, including an elevated 3-MGA concentration in early age, hearing loss and Leigh-like syndrome as determined by MRI, were consistent with MEGDEL syndrome. A novel mutation in the SERAC1 gene, in the upstream lipase domain, c.1015G>C (p.Gly339Arg) mutation located on exon 10 of the SERAC1, was identified and predicted to cause protein dysfunction. Furthermore, the results pointed towards a possible association between this mutation and the severity of MEGDEL syndrome.
Collapse
Affiliation(s)
- Meryem Alagoz
- Department of Molecular Biology and Genetics, Genome Centre, Biruni University, Istanbul 34010, Turkey
| | - Nasim Kherad
- Department of Molecular Biology and Genetics, Genome Centre, Biruni University, Istanbul 34010, Turkey
| | - Selda Turkmen
- Department of Medical Biology, Istanbul Cerrahpasa University, Istanbul 34096, Turkey
| | - Hatice Bulut
- Faculty of Medicine, Biruni University Hospital, Istanbul 34010, Turkey
| | - Adnan Yuksel
- Faculty of Medicine, Biruni University Hospital, Istanbul 34010, Turkey
| |
Collapse
|
12
|
Zhang X, Swalve HH, Pijl R, Rosner F, Wensch-Dorendorf M, Brenig B. Interdigital Hyperplasia in Holstein Cattle Is Associated With a Missense Mutation in the Signal Peptide Region of the Tyrosine-Protein Kinase Transmembrane Receptor Gene. Front Genet 2019; 10:1157. [PMID: 31798639 PMCID: PMC6863962 DOI: 10.3389/fgene.2019.01157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023] Open
Abstract
Bovine interdigital hyperplasia (IH) is a typical disease of the foot with varying prevalence depending on age, breed, and environmental factors resulting in different degrees of lameness. In studies based on assessments of claw health status at time of hoof trimming and applying genetic-statistical models to analyze this data, IH consistently exhibits high estimates of heritability in the range of 0.30–0.40. Although some studies have identified chromosomal regions that could possibly harbor causative genes, a clear identification of molecular causes for IH is lacking. While analyzing the large database of claw health status as documented at time of hoof trimming, we identified one herd with extreme prevalence of IH of > 50% of affected Holstein dairy cows. This herd subsequently was chosen as the object of a detailed study. A total of n = 91 cows was assessed and revealed a prevalence of 59.3% and 38.5% for IH cases, documented as “one-sided” or “two-sided”, respectively. Cows were genotyped using the BovineSNP50 BeadChip. A genome wide association study revealed two significantly associated chromosomal positions (-log10P = 5.57) on bovine chromosome 8 (BTA8) located in intron 5 and downstream of the receptor tyrosine kinase-like orphan receptor 2 (ROR2) gene. As ROR2 plays a key role in ossification of the distal limbs and is associated with brachydactylies in humans, it was a reasonable candidate for IH. A comparative sequencing of the ROR2 gene between cases and controls revealed two missense variants in exon 1 (NC_037335.1:g.85,905,534T > A, ARS-UCD1.2) and exon 9 (NC_037335.1:g.86,140,379A > G, ARS-UCD1.2), respectively. Genotyping of both variants in the cohort of 91 cattle showed that the exon 1 variant (rs377953295) remained significantly associated with IH (p < 0.0001) as a risk factor of the disease. This variant resulted in an amino acid exchange (ENSBTAP00000053765.2:p.Trp9Arg) in the N-terminal region of the ROR2 signal peptide which is necessary for proper topology of the polypeptide during translocation. Quantification of ROR2 mRNA and ROR2 protein showed that the variant resulted in a significant suppression of ROR2 expression in homozygous affected compared to wild type and carrier cows.
Collapse
Affiliation(s)
- Xuying Zhang
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Hermann H Swalve
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - René Pijl
- Independent Researcher, Jever, Germany
| | - Frank Rosner
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Monika Wensch-Dorendorf
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Jones DE, Perez L, Ryan RO. 3-Methylglutaric acid in energy metabolism. Clin Chim Acta 2019; 502:233-239. [PMID: 31730811 DOI: 10.1016/j.cca.2019.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
3-methylglutaric (3MG) acid is a conspicuous C6 dicarboxylic organic acid classically associated with two distinct leucine pathway enzyme deficiencies. 3MG acid is excreted in urine of individuals harboring deficiencies in 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HMGCL) or 3-methylglutaconyl CoA hydratase (AUH). Whereas 3MG CoA is not part of the leucine catabolic pathway, it is likely formed via a side reaction involving reduction of the α-ß trans double bond in the leucine pathway intermediate, 3-methylglutaconyl CoA. While the metabolic basis for the accumulation of 3MG acid in subjects with deficiencies in HMGCL or AUH is apparent, the occurrence of 3MG aciduria in a host of unrelated inborn errors of metabolism associated with compromised mitochondrial energy metabolism is less clear. Herein, a novel mitochondrial biosynthetic pathway termed "the acetyl CoA diversion pathway", provides an explanation. The pathway is initiated by defective electron transport chain function which, ultimately, inhibits acetyl CoA entry into the TCA cycle. When this occurs, 3MG acid is synthesized in five steps from acetyl CoA via a novel reaction sequence, providing a metabolic rationale for the connection between 3MG aciduria and compromised mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Dylan E Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Leanne Perez
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
14
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
15
|
Kesäniemi J, Jernfors T, Lavrinienko A, Kivisaari K, Kiljunen M, Mappes T, Watts PC. Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent. Mol Ecol 2019; 28:4620-4635. [PMID: 31498518 PMCID: PMC6900138 DOI: 10.1111/mec.15241] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Wildlife inhabiting environments contaminated by radionuclides face putative detrimental effects of exposure to ionizing radiation, with biomarkers such as an increase in DNA damage and/or oxidative stress commonly associated with radiation exposure. To examine the effects of exposure to radiation on gene expression in wildlife, we conducted a de novo RNA sequencing study of liver and spleen tissues from a rodent, the bank vole Myodes glareolus. Bank voles were collected from the Chernobyl Exclusion Zone (CEZ), where animals were exposed to elevated levels of radionuclides, and from uncontaminated areas near Kyiv, Ukraine. Counter to expectations, we did not observe a strong DNA damage response in animals exposed to radionuclides, although some signs of oxidative stress were identified. Rather, exposure to environmental radionuclides was associated with upregulation of genes involved in lipid metabolism and fatty acid oxidation in the livers - an apparent shift in energy metabolism. Moreover, using stable isotope analysis, we identified that fur from bank voles inhabiting the CEZ had enriched isotope values of nitrogen: such an increase is consistent with increased fatty acid metabolism, but also could arise from a difference in diet or habitat between the CEZ and elsewhere. In livers and spleens, voles inhabiting the CEZ were characterized by immunosuppression, such as impaired antigen processing, and activation of leucocytes involved in inflammatory responses. In conclusion, exposure to low dose environmental radiation impacts pathways associated with immunity and lipid metabolism, potentially as a stress-induced coping mechanism.
Collapse
Affiliation(s)
- Jenni Kesäniemi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Toni Jernfors
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Anton Lavrinienko
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kati Kivisaari
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Mikko Kiljunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C Watts
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
16
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
17
|
Haydar S, Lautier C, Grigorescu F. BRANCHED CHAIN AMINO ACIDS AT THE EDGE BETWEEN MENDELIAN AND COMPLEX DISORDERS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:238-247. [PMID: 31149264 PMCID: PMC6516512 DOI: 10.4183/aeb.2018.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Branched chained amino acids (BCAA) are essential components of the human diet and important nutrient signals, which regain particular interest in recent years with the avenue of metabolomics studies suggesting their potential role as biomarkers. There is now compelling evidence for predictive role of BCAA in progression of diabetes, but causality relationship is still debated concerning insulin resistance and genetic versus non-genetic pathogenesis. Mendelian randomization studies in large cohorts of diabetes indicated pathogenic role of PPM1K (protein phosphatase Mg2+/Mn2+ dependent 1K) on Chr 4q22.1 gene, encoding for a phosphatase that activates BCKDH (branched chain keto acid dehydrogenase) complex. Recent studies indicated that insulin rapidly and dose-dependently regulates gene expression of the same complex, but the relationship with systemic insulin resistance and glucose levels is complex. Rare genetic syndromes due to Mendelian mutations in key genes in BCAA catabolism may be good models to understand potential role of gene of BCAA catabolism. However, in studying complex disorders geneticists are faced to complete new aspects of metabolic regulation complicating understanding genetics of obesity, diabetes or metabolic syndrome. A review of genetic syndromes of BCAA metabolism suggests that insulin resistance is not present, except rare cases of methylmalonic aciduria due to MUT (methylmalonyl-coA mutase) gene on Chr 6p12.3. Another aspect that complicates understanding is the new role of central nervous system (CNS) in insulin resistance. For a long time the hypothalamic hunger/satiety neuronal system was considered a key site of nutrient regulation. Genes may also affect the brain rewarding system (BRS) that would regulate food intake by modulating the motivation to obtain food and considering hedonic properties. Nutrigenomic and nutrigenetic investigations taking into account concurrently BCAA intake, metabolic regulation and gene variation have large perspectives to merge genetic and nutritional understanding in complex disorders.
Collapse
Affiliation(s)
| | | | - F. Grigorescu
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| |
Collapse
|
18
|
Zhang YK, Qu YY, Lin Y, Wu XH, Chen HZ, Wang X, Zhou KQ, Wei Y, Guo F, Yao CF, He XD, Liu LX, Yang C, Guan ZY, Wang SD, Zhao J, Liu DP, Zhao SM, Xu W. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun 2017; 8:464. [PMID: 28878358 PMCID: PMC5587591 DOI: 10.1038/s41467-017-00489-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
The oncogenic mechanisms of overnutrition, a confirmed independent cancer risk factor, remain poorly understood. Herein, we report that enoyl-CoA hydratase-1 (ECHS1), the enzyme involved in the oxidation of fatty acids (FAs) and branched-chain amino acids (BCAAs), senses nutrients and promotes mTOR activation and apoptotic resistance. Nutrients-promoted acetylation of lys101 of ECHS1 impedes ECHS1 activity by impairing enoyl-CoA binding, promoting ECHS1 degradation and blocking its mitochondrial translocation through inducing ubiquitination. As a result, nutrients induce the accumulation of BCAAs and FAs that activate mTOR signaling and stimulate apoptosis, respectively. The latter was overcome by selection of BCL-2 overexpressing cells under overnutrition conditions. The oncogenic effects of nutrients were reversed by SIRT3, which deacetylates lys101 acetylation. Severely decreased ECHS1, accumulation of BCAAs and FAs, activation of mTOR and overexpression of BCL-2 were observed in cancer tissues from metabolic organs. Our results identified ECHS1, a nutrients-sensing protein that transforms nutrient signals into oncogenic signals.Overnutrition has been linked to increased risk of cancer. Here, the authors show that exceeding nutrients suppress Enoyl-CoA hydratase-1 (ECHS1) activity by inducing its acetylation resulting in accumulation of fatty acids and branched-chain amino acids and oncogenic mTOR activation.
Collapse
Affiliation(s)
- Ya-Kun Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Shanghai, 200032, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Xiao-Hui Wu
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200032, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China
| | - Xu Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China
| | - Kai-Qiang Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Yun Wei
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Fushen Guo
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Cui-Fang Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Xia-Di He
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Li-Xia Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zong-Yuan Guan
- Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, 10031, USA
| | - Shi-Dong Wang
- Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jianyuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Tavasoli AR, Shervin Badv R, Zschocke J, Ashrafi MR, Rostami P. Early infantile presentation of 3-methylglutaconic aciduria type 1 with a novel mutation in AUH gene: A case report and literature review. Brain Dev 2017; 39:714-716. [PMID: 28438368 DOI: 10.1016/j.braindev.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 01/06/2023]
Abstract
3-Methylglutaconic aciduria is a member of inborn errors of leucine metabolism pathway. 3-Methylglutaconic aciduria type I (MGA1) causes neurological problems which are present during infancy or childhood but the diagnosis may be delayed until adulthood. Here we report a 3years old patient with developmental delay from a relative parent's that his medical evaluations include analyses of urinary organic acid and blood acylcarnitine showed high level of 3-methylglutacoic acid, 3-hydroxyisovaleric acid and increased level of 3-hydroxyisovalerylcarnitine respectively. Further evaluation and genetic tests revealed a novel homozygous mutation of variant c.179del G (p.Gly60Valfs*12) in exon 1 of the AUH gene that was compatible with the diagnosis of MGA1. In segregation analysis of his family, both parents were heterozygous for the respective mutation, confirming obligate parental carrier status and segregation of the mutation.
Collapse
Affiliation(s)
- Ali Reza Tavasoli
- Pediatric Neurology Division, Neurometabolic Registry Center, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Neurometabolic Registry Center, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Mahmood Reza Ashrafi
- Pediatric Neurology Division, Neurometabolic Registry Center, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Parastoo Rostami
- Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Radha Rama Devi A, Lingappa L. Novel mutations in SERAC1 gene in two Indian patients presenting with dystonia and intellectual disability. Eur J Med Genet 2017; 61:100-103. [PMID: 28778788 DOI: 10.1016/j.ejmg.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 11/18/2022]
Abstract
In this study we present the first two cases from India of a rare inborn error of metabolism manifesting as dystonia and 3-methylglutaconic aciduria and a Leigh like lesions in the brain MRI associated with SERAC1 gene mutation, a phenotype characteristic of MEGDEL syndrome. A four base pair duplication in exon 15 i.e.NM_032861.3 (SERAC1) c. 1643_1646 dup ATCT (p.(Leu550SerfsX19)) and another with a homozygous missense variation in exon 15 i.e. NM_032861.3 (SERAC1) c.1709 G > A (p.(Gly526Glu)) were detected and both were novel mutations. Hepatopathy was observed in the neonatal period with lactic acidosis in one child and at the age of 5yrs in the other. These cases add to the existing number of patients identified till today and additional mutations in the SERAC1 gene.
Collapse
Affiliation(s)
- A Radha Rama Devi
- Sandor Life Sciences & Rainbow Children Hospital, Perinatal Centre for Women and Children, Road No 3, Banjara Hills, Hyderabad, 500082, India.
| | - Lokesh Lingappa
- Paediatric Neurologist, Rainbow Children Hospital, Hyderabad, 500082, India
| |
Collapse
|
21
|
Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 2017; 49:1005-1028. [DOI: 10.1007/s00726-017-2412-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
|
22
|
Synofzik M, Schüle R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord 2017; 32:332-345. [PMID: 28195350 PMCID: PMC6287914 DOI: 10.1002/mds.26944] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/07/2017] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease classifications. This classification system still largely frames clinical thinking and genetic workup in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased studies have revealed the limitations of this classification system. Various genes (eg, SPG7, SYNE1, PNPLA6) traditionally rooted in either the ataxia or hereditary spastic paraplegia classification system have now been shown to cause ataxia on the one end of the disease continuum and hereditary spastic paraplegia on the other. Other genes such as GBA2 and KIF1C were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene. The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a rethinking of the traditional classification system. We propose to replace this divisive diagnosis-driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased approach of modular phenotyping. This approach is also open to expansion of the phenotype beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and underlying genes, but also common cellular pathways and disease mechanisms. This suggests a shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological processes. It might be this mechanistic overlap that drives their clinical overlap. A mechanistically inspired classification system will help to pave the way for mechanism-based strategies for drug development. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
23
|
Experimental Evidence that 3-Methylglutaric Acid Disturbs Mitochondrial Function and Induced Oxidative Stress in Rat Brain Synaptosomes: New Converging Mechanisms. Neurochem Res 2016; 41:2619-2626. [DOI: 10.1007/s11064-016-1973-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
|
24
|
Kanabus M, Shahni R, Saldanha JW, Murphy E, Plagnol V, Hoff WV, Heales S, Rahman S. Bi-allelic CLPB mutations cause cataract, renal cysts, nephrocalcinosis and 3-methylglutaconic aciduria, a novel disorder of mitochondrial protein disaggregation. J Inherit Metab Dis 2015; 38:211-9. [PMID: 25595726 DOI: 10.1007/s10545-015-9813-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Whole exome sequencing was used to investigate the genetic cause of mitochondrial disease in two siblings with a syndrome of congenital lamellar cataracts associated with nephrocalcinosis, medullary cysts and 3-methylglutaconic aciduria. Autosomal recessive inheritance in a gene encoding a mitochondrially targeted protein was assumed; the only variants which satisfied these criteria were c.1882C>T (p.Arg628Cys) and c.1915G>A (p.Glu639Lys) in the CLPB gene, encoding a heat shock protein/chaperonin responsible for disaggregating mitochondrial and cytosolic proteins. Functional studies, including quantitative PCR (qPCR) and Western blot, support pathogenicity of these mutations. Furthermore, molecular modelling suggests that the mutations disrupt interactions between subunits so that the CLPB hexamer cannot form or is unstable, thus impairing its role as a protein disaggregase. We conclude that accumulation of protein aggregates underlies the development of cataracts and nephrocalcinosis in CLPB deficiency, which is a novel genetic cause of 3-methylglutaconic aciduria. A common mitochondrial cause for 3-methylglutaconic aciduria appears to be disruption of the architecture of the mitochondrial membranes, as in Barth syndrome (tafazzin deficiency), Sengers syndrome (acylglycerol kinase deficiency) and MEGDEL syndrome (impaired remodelling of the mitochondrial membrane lipids because of SERAC1 mutations). We now propose that perturbation of the mitochondrial membranes by abnormal protein aggregates leads to 3-methylglutaconic aciduria in CLPB deficiency.
Collapse
Affiliation(s)
- Marta Kanabus
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E. CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet 2015; 96:258-65. [PMID: 25597511 DOI: 10.1016/j.ajhg.2014.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022] Open
Abstract
3-methylglutaconic aciduria (3-MGA-uria) is a nonspecific finding associated with mitochondrial dysfunction, including defects of oxidative phosphorylation. 3-MGA-uria is classified into five groups, of which one, type IV, is genetically heterogeneous. Here we report five children with a form of type IV 3-MGA-uria characterized by cataracts, severe psychomotor regression during febrile episodes, epilepsy, neutropenia with frequent infections, and death in early childhood. Four of the individuals were of Greenlandic descent, and one was North American, of Northern European and Asian descent. Through a combination of homozygosity mapping in the Greenlandic individuals and exome sequencing in the North American, we identified biallelic variants in the caseinolytic peptidase B homolog (CLPB). The causative variants included one missense variant, c.803C>T (p.Thr268Met), and two nonsense variants, c.961A>T (p.Lys321*) and c.1249C>T (p.Arg417*). The level of CLPB protein was markedly decreased in fibroblasts and liver of affected individuals. CLPB is proposed to function as a mitochondrial chaperone involved in disaggregation of misfolded proteins, resulting from stress such as heat denaturation.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Atrophy/genetics
- Atrophy/pathology
- Base Sequence
- Brain/pathology
- Cataract/genetics
- Cataract/pathology
- Child, Preschool
- Codon, Nonsense/genetics
- Endopeptidase Clp/genetics
- Endopeptidase Clp/metabolism
- Epilepsy/genetics
- Epilepsy/pathology
- Exome/genetics
- Fatal Outcome
- Female
- Fibroblasts/metabolism
- Genes, Recessive/genetics
- Greenland
- Humans
- Infant
- Infant, Newborn
- Liver/metabolism
- Male
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/pathology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/pathology
- Molecular Sequence Data
- Movement Disorders/genetics
- Movement Disorders/pathology
- Mutation, Missense/genetics
- Neutropenia/genetics
- Neutropenia/pathology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA.
| | - Laurie Smith
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Flemming Wibrand
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Mette Christensen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Andrea Atherton
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Emily Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Stephen F Kingsmore
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Lumish HS, Yang Y, Xia F, Wilson A, Chung WK. The Expanding MEGDEL Phenotype: Optic Nerve Atrophy, Microcephaly, and Myoclonic Epilepsy in a Child with SERAC1 Mutations. JIMD Rep 2014; 16:75-9. [PMID: 24997715 PMCID: PMC4221303 DOI: 10.1007/8904_2014_322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/03/2014] [Accepted: 05/20/2014] [Indexed: 01/30/2023] Open
Abstract
The inborn errors of metabolism associated with 3-methylglutaconic aciduria are a diverse group of disorders characterized by the excretion of 3-methylglutaconic and 3-methylglutaric acids in the urine. Mutations in several genes have been identified in association with 3-methylglutaconic aciduria. We describe a patient of Saudi Arabian descent with 3-methylglutaconic aciduria, sensorineural hearing loss, encephalopathy, and Leigh-like pattern on MRI (MEGDEL syndrome), as well as developmental delay and developmental regression, bilateral optic nerve atrophy, microcephaly, and myoclonic epilepsy. The patient had an earlier age of onset of optic atrophy than previously described in other MEGDEL syndrome patients. Whole exome sequencing revealed two loss-of-function mutations in SERAC1 in trans: c.438delC (p.T147Rfs*22) and c.442C>T (p.R148X), confirmed by Sanger sequencing. One of these mutations is novel (c.438delC). This case contributes to refining the MEGDEL phenotype.
Collapse
Affiliation(s)
- Heidi S. Lumish
- />College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Yaping Yang
- />Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Fan Xia
- />Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Ashley Wilson
- />Division of Clinical Genetics, New York Presbyterian Hospital, New York, NY USA
| | - Wendy K. Chung
- />Department of Pediatrics and Medicine, Columbia University, New York, NY USA
| |
Collapse
|
27
|
Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lützkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmüller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 2014; 5:4287. [PMID: 24989451 PMCID: PMC4102769 DOI: 10.1038/ncomms5287] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. The exosome is responsible for mRNA degradation, which is an important step in the regulation of gene expression. Here the authors report that homozygous missense mutations in the exosome subunit, EXOSC8, may cause neurodegenerative disease in infants through the dysregulation of myelin expression.
Collapse
Affiliation(s)
- Veronika Boczonadi
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Juliane S Müller
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Angela Pyle
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Jennifer Munkley
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Talya Dor
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jade Quartararo
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Veronika Karcagi
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Michele Giunta
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Tuomo Polvikoski
- Department of Pathology, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Birchall
- Neuroradiology Department, Regional Neurosciences Centre, Queen Victoria Road, Newcastle upon Tyne NE1 4PL, UK
| | - Agota Princzinger
- Department of Paediatrics, Josa Andras Hospital, Szent Istvan utca 6, Nyiregyhaza 4400, Hungary
| | - Yuval Cinnamon
- 1] The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel [2] Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O.Box 6, Bet Dagan 50250, Israel
| | - Susanne Lützkendorf
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Henriett Piko
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Mojgan Reza
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Laura Florez
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Helen Griffin
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Orly Elpeleg
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Shimon Edvardson
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
28
|
Su B, Ryan RO. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective. J Inherit Metab Dis 2014; 37:359-68. [PMID: 24407466 PMCID: PMC4016128 DOI: 10.1007/s10545-013-9669-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In "primary" 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all "secondary" 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function.
Collapse
Affiliation(s)
- Betty Su
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | |
Collapse
|
29
|
Richman TR, Davies SMK, Shearwood AMJ, Ermer JA, Scott LH, Hibbs ME, Rackham O, Filipovska A. A bifunctional protein regulates mitochondrial protein synthesis. Nucleic Acids Res 2014; 42:5483-94. [PMID: 24598254 PMCID: PMC4027184 DOI: 10.1093/nar/gku179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial gene expression is predominantly regulated at the post-transcriptional level and mitochondrial ribonucleic acid (RNA)-binding proteins play a key role in RNA metabolism and protein synthesis. The AU-binding homolog of enoyl-coenzyme A (CoA) hydratase (AUH) is a bifunctional protein with RNA-binding activity and a role in leucine catabolism. AUH has a mitochondrial targeting sequence, however, its role in mitochondrial function has not been investigated. Here, we found that AUH localizes to the inner mitochondrial membrane and matrix where it associates with mitochondrial ribosomes and regulates protein synthesis. Decrease or overexpression of the AUH protein in cells causes defects in mitochondrial translation that lead to changes in mitochondrial morphology, decreased mitochondrial RNA stability, biogenesis and respiratory function. Because of its role in leucine metabolism, we investigated the importance of the catalytic activity of AUH and found that it affects the regulation of mitochondrial translation and biogenesis in response to leucine.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anne-Marie J Shearwood
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Louis H Scott
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Moira E Hibbs
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
30
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|
31
|
Wortmann SB, Duran M, Anikster Y, Barth PG, Sperl W, Zschocke J, Morava E, Wevers RA. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis 2013; 36:923-8. [PMID: 23296368 DOI: 10.1007/s10545-012-9580-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Increased urinary 3-methylglutaconic acid excretion is a relatively common finding in metabolic disorders, especially in mitochondrial disorders. In most cases 3-methylglutaconic acid is only slightly elevated and accompanied by other (disease specific) metabolites. There is, however, a group of disorders with significantly and consistently increased 3-methylglutaconic acid excretion, where the 3-methylglutaconic aciduria is a hallmark of the phenotype and the key to diagnosis. Until now these disorders were labelled by roman numbers (I-V) in the order of discovery regardless of pathomechanism. Especially, the so called "unspecified" 3-methylglutaconic aciduria type IV has been ever growing, leading to biochemical and clinical diagnostic confusion. Therefore, we propose the following pathomechanism based classification and a simplified diagnostic flow chart for these "inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature". One should distinguish between "primary 3-methylglutaconic aciduria" formerly known as type I (3-methylglutaconyl-CoA hydratase deficiency, AUH defect) due to defective leucine catabolism and the--currently known--three groups of "secondary 3-methylglutaconic aciduria". The latter should be further classified and named by their defective protein or the historical name as follows: i) defective phospholipid remodelling (TAZ defect or Barth syndrome, SERAC1 defect or MEGDEL syndrome) and ii) mitochondrial membrane associated disorders (OPA3 defect or Costeff syndrome, DNAJC19 defect or DCMA syndrome, TMEM70 defect). The remaining patients with significant and consistent 3-methylglutaconic aciduria in whom the above mentioned syndromes have been excluded, should be referred to as "not otherwise specified (NOS) 3-MGA-uria" until elucidation of the underlying pathomechanism enables proper (possibly extended) classification.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/urine
- Barth Syndrome/diagnosis
- Barth Syndrome/genetics
- Barth Syndrome/urine
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/urine
- Cerebellar Ataxia/diagnosis
- Cerebellar Ataxia/genetics
- Cerebellar Ataxia/urine
- Chorea/diagnosis
- Chorea/genetics
- Chorea/urine
- Diagnosis, Differential
- Glutarates/urine
- Humans
- Metabolism, Inborn Errors/classification
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/urine
- Optic Atrophy/diagnosis
- Optic Atrophy/genetics
- Optic Atrophy/urine
- Spastic Paraplegia, Hereditary/diagnosis
- Spastic Paraplegia, Hereditary/genetics
- Spastic Paraplegia, Hereditary/urine
- Terminology as Topic
Collapse
Affiliation(s)
- Saskia B Wortmann
- Nijmegen Centre for Mitochondrial Disorders at the Department of Pediatrics, Institute of Genetic and Metabolic Disease, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sarig O, Goldsher D, Nousbeck J, Fuchs-Telem D, Cohen-Katsenelson K, Iancu TC, Manov I, Saada A, Sprecher E, Mandel H. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1. Am J Med Genet A 2013; 161A:2204-15. [PMID: 23918762 DOI: 10.1002/ajmg.a.36059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/19/2013] [Indexed: 12/17/2022]
Abstract
3-Methylglutaconic aciduria (3-MGCA) type IV is defined as a heterogeneous group of inborn errors featuring in common 3-MGCA and associated with primary mitochondrial dysfunction leading to a spectrum of multisystem conditions. We studied four patients who presented at birth with a clinical picture simulating a primary mitochondrial hepatic disorder consistent with the MEGDEL syndrome including 3-MGCA, sensorineural deafness, encephalopathy and a brain magnetic resonance imaging with signs of Leigh disease. All affected children displayed biochemical features consistent with mitochondrial OXPHOS dysfunction including hepatic mitochondrial DNA depletion in one patient. Homozygosity mapping identified a candidate locus on 6q25.2-6q26. Using whole exome sequencing, we identified two novel homozygous mutations in SERAC1 recently reported to harbor mutations in MEGDEL syndrome. Both mutations were found to lead to decreased or absent expression of SERAC1. The present findings indicate that infantile hepatopathy is a cardinal feature of MEGDEL syndrome. We thus propose to rename the disease MEGDHEL syndrome.
Collapse
Affiliation(s)
- Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wortmann SB, Kluijtmans LA, Engelke UFH, Wevers RA, Morava E. The 3-methylglutaconic acidurias: what's new? J Inherit Metab Dis 2012; 35:13-22. [PMID: 20882351 PMCID: PMC3249181 DOI: 10.1007/s10545-010-9210-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 11/26/2022]
Abstract
The heterogeneous group of 3-methylglutaconic aciduria (3-MGA-uria) syndromes includes several inborn errors of metabolism biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. Five distinct types have been recognized: 3-methylglutaconic aciduria type I is an inborn error of leucine catabolism; the additional four types all affect mitochondrial function through different pathomechanisms. We provide an overview of the expanding clinical spectrum of the 3-MGA-uria types and provide the newest insights into the underlying pathomechanisms. A diagnostic approach to the patient with 3-MGA-uria is presented, and we search for the connection between urinary 3-MGA excretion and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Saskia B. Wortmann
- 833 Nijmegen Centre for Mitochondrial Disorders at the Department of Pediatrics and the Institute of Genetic and Metabolic Disease (IGMD), Radboud University Nijmegen Medical Centre, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Leo A. Kluijtmans
- 830 Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- 830 Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ron A. Wevers
- 830 Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Eva Morava
- 833 Nijmegen Centre for Mitochondrial Disorders at the Department of Pediatrics and the Institute of Genetic and Metabolic Disease (IGMD), Radboud University Nijmegen Medical Centre, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
34
|
Mercimek-Mahmutoglu S, Tucker T, Casey B. Phenotypic heterogeneity in two siblings with 3-methylglutaconic aciduria type I caused by a novel intragenic deletion. Mol Genet Metab 2011; 104:410-3. [PMID: 21840233 DOI: 10.1016/j.ymgme.2011.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
Abstract
We describe two siblings with 3-methylglutaconic aciduria type I with phenotypic heterogeneity. The index case was a 14-year-old female with learning disability, attention deficit-hyperactivity and early onset subclinical leukoencephalopathy. Her 9-year-old brother had severe expressive speech delay and delay in speech sound development with normal cognitive functions. The diagnosis was confirmed by a demonstration of 3-methylglutaconyl-CoA hydratase enzyme deficiency in the cultured skin fibroblasts and homozygous deletion of exons 1-3 within the AUH gene.
Collapse
Affiliation(s)
- Saadet Mercimek-Mahmutoglu
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
35
|
Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway. Eur J Hum Genet 2010; 19:138-44. [PMID: 21063443 DOI: 10.1038/ejhg.2010.171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various syndromes of the Ras-mitogen-activated protein kinase (MAPK) pathway, including the Noonan, Cardio-Facio-Cutaneous, LEOPARD and Costello syndromes, share the common features of craniofacial dysmorphisms, heart defect and short stature. In a subgroup of patients, severe muscle hypotonia, central nervous system involvement and failure to thrive occur as well. In this study we report on five children diagnosed initially with classic metabolic and clinical symptoms of an oxidative phosphorylation disorder. Later in the course of the disease, the children presented with characteristic features of Ras-MAPK pathway-related syndromes, leading to the reevaluation of the initial diagnosis. In the five patients, in addition to the oxidative phosphorylation disorder, disease-causing mutations were detected in the Ras-MAPK pathway. Three of the patients also carried a second, mitochondrial genetic alteration, which was asymptomatically present in their healthy relatives. Did we miss the correct diagnosis in the first place or is mitochondrial dysfunction directly related to Ras-MAPK pathway defects? The Ras-MAPK pathway is known to have various targets, including proteins in the mitochondrial membrane influencing mitochondrial morphology and dynamics. Prospective screening of 18 patients with various Ras-MAPK pathway defects detected biochemical signs of disturbed oxidative phosphorylation in three additional children. We concluded that only a specific, metabolically vulnerable sub-population of patients with Ras-MAPK pathway mutations presents with mitochondrial dysfunction and a more severe, early-onset disease. We postulate that patients with Ras-MAPK mutations have an increased susceptibility, but a second metabolic hit is needed to cause the clinical manifestation of mitochondrial dysfunction.
Collapse
|
36
|
Ribeiro CAJ, Hickmann FH, Wajner M. Neurochemical evidence that 3‐methylglutaric acid inhibits synaptic Na
+
,K
+
‐ATPase activity probably through oxidative damage in brain cortex of young rats. Int J Dev Neurosci 2010; 29:1-7. [DOI: 10.1016/j.ijdevneu.2010.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 01/05/2023] Open
Affiliation(s)
- César Augusto João Ribeiro
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Fernanda Hermes Hickmann
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Moacir Wajner
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreRSBrazil
| |
Collapse
|
37
|
Pei W, Kratz LE, Bernardini I, Sood R, Yokogawa T, Dorward H, Ciccone C, Kelley RI, Anikster Y, Burgess HA, Huizing M, Feldman B. A model of Costeff Syndrome reveals metabolic and protective functions of mitochondrial OPA3. Development 2010; 137:2587-96. [PMID: 20627962 DOI: 10.1242/dev.043745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Costeff Syndrome, which is caused by mutations in the OPTIC ATROPHY 3 (OPA3) gene, is an early-onset syndrome characterized by urinary excretion of 3-methylglutaconic acid (MGC), optic atrophy and movement disorders, including ataxia and extrapyramidal dysfunction. The OPA3 protein is enriched in the inner mitochondrial membrane and has mitochondrial targeting signals, but a requirement for mitochondrial localization has not been demonstrated. We find zebrafish opa3 mRNA to be expressed in the optic nerve and retinal layers, the counterparts of which in humans have high mitochondrial activity. Transcripts of zebrafish opa3 are also expressed in the embryonic brain, inner ear, heart, liver, intestine and swim bladder. We isolated a zebrafish opa3 null allele for which homozygous mutants display increased MGC levels, optic nerve deficits, ataxia and an extrapyramidal movement disorder. This correspondence of metabolic, ophthalmologic and movement abnormalities between humans and zebrafish demonstrates a phylogenetic conservation of OPA3 function. We also find that delivery of exogenous Opa3 can reduce increased MGC levels in opa3 mutants, and this reduction requires the mitochondrial localization signals of Opa3. By manipulating MGC precursor availability, we infer that elevated MGC in opa3 mutants derives from extra-mitochondrial HMG-CoA through a non-canonical pathway. The opa3 mutants have normal mitochondrial oxidative phosphorylation profiles, but are nonetheless sensitive to inhibitors of the electron transport chain, which supports clinical recommendations that individuals with Costeff Syndrome avoid mitochondria-damaging agents. In summary, this paper introduces a faithful Costeff Syndrome model and demonstrates a requirement for mitochondrial OPA3 to limit HMG-CoA-derived MGC and protect the electron transport chain against inhibitory compounds.
Collapse
Affiliation(s)
- Wuhong Pei
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huizing M, Dorward H, Ly L, Klootwijk E, Kleta R, Skovby F, Pei W, Feldman B, Gahl WA, Anikster Y. OPA3, mutated in 3-methylglutaconic aciduria type III, encodes two transcripts targeted primarily to mitochondria. Mol Genet Metab 2010; 100:149-54. [PMID: 20350831 PMCID: PMC2872056 DOI: 10.1016/j.ymgme.2010.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 11/15/2022]
Abstract
3-Methylglutaconic aciduria type III (3-MGCA type III), caused by recessive mutations in the 2-exon gene OPA3, is characterized by early-onset bilateral optic atrophy, later-onset extrapyramidal dysfunction, and increased urinary excretion of 3-methylglutaconic acid and 3-methylglutaric acid. Here we report the identification of a novel third OPA3 coding exon, the apparent product of a segmental duplication event, resulting in two gene transcripts, OPA3A and OPA3B. OPA3A deficiency (as in optic atrophy type 3) causes up-regulation of OPA3B. OPA3 protein function remains unknown, but it contains a putative mitochondrial leader sequence, mitochondrial sorting signal and a peroxisomal sorting signal. Our green fluorescent protein tagged OPA3 expression studies found its localization to be predominantly mitochondrial. These findings thus place the cellular metabolic defect of 3-MGCA type III in the mitochondrion rather than the peroxisome and implicate loss of OPA3A rather than gain of OPA3B in disease etiology.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list--and how to find it. Biochem J 2009; 425:1-11. [PMID: 20001958 DOI: 10.1042/bj20091328] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Like other forms of engineering, metabolic engineering requires knowledge of the components (the 'parts list') of the target system. Lack of such knowledge impairs both rational engineering design and diagnosis of the reasons for failures; it also poses problems for the related field of metabolic reconstruction, which uses a cell's parts list to recreate its metabolic activities in silico. Despite spectacular progress in genome sequencing, the parts lists for most organisms that we seek to manipulate remain highly incomplete, due to the dual problem of 'unknown' proteins and 'orphan' enzymes. The former are all the proteins deduced from genome sequence that have no known function, and the latter are all the enzymes described in the literature (and often catalogued in the EC database) for which no corresponding gene has been reported. Unknown proteins constitute up to about half of the proteins in prokaryotic genomes, and much more than this in higher plants and animals. Orphan enzymes make up more than a third of the EC database. Attacking the 'missing parts list' problem is accordingly one of the great challenges for post-genomic biology, and a tremendous opportunity to discover new facets of life's machinery. Success will require a co-ordinated community-wide attack, sustained over years. In this attack, comparative genomics is probably the single most effective strategy, for it can reliably predict functions for unknown proteins and genes for orphan enzymes. Furthermore, it is cost-efficient and increasingly straightforward to deploy owing to a proliferation of databases and associated tools.
Collapse
|
40
|
|
41
|
Ho G, Walter JH, Christodoulou J. Costeff optic atrophy syndrome: new clinical case and novel molecular findings. J Inherit Metab Dis 2008; 31 Suppl 2:S419-23. [PMID: 18985435 DOI: 10.1007/s10545-008-0981-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 11/30/2022]
Abstract
3-Methylglutaconic aciduria (MGA) encompasses a heterogeneous group of disorders, often coinciding with elevated levels of urinary 3-methylglutaric acid. Type I MGA is a disorder of leucine metabolism, while the biological basis for the MGA is unclear for the other types (MGA types II-V). MGA type III (Costeff optic atrophy syndrome, autosomal recessive optic atrophy-3 or optic atrophy plus syndrome, OMIM 258501) is distinguished by early bilateral optic atrophy, later-onset spasticity, extrapyramidal dysfunction, ataxia, and occasional cognitive deficits. It is caused by homozygous mutations in the optic atrophy 3 gene (OPA3). We present a case of a patient with MGA who has infantile-onset optic atrophy, ataxia, extrapyramidal movements and spasticity, but with normal intellect. Sequencing of the patient's DNA revealed a homozygous nonsense mutation c.415C>T (p.Q139X) in exon 2 of transcript 2 of the OPA3 gene, as well as a common silent polymorphism c.231T>C in the same exon. This is the first nonsense mutation found in OPA3. The molecular findings in OPA3 are also reviewed, including mutations in OPA3 that result in autosomal dominant optic atrophy and cataract (ADOAC). The recessive mode of inheritance of MGA type III as a result of the p.Q139X mutation is supported by the carrier status of the unaffected father.
Collapse
Affiliation(s)
- G Ho
- Genetic Metabolic Disorders Research Unit, Children's Hospital at Westmead, Sydney, Australia
| | | | | |
Collapse
|
42
|
Cízková A, Stránecký V, Ivánek R, Hartmannová H, Nosková L, Piherová L, Tesarová M, Hansíková H, Honzík T, Zeman J, Divina P, Potocká A, Paul J, Sperl W, Mayr JA, Seneca S, Houstĕk J, Kmoch S. Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency. BMC Genomics 2008; 9:38. [PMID: 18221507 PMCID: PMC2267714 DOI: 10.1186/1471-2164-9-38] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/25/2008] [Indexed: 11/16/2022] Open
Abstract
Background To strengthen research and differential diagnostics of mitochondrial disorders, we constructed and validated an oligonucleotide microarray (h-MitoArray) allowing expression analysis of 1632 human genes involved in mitochondrial biology, cell cycle regulation, signal transduction and apoptosis. Using h-MitoArray we analyzed gene expression profiles in 9 control and 13 fibroblast cell lines from patients with F1Fo ATP synthase deficiency consisting of 2 patients with mt9205ΔTA microdeletion and a genetically heterogeneous group of 11 patients with not yet characterized nuclear defects. Analysing gene expression profiles, we attempted to classify patients into expected defect specific subgroups, and subsequently reveal group specific compensatory changes, identify potential phenotype causing pathways and define candidate disease causing genes. Results Molecular studies, in combination with unsupervised clustering methods, defined three subgroups of patient cell lines – M group with mtDNA mutation and N1 and N2 groups with nuclear defect. Comparison of expression profiles and functional annotation, gene enrichment and pathway analyses of differentially expressed genes revealed in the M group a transcription profile suggestive of synchronized suppression of mitochondrial biogenesis and G1/S arrest. The N1 group showed elevated expression of complex I and reduced expression of complexes III, V, and V-type ATP synthase subunit genes, reduced expression of genes involved in phosphorylation dependent signaling along MAPK, Jak-STAT, JNK, and p38 MAP kinase pathways, signs of activated apoptosis and oxidative stress resembling phenotype of premature senescent fibroblasts. No specific functionally meaningful changes, except of signs of activated apoptosis, were detected in the N2 group. Evaluation of individual gene expression profiles confirmed already known ATP6/ATP8 defect in patients from the M group and indicated several candidate disease causing genes for nuclear defects. Conclusion Our analysis showed that deficiency in the ATP synthase protein complex amount is generally accompanied by only minor changes in expression of ATP synthase related genes. It also suggested that the site (mtDNA vs nuclear DNA) and the severity (ATP synthase content) of the underlying defect have diverse effects on cellular gene expression phenotypes, which warrants further investigation of cell cycle regulatory and signal transduction pathways in other OXPHOS disorders and related pharmacological models.
Collapse
Affiliation(s)
- Alena Cízková
- Center for Applied Genomics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Leipnitz G, Seminotti B, Amaral AU, de Bortoli G, Solano A, Schuck PF, Wyse ATS, Wannmacher CMD, Latini A, Wajner M. Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sci 2008; 82:652-62. [PMID: 18261750 DOI: 10.1016/j.lfs.2007.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 02/07/2023]
Abstract
3-methylglutaconic (MGT), 3-methylglutaric (MGA) and occasionally 3-hydroxyisovaleric (OHIVA) acids accumulate in a group of diseases known as 3-methylglutaconic aciduria (MGTA). Although the clinical presentation of MGTA is mainly characterized by neurological symptoms, the mechanisms of brain damage in this disease are poorly known. In the present study we investigated the in vitro effect of MGT, MGA and OHIVA on various parameters of oxidative stress in cerebral cortex from young rats. Thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence were significantly increased by MGT, MGA and OHIVA, indicating that these metabolites induce lipid oxidative damage. Furthermore, the addition of melatonin, alpha-tocopherol and superoxide dismutase plus catalase fully prevented MGT-induced increase on TBA-RS, suggesting that free radicals were involved in this effect. These metabolites also provoked protein oxidative damage determined by increased carbonyl formation and sulfhydryl oxidation, but did not induce superoxide generation in submitochondrial particles. It was also verified that MGA and MGT significantly decreased the non-enzymatic antioxidant defenses in cerebral cortex supernatants and that melatonin and alpha-tocopherol totally blocked MGA-induced GSH reduction. The data indicate that the metabolites accumulating in MGTA elicit oxidative stress in vitro in the cerebral cortex. It is therefore presumed that this pathomechanism may be involved in the brain damage observed in patients affected by MGTA.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre-RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Murín R, Hamprecht B. Metabolic and regulatory roles of leucine in neural cells. Neurochem Res 2007; 33:279-84. [PMID: 17721727 DOI: 10.1007/s11064-007-9444-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 07/13/2007] [Indexed: 12/17/2022]
Abstract
Dietary leucine transported into the brain parenchyma serves several functions. Most prominent is the role of leucine as a metabolic precursor of fuel molecules, alpha-ketoisocaproate and ketone bodies. As alternatives to glucose, these compounds are forwarded by the producing astrocytes to the adjacent neural cells. Leucine furthermore participates in the maintenance of the nitrogen balance in the glutamate/glutamine cycle pertinent to the neurotransmitter glutamate. Leucine also serves as a regulator of the activity of some enzymes important for brain energy metabolism. Another role of leucine as an informational molecule is in mTOR signaling that participates in the regulation of food ingestion. The importance of leucine for brain function is stressed by the fact that inborn errors in its metabolism cause metabolic diseases often associated with neuropathological symptoms. In this overview, the current knowledge on the metabolic and regulatory roles of this essential amino acid in neural cells are briefly summarized.
Collapse
Affiliation(s)
- Radovan Murín
- Interfaculty Institute for Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | | |
Collapse
|
45
|
Mack M, Schniegler-Mattox U, Peters V, Hoffmann GF, Liesert M, Buckel W, Zschocke J. Biochemical characterization of human 3-methylglutaconyl-CoA hydratase and its role in leucine metabolism. FEBS J 2006; 273:2012-22. [PMID: 16640564 DOI: 10.1111/j.1742-4658.2006.05218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabolic disease 3-methylglutaconic aciduria type I (MGA1) is characterized by an abnormal organic acid profile in which there is excessive urinary excretion of 3-methylglutaconic acid, 3-methylglutaric acid and 3-hydroxyisovaleric acid. Affected individuals display variable clinical manifestations ranging from mildly delayed speech development to severe psychomotor retardation with neurological handicap. MGA1 is caused by reduced or absent 3-methylglutaconyl-coenzyme A (3-MG-CoA) hydratase activity within the leucine degradation pathway. The human AUH gene has been reported to encode for a bifunctional enzyme with both RNA-binding and enoyl-CoA-hydratase activity. In addition, it was shown that mutations in the AUH gene are linked to MGA1. Here we present kinetic data of the purified gene product of AUH using different CoA-substrates. The best substrates were (E)-3-MG-CoA (V(max) = 3.9 U.mg(-1), K(m) = 8.3 microM, k(cat) = 5.1 s(-1)) and (E)-glutaconyl-CoA (V(max) = 1.1 U.mg(-1), K(m) = 2.4 microM, k(cat) = 1.4 s(-1)) giving strong evidence that the AUH gene encodes for the major human 3-MG-CoA hydratase in leucine degradation. Based on these results, a new assay for AUH activity in fibroblast homogenates was developed. The only missense mutation found in MGA1 phenotypes, c.719C>T, leading to the amino acid exchange A240V, produces an enzyme with only 9% of the wild-type 3-MG-CoA hydratase activity.
Collapse
Affiliation(s)
- Matthias Mack
- Institut für Technische Mikrobiologie der Hochschule Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wortmann S, Rodenburg RJT, Huizing M, Loupatty FJ, de Koning T, Kluijtmans LAJ, Engelke U, Wevers R, Smeitink JAM, Morava E. Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation. Mol Genet Metab 2006; 88:47-52. [PMID: 16527507 DOI: 10.1016/j.ymgme.2006.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/30/2022]
Abstract
In this paper, we describe a distinct clinical subtype of 3-methylglutaconic aciduria. 3-Methylglutaconic aciduria is a group of different metabolic disorders biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. We performed biochemical and genetic investigations, including urine organic acid analysis, NMR spectroscopy, measurement of 3-methylglutaconyl-CoA hydratase activity, cardiolipin levels, OPA3 gene analysis and measurement of the oxidative phosphorylation in four female patients with 3-methylglutaconic aciduria. 3-Methylglutaconic aciduria type I, Barth syndrome, and Costeff syndrome were excluded as the activity of 3-methylglutaconyl-CoA hydratase, the cardiolipin levels, and molecular analysis of the OPA3 gene, respectively, showed no abnormalities. The children presented with characteristic association of hearing loss and the neuro-radiological evidence of Leigh disease. They also had neonatal hypotonia, recurrent lactic acidemia, episodes with hypoglycemia and severe recurrent infections, feeding difficulties, failure to thrive, developmental delay, and progressive spasticity with extrapyramidal symptoms. Our patients were further biochemically characterized by a mitochondrial dysfunction and persistent urinary excretion of 3-methylglutaconic acid.
Collapse
Affiliation(s)
- S Wortmann
- Radboud University Nijmegen Medical Centre, Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pegg SCH, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ, Huang CC, Ferrin TE, Babbitt PC. Leveraging enzyme structure-function relationships for functional inference and experimental design: the structure-function linkage database. Biochemistry 2006; 45:2545-55. [PMID: 16489747 DOI: 10.1021/bi052101l] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of mechanistically diverse enzyme superfamilies-collections of enzymes that perform different overall reactions but share both a common fold and a distinct mechanistic step performed by key conserved residues-helps elucidate the structure-function relationships of enzymes. We have developed a resource, the structure-function linkage database (SFLD), to analyze these structure-function relationships. Unique to the SFLD is its hierarchical classification scheme based on linking the specific partial reactions (or other chemical capabilities) that are conserved at the superfamily, subgroup, and family levels with the conserved structural elements that mediate them. We present the results of analyses using the SFLD in correcting misannotations, guiding protein engineering experiments, and elucidating the function of recently solved enzyme structures from the structural genomics initiative. The SFLD is freely accessible at http://sfld.rbvi.ucsf.edu.
Collapse
Affiliation(s)
- Scott C-H Pegg
- Department of Biopharmaceutical Sciences, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2250, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mack M, Liesert M, Zschocke J, Peters V, Linder D, Buckel W. 3-Methylglutaconyl-CoA hydratase from Acinetobacter sp. Arch Microbiol 2006; 185:297-306. [PMID: 16482430 DOI: 10.1007/s00203-006-0095-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/02/2005] [Accepted: 01/26/2006] [Indexed: 10/25/2022]
Abstract
Acinetobacter strain IVS-B aerobically grows on isovalerate as sole carbon and energy source. Isovalerate is metabolised via isovaleryl-CoA, an intermediate of the oxidative (S)-leucine degradation pathway. A 3-methylglutaconyl-CoA hydratase (EC 4.2.1.18) was purified 65-fold to apparent homogeneity from cell-free extracts of isovalerate-grown cells of Acinetobacter strain IVS-B. The enzyme was found to be a homotetramer (115.2 kDa) composed of four identical subunits of 28.8 kDa not containing any cofactors. The enzyme was shown to catalyse the hydration of (E)-glutaconyl-CoA (k (cat)=18 s(-1), K (m)=40 microM) and the dehydration of (S)-3-hydroxyglutaryl-CoA (k (cat)=13 s(-1), K (m)=52 microM), albeit with somewhat lower catalytic efficiencies as compared to the 3-methyl derivatives, 3-methylglutaconyl-CoA (k (cat)=138 s(-1), K (m)=14 microM) and (S)-3-hydroxy-3-methylglutaryl-CoA (k (cat)=60 s(-1), K (m)=36 microM). Thus, the mechanistically simple syn-addition of water to the (E)-isomer of 3-methylglutaconyl-CoA of the leucine degradative pathway leading to the common intermediate (S)-3-hydroxy-3-methylglutaryl-CoA was assigned as the major physiological role to this enzyme. The amino acid sequence of 3-methylglutaconyl-CoA hydratase from Acinetobacter sp. was found to be related to over 100 prokaryotic enoyl-CoA hydratases (up to 50% identity), possibly all being 3-methylglutaconyl-CoA hydratases.
Collapse
Affiliation(s)
- Matthias Mack
- Institut für Technische Mikrobiologie, Fachhochschule Mannheim, Hochschule für Technik und Gestaltung, Windeckstr. 110, 68163, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Pamela Arn
- Division of Genetics, Nemours Children's Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
50
|
Matsumori M, Shoji Y, Takahashi T, Shoji Y, Takada G. A molecular lesion in a Japanese patient with severe phenotype of 3-methylglutaconic aciduria type I. Pediatr Int 2005; 47:684-6. [PMID: 16354225 DOI: 10.1111/j.1442-200x.2005.02130.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mika Matsumori
- Department of Pediatrics, Akita University School of Medicine, Akita, Japan.
| | | | | | | | | |
Collapse
|