1
|
Khan N, Gillani SM, Bhat MA, ullah I, Yaseen M. Genetic and in-silico approaches for investigating the mechanisms of ciprofloxacin resistance in Salmonella typhi: Mutations, extrusion, and antimicrobial resistance. Heliyon 2024; 10:e38333. [PMID: 39397980 PMCID: PMC11470425 DOI: 10.1016/j.heliyon.2024.e38333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Salmonella enterica serovar Typhi spreads typhoid infection in humans through the consumption of contaminated food and water. Poor sanitation plays a pivotal role in its dissemination. Over time, the bacterium has acquired resistance to many promising antibiotics, posing a growing global health concern and hindering the achievement of sustainable development goals. This study aims to elucidate the molecular complexity of fluoroquinolone resistance, a first-line treatment for typhoid infection. To achieve this aim, 80 clinical isolates were collected from various diagnostic laboratories. These isolates were confirmed based on morphological characteristics and biochemical tests. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates were identified using the Kirby-Bauer disc diffusion method. The mechanism of ciprofloxacin resistance was investigated by sequencing the quinolone resistance-determining region (QRDR) genes and identifying the presence of the qnrS1 gene. As a result of this study, 60 % of isolates showed resistance to ciprofloxacin. At the same time, the qnrS1 gene was present in all the selected strains while mutation analysis identified significant mutation in QRDR of DNA gyrase subunit A (gyrA) and Topoisomerase IV (parC) gene. The combinatorial effect was further investigated by downloading 286 draft genomes. The Mutation analysis reveals significant mutations at gyrA S83F, gyrA D87N, gyrA S83Y, gyrB S464F, parC S80I, and parE L416F. Additionally, docking analysis indicates reduced binding affinity and altered solvent accessibility, which show the structural changes at mutation sites. This study provides crucial insights that mutation reduces the binding affinity while qnrS1 acts as a transport channel to extrude the ciprofloxacin. In the future, further validation through experimental mutagenesis is recommended, for targeted therapeutic interventions against the mounting threat of antibiotic-resistant S. Typhi.
Collapse
Affiliation(s)
- Noman Khan
- Department of Biosciences, Mohammad Ali Jinnah University Karachi Pakistan, Pakistan
- The Gene-omics Bioinformatics Laboratory, Karachi, Pakistan
| | - Syed Maaz Gillani
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ihsan ullah
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
- Institute of Chemical Sciences, University of Swat, Charbagh, 19130, Swat, Pakistan
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh, 19130, Swat, Pakistan
| |
Collapse
|
2
|
Yu L, Han X, Zhang W, Fu Y, Yang S, Wu S, Jin J, Li S, Chen Y, Jiang Y, Yu Y. The two-component sensor factor envZ influences antibiotic resistance and virulence in the evolutionary dynamics of multidrug-resistant Salmonella enteritidis causing multisite invasive infections. J Antimicrob Chemother 2024:dkae355. [PMID: 39365636 DOI: 10.1093/jac/dkae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVES To assess the impact of mutations in the two-component sensor envZ on antibiotic resistance and virulence in the evolutionary dynamics of MDR Salmonella enteritidis (S. enteritidis). METHODS Five S. enteritidis isolates obtained from a patient with multisite invasive infections were analysed. Analysis of antibiotic resistance genes, virulence genes and SNP was performed through WGS. RNA sequencing, quantitative RT-PCR, virulence testing in a Galleria mellonella (G. mellonella) infection model and in vitro cell experiments were used to examine the effects of envZ mutations. RESULTS WGS revealed identical resistance and virulence genes on an IncFIB(S)/IncFII(S)/IncX1 fusion plasmid in all strains. The faecal strains harboured envZ mutations, reducing outer membrane protein ompD and ompF transcriptional level. Virulence testing demonstrated elevated virulence in envZ mutant strains. In vitro experiments revealed increased adhesion, invasion and phagocytosis resistance in envZ mutants, along with reduced biofilm formation and growth rates. CONCLUSIONS These findings highlight novel genetic locations on envZ influencing antibiotic resistance and virulence in clinical S. enteritidis strains. envZ mutations impact antibiotic resistance by down-regulating ompD and ompF expression and enhance virulence, contributing to multisite infections with increased fitness costs.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xinhong Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wang Zhang
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ying Fu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaoxue Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shenghai Wu
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Siying Li
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
3
|
Xu J, Chen Y, Yu J, Liu S, Meng Y, Li C, Huang Q, Xiao Y. Clinical Characteristics, Serotypes and Antimicrobial Resistance of Invasive Salmonella Infections in HIV-Infected Patients in Hangzhou, China, 2012-2023. Infect Drug Resist 2024; 17:3839-3849. [PMID: 39247755 PMCID: PMC11380868 DOI: 10.2147/idr.s465979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Developing countries, invasive Salmonella infections can cause considerable morbidity and mortality. There is a relative lack of data on coinfection with Salmonella in HIV-infected patients in Hangzhou, China. Patients and Methods In this study, we manually collected case data of patients aged >18 years with HIV combined with invasive Salmonella infections admitted to Xixi Hospital in Hangzhou from January 2012 to August 2023 by logging into the Hospital Information System, and identified 26 strains of invasive Salmonella using a fully automated microbiological identification system and mass spectrometer. Serotypes were determined using Salmonella diagnostic sera based on the White-Kauffmann-Le Minor scheme. Drug sensitivity tests were performed using the automated instrumental method of the MIC method. Results A total of 26 HIV-infected patients with invasive Salmonella coinfections were identified over 11 years; Twenty-five of the 26 patients (96.2%) were males, with a mean age of 33.5 years (26.75, 46.75). The most common type of infection was bloodstream infection (92.3%). One patient also had concomitant meningitis and osteoarthritis, followed by pneumonia (7.7%). The presence of multiple bacterial infections or even multiple opportunistic pathogens was clearly established in 7 (26.9%) patients. Three (11.6%) patients were automatically discharged from the hospital with deterioration of their condition, and one (3.8%) patient died. Salmonella enteritidis was the most common serotype in 6 patients (23.2%), and Salmonella Dublin was the most common serotype in 6 patients (23.2%). Drug sensitivity results revealed multidrug resistance in a total of 8 (30.8%) patients. Conclusion The clinical presentation of invasive Salmonella infection in HIV patients is nonspecific and easily masked by other mixed infections. A CD4+ count <100 cells/µL and comorbid intestinal lesions may be important susceptibility factors. Salmonella has a high rate of resistance to common antibiotics, and the risk of multidrug resistance should not be ignored.
Collapse
Affiliation(s)
- Jingying Xu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuan Chen
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianhua Yu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shourong Liu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Meng
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chaodan Li
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qian Huang
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yunlei Xiao
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Martin LB, Tack B, Marchello CS, Sikorski MJ, Owusu-Dabo E, Nyirenda T, Mogasale V, Crump JA. Vaccine value profile for invasive non-typhoidal Salmonella disease. Vaccine 2024; 42:S101-S124. [PMID: 39003017 DOI: 10.1016/j.vaccine.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 07/15/2024]
Abstract
Invasive non-typhoidal Salmonella (iNTS) disease is an under-recognized high-burden disease causing major health and socioeconomic issues in sub-Saharan Africa (sSA), predominantly among immune-naïve infants and young children, including those with recognized comorbidities such as HIV infection. iNTS disease is primarily caused by Salmonella enterica serovar Typhimurium sequence type (ST) 313 and 'African-restricted clades' of Salmonella Enteritidis ST11 that have emerged across the African continent as a series of epidemics associated with acquisition of new antimicrobial resistance. Due to genotypes with a high prevalence of antimicrobial resistance and scarcity of therapeutic options, these NTS serovars are designated by the World Health Organization as a priority pathogen for research and development of interventions, including vaccines, to address and reduce NTS associated bacteremia and meningitis in sSA. Novel and traditional vaccine technologies are being applied to develop vaccines against iNTS disease, and the results of the first clinical trials in the infant target population should become available in the near future. The "Vaccine Value Profile" (VVP) addresses information related predominantly to invasive disease caused by Salmonella Enteritidis and Salmonella Typhimurium prevalent in sSA. Information is included on stand-alone iNTS disease candidate vaccines and candidate vaccines targeting iNTS disease combined with another invasive serotype, Salmonella Typhi, that is also common across sSA. Out of scope for the first version of this VVP is a wider discussion on either diarrheagenic NTS disease (dNTS) also associated with Salmonella Enteritidis and Salmonella Typhimurium or the development of a multivalent Salmonella vaccines targeting key serovars for use globally. This VVP for vaccines to prevent iNTS disease is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic, and societal value of pipeline vaccines and vaccine-like products. Future versions of this VVP will be updated to reflect ongoing activities such as vaccine development strategies and a "Full Vaccine Value Assessment" that will inform the value proposition of an iNTS disease vaccine. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations, and in collaboration with stakeholders from the World Health Organization African Region. All contributors have extensive expertise on various elements of the iNTS disease VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
| | - Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Belgium and Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium.
| | | | - Michael J Sikorski
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | - John A Crump
- Centre for International Health, University of Otago, New Zealand.
| |
Collapse
|
5
|
Amir Y, Omar M, Adler A, Abu-Moch S, Donkor ES, Cohen D, Muhsen K. The prevalence of antimicrobial drug resistance of non-typhoidal Salmonella in human infections in sub-Saharan Africa: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024:1-14. [PMID: 38922636 DOI: 10.1080/14787210.2024.2368989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Non-typhoidal Salmonella (NTS) bacteremia is common in sub-Saharan Africa. We examined the prevalence of antibiotic resistance to fluoroquinolones, third-generation cephalosporins, and multi-drug resistance (MDR) in NTS human isolates from sub-Saharan Africa. METHODS A systematic review was conducted using a search in Ovid Medline, Embase, and African Index Medicus of publications between 2000 and 2021. A random-effects model meta-analysis was performed using data from 66 studies that included 29,039 NTS blood and 1,065 stool isolates. RESULTS The pooled prevalence proportions of MDR were 0.685 (95% CI 0.574-0.778) and 0.214 (0.020-0.785) in blood vs. stool isolates. The corresponding estimates of fluoroquinolones resistance were 0.014 (0.008-0.025) vs. 0.021 (0.012-0.036) and third-generation cephalosporins resistance 0.019 (0.012-0.031) vs. 0.035 (0.006-0.185). Similar results were found for children and adults. Resistance prevalence to these antibiotics in blood isolates increased between 2000-2010 and 2011-2021. The guidelines employed to determine antimicrobial resistance and epidemiological characteristics (e.g. sample size, study duration) correlated with the resistance prevalence. CONCLUSIONS The prevalence of MDR and resistance to fluoroquinolones and third-generation cephalosporins in NTS in sub-Saharan Africa is alarming. EXPERT OPINION Standardized surveillance of antimicrobial drug resistance in NTS in sub-Saharan Africa is warranted to guide healthcare policymaking and antibiotic stewardship programs.
Collapse
Affiliation(s)
- Yonatan Amir
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Muna Omar
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amos Adler
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sereen Abu-Moch
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Yang J, Barrila J, Nauman EA, Nydam SD, Yang S, Park J, Gutierrez-Jensen AD, Castro CL, Ott CM, Buss K, Steel J, Zakrajsek AD, Schuff MM, Nickerson CA. Incremental increases in physiological fluid shear progressively alter pathogenic phenotypes and gene expression in multidrug resistant Salmonella. Gut Microbes 2024; 16:2357767. [PMID: 38783686 PMCID: PMC11135960 DOI: 10.1080/19490976.2024.2357767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant S. Typhimurium (ST313 D23580) under different fluid shear conditions relevant to its transition from the intestinal tract to the bloodstream. We report that D23580 exhibited incremental changes in transcriptomic profiles that correlated with its pathogenic phenotypes in response to these progressive increases in fluid shear. This is the first demonstration that incremental changes in fluid shear forces alter stress responses and gene expression in any ST313 strain and offers mechanistic insight into how forces encountered by bacteria during infection might impact their disease-causing ability in unexpected ways.
Collapse
Affiliation(s)
- Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Eric A. Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Seth D. Nydam
- Department of Animal Care & Technologies, Arizona State University, Tempe, AZ, USA
| | - Shanshan Yang
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
| | - Jin Park
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Ami D. Gutierrez-Jensen
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Christian L. Castro
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- JES Tech, Houston, TX, USA
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Kristina Buss
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Jason Steel
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Anne D. Zakrajsek
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Mary M. Schuff
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Cheryl A. Nickerson
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Bermúdez-Puga S, Dias M, Freire de Oliveira T, Mendonça CMN, Yokomizo de Almeida SR, Rozas EE, do Nascimento CAO, Mendes MA, Oliveira De Souza de Azevedo P, Almeida JR, Proaño-Bolaños C, Oliveira RPDS. Dual antibacterial mechanism of [K4K15]CZS-1 against Salmonella Typhimurium: a membrane active and intracellular-targeting antimicrobial peptide. Front Microbiol 2023; 14:1320154. [PMID: 38156004 PMCID: PMC10752938 DOI: 10.3389/fmicb.2023.1320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Salmonella genus is a leading cause of food-borne infections with strong public health impact and economic ramifications. The development of antimicrobial resistance added complexity to this scenario and turned the antibiotic drug discovery into a highly important challenge. The screening of peptides has served as a successful discovery platform to design new antibiotic candidates. Motivated by this, the antimicrobial and cytotoxic properties of three cruzioseptins against Salmonella Typhimurium and RAW 264.7 murine macrophage cells, respectively, were investigated. [K4K15]CZS-1 was the most potent antimicrobial peptide identified in the screening step with a minimum inhibitory concentration (MIC) of 16 μg/mL (7.26 μM) and moderate cytotoxicity. From a structural point of view, in vitro and in silico techniques evidenced that [K4K15]CZS-1 is a α-helical cationic antimicrobial peptide. In order to capture mechanistic details and fully decipher their antibacterial action, we adopted a multidimensional approach, including spectroscopy, electron microscopy and omics analysis. In general lines, [K4K15]CZS-1 caused membrane damage, intracellular alterations in Salmonella and modulated metabolic pathways, such as the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and lipid metabolism. Overall, these findings provide deeper insights into the antibacterial properties and multidimensional mode of action of [K4K15]CZS-1 against Salmonella Typhimurium. In summary, this study represents a first step toward the screening of membrane-acting and intracellular-targeting peptides as potential bio-preservatives to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Meriellen Dias
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Enrique Eduardo Rozas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
9
|
Worley MJ. Salmonella Bloodstream Infections. Trop Med Infect Dis 2023; 8:487. [PMID: 37999606 PMCID: PMC10675298 DOI: 10.3390/tropicalmed8110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is a major foodborne pathogen of both animals and humans. This bacterium is responsible for considerable morbidity and mortality world-wide. Different serovars of this genus cause diseases ranging from self-limiting gastroenteritis to a potentially fatal systemic disease known as enteric fever. Gastrointestinal infections with Salmonella are usually self-limiting and rarely require medical intervention. Bloodstream infections, on the other hand, are often fatal even with hospitalization. This review describes the routes and underlying mechanisms of the extraintestinal dissemination of Salmonella and the chronic infections that sometimes result. It includes information on the pathogenicity islands and individual virulence factors involved in systemic dissemination as well as a discussion of the host factors that mediate susceptibility. Also, the major outbreaks of invasive Salmonella disease in the tropics are described.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
10
|
Wang N, Scott TA, Kupz A, Shreenivas MM, Peres NG, Hocking DM, Yang C, Jebeli L, Beattie L, Groom JR, Pierce TP, Wakim LM, Bedoui S, Strugnell RA. Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis. PLoS Pathog 2023; 19:e1011666. [PMID: 37733817 PMCID: PMC10547166 DOI: 10.1371/journal.ppat.1011666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy A. Scott
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Newton G. Peres
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P. Pierce
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Tsai CN, Massicotte MA, MacNair CR, Perry JN, Brown ED, Coombes BK. Screening under infection-relevant conditions reveals chemical sensitivity in multidrug resistant invasive non-typhoidal Salmonella (iNTS). RSC Chem Biol 2023; 4:600-612. [PMID: 37547457 PMCID: PMC10398353 DOI: 10.1039/d3cb00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bloodstream infections caused by invasive, non-typhoidal Salmonella (iNTS) are a major global health concern, particularly in Africa where the pathogenic variant of Salmonella Typhimurium sequence type (ST) 313 is dominant. Unlike S. Typhimurium strains that cause gastroenteritis, iNTS strains cause bloodstream infections and are resistant to multiple first-line antibiotics, thus limiting current treatment options. Here, we developed and implemented multiple small molecule screens under physiological, infection-relevant conditions to reveal chemical sensitivities in ST313 and to identify host-directed therapeutics as entry points to drug discovery to combat the clinical burden of iNTS. Screening ST313 iNTS under host-mimicking growth conditions identified 92 compounds with antimicrobial activity despite inherent multidrug resistance. We characterized the antimicrobial activity of the nucleoside analog 3'-azido-3'-deoxythymidine as an exemplary compound from this screen, which depended on bacterial thymidine kinase activity for antimicrobial activity. In a companion macrophage-based screening platform designed to enrich for host-directed therapeutics, we identified three compounds (amodiaquine, berbamine, and indatraline) as actives that required the presence of host cells for antibacterial activity. These three compounds had antimicrobial activity only in the presence of host cells that significantly inhibited intracellular ST313 iNTS replication in macrophages. This work provides evidence that despite high invasiveness and multidrug resistance, ST313 iNTS remains susceptible to unconventional drug discovery approaches.
Collapse
Affiliation(s)
- Caressa N Tsai
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Marie-Ange Massicotte
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Craig R MacNair
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Jordyn N Perry
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
| | - Eric D Brown
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Brian K Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
- Farncombe Family Digestive Health Research Institute Hamilton ON Canada
| |
Collapse
|
12
|
Akinyemi KO, Fakorede CO, Linde J, Methner U, Wareth G, Tomaso H, Neubauer H. Whole genome sequencing of Salmonella enterica serovars isolated from humans, animals, and the environment in Lagos, Nigeria. BMC Microbiol 2023; 23:164. [PMID: 37312043 DOI: 10.1186/s12866-023-02901-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Salmonella infections remain an important public health issue worldwide. Some serovars of non-typhoidal Salmonella (NTS) have been associated with bloodstream infections and gastroenteritis, especially in children in Sub-Saharan Africa with circulating S. enterica serovars with drug resistance and virulence genes. This study identified and verified the clonal relationship of Nigerian NTS strains isolated from humans, animals, and the environment. METHODS In total, 2,522 samples were collected from patients, animals (cattle and poultry), and environmental sources between December 2017 and May 2019. The samples were subjected to a standard microbiological investigation. All the isolates were identified using Microbact 24E, and MALDI-TOF MS. The isolates were serotyped using the Kauffmann-White scheme. Antibiotic susceptibility testing was conducted using the disc diffusion method and the Vitek 2 compact system. Virulence and antimicrobial resistance genes, sequence type, and cluster analysis were investigated using WGS data. RESULTS Forty-eight (48) NTS isolates (1.9%) were obtained. The prevalence of NTS from clinical sources was 0.9%, while 4% was recorded for animal sources. The serovars identified were S. Cotham (n = 17), S. Give (n = 16), S. Mokola (n = 6), S. Abony (n = 4), S. Typhimurium (n = 4), and S. Senftenberg (n = 1). All 48 Salmonella isolates carried intrinsic and acquired resistant genes such as aac.6…Iaa, mdf(A), qnrB, qnrB19 genes and golT, golS, pcoA, and silP, mediated by plasmid Col440I_1, incFIB.B and incFII. Between 100 and 118 virulence gene markers distributed across several Salmonella pathogenicity islands (SPIs), clusters, prophages, and plasmid operons were found in each isolate. WGS revealed that strains of each Salmonella serovar could be assigned to a single 7-gene MLST cluster, and strains within the clusters were identical strains and closely related as defined by the 0 and 10 cgSNPs and likely shared a common ancestor. The dominant sequence types were S. Give ST516 and S. Cotham ST617. CONCLUSION We found identical Salmonella sequence types in human, animal, and environmental samples in the same locality, which demonstrates the great potential of the applied tools to trace back outbreak strains. Strategies to control and prevent the spread of NTS in the context of one's health are essential to prevent possible outbreaks.
Collapse
Affiliation(s)
| | | | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Toukh, Moshtohor, Egypt
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
13
|
Phillips MT, Antillon M, Bilcke J, Bar-Zeev N, Limani F, Debellut F, Pecenka C, Neuzil KM, Gordon MA, Thindwa D, Paltiel AD, Yaesoubi R, Pitzer VE. Cost-effectiveness analysis of typhoid conjugate vaccines in an outbreak setting: a modeling study. BMC Infect Dis 2023; 23:143. [PMID: 36890448 PMCID: PMC9993384 DOI: 10.1186/s12879-023-08105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Several prolonged typhoid fever epidemics have been reported since 2010 throughout eastern and southern Africa, including Malawi, caused by multidrug-resistant Salmonella Typhi. The World Health Organization recommends the use of typhoid conjugate vaccines (TCVs) in outbreak settings; however, current data are limited on how and when TCVs might be introduced in response to outbreaks. METHODOLOGY We developed a stochastic model of typhoid transmission fitted to data from Queen Elizabeth Central Hospital in Blantyre, Malawi from January 1996 to February 2015. We used the model to evaluate the cost-effectiveness of vaccination strategies over a 10-year time horizon in three scenarios: (1) when an outbreak is likely to occur; (2) when an outbreak is unlikely to occur within the next ten years; and (3) when an outbreak has already occurred and is unlikely to occur again. We considered three vaccination strategies compared to the status quo of no vaccination: (a) preventative routine vaccination at 9 months of age; (b) preventative routine vaccination plus a catch-up campaign to 15 years of age; and (c) reactive vaccination with a catch-up campaign to age 15 (for Scenario 1). We also explored variations in outbreak definitions, delays in implementation of reactive vaccination, and the timing of preventive vaccination relative to the outbreak. RESULTS Assuming an outbreak occurs within 10 years, we estimated that the various vaccination strategies would prevent a median of 15-60% of disability-adjusted life-years (DALYs). Reactive vaccination was the preferred strategy for WTP values of $0-300 per DALY averted. For WTP values > $300, introduction of preventative routine TCV immunization with a catch-up campaign was the preferred strategy. Routine vaccination with a catch-up campaign was cost-effective for WTP values above $890 per DALY averted if no outbreak occurs and > $140 per DALY averted if implemented after the outbreak has already occurred. CONCLUSIONS Countries for which the spread of antimicrobial resistance is likely to lead to outbreaks of typhoid fever should consider TCV introduction. Reactive vaccination can be a cost-effective strategy, but only if delays in vaccine deployment are minimal; otherwise, introduction of preventive routine immunization with a catch-up campaign is the preferred strategy.
Collapse
Affiliation(s)
- Maile T Phillips
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., P.O. Box 208034, New Haven, CT, 06520-8034, USA
| | - Marina Antillon
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Joke Bilcke
- Center for Health Economics Research and Modeling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Naor Bar-Zeev
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Fumbani Limani
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.,Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Clint Pecenka
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Melita A Gordon
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.,Kamuzu University of Health Sciences, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Deus Thindwa
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - A David Paltiel
- Department of Health Policy, Yale School of Public Health, New Haven, CT, USA
| | - Reza Yaesoubi
- Department of Health Policy, Yale School of Public Health, New Haven, CT, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., P.O. Box 208034, New Haven, CT, 06520-8034, USA.
| |
Collapse
|
14
|
Repurposing the tyrosine kinase inhibitor nilotinib for use against intracellular multidrug-resistant Salmonella Typhimurium. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023:S1684-1182(23)00005-1. [PMID: 36702646 DOI: 10.1016/j.jmii.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/08/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND/PURPOSE The increasing incidence of infections caused by multidrug-resistant Salmonella enterica has become a serious threat to global public health. Here, we found that the tyrosine kinase inhibitor nilotinib exhibits antibacterial activity against intracellular S. enterica serovar Typhimurium in RAW264.7 macrophages. Thus, we aimed to pharmacologically exploit the anti-intracellular Salmonella activity of nilotinib and to elucidate its mechanism of action. METHODS The antibacterial activity of the compounds was assessed by high-content analysis (HCA) and intracellular CFU, minimum inhibitory concentration (MIC), and bacterial growth assays. The cytotoxicity of the compounds was evaluated by HCA and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assays. The levels of cellular AMPK, phospho-AMPK, Atg7 and β-actin were determined by immunoblotting. RESULTS The screen identified two small molecule compounds (SCT1101 and SCT1104) with potent activity against intracellular S. Typhimurium. Moreover, SCT1101 and SCT1104 enhanced the efficacy of ciprofloxacin and cefixime against intracellular S. Typhimurium. However, only SCT1101 exhibited activity against intracellular MDR and fluoroquinolone-resistant S. Typhimurium isolates. Subsequent mechanistic studies showed that neither of these nilotinib derivatives increased the phospho-AMPK level in RAW264.7 cells. Neither the AMPK inhibitor compound C nor SBI-0206965 reversed the inhibitory effects of SCT1101 and SCT1104 on intracellular Salmonella. Furthermore, neither blockade of autophagy by 3-MA nor shRNA-mediated knockdown of Atg7 protein expression in RAW264.7 cells affected the antibacterial activity of SCT1101 and SCT1104. CONCLUSION The structure of nilotinib could be used to develop novel therapeutics for controlling MDR S. Typhimurium infections.
Collapse
|
15
|
Koolman L, Prakash R, Diness Y, Msefula C, Nyirenda TS, Olgemoeller F, Wigley P, Perez-Sepulveda B, Hinton JCD, Owen SV, Feasey NA, Ashton PM, Gordon MA. Case-control investigation of invasive Salmonella disease in Malawi reveals no evidence of environmental or animal transmission of invasive strains, and supports human to human transmission. PLoS Negl Trop Dis 2022; 16:e0010982. [PMID: 36508466 PMCID: PMC9779717 DOI: 10.1371/journal.pntd.0010982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Invasive Salmonella infections cause significant morbidity and mortality in Sub-Saharan Africa. However, the routes of transmission are uncertain. We conducted a case-control study of index-case and geographically-matched control households in Blantyre, Malawi, sampling Salmonella isolates from index cases, healthy people, animals, and the household environment. METHODOLOGY Sixty index cases of human invasive Salmonella infection were recruited (March 2015-Oct 2016). Twenty-eight invasive Non-Typhoidal Salmonella (iNTS) disease and 32 typhoid patients consented to household sampling. Each index-case household was geographically matched to a control household. Extensive microbiological sampling included stool sampling from healthy household members, stool or rectal swabs from household-associated animals and boot-sock sampling of the household environment. FINDINGS 1203 samples from 120 households, yielded 43 non-Typhoidal Salmonella (NTS) isolates from 25 households (overall sample positivity 3.6%). In the 28 iNTS patients, disease was caused by 3 STs of Salmonella Typhimurium, mainly ST313. In contrast, the isolates from households spanned 15 sequence types (STs). Two S. Typhimurium isolates from index cases closely matched isolates from their respective asymptomatic household members (2 and 3 SNP differences respectively). Despite the recovery of a diverse range of NTS, there was no overlap between the STs causing iNTS disease with any environmental or animal isolates. CONCLUSIONS The finding of NTS strains from index cases that matched household members, coupled with lack of related animal or environmental isolates, supports a hypothesis of human to human transmission of iNTS infections in the household. The breadth of NTS strains found in animals and the household environment demonstrated the robustness of NTS sampling and culture methodology, and suggests a diverse ecology of Salmonella in this setting. Healthy typhoid (S. Typhi) carrier state was not detected. The lack of S. Typhi isolates from the household environment suggests that further methodological development is needed to culture S. Typhi from the environment.
Collapse
Affiliation(s)
- Leonard Koolman
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Reenesh Prakash
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yohane Diness
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | - Franziska Olgemoeller
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Wigley
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Blanca Perez-Sepulveda
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Siân V. Owen
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philip M. Ashton
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melita A. Gordon
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
16
|
Garlic and ginger essential oil-based neomycin nano-emulsions as effective and accelerated treatment for skin wounds' healing and inflammation: In-vivo and in-vitro studies. Saudi Pharm J 2022; 30:1700-1709. [PMID: 36601499 PMCID: PMC9805981 DOI: 10.1016/j.jsps.2022.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Skin, largest organ of human, is directly exposed to environment and hence is prone to high rates of injuries and microbial infections. Over the passage of time these microbes have developed resistance to antibiotics making them ineffective especially in lower doses and hence, higher dosages or new drugs are required. The current study deals with designing of nano-emulsion (NE) formulations composed of garlic and ginger oils (0.1 %) with neomycin sulphate used in different ratios (0.001, 0.01 and 0.1 %) and combinations. The resulting NEs were characterized for droplet size (145-304 nm), zetapotential (-3.0-0.9 mV), refractive index (1.331-1.344), viscosity (1.10-1.23cP), transmittance (96-99 %), FT-IR and HPLC and found stable over a period of three months. All NEs were also found effective against both gram positive and negative bacterial strains i.e., B. spizizenii, S. aureus, E. coli and S. enterica as compared to pure neomycin sulphate (NS) used as control with highest activity recorded for NE-2 and NE-4 against all strains showing zone of inhibition in range of 22-30 mm and 21-19 mm, respectively. NEs were also tested using rabbit skin excision wound model which potentiates that all the NEs resulted in early recovery with 86-100 % wound healing achieved in 9 days as compared to NS ointment (71 %). The studies confirmed that essential oils when used in combination with traditional drug can lead to much higher efficacies as compared to pure drugs.
Collapse
Key Words
- ATR, Attenuated Total Reflection
- C, Centrifuge
- DS, Droplet Size
- FT, Freeze–thaw
- Garlic
- Ginger
- HC, Heat-cool
- NE, Nano-emulsion
- NS, Neomycin sulphate
- Nano-emulsions
- Neomycin sulphate
- PDI, Poly dispersity index
- RI, Referective index
- RSD, Relative Standard Deviation
- Skin wounds
- T, Transmittance
- WH, Wound Healing
- ZOI, Zone of inhibition
- ZP, Zeta Potential
Collapse
|
17
|
The Clinical Implication of Serogroup Distribution and Drug Resistance of Non-Typhoidal Salmonella in Children: A Single Center Study in Southern Taiwan during 2004-2019. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091403. [PMID: 36138712 PMCID: PMC9497768 DOI: 10.3390/children9091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Background: A regional antibiotic susceptibility database of certain pathogens is crucial for first-line physicians in terms of providing clinical judgement and appropriate selection of antimicrobial agents. The aim of this study is to update the epidemiological data of Salmonella serogroups and drug resistance in pediatric patients. Methods: This is a single-center retrospective study enrolling patients aged from 0 to 18 years who were hospitalized with cultured proven non-typhoidal Salmonella (NTS) infection from 2004 to 2019. The isolates were collected and the demographic data, serogroups of Salmonella and antimicrobial susceptibilities were further analyzed. Results: A total of 1583 isolates of NTS were collected. Serogroup C2 was prone to cause invasive non-typhoidal salmonellosis (iNTS), especially bacteremia. Patients aged < 2 years were associated with serogroups B and C2 infection, while those aged ≥ 2 years were associated with serogroups D and E infection. The prevalence of serogroup B declined with simultaneous increase in prevalence of serogroups D and E. Serogroups B and E were associated with ceftriaxone resistance, while Serogroup D was less drug-resistant than the others. The prevalence of ceftriaxone-resistant Salmonella had not increased, although more ciprofloxacin-resistant isolates were found in iNTS infection. Conclusions: Age < 2 years is a risk factor of iNTS for children, and the distribution of serogroup changes should be closely monitored. Ceftriaxone is still the drug of choice for treating pediatric iNTS infection, and although no increase was observed in the prevalence of ceftriaxone-resistant strains in this study, continuing surveillance of such cases is warranted.
Collapse
|
18
|
Li L, Olsen RH, Xiao J, Liang M, Meng H, Peng S. Characterization of extended-spectrum cephalosporins and fluoroquinolone resistance of a Salmonella enterica serovar Thompson isolate from ready-to-eat pork product in China. Front Microbiol 2022; 13:964009. [PMID: 36187962 PMCID: PMC9521377 DOI: 10.3389/fmicb.2022.964009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Salmonella is a leading cause of foodborne illness worldwide and is a common concern in food safety. Salmonella enterica displaying resistance to extended-spectrum cephalosporins (ESCs) and fluoroquinolone (FQs) has been deemed a high-priority pathogen by the World Health Organization. Co-resistance to ESCs and FQs has been reported in S. enterica serovar Thompson (S. Thompson). However, the genetic context of ESCs and FQs resistance genes in S. Thompson lacks sufficient characterization. In this study, we characterized a multi-drug resistant (MDR) S. Thompson isolate recovered from a retail ready-to-eat (RTE) pork product in China. Short- and long-read sequencing (HiSeq and MinION) of the genome identified the presence of blaCMY−2, qnrS1, and qepA8, along with 11 additional acquired antimicrobial resistance genes, residing on a 152,940 bp IncA/C plasmid. Specifically, the blaCMY−2, qnrS1, and qepA8 genes were located in insertion sequences (ISs) and integron mediated mobile genetic structure, sugE-blc-blaCMY−2-ISEc9, IS26-orf6-qnrS1-orf5-ISKpn19, and intl1-qepA8-orf10-IS91-orf1-dfrA12-orf11-aadA2-qacEΔ1-sul1, respectively. Each gene was identified in various bacteria species, indicating their high transfer ability. The plasmid was found to be transferable to Escherichia coli J53 by conjugation and resulted in the acquiring of multiple resistances in the transconjugants. The plasmid is closely related to plasmids from two human S. Thompson strains isolated in different regions and years in China. Moreover, core-genome Multi Locus Sequence Typing (cgMLST) and phylogenetic analysis based on global 1,868 S. Saintpaul isolates showed that the S. Thompson isolate was highly epidemiologically linked to a human isolate in China. Our findings suggest that Chinese RTE pork products are a possible source of human pathogenic ESCs and FQs co-resistant S. Thompson. Furthermore, the results underline the important role of conjugative plasmids in acquiring and transmission of ESCs and FQs resistance in S. Thompson isolates, which need continuous investigation.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jian Xiao
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Meidan Liang
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Hecheng Meng
| | - Shifu Peng
- Department of Environment and Health, Jiangsu Center for Disease Control and Prevention, Nanjing, China
- Shifu Peng
| |
Collapse
|
19
|
Antimicrobial susceptibility and genomic profiling of Salmonella enterica from bloodstream infections at a tertiary referral hospital in Lusaka, Zambia, 2018–2019. IJID REGIONS 2022; 3:248-255. [PMID: 35755477 PMCID: PMC9216281 DOI: 10.1016/j.ijregi.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 12/02/2022]
Abstract
Salmonella enterica Typhi found to be most prevalent, with genetic diversity Low prevalence of invasive non-typhoidal Salmonella infections Salmonella enterica Typhimurium isolated, belonging to serotype 313 High prevalence of multidrug-resistant strains Emergence of fluoroquinolone and cephalosporin resistance
Objectives This study investigated antimicrobial susceptibility and genomic profiling of S. enterica isolated from bloodstream infections at a tertiary referral hospital in Lusaka, Zambia, 2018–2019. Method This was a prospective hospital-based study involving routine blood culture samples submitted to the microbiology laboratory at the University Teaching Hospital. Identification of S. enterica and determination of antimicrobial susceptibility profiles was achieved through conventional and automated methods. Whole-genome sequencing (WGS) was conducted, and the sequence data outputs were processed for species identification, serotype determination, multilocus sequence typing (MLST) profile determination, identification of antimicrobial resistance determinants, and phylogeny. Results Seventy-six Salmonella enterica were isolated and 64 isolates underwent WGS. Salmonella Typhi (72%) was the most prevalent serotype. Notable was the occurrence of invasive non-typhoidal Salmonella Typhimurium ST313 (3%), resistance to cephalosporins (4%) and ciprofloxacin (5%), multidrug resistance (46%), and reduced susceptibility to ciprofloxacin (30%) and imipenem (3%). Phylogenetic cluster analysis showed multiple Salmonella serovars with a wide range of genetic diversity. Conclusion The genetic diversity of Salmonella Typhi, high prevalence of multidrug resistance, and the emergence of ciprofloxacin and cephalosporin resistance warrants improved hygiene and water and sanitation provision, continued surveillance to apprise antibiograms and inform policy, and the introduction of the typhoid conjugate vaccine.
Collapse
|
20
|
Oueslati W, Rjeibi MR, Benyedem H, Mamlouk A, Souissi F, Selmi R, Ettriqui A. Salmonella Broiler Meat's Contamination in Tunisia: Prevalence, Serotypes, Antimicrobial Resistance and Molecular Characterization of Isolated Strains. Curr Microbiol 2022; 79:208. [PMID: 35639195 DOI: 10.1007/s00284-022-02900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
This study was conducted in north-eastern Tunisia to estimate the contamination prevalence of Salmonella in broilers' meat, to rank serotypes and to characterize the isolated multidrug-resistant (MDR) strains. A total number of 1288 meat samples were collected from 322 broiler batches; Salmonella isolates were identified by the alternative technique VIDAS Easy Salmonella. The susceptibility of Salmonella isolates was assessed against 21 antimicrobials using the disc diffusion method on Mueller-Hinton agar. Some antimicrobial resistance genes were identified using Polymerase Chain Reaction (PCR). The prevalence rates of Salmonella in the neck skin and the breast muscle contamination were estimated at 11.8% (38/322) and 0.9% (3/322), respectively. The prevalence rate of Salmonella in meat cutting parts contamination was estimated at 5.1% (33/644). Eight serotypes of Salmonella were identified, namely S. Enteritidis, S. Kentucky, S. Anatum, S. Infantis, S. Mbandaka, S. Zanzibar, S. Hadar and S. Agona. High rate of resistance was identified against amoxicillin (91.9%), nalidixic acid (83.8%), tetracycline (75.7%), streptomycin (73%), ciprofloxacin (70%), sulfamides (68.9%), cefalotin (68.9%), cefotaxim (67.6%) and cefoxitin (60.8%). The majority (90.5%; 67/74) of isolated strains was recognized as MDR. Nine MDR strains were identified as Extended-Spectrum β-Lactamase (ESBL) producers. The blaCTX-M gene was identified by PCR in all the nine ESBL strains. TetA, tetB and dfrA1 genes were amplified in 3.6% (2/56), 1.8% (1/56) and 19.3% (5/26) of tetracycline and trimethoprim-resistant strains, respectively. The integrase gene (class 2) was identified in only 8.1% (6/74) of the Salmonella-isolated strains. Our findings highlight the emergence of MDR Salmonella isolates in Tunisia.
Collapse
Affiliation(s)
- Walid Oueslati
- Laboratory of Management of Animal Production's Health and Quality, National School of Veterinary Medicine of Sidi Thabet, University Manouba (LR14AGR03), 2010, La Manouba, Tunisia. .,Department of Animal Production, National Agronomic Institute, University Carthage, 1054, Carthage, Tunisia.
| | - Mohamed Ridha Rjeibi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University Manouba, 2010, La Manouba, Tunisia.,Laboratory of Parasitology, Veterinary Research Institute, University de Tunis El Manar, 1068, Tunis, Tunisia
| | - Hayet Benyedem
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University Manouba, 2010, La Manouba, Tunisia
| | - Aymen Mamlouk
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University Manouba, 2010, La Manouba, Tunisia
| | - Fatma Souissi
- Laboratory of Management of Animal Production's Health and Quality, National School of Veterinary Medicine of Sidi Thabet, University Manouba (LR14AGR03), 2010, La Manouba, Tunisia
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University Manouba, 2010, La Manouba, Tunisia
| | - Abdelfettah Ettriqui
- Laboratory of Management of Animal Production's Health and Quality, National School of Veterinary Medicine of Sidi Thabet, University Manouba (LR14AGR03), 2010, La Manouba, Tunisia
| |
Collapse
|
21
|
Bloomfield S, Duong VT, Tuyen HT, Campbell JI, Thomson NR, Parkhill J, Le Phuc H, Chau TTH, Maskell DJ, Perron GG, Ngoc NM, Vi LL, Adriaenssens EM, Baker S, Mather AE. Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microb Genom 2022; 8. [PMID: 35511231 PMCID: PMC9465066 DOI: 10.1099/mgen.0.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
Collapse
Affiliation(s)
| | | | - Ha Thanh Tuyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - James I Campbell
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
22
|
Wilson CN, Chunga A, Masesa C, Denis B, Silungwe N, Bilima S, Galloway H, Gordon M, Feasey NA. Incidence of invasive non-typhoidal Salmonella in Blantyre, Malawi between January 2011-December 2019. Wellcome Open Res 2022; 7:143. [PMID: 37153453 PMCID: PMC10160792 DOI: 10.12688/wellcomeopenres.17754.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) has undertaken sentinel surveillance of bloodstream infection and meningitis at Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi for 20 years. Previously, three epidemics of Salmonella bloodstream infection have been identified. Here we provide updated surveillance data on invasive non-typhoidal Salmonella disease from 2011 – 2019. Methods: Surveillance data describing trends in invasive non-typhoidal Salmonella disease and associated antimicrobial susceptibility profiles are presented for the period January 2011 – December 2019. Results: Between January 2011-December 2019, 128,588 blood cultures and 40,769 cerebrospinal fluid cultures were processed at MLW. Overall, 1.00% of these were positive for S. Typhimurium, 0.10% for S. Enteritidis, and 0.05% positive for other Salmonella species. Estimated minimum incidence of invasive non-typhoidal Salmonella (iNTS) disease decreased from 21/100,000 per year in 2011 to 7/100,000 per year in 2019. Over this period, 26 confirmed cases of Salmonella meningitis were recorded (88.5% S. Typhimurium). Between 2011-2019 there was a substantial decrease in proportion of S. Typhimurium (78.5% to 27.7%) and S. Enteritidis (31.8% in 2011 to 0%) that were multidrug-resistant. Resistance to fluoroquinolones and third-generation generation cephalosporins (3GC) remained uncommon, however 3GC increased amongst Salmonella spp. and S. Typhimurium in the latter part of the period. Conclusions: The total number of iNTS bloodstream infections decreased between 2011-2019. Although the number multidrug resistance (MDR) S. Typhimurium and S. Enteritidis isolates has fallen, the number of MDR isolates of other Salmonella spp. has increased, including 3GC isolates.
Collapse
|
23
|
Wainaina M, Vey da Silva DA, Dohoo I, Mayer-Scholl A, Roesel K, Hofreuter D, Roesler U, Lindahl J, Bett B, Al Dahouk S. A systematic review and meta-analysis of the aetiological agents of non-malarial febrile illnesses in Africa. PLoS Negl Trop Dis 2022; 16:e0010144. [PMID: 35073309 PMCID: PMC8812962 DOI: 10.1371/journal.pntd.0010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background The awareness of non-malarial febrile illnesses (NMFIs) has been on the rise over the last decades. Therefore, we undertook a systematic literature review and meta-analysis of causative agents of non-malarial fevers on the African continent. Methodology We searched for literature in African Journals Online, EMBASE, PubMed, Scopus, and Web of Science databases to identify aetiologic agents that had been reported and to determine summary estimates of the proportional morbidity rates (PMr) associated with these pathogens among fever patients. Findings A total of 133 studies comprising 391,835 patients from 25 of the 54 African countries were eligible. A wide array of aetiologic agents were described with considerable regional differences among the leading agents. Overall, bacterial pathogens tested from blood samples accounted for the largest proportion. The summary estimates from the meta-analysis were low for most of the agents. This may have resulted from a true low prevalence of the agents, the failure to test for many agents or the low sensitivity of the diagnostic methods applied. Our meta-regression analysis of study and population variables showed that diagnostic methods determined the PMr estimates of typhoidal Salmonella and Dengue virus. An increase in the PMr of Klebsiella spp. infections was observed over time. Furthermore, the status of patients as either inpatient or outpatient predicted the PMr of Haemophilus spp. infections. Conclusion The small number of epidemiological studies and the variety of NMFI agents on the African continent emphasizes the need for harmonized studies with larger sample sizes. In particular, diagnostic procedures for NMFIs should be standardized to facilitate comparability of study results and to improve future meta-analyses. Reliable NMFI burden estimates will inform regional public health strategies. Previous systematic reviews have highlighted the research priorities of causative agents for non-malarial febrile illnesses by counting the number of publications attributed to an agent. However, proportional morbidity rates are calculated by dividing the number of cases with a specific disease (numerator) by the total number of diagnosed fever cases (denominator) and are better indicators of the relative importance of aetiological agents in a population. Therefore, we present the leading causes of non-malarial febrile illnesses in African patients in both healthcare and community settings. Preference is given to HIV-negative patients when data could be found. We also determined summary estimates of Brucella spp., Chikungunya virus, Dengue virus, Haemophilus spp., Klebsiella spp., Leptospira spp., non-typhoidal Salmonella spp., typhoidal Salmonella spp., Staphylococcus spp., and Streptococcus spp. The wide array of aetiological agents causing febrile illnesses on the African continent does not only complicate malaria control programs but may also hamper response to epidemic and pandemic illnesses such as Ebola and COVID-19. The harmonisation of diagnostics and study designs will reduce between-study differences, which may result in better estimates of disease burden on the continent and in the different African regions. This information is important for Pan-African surveillance and control efforts.
Collapse
Affiliation(s)
- Martin Wainaina
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - David Attuy Vey da Silva
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ian Dohoo
- University of Prince Edward Island, Charlottetown, Canada
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kristina Roesel
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- International Livestock Research Institute, Nairobi, Kenya
| | - Dirk Hofreuter
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Johanna Lindahl
- International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
24
|
Prevalence, Risk Factors, Antimicrobial Resistance and Molecular Characterization of Salmonella in Northeast Tunisia Broiler Flocks. Vet Sci 2021; 9:vetsci9010012. [PMID: 35051096 PMCID: PMC8780282 DOI: 10.3390/vetsci9010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
This study was conducted in northeastern Tunisia to estimate both the prevalence and the risk factors of Salmonella in broiler flocks as well as to characterize the isolated multidrug-resistant (MDR) Salmonella strains. In the present study, a total number of 124 farms were sampled; Salmonella isolates were identified by the alternative technique VIDAS Easy Salmonella. The susceptibility of Salmonella isolates was assessed against 21 antimicrobials using the disk diffusion method on Mueller–Hinton agar using antimicrobial discs. Some antimicrobial resistance genes were identified using PCR. The prevalence rate of Salmonella infection, in the sampled farms, was estimated at 19.9% (64/322). Moreover, a total number of 13 different serotypes were identified. High rate of resistance was identified against nalidixic acid (82.85%), amoxicillin (81.25%), streptomycin (75%), and ciprofloxacin (75%). Alarming level of resistance to ertapenem (12.5%) was noticed. A total of 87.5% (56/64) of isolated strains were recognized as MDR. Three MDR strains were extended-spectrum β-lactamases (ESBL)-producers and three MDR strains were cephalosporinase-producers. The blaCTX-M gene was amplified in all the three ESBL strains. The qnrB gene was not amplified in fluoroquinolones-resistant strains. The tetA and tetB genes were amplified in 5% (2/40) and 2.5% (1/40) of tetracycline-resistant strains, respectively. The dfrA1 gene was amplified in five of the 20 trimethoprim-resistant strains. The mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes were not amplified in any of the phenotypically colistin-resistant strains. In terms of integrase genes int1 and int2, only gene class 2 was amplified in 11% (7/64) of analyzed strains. Risk factors, such as the poor level of cleaning and disinfection, the lack of antimicrobial treatment at the start of the breeding, and a crawl space duration lower than 15 days, were associated with high Salmonella infection in birds. These data should be considered when preparing salmonellosis control programs in Tunisian broiler flocks.
Collapse
|
25
|
Jamal W, Khodakhast FB, Albert MJ, Rotimi V. Epidemiology, Serogroups and Resistance of Salmonella During a 15-Year Period (2006-2020) in Kuwait. Infect Drug Resist 2021; 14:4957-4966. [PMID: 34858036 PMCID: PMC8630362 DOI: 10.2147/idr.s340116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of the study was to investigate the changing pattern in serogroup distribution and antimicrobial resistance of all Salmonella spp. isolated from patients attending the Mubarak Al Kabeer Hospital (MAK), Kuwait from 2006 to 2020. Patients and Methods A retrospective study of all enrolled patients attending the MAK with culture-positive Salmonella spp. was undertaken. Data on age, gender, culture sample and serogroup were obtained from the laboratory information system. A prospective antimicrobial susceptibility of all stock isolates was carried out using E test. The trend rates of Salmonella serogroups and antimicrobial resistance were compared among 5 periods: 2006–2008, 2009–2011, 2012–2014, 2015–2017, and 2018–2020. Results A total of 700 isolates were identified. The majority of the isolates were from the stool (77.6%), followed by the blood (16.4%). The most common serogroups were serogroup D (37.6%) and B (23.4%). There was a significant rise in ciprofloxacin resistance from 32.2% during 2006–2008 to 54.3% during 2018–2020 and from 32.5% during 2009–2011 to 54.3% during 2018–2020 (P=0.0001, respectively). The resistance trend to cefotaxime was at relatively low levels ranging from 0% to 3.4% through 2006–2008 to 2018–2020. There was a significant drop of the resistance to ampicillin from 23.6% in 2015–2017 to 12.3% in 2006–2008 to 2018–2020 (P=0.03). Trimethoprim/sulfamethoxazole resistance dropped significantly from 14.5 to 3.6% (P=0.002) during 2006–2008 to 2018–2020 and then from 13.5 to 3.6% (P=0.02) during 2015–2017 to 2018–2020. One hundred and seventeen (16.7%) isolates were multidrug-resistant. Conclusion Continuous surveillance of Salmonella and its antimicrobial resistance is important for antibiotic policy formulation for invasive Salmonella infections.
Collapse
Affiliation(s)
- Wafaa Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Manuel John Albert
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Vincent Rotimi
- Department of Medical Microbiology and Parasitology, College of Medicine, Lagos State University, Ikeja, Nigeria
| |
Collapse
|
26
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
27
|
Vimal A, Siddiqui MH, Verma A, Kumar A. Degradation product of curcumin restrain Salmonella typhimurium virulent protein L-asparaginase. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021:jcim-2021-0172. [PMID: 34860475 DOI: 10.1515/jcim-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Salmonella typhimurium is a pathogen responsible for causing a wide range of infectious diseases. The emergence of multi-drug resistance (MDR) in this microbe is a big challenge. L-asparaginase (less explored drug target) is selected as a drug target because it is actively involved in the virulence mechanism. To block this virulent enzyme, curcumin that is traditionally renowned for its medicinal properties was examined. However, its pharmacological behavior and targeting property is less understood because of its poor bioavailability. Therefore, the present work explores the antimicrobial effect of both curcumin and its degradation product against the MDR pathogen. METHODS Molecular docking studies were carried out to evaluate the inhibitory effect of curcumin and its degradation product against the L-asparaginase enzyme using Schrodinger Maestro interface tools. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile of all the test ligands was also performed. RESULTS The docking score of curcumin was -5.465 kcal/mol while its degradation product curcumin glucuronide has the lowest i.e., -6.240 kcal/mol. All the test ligands showed better or comparable docking scores with respect to control (Ciprofloxacin). Arg 142 and Asn 84 amino acid residues of L-asparaginase were found to be interacting with test ligands inside the binding pocket of the target protein. ADME/toxicology study also indicated the potency of curcumin/curcumin degradation products as a potent inhibitor. CONCLUSIONS It was found that both curcumin and its degradation products have the potential to inhibit Salmonella. This information could be valuable for futuristic drug candidate development against this pathogen and could be a potential lead for mitigation of MDR.
Collapse
Affiliation(s)
- Archana Vimal
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
28
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
29
|
Tack B, Vita D, Phoba MF, Mbuyi-Kalonji L, Hardy L, Barbé B, Jacobs J, Lunguya O, Jacobs L. Direct association between rainfall and non-typhoidal Salmonella bloodstream infections in hospital-admitted children in the Democratic Republic of Congo. Sci Rep 2021; 11:21617. [PMID: 34732799 PMCID: PMC8566593 DOI: 10.1038/s41598-021-01030-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) ranks first among causes of bloodstream infection in children under five years old in the Democratic Republic of Congo and has a case fatality rate of 15%. Main host-associated risk factors are Plasmodium falciparum malaria, anemia and malnutrition. NTS transmission in sub-Saharan Africa is poorly understood. NTS bloodstream infections mostly occur during the rainy season, which may reflect seasonal variation in either environmental transmission or host susceptibility. We hypothesized that environment- and host-associated factors contribute independently to the seasonal variation in NTS bloodstream infections in children under five years old admitted to Kisantu referral hospital in 2013-2019. We used remotely sensed rainfall and temperature data as proxies for environmental factors and hospital data for host-associated factors. We used principal component analysis to disentangle the interrelated environment- and host-associated factors. With timeseries regression, we demonstrated a direct association between rainfall and NTS variation, independent of host-associated factors. While the latter explained 17.5% of NTS variation, rainfall explained an additional 9%. The direct association with rainfall points to environmental NTS transmission, which should be explored by environmental sampling studies. Environmental and climate change may increase NTS transmission directly or via host susceptibility, which highlights the importance of preventive public health interventions.
Collapse
Affiliation(s)
- Bieke Tack
- grid.11505.300000 0001 2153 5088Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium ,grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Daniel Vita
- Saint Luc Hôpital Général de Référence Kisantu, Kisantu, Democratic Republic of Congo
| | - Marie-France Phoba
- grid.452637.10000 0004 0580 7727Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo ,Department of Medical Biology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Lisette Mbuyi-Kalonji
- grid.452637.10000 0004 0580 7727Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo ,Department of Medical Biology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Liselotte Hardy
- grid.11505.300000 0001 2153 5088Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Barbara Barbé
- grid.11505.300000 0001 2153 5088Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- grid.11505.300000 0001 2153 5088Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium ,grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Octavie Lunguya
- grid.452637.10000 0004 0580 7727Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo ,Department of Medical Biology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Liesbet Jacobs
- grid.5596.f0000 0001 0668 7884Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium ,grid.7177.60000000084992262Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Kanteh A, Sesay AK, Alikhan NF, Ikumapayi UN, Salaudeen R, Manneh J, Olatunji Y, Page AJ, Mackenzie G. Invasive atypical non-typhoidal Salmonella serovars in The Gambia. Microb Genom 2021; 7:000677. [PMID: 34812716 PMCID: PMC8743563 DOI: 10.1099/mgen.0.000677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) disease continues to be a significant public health problem in sub-Saharan Africa. Common clinical misdiagnosis, antimicrobial resistance, high case fatality and lack of a vaccine make iNTS a priority for global health research. Using whole genome sequence analysis of 164 invasive Salmonella isolates obtained through population-based surveillance between 2008 and 2016, we conducted genomic analysis of the serovars causing invasive Salmonella diseases in rural Gambia. The incidence of iNTS varied over time. The proportion of atypical serovars causing disease increased over time from 40 to 65 % compared to the typical serovars Enteritidis and Typhimurium that decreased from 30 to 12 %. Overall iNTS case fatality was 10%, but case fatality associated with atypical iNTS alone was 10 %. Genetic virulence factors were identified in 14/70 (20 %) typical serovars and 45/68 (66 %) of the atypical serovars and were associated with: invasion, proliferation and/or translocation (Clade A); and host colonization and immune modulation (Clade G). Among Enteritidis isolates, 33/40 were resistant to four or more of the antimicrobials tested, except ciprofloxacin, to which all isolates were susceptible. Resistance was low in Typhimurium isolates, but all 16 isolates were resistant to gentamicin. The increase in incidence and proportion of iNTS disease caused by atypical serovars is concerning. The increased proportion of atypical serovars and the high associated case fatality may be related to acquisition of specific genetic virulence factors. These factors may provide a selective advantage to the atypical serovars. Investigations should be conducted elsewhere in Africa to identify potential changes in the distribution of iNTS serovars and the extent of these virulence elements.
Collapse
Affiliation(s)
- Abdoulie Kanteh
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Abdul Karim Sesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | | | - Usman Nurudeen Ikumapayi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Rasheed Salaudeen
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Jarra Manneh
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Yekini Olatunji
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Andrew J. Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| | - Grant Mackenzie
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
- Murdoch Children’s Research Institute, Royal Children’s Hospital Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Liu G, Qian H, Lv J, Tian B, Bao C, Yan H, Gu B. Emergence of mcr-1-Harboring Salmonella enterica Serovar Sinstorf Type ST155 Isolated From Patients With Diarrhea in Jiangsu, China. Front Microbiol 2021; 12:723697. [PMID: 34603249 PMCID: PMC8483771 DOI: 10.3389/fmicb.2021.723697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This study analyzed the antimicrobial resistance phenotypes and mechanisms of quinolone, cephalosporins, and colistin resistance in nontyphoidal Salmonella from patients with diarrhea in Jiangsu, China. Methods: A total of 741 nontyphoidal Salmonella isolates were collected from hospitals in major cities of Jiangsu Province, China between 2016 and 2017. Their susceptibility to commonly used antibiotics was evaluated by broth micro-dilution and sequencing analysis of resistance genes screened by a PCR method. For mcr-1 positive isolates, genetic relationship study was carried out by pulsed-field gel electrophoresis and multiloci sequence typing analysis. The transferability of these plasmids was measured with conjugation experiments and the genetic locations of mcr-1 were analyzed by pulsed-field gel electrophoresis profiles of S1-digested genomic DNA and subsequent Southern blot hybridization. Results: Among 741 nontyphoidal Salmonella isolates, the most common serotypes identified were S. Typhimurium (n=257, 34.7%) and S. Enteritidis (n=127, 17.1%), and the isolates showed 21.7, 20.6, and 5.0% resistance to cephalosporins, ciprofloxacin, and colistin, respectively. Among the 335 nalidixic acid-resistant Salmonella, 213 (63.6%) and 45 (13.4%) had at least one mutation in gyrA and parC. Among the plasmid-borne resistance, qnrS1 (85; 41.9%) and aac(6')-Ib-cr4 (75; 36.9%) were the most common quinolone resistance (PMQR) genes, while bla CTX-M-14 (n=35) and bla CTX-M-55 (n=46) were found to be dominant extended-spectrum beta-lactamase (ESBL) genes in nontyphoidal Salmonella. In addition, eight mcr-1-harboring strains were detected since 2016 and they were predominate in children under the age of 7years. Conjugation assays showed the donor Salmonella strain has functional and transferable colistin resistance and Southern blot hybridization revealed that mcr-1 was located in a high molecular weight plasmid. Conclusion: In nontyphoidal Salmonella, there is a rapidly increasing trend of colistin resistance and this is the first report of patients harboring mcr-1-positive Salmonella with a new ST type ST155 and new serotype S. Sinstorf. These findings demonstrate the necessity for cautious use and the continuous monitoring of colistin in clinical applications.
Collapse
Affiliation(s)
- Guoye Liu
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huimin Qian
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Jingwen Lv
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Changjun Bao
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Hong Yan
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
32
|
Hamilton NJ, Draper ADK, Baird R, Wilson A, Ford T, Francis JR. Invasive salmonellosis in paediatric patients in the Northern Territory, Australia, 2005-2015. J Paediatr Child Health 2021; 57:1397-1401. [PMID: 33847439 DOI: 10.1111/jpc.15473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/30/2022]
Abstract
AIM To describe the epidemiology of invasive Salmonella disease in children in the Northern Territory, Australia. METHODS Design: A retrospective review of invasive salmonellosis cases identified by pathology records and the Northern Territory Notifiable Disease Surveillance System. Case definitions: Those aged 18 years or under, with Salmonella cultured from a usually sterile site, collected in the Northern Territory between 1 July 2005 and 30 June 2015. OUTCOME MEASURES The primary outcome measure was the annual incidence rate of invasive salmonellosis, comparing rates between Indigenous and non-Indigenous children. RESULTS There were 86 cases of invasive Salmonella infection in children over the 10-year period; an annual incidence of 14.1 per 100 000 population, in those aged less than 18 years. Gastrointestinal Salmonella notifications were similar between Indigenous and non-Indigenous children. In children aged less than 15 years, the rate of invasive salmonellosis was higher in Indigenous children compared to non-Indigenous children (23.4 per 100 000 compared with 11.6 per 100 000); rate ratio 2.0 (95% confidence interval 1.3-3.3, P = 0.002). Indigenous children with invasive salmonellosis had a median hospital stay of 8 days, which was compared to 5 days for non-Indigenous children (P = 0.015). The highest incidence rate of invasive salmonellosis occurred in Indigenous patients less than 12 months of age (138 per 100 000). CONCLUSION The Northern Territory of Australia has high rates of invasive salmonellosis in children. Indigenous and non-Indigenous children experience similar rates of Salmonella gastroenteritis but Indigenous children experience higher rates of invasive salmonellosis.
Collapse
Affiliation(s)
- Natasha J Hamilton
- Department of Paediatrics, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Anthony D K Draper
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Centre for Disease Control, Northern Territory Government Department of Health, Darwin, Northern Territory, Australia
| | - Rob Baird
- Territory Pathology, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Angela Wilson
- Department of Paediatrics, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Tim Ford
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Joshua R Francis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Department of Paediatrics, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
33
|
Kasumba IN, Pulford CV, Perez-Sepulveda BM, Sen S, Sayed N, Permala-Booth J, Livio S, Heavens D, Low R, Hall N, Roose A, Powell H, Farag T, Panchalingham S, Berkeley L, Nasrin D, Blackwelder WC, Wu Y, Tamboura B, Sanogo D, Onwuchekwa U, Sow SO, Ochieng JB, Omore R, Oundo JO, Breiman RF, Mintz ED, O’Reilly CE, Antonio M, Saha D, Hossain MJ, Mandomando I, Bassat Q, Alonso PL, Ramamurthy T, Sur D, Qureshi S, Zaidi AKM, Hossain A, Faruque ASG, Nataro JP, Kotloff KL, Levine MM, Hinton JCD, Tennant SM. Characteristics of Salmonella Recovered From Stools of Children Enrolled in the Global Enteric Multicenter Study. Clin Infect Dis 2021; 73:631-641. [PMID: 33493332 PMCID: PMC8366818 DOI: 10.1093/cid/ciab051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/21/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Global Enteric Multicenter Study (GEMS) determined the etiologic agents of moderate-to-severe diarrhea (MSD) in children under 5 years old in Africa and Asia. Here, we describe the prevalence and antimicrobial susceptibility of nontyphoidal Salmonella (NTS) serovars in GEMS and examine the phylogenetics of Salmonella Typhimurium ST313 isolates. METHODS Salmonella isolated from children with MSD or diarrhea-free controls were identified by classical clinical microbiology and serotyped using antisera and/or whole-genome sequence data. We evaluated antimicrobial susceptibility using the Kirby-Bauer disk-diffusion method. Salmonella Typhimurium sequence types were determined using multi-locus sequence typing, and whole-genome sequencing was performed to assess the phylogeny of ST313. RESULTS Of 370 Salmonella-positive individuals, 190 (51.4%) were MSD cases and 180 (48.6%) were diarrhea-free controls. The most frequent Salmonella serovars identified were Salmonella Typhimurium, serogroup O:8 (C2-C3), serogroup O:6,7 (C1), Salmonella Paratyphi B Java, and serogroup O:4 (B). The prevalence of NTS was low but similar across sites, regardless of age, and was similar among both cases and controls except in Kenya, where Salmonella Typhimurium was more commonly associated with cases than controls. Phylogenetic analysis showed that these Salmonella Typhimurium isolates, all ST313, were highly genetically related to isolates from controls. Generally, Salmonella isolates from Asia were resistant to ciprofloxacin and ceftriaxone, but African isolates were susceptible to these antibiotics. CONCLUSIONS Our data confirm that NTS is prevalent, albeit at low levels, in Africa and South Asia. Our findings provide further evidence that multidrug-resistant Salmonella Typhimurium ST313 can be carried asymptomatically by humans in sub-Saharan Africa.
Collapse
Affiliation(s)
- Irene N Kasumba
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Caisey V Pulford
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Sunil Sen
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nurulla Sayed
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sofie Livio
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren Heavens
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Anna Roose
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Helen Powell
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tamer Farag
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra Panchalingham
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lynette Berkeley
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dilruba Nasrin
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William C Blackwelder
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yukun Wu
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Doh Sanogo
- Centre pour le Developpement des Vaccins, Bamako, Mali
| | | | - Samba O Sow
- Centre pour le Developpement des Vaccins, Bamako, Mali
| | - John B Ochieng
- Kenya Medical Research Institute/US Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Richard Omore
- Kenya Medical Research Institute/US Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Joseph O Oundo
- Kenya Medical Research Institute/US Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Robert F Breiman
- Kenya Medical Research Institute/US Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Eric D Mintz
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ciara E O’Reilly
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Martin Antonio
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Debasish Saha
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - M Jahangir Hossain
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Inacio Mandomando
- Centro de Investigacao em Saude da Manhica (CISM), Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigacao em Saude da Manhica (CISM), Maputo, Mozambique
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
| | - Pedro L Alonso
- Centro de Investigacao em Saude da Manhica (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic–Universitat de Barcelona, Barcelona, Spain
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - T Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Dipika Sur
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shahida Qureshi
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Anita K M Zaidi
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Anowar Hossain
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Abu S G Faruque
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | | | - Karen L Kotloff
- Center for Vaccine Development and Global Health
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myron M Levine
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Park SE, Pham DT, Pak GD, Panzner U, Maria Cruz Espinoza L, von Kalckreuth V, Im J, Mogeni OD, Schütt-Gerowitt H, Crump JA, Breiman RF, Adu-Sarkodie Y, Owusu-Dabo E, Rakotozandrindrainy R, Bassiahi Soura A, Aseffa A, Gasmelseed N, Sooka A, Keddy KH, May J, Aaby P, Biggs HM, Hertz JT, Montgomery JM, Cosmas L, Olack B, Fields B, Sarpong N, Razafindrabe TJL, Raminosoa TM, Kabore LP, Sampo E, Teferi M, Yeshitela B, El Tayeb MA, Krumkamp R, Dekker DM, Jaeger A, Tall A, Gassama A, Niang A, Bjerregaard-Andersen M, Løfberg SV, Deerin JF, Park JK, Konings F, Carey ME, Van Puyvelde S, Ali M, Clemens J, Dougan G, Baker S, Marks F. The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries. BMJ Glob Health 2021; 6:bmjgh-2021-005659. [PMID: 34341020 PMCID: PMC8330565 DOI: 10.1136/bmjgh-2021-005659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/06/2021] [Indexed: 01/23/2023] Open
Abstract
Background Invasive non-typhoidal Salmonella (iNTS) is one of the leading causes of bacteraemia in sub-Saharan Africa. We aimed to provide a better understanding of the genetic characteristics and transmission patterns associated with multi-drug resistant (MDR) iNTS serovars across the continent. Methods A total of 166 iNTS isolates collected from a multi-centre surveillance in 10 African countries (2010–2014) and a fever study in Ghana (2007–2009) were genome sequenced to investigate the geographical distribution, antimicrobial genetic determinants and population structure of iNTS serotypes–genotypes. Phylogenetic analyses were conducted in the context of the existing genomic frameworks for various iNTS serovars. Population-based incidence of MDR-iNTS disease was estimated in each study site. Results Salmonella Typhimurium sequence-type (ST) 313 and Salmonella Enteritidis ST11 were predominant, and both exhibited high frequencies of MDR; Salmonella Dublin ST10 was identified in West Africa only. Mutations in the gyrA gene (fluoroquinolone resistance) were identified in S. Enteritidis and S. Typhimurium in Ghana; an ST313 isolate carrying blaCTX-M-15 was found in Kenya. International transmission of MDR ST313 (lineage II) and MDR ST11 (West African clade) was observed between Ghana and neighbouring West African countries. The incidence of MDR-iNTS disease exceeded 100/100 000 person-years-of-observation in children aged <5 years in several West African countries. Conclusions We identified the circulation of multiple MDR iNTS serovar STs in the sampled sub-Saharan African countries. Investment in the development and deployment of iNTS vaccines coupled with intensified antimicrobial resistance surveillance are essential to limit the impact of these pathogens in Africa.
Collapse
Affiliation(s)
- Se Eun Park
- International Vaccine Institute, Seoul, Republic of Korea.,Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Duy Thanh Pham
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Gi Deok Pak
- International Vaccine Institute, Seoul, Republic of Korea
| | - Ursula Panzner
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | - Justin Im
- International Vaccine Institute, Seoul, Republic of Korea
| | | | - Heidi Schütt-Gerowitt
- International Vaccine Institute, Seoul, Republic of Korea.,Institute of Medical Microbiology, University of Cologne, Cologne, Germany
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand.,Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Robert F Breiman
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya.,Global Health Institute, Emory University, Atlanta, Georgia, USA
| | - Yaw Adu-Sarkodie
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ellis Owusu-Dabo
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | | | - Abdramane Bassiahi Soura
- Institut Supérieur des Sciences de la Population, University of Ouagadougou, Ouagadougou, Burkina Faso
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Nagla Gasmelseed
- Faculty of Medicine, University of Gezira, Wad Medani, Sudan.,Faculty of Science, University of Hafr Al Batin, Hafr Albatin, Saudi Arabia
| | - Arvinda Sooka
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Karen H Keddy
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Holly M Biggs
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA.,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Julian T Hertz
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA.,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Joel M Montgomery
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya
| | - Leonard Cosmas
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya
| | | | - Barry Fields
- Centers for Disease Control and Prevention, KEMRI Complex, Nairobi, Kenya
| | - Nimako Sarpong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,German Center for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Denise Myriam Dekker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Anna Jaeger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Adama Tall
- Institute Pasteur de Dakar, Dakar, Senegal
| | - Amy Gassama
- Institute Pasteur de Dakar, Dakar, Senegal.,Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Morten Bjerregaard-Andersen
- Bandim Health Project, Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Sandra Valborg Løfberg
- Bandim Health Project, Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jin Kyung Park
- International Vaccine Institute, Seoul, Republic of Korea
| | - Frank Konings
- International Vaccine Institute, Seoul, Republic of Korea
| | - Megan E Carey
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Sandra Van Puyvelde
- Medicine, Cambridge University, Cambridge, UK.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mohammad Ali
- International Vaccine Institute, Seoul, Republic of Korea.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John Clemens
- International Vaccine Institute, Seoul, Republic of Korea.,International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.,University of California, Fielding School of Public Health, Los Angeles, California, USA
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Stephen Baker
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
35
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
36
|
Salmonella Typhimurium Adhesin OmpV Activates Host Immunity To Confer Protection against Systemic and Gastrointestinal Infection in Mice. Infect Immun 2021; 89:e0012121. [PMID: 34097470 DOI: 10.1128/iai.00121-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica Typhimurium is a rod-shaped Gram-negative bacterium that mostly enters the human body through contaminated food. It causes a gastrointestinal disorder called salmonellosis in humans and typhoid-like systemic disease in mice. OmpV, an outer membrane protein of S. Typhimurium, helps in adhesion and invasion of bacteria to intestinal epithelial cells and thus plays a vital role in the pathogenesis of S. Typhimurium. In this study, we have shown that intraperitoneal immunization with OmpV is able to induce high IgG production and protection against systemic disease. Further, oral immunization with OmpV-incorporated proteoliposome (OmpV-proteoliposome [PL]) induces production of high IgA antibody levels and protection against gastrointestinal infection. Furthermore, we have shown that OmpV induces Th1 bias in systemic immunization with purified OmpV, but both Th1 and Th2 polarization in oral immunization with OmpV-proteoliposome (PL). Additionally, we have shown that OmpV activates innate immune cells, such as monocytes, macrophages, and intestinal epithelial cells, in a Toll-like receptor 2 (TLR2)-dependent manner. Interestingly, OmpV is recognized by the TLR1/2 heterodimer in monocytes, but by both TLR1/2 and TLR2/6 heterodimers in macrophages and intestinal epithelial cells. Further, downstream signaling involves MyD88, interleukin-1 receptor-associated kinase (IRAK)-1, mitogen-activated protein kinase (MAPK) (both p38 and Jun N-terminal protein kinase (JNK)), and transcription factors NF-κB and AP-1. Due to its ability to efficiently activate both the innate and adaptive immune systems and protective efficacy, OmpV can be a potential vaccine candidate against S. Typhimurium infection. Further, the fact that OmpV can be recognized by both TLR1/2 and TLR2/6 heterodimers increases its potential to act as good adjuvant in other vaccine formulations.
Collapse
|
37
|
Schultz BM, Melo-Gonzalez F, Salazar GA, Porto BN, Riedel CA, Kalergis AM, Bueno SM. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front Microbiol 2021; 12:647044. [PMID: 34276584 PMCID: PMC8282409 DOI: 10.3389/fmicb.2021.647044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a common source of food and water-borne infections, causing a wide range of clinical ailments in both human and animal hosts. Immunity to Salmonella involves an interplay between different immune responses, which are rapidly initiated to control bacterial burden. However, Salmonella has developed several strategies to evade and modulate the host immune responses. In this sense, the main knowledge about the pathogenicity of this bacterium has been obtained by the study of mouse models with non-typhoidal serovars. However, this knowledge is not representative of all the pathologies caused by non-typhoidal serovars in the human. Here we review the most important features of typhoidal and non-typhoidal serovars and the diseases they cause in the human host, describing the virulence mechanisms used by these pathogens that have been identified in different models of infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Lewis JM, Abouyannis M, Katha G, Nyirenda M, Chatsika G, Feasey NA, Rylance J. Population Incidence and Mortality of Sepsis in an Urban African Setting, 2013-2016. Clin Infect Dis 2021; 71:2547-2552. [PMID: 31725849 PMCID: PMC7744994 DOI: 10.1093/cid/ciz1119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/12/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sepsis is an important cause of mortality globally, although population incidence estimates from low-income settings, including sub-Saharan Africa, are absent. We aimed to estimate sepsis incidence burden using routinely available data from a large urban hospital in Malawi. METHODS We linked routine-care databases at Queen Elizabeth Central Hospital, Blantyre, Malawi, to provide admission and discharge data for 217 149 adults from 2013-2016. Using a definition of sepsis based on systemic inflammatory response syndrome criteria and Blantyre census population data, we calculated population incidence estimates of sepsis and severe sepsis and used negative binomial regression to assess for trends over time. Missing data were multiply imputed with chained equations. RESULTS We estimate that the incidence rate of emergency department-attending sepsis and severe sepsis in adults was 1772 per 100 000 person-years (95% confidence interval [CI], 1754-1789) and 303 per 100 000 person-years (95% CI, 295-310), respectively, between 2013 and 2016, with a year-on-year decrease in incidence. In-hospital mortality for patients admitted to the hospital with sepsis and severe sepsis was 23.7% (95% CI, 22.7-24.7%) and 28.1% (95% CI, 26.1 - 30.0%), respectively, with no clear change over time. CONCLUSIONS Sepsis incidence is higher in Blantyre, Malawi, than in high-income settings, from where the majority of sepsis incidence data are derived. Worldwide sepsis burden is likely to be underestimated, and data from low-income countries are needed to inform the public health response.
Collapse
Affiliation(s)
- Joseph M Lewis
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Grace Katha
- Adult Emergency and Trauma Center, Queen Elizabeth Central Hospital, Blantyre, Malawi.,University of Malawi, College of Medicine, Blantyre, Malawi
| | - Mulinda Nyirenda
- Adult Emergency and Trauma Center, Queen Elizabeth Central Hospital, Blantyre, Malawi.,University of Malawi, College of Medicine, Blantyre, Malawi
| | - Grace Chatsika
- Adult Emergency and Trauma Center, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Nicholas A Feasey
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jamie Rylance
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
39
|
Qu Z, McMahon BH, Perkins DJ, Hyman JM. Staged progression epidemic models for the transmission of invasive nontyphoidal Salmonella (iNTS) with treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1529-1549. [PMID: 33757197 PMCID: PMC11064643 DOI: 10.3934/mbe.2021079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop and analyze a stage-progression compartmental model to study the emerging invasive nontyphoidal Salmonella (iNTS) epidemic in sub-Saharan Africa. iNTS bloodstream infections are often fatal, and the diverse and non-specific clinical features of iNTS make it difficult to diagnose. We focus our study on identifying approaches that can reduce the incidence of new infections. In sub-Saharan Africa, transmission and mortality are correlated with the ongoing HIV epidemic and severe malnutrition. We use our model to quantify the impact that increasing antiretroviral therapy (ART) for HIV infected adults and reducing malnutrition in children would have on mortality from iNTS in the population. We consider immunocompromised subpopulations in the region with major risk factors for mortality, such as malaria and malnutrition among children and HIV infection and ART coverage in both children and adults. We parameterize the progression rates between infection stages using the branching probabilities and estimated time spent at each stage. We interpret the basic reproduction number R0 as the total contribution from an infinite infection loop produced by the asymptomatic carriers in the infection chain. The results indicate that the asymptomatic HIV+ adults without ART serve as the driving force of infection for the iNTS epidemic. We conclude that the worst disease outcome is among the pediatric population, which has the highest infection rates and death counts. Our sensitivity analysis indicates that the most effective strategies to reduce iNTS mortality in the studied population are to improve the ART coverage among high-risk HIV+ adults and reduce malnutrition among children.
Collapse
Affiliation(s)
- Zhuolin Qu
- Department of Mathematics, University of Texas at San Antonio, San Antonio 78202, TX, USA
| | - Benjamin H. McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Douglas J. Perkins
- University of New Mexico, Center for Global Health, Department of Internal Medicine, NM, USA
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
| | - James M. Hyman
- Department of Mathematics, Tulane University, New Orleans 70112, LA, USA
| |
Collapse
|
40
|
Refinement of a Live Attenuated Salmonella enterica Serovar Newport Vaccine with Improved Safety. Vaccines (Basel) 2021; 9:vaccines9010057. [PMID: 33467190 PMCID: PMC7829832 DOI: 10.3390/vaccines9010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of gastroenteritis and is responsible for approximately 93 million cases annually. In healthy individuals, gastroenteritis caused by NTS is usually self-limiting, however, NTS can cause severe invasive disease in immunocompromised patients. Very little research has been directed towards development of vaccines against Salmonella serogroups O:6,7 or O:8. We have constructed a live attenuated serogroup O:8 vaccine, CVD 1979, by deleting guaBA, htrA, and aroA from the genome of S. Newport. We have shown that the candidate vaccine is well tolerated in mice and elicits serum immunoglobulin G (IgG) antibodies against core O-polysaccharide (COPS) when administered orally. Immunized mice were challenged intraperitoneally with wild-type S. Newport and bacterial burden in the liver and spleen was found to be significantly reduced in the livers of immunized mice compared to control mice. We also observed moderate vaccine efficacy (45%) against lethal challenge with the serogroup O:8 serovar, S. Muenchen, but low vaccine efficacy (28%) following lethal challenge with a serogroup O:6,7 serovar, S. Virchow. In vitro, we have shown that antibodies generated by CVD 1979 only recognize lipopolysaccharide (LPS) from serogroup O:8 but not serogroup O:6,7 serovars, and that they mediate opsonophagocytic antibody (OPA) activity against serogroup O:8 but not serogroup O:6,7 serovars. We also showed that OPA activity can be blocked by pre-incubating the antisera with serogroup O:8 lipopolysaccharide. Taken together, our data demonstrate that we have constructed a well-tolerated, effective live attenuated S. Newport vaccine which elicits functional antibodies against serogroup O:8 but not O:6,7 serovars.
Collapse
|
41
|
Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021; 19:287-302. [PMID: 33542518 PMCID: PMC7861009 DOI: 10.1038/s41579-020-00506-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.
Collapse
Affiliation(s)
- Francesca Micoli
- grid.425088.3GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | |
Collapse
|
42
|
AKINOLA STEPHENABIOLA, TSHIMPAMBA MPINDAEDOAURD, MWANZA MULUNDA, ATEBA COLLINSNJIE. Biofilm Production Potential of Salmonella Serovars Isolated from Chickens in North West Province, South Africa. Pol J Microbiol 2020; 69:427-439. [PMID: 33574871 PMCID: PMC7812364 DOI: 10.33073/pjm-2020-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022] Open
Abstract
Bacterial biofilms have recently gained considerable interest in the food production and medical industries due to their ability to resist destruction by disinfectants and other antimicrobials. Biofilms are extracellular polymer matrices that may enhance the survival of pathogens even when exposed to environmental stress. The effect of incubation temperatures (25°C, 37°C, and 40°C) and Salmonella serotype on biofilm-forming potentials was evaluated. Previously typed Salmonella serotypes (55) isolated from the gut of chickens were accessed for biofilms formation using a standard assay. Salmonella Typhimurium ATCC 14028TM and Salmonella Enteritidis ATCC 13076TM (positive controls), Escherichia coli (internal control) and un-inoculated Luria Bertani (LB) broth (negative control) were used. The isolates formed no biofilm (11.86-13.56%), weak (11.86-45.76%), moderate (18.64-20.34%), strong biofilms (23.73-54.24%) across the various temperatures investigated. Serotypes, Salmonella Heidelberg and Salmonella Weltevreden were the strongest biofilm formers at temperatures (25°C, 37°C, and 40°C, respectively). The potential of a large proportion (80%) of Salmonella serotypes to form biofilms increased with increasing incubation temperatures but decreased at 40°C. Findings indicate that average temperature favours biofilm formation by Salmonella serotypes. However, the influence of incubation temperature on biofilm formation was greater when compared to serotype. A positive correlation exists between Salmonella biofilm formed at 25°C, 37°C and 40°C (p ≥ 0.01). The ability of Salmonella species to form biofilms at 25°C and 37°C suggests that these serotypes may present severe challenges to food-processing and hospital facilities.
Collapse
Affiliation(s)
- STEPHEN ABIOLA AKINOLA
- Department of Microbiology, Bacteriophage Therapy and Phage Bio-Control Laboratory, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - MPINDA EDOAURD TSHIMPAMBA
- Center for Animal Health Studies, Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - MULUNDA MWANZA
- Center for Animal Health Studies, Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - COLLINS NJIE ATEBA
- Department of Microbiology, Bacteriophage Therapy and Phage Bio-Control Laboratory, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| |
Collapse
|
43
|
Jacob JJ, Rachel T, Shankar BA, Gunasekaran K, Iyadurai R, Anandan S, Veeraraghavan B. MLST based serotype prediction for the accurate identification of non typhoidal Salmonella serovars. Mol Biol Rep 2020; 47:7797-7803. [PMID: 33001311 DOI: 10.1007/s11033-020-05856-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Traditional serotyping based on the phenotypic variation of O- and H-antigen remains as the gold-standard for the identification and classification of Salmonella isolates for last 70 years. Although this classification is a globally recognized nomenclature, huge diversity of Salmonella serotypes have made the serovar identification to be very complex. Seven gene multilocus sequence typing (MLST) on the other hand can provide serovar prediction as well as the evolutionary origin between the serovars. In this study non typhoidal Salmonella (NTS) strains (n = 45) isolated from clinical samples (blood, faeces and pus) were identified by traditional phenotypic serotyping and biochemical testing. All the tested Salmonella isolates were designated as serovar Typhimurium based on phenotyping. However, by MLST 60% (27/45) of the isolates were S. Typhimurium, 35.5% (16/45) were S. Agona (ST13), 2.2% (1/45) were S. Kentucky (ST198) and 2.2% (1/45) were S. Saintpaul (ST27). MLST analysis assigned S. Typhimurium isolates as ST36 (18/127), ST19 (7/27) and ST313 (2/27). Mismatches in serovar designation between MLST database and phenotypic serotyping can be due to the misinterpretation of phenotypic serotyping as the antigenic structures of S. Typhimurium, S. Agona differs by a surface antigen. MLST based phylogeny of study isolates showed clustering according to sequence types. Concordance between MLST based sequence type and phenotypic serotype is important to provide insights into genetic population structure of Salmonella.
Collapse
Affiliation(s)
- Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Tanya Rachel
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Baby Abirami Shankar
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Karthik Gunasekaran
- Department of Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Ramya Iyadurai
- Department of Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
44
|
Antibodies and Protection in Systemic Salmonella Infections: Do We Still Have More Questions than Answers? Infect Immun 2020; 88:IAI.00219-20. [PMID: 32601109 DOI: 10.1128/iai.00219-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Salmonella causes grave systemic infections in humans and other animals and provides a paradigm for other diseases in which the bacteria have both intracellular and extracellular lifestyles. New generations of vaccines rely on the essential contribution of the antibody responses for their protection. The quality, antigen specificity, and functions associated with antibody responses to this pathogen have been elusive for a long time. Recent approaches that combine studies in humans and genetically manipulated experimental models and that exploit awareness of the location and within-host life cycle of the pathogen are shedding light on how humoral immunity to Salmonella operates. However, this area of research remains full of controversy and discrepancies. The overall scenario indicates that antibodies are essential for resistance against systemic Salmonella infections and can express the highest protective function when operating in conjunction with cell-mediated immunity. Antigen specificity, isotype profile, Fc-gamma receptor usage, and complement activation are all intertwined factors that still arcanely influence antibody-mediated protection to Salmonella.
Collapse
|
45
|
Prevalence of Typhoid and Paratyphoid Fever in the Hohoe Municipality of the Volta Region, Ghana: A Five-Year Retrospective Trend Analysis. Ann Glob Health 2020; 86:111. [PMID: 32944508 PMCID: PMC7473205 DOI: 10.5334/aogh.2833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Typhoid and paratyphoid fever remain a global public health burden, yet annual estimates of prevalence vary. Estimates have ranged between 9.9 and 24.2 million cases annually. Similar differences in estimates are seen within countries but point to a serious health challenge. In Ghana, for instance, typhoid fever has been ranked among the top twenty causes of outpatient morbidity and constituted 1.2%, 1.7% and 1.3% of hospital admissions in 2017, 2016 and 2015 respectively. Objective: The objective of the study was to determine the prevalence of Salmonella Typhi and Salmonella Paratyphi in the Hohoe Municipality. Methods: Data on all reported cases of typhoid fever in the Hohoe municipality as entered into the District Health Information Management System 2 (DHIMS 2) database between January 2012 and December 2016 were extracted. A time-trend analysis was conducted to establish the relationship between typhoid fever prevalence and factors such as age, gender, and season. Stata was used to analyse data and to measure rates, associations, and their significance. Findings: The results showed that a total of 6282 individuals suffered from typhoid fever during the five-year period. Of these numbers, 2080 (33.1%) were males, and 4202 (66.9%) were females, representing a P-value 0.0222, and 95% CI. The 25–29 age group were the most affected. High prevalence was observed during the wet months, although cases occurred throughout the year. Trend analysis showed growing cases of typhoid over the period. Prevalence for the various years were found as follows: 2012 – 148 per 100,000, 2013 – 135 per 100,000, 2014 – 396 per 100,000 and in 2015 – 943 per 100,000. Conclusions: Typhoid fever remains and continues to be a major public health challenge in the municipality. This calls for health authorities and service providers to educate the public about the disease if the challenge is to be addressed.
Collapse
|
46
|
Iroh Tam PY, Musicha P, Kawaza K, Cornick J, Denis B, Freyne B, Everett D, Dube Q, French N, Feasey N, Heyderman R. Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998-2017). Clin Infect Dis 2020; 69:61-68. [PMID: 30277505 PMCID: PMC6579959 DOI: 10.1093/cid/ciy834] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 11/14/2022] Open
Abstract
Background The adequacy of the World Health Organization’s Integrated Management of Childhood Illness (IMCI) antimicrobial guidelines for the treatment of suspected severe bacterial infections is dependent on a low prevalence of antimicrobial resistance (AMR). We describe trends in etiologies and susceptibility patterns of bloodstream infections (BSI) in hospitalized children in Malawi. Methods We determined the change in the population-based incidence of BSI in children admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi (1998–2017). AMR profiles were assessed by the disc diffusion method, and trends over time were evaluated. Results A total 89643 pediatric blood cultures were performed, and 10621 pathogens were included in the analysis. Estimated minimum incidence rates of BSI for those ≤5 years of age fell from a peak of 11.4 per 1000 persons in 2002 to 3.4 per 1000 persons in 2017. Over 2 decades, the resistance of Gram-negative pathogens to all empiric, first-line antimicrobials (ampicillin/penicillin, gentamicin, ceftriaxone) among children ≤5 years increased from 3.4% to 30.2% (P < .001). Among those ≤60 days, AMR to all first-line antimicrobials increased from 7.0% to 67.7% (P < .001). Among children ≤5 years, Klebsiella spp. resistance to all first-line antimicrobial regimens increased from 5.9% to 93.7% (P < .001). Conclusions The incidence of BSI among hospitalized children has decreased substantially over the last 20 years, although gains have been offset by increases in Gram-negative pathogens’ resistance to all empiric first-line antimicrobials. There is an urgent need to address the broader challenge of adapting IMCI guidelines to the local setting in the face of rapidly-expanding AMR in childhood BSI.
Collapse
Affiliation(s)
- Pui-Ying Iroh Tam
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Liverpool School of Tropical Medicine, United Kingdom
| | - Patrick Musicha
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Liverpool School of Tropical Medicine, United Kingdom
| | | | - Jenifer Cornick
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Brigitte Denis
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Bridget Freyne
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Dean Everett
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,The Queens Medical Research Institute, University of Edinburgh, United Kingdom
| | - Queen Dube
- University of Malawi College of Medicine, Blantyre
| | - Neil French
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Nicholas Feasey
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Liverpool School of Tropical Medicine, United Kingdom
| | - Robert Heyderman
- Malawi-Liverpool Wellcome Trust, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,University College London, United Kingdom
| |
Collapse
|
47
|
Kariuki S, Mbae C, Van Puyvelde S, Onsare R, Kavai S, Wairimu C, Ngetich R, Clemens J, Dougan G. High relatedness of invasive multi-drug resistant non-typhoidal Salmonella genotypes among patients and asymptomatic carriers in endemic informal settlements in Kenya. PLoS Negl Trop Dis 2020; 14:e0008440. [PMID: 32745137 PMCID: PMC7425985 DOI: 10.1371/journal.pntd.0008440] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Invasive Non-typhoidal Salmonella (iNTS) disease is a major public health challenge, especially in Sub-Saharan Africa (SSA). In Kenya, mortality rates are high (20-25%) unless prompt treatment is instituted. The most common serotypes are Salmonella enterica serotype Typhimurium (S. Typhimurium) and Salmonella enterica serotype Enteritidis (S. Enteritidis). In a 5 year case-control study in children residing in the Mukuru informal settlement in Nairobi, Kenya, a total of 4201 blood cultures from suspected iNTS cases and 6326 fecal samples from age-matched controls were studied. From the laboratory cultures we obtained a total of 133 S. Typhimurium isolates of which 83(62.4%) came from cases (53 blood and 30 fecal) and 50(37.6%) from controls (fecal). A total of 120 S. Enteritidis consisted of 70(58.3%) from cases (43 blood and 27 fecal) and 50(41.7%) from controls (fecal). The S. Typhimurium population fell into two distinct ST19 lineages constituting 36.1%, as well as ST313 lineage I (27.8%) and ST313 lineage II (36.1%) isolates. The S. Enteritidis isolates fell into the global epidemic lineage (46.6%), the Central/Eastern African lineage (30.5%), a novel Kenyan-specific lineage (12.2%) and a phylogenetically outlier lineage (10.7%). Detailed phylogenetic analysis revealed a high level of relatedness between NTS from blood and stool originating from cases and controls, indicating a common source pool. Multidrug resistance was common throughout, with 8.5% of such isolates resistant to extended spectrum beta lactams. The high rate of asymptomatic carriage in the population is a concern for transmission to vulnerable individuals and this group could be targeted for vaccination if an iNTS vaccine becomes available.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Susan Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ronald Ngetich
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John Clemens
- Office of the Executive Director, International Diarrheal Diseases Research Centre, Dhaka, Bangladesh
| | - Gordon Dougan
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Department of Medicine, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
48
|
Piccini G, Montomoli E. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development. Hum Vaccin Immunother 2020; 16:2056-2071. [PMID: 32692622 PMCID: PMC7553687 DOI: 10.1080/21645515.2020.1785791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) infections are a leading cause of bacteremia in Sub-Saharan Africa (sSA), thereby representing a major public health threat. Salmonella Typhimurium clade ST313 and Salmonella Enteriditis lineages associated with Western and Central/Eastern Africa are among the iNTS serovars which are of the greatest concern due to their case-fatality rate, especially in children and in the immunocompromised population. Identification of pathogen-associated features and host susceptibility factors that increase the risk for invasive non-typhoidal salmonellosis would be instrumental for the design of targeted prevention strategies, which are urgently needed given the increasing spread of multidrug-resistant iNTS in Africa. This review summarizes current knowledge of bacterial traits and host immune responses associated with iNTS infections in sSA, then discusses how this knowledge can guide vaccine development while providing a summary of vaccine candidates in preclinical and early clinical development.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- VisMederi srl , Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
49
|
Mbae C, Mwangi M, Gitau N, Irungu T, Muendo F, Wakio Z, Wambui R, Kavai S, Onsare R, Wairimu C, Ngetich R, Njeru F, Van Puyvelde S, Clemens J, Dougan G, Kariuki S. Factors associated with occurrence of salmonellosis among children living in Mukuru slum, an urban informal settlement in Kenya. BMC Infect Dis 2020; 20:422. [PMID: 32552753 PMCID: PMC7302364 DOI: 10.1186/s12879-020-05134-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background In Kenya, typhoid fever and invasive non-typhoidal salmonellosis present a huge burden of disease, especially in poor-resource settings where clean water supply and sanitation conditions are inadequate. The epidemiology of both diseases is poorly understood in terms of severity and risk factors. The aim of the study was to determine the disease burden and spatial distribution of salmonellosis, as well as socioeconomic and environmental risk factors for these infections, in a large informal settlement near the city of Nairobi, from 2013 to 2017. Methods Initially, a house-to-house baseline census of 150,000 population in Mukuru informal settlement was carried out and relevant socioeconomic, demographic, and healthcare utilization information was collected using structured questionnaires. Salmonella bacteria were cultured from the blood and faeces of children < 16 years of age who reported at three outpatient facilities with fever alone or fever and diarrhea. Tests of association between specific Salmonella serotypes and risk factors were conducted using Pearson Chi-Square (χ2) test. Results A total of 16,236 children were recruited into the study. The prevalence of bloodstream infections by Non-Typhoidal Salmonella (NTS), consisting of Salmonella Typhimurium/ Enteriditis, was 1.3%; Salmonella Typhi was 1.4%, and this was highest among children < 16 years of age. Occurrence of Salmonella Typhimurium/ Enteriditis was not significantly associated with rearing any domestic animals. Rearing chicken was significantly associated with high prevalence of S. Typhi (2.1%; p = 0.011). The proportion of children infected with Salmonella Typhimurium/ Enteriditis was significantly higher in households that used water pots as water storage containers compared to using water directly from the tap (0.6%). Use of pit latrines and open defecation were significant risk factors for S. Typhi infection (1.6%; p = 0.048). The proportion of Salmonella Typhimurium/ Enteriditis among children eating street food 4 or more times per week was higher compared to 1 to 2 times/week on average (1.1%; p = 0.032). Conclusion Typhoidal and NTS are important causes of illness in children in Mukuru informal settlement, especially among children less than 16 years of age. Improving Water, Sanitation and Hygiene (WASH) including boiling water, breastfeeding, hand washing practices, and avoiding animal contact in domestic settings could contribute to reducing the risk of transmission of Salmonella disease from contaminated environments.
Collapse
Affiliation(s)
- Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya.
| | - Moses Mwangi
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Naomi Gitau
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Tabitha Irungu
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Fidelis Muendo
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zilla Wakio
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Ruth Wambui
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Susan Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Ronald Ngetich
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Frida Njeru
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya
| | - Sandra Van Puyvelde
- Department of Medicine, University of Cambridge, Cambridge, UK.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - John Clemens
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, PO Box 54840-00200, Nairobi, Kenya.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
50
|
Virulence traits and expression of bstA, fliC and sopE2 in Salmonella Dublin strains isolated from humans and animals in Brazil. INFECTION GENETICS AND EVOLUTION 2020; 80:104193. [DOI: 10.1016/j.meegid.2020.104193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
|