1
|
Croucher NJ, Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Turner C, Nosten F, Bentley SD, Liang X, Turner P, Goldblatt D. Genomic and panproteomic analysis of the development of infant immune responses to antigenically-diverse pneumococci. Nat Commun 2024; 15:355. [PMID: 38191887 PMCID: PMC10774285 DOI: 10.1038/s41467-023-44584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.
Collapse
Affiliation(s)
- Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W12 0BZ, UK.
| | - Joseph J Campo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Timothy Q Le
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Jozelyn V Pablo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Christopher Hung
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Andy A Teng
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xiaowu Liang
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
2
|
Howard LM, Huang X, Chen W, Liu Y, Edwards KM, Griffin MR, Zhu Y, Vidal JE, Klugman KP, Gil AI, Soper NR, Thomsen IP, Gould K, Hinds J, Lanata CF, Grijalva CG. Association between nasopharyngeal colonization with multiple pneumococcal serotypes and total pneumococcal colonization density in young Peruvian children. Int J Infect Dis 2023; 134:248-255. [PMID: 37451394 PMCID: PMC10804940 DOI: 10.1016/j.ijid.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES We examined the association of nasopharyngeal (NP) pneumococcal co-colonization (>1 pneumococcal serotype) and pneumococcal density in young Peruvian children enrolled in a prospective cohort study. METHODS NP swabs collected monthly from children aged <3 years during both asymptomatic and acute respiratory illness (ARI) periods underwent culture-enriched microarray for pneumococcal detection and serotyping and lytA polymerase chain reaction for density assessment. We examined the serotypes commonly associated with co-colonization and the distribution of densities by co-colonization, age, current ARI, and other covariates. The association of co-colonization and pneumococcal density was assessed using a multivariable mixed-effects linear regression model, accounting for repeated measures and relevant covariates. RESULTS A total of 27 children contributed 575 monthly NP samples. Pneumococcus was detected in 302 of 575 (53%) samples, and co-colonization was detected in 61 of these 302 (20%). The total densities were higher during ARI than non-ARI periods and lowest among the youngest children, increasing with age. In the multivariable analysis, there was no significant association between pneumococcal density and co-colonization (coefficient estimate 0.22, 95% confidence interval 0.11-0.55; reference: single-serotype detections). Serotypes 23B and 19F were detected significantly more frequently as single isolates. CONCLUSION Pneumococcal co-colonization was common and not associated with increased pneumococcal density. Differential propensity for co-colonization was observed among individual serotypes.
Collapse
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
| | - Xiang Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Wencong Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Yuhan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Marie R Griffin
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, USA
| | - Keith P Klugman
- Rollins School of Public Health, Emory University; Atlanta, USA
| | - Ana I Gil
- Instituto de Investigacion Nutricional; Lima, Peru
| | - Nicole R Soper
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Isaac P Thomsen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Katherine Gould
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Claudio F Lanata
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA; Instituto de Investigacion Nutricional; Lima, Peru
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
3
|
Modelling the effect of within-host dynamics on the diversity of a multi-strain pathogen. J Theor Biol 2022; 548:111185. [PMID: 35700769 DOI: 10.1016/j.jtbi.2022.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Multi-strain pathogens such as Group A Streptococcus, Streptococcus pneumoniae, and Staphylococcus aureus cause millions of infections each year with a substantial health burden. Control of multi-strain pathogens can be complicated by the high strain diversity often observed in endemic settings. It is not well understood how high strain diversity is maintained in populations, given that they compete with each other both directly (within an individual host) and indirectly (via host immunity). Previous modelling studies have investigated how indirect competition affects the prevalence and diversity of strains. However, these studies often make simplifying assumptions about the direct competition that occurs within hosts. Currently, little data is available to validate these assumptions, hence there is a need to clarify how sensitive model outputs are to these assumptions. In this study, we compare the dynamics of multi-strain pathogens under different assumptions about direct competition between strains using an agent-based model. We find that the assumptions made about direct competition can affect the epidemiological dynamics, particularly when there is no long-term immunity following infections and a low rate of importation of non-circulating strains. Our results suggest that while direct and indirect competition can each decrease strain diversity when they act in isolation, they may increase strain diversity when they act together. This finding highlights the importance of examining sensitivity to assumptions about strain competition. In particular, omitting consideration of direct competition can lead to inaccurate estimates of the likely effectiveness of control strategies as changes in strain diversity shift the level of direct strain competition.
Collapse
|
4
|
Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022; 12:824788. [PMID: 35155281 PMCID: PMC8834882 DOI: 10.3389/fcimb.2022.824788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod J. Mousa,
| |
Collapse
|
5
|
Man I, Bogaards JA, Makwana K, Trzciński K, Auranen K. Approximate likelihood-based estimation method of multiple-type pathogen interactions: An application to longitudinal pneumococcal carriage data. Stat Med 2022; 41:981-993. [PMID: 35083763 PMCID: PMC9302632 DOI: 10.1002/sim.9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022]
Abstract
While the serotypes of Streptococcus pneumoniae are known to compete during colonization in human hosts, our knowledge of how competition occurs is still incomplete. New insights of pneumococcal between‐type competition could be generated from carriage data obtained by molecular‐based detection methods, which record more complete sets of serotypes involved in co‐carriage than when detection is done by culture. Here, we develop a Bayesian estimation method for inferring between‐type interactions from longitudinal data recording the presence/absence of the types at discrete observation times. It allows inference from data containing co‐carriage of two or more serotypes, which is often the case when pneumococcal presence is determined by molecular‐based methods. The computational burden posed by the increased number of types detected in co‐carriage is addressed by approximating the likelihood under a multi‐state model with the likelihood of only those trajectories with minimum number of acquisition and clearance events between observation times. The proposed method's performance was validated on simulated data. The estimates of the interaction parameters of acquisition and clearance were unbiased in settings with short sampling intervals between observation times. With less frequent sampling, the estimates of the interaction parameters became more biased, but their ratio, which summarizes the total interaction, remained unbiased. Confounding due to unobserved heterogeneity in exposure could be corrected by including individual‐level random effects. In an application to empirical data about pneumococcal carriage in infants, we found new evidence for between‐serotype competition in clearance, although the effect size was small.
Collapse
Affiliation(s)
- Irene Man
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Utrecht, The Netherlands.,Julius Centre, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes A Bogaards
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Utrecht, The Netherlands.,Department of Epidemiology & Data Science, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Kishan Makwana
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Utrecht, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kari Auranen
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Vinh DN, Nhat NTD, de Bruin E, Vy NHT, Thao TTN, Phuong HT, Anh PH, Todd S, Quan TM, Thanh NTL, Lien NTN, Ha NTH, Hong TTK, Thai PQ, Choisy M, Nguyen TD, Simmons CP, Thwaites GE, Clapham HE, Chau NVV, Koopmans M, Boni MF. Age-seroprevalence curves for the multi-strain structure of influenza A virus. Nat Commun 2021; 12:6680. [PMID: 34795239 PMCID: PMC8602397 DOI: 10.1038/s41467-021-26948-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a principal components decomposition of antibody titer data gives the first principal component as an appropriate surrogate for seroprevalence; this results in annual attack rate estimates of 25.6% (95% CI: 24.1% - 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% - 17.3%) for subtype H1. The remaining principal components separate the strains by serological similarity and associate birth cohorts with their particular influenza histories. Our work shows that dimensionality reduction can be used on human antibody profiles to construct an age-seroprevalence relationship for antigenically variable pathogens.
Collapse
MESH Headings
- Algorithms
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Geography
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A virus/classification
- Influenza A virus/immunology
- Influenza A virus/physiology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Theoretical
- Seroepidemiologic Studies
- Time Factors
- Vietnam/epidemiology
- Virus Replication/immunology
Collapse
Affiliation(s)
- Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Duy Nhat
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Erwin de Bruin
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Thi Nhu Thao
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Stacy Todd
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Liverpool School of Tropical Medicine, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, England
| | - Tran Minh Quan
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Le Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | | | | | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Cameron P Simmons
- Institute of Vector Borne Disease, Monash University, Melbourne, VIC, Australia
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah E Clapham
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Marion Koopmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
Al-Lahham A. Prevalence of Pneumococcal Carriage among Jordanian Infants in the First 6 Months of Age, 2008-2016. Vaccines (Basel) 2021; 9:vaccines9111283. [PMID: 34835213 PMCID: PMC8622573 DOI: 10.3390/vaccines9111283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Streptococcus pneumoniae is an opportunistic human-adapted pathogen driven by nasopharyngeal carriage. Aims: To find the pneumococcal carriage rate, resistance, serotypes, and coverage of pneumococcal conjugate vaccines (PCVs) among infants in the first six months of age in the period from March 2008 to April 2016. Methods: Nasopharyngeal swabs (NP) were taken from healthy infants from the northern part of Jordan. Swabs were processed for cultivation, identification, resistance testing and serotyping according to standard methods. Results: During the surveillance period, 484 infants of this age group were tested, with a total carriage rate of 56.2%. 96.2% of infants one to two months of age got one PCV7 injection and were 58% carriers at the time of the first injection. At age three to four months, 84.9% had received two injections, with a carriage rate of 54.9% at the time of the second injection. At ages five to six months, 12.5% had received one to three injections, with a carriage rate of 43.8%. Predominant serotypes in all age groups were 19F (12.5%), 6A (11.4%), 11A (8.4%), 19A (7.0%), 6B (6.6%), 23F (5.9%), 15B (5.1%), 15A and 23A (4.0% each). Coverage of PCV7, PCV13 and the future PCV20 among all cases were 30.5%, 50.7% and 70.6%, respectively. The highest coverage rate of 78.6% was noticed in the age group at five to six months with the future PCV20. Antibiotic resistance was the highest in the first age group. Conclusions: Pneumococcal carriage starts from the first month of the infant’s life. The highest coverage was noticed for PCV20, which implies the necessity for inoculation with future vaccines.
Collapse
Affiliation(s)
- Adnan Al-Lahham
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan
| |
Collapse
|
8
|
Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, Croucher NJ. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. THE ISME JOURNAL 2021; 15:1523-1538. [PMID: 33408365 PMCID: PMC8115253 DOI: 10.1038/s41396-020-00867-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Streptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations' ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.
Collapse
Affiliation(s)
- Gabrielle L Harrow
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline Colijn
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
9
|
Broadly Reactive Human Monoclonal Antibodies Targeting the Pneumococcal Histidine Triad Protein Protect against Fatal Pneumococcal Infection. Infect Immun 2021; 89:IAI.00747-20. [PMID: 33649050 PMCID: PMC8091081 DOI: 10.1128/iai.00747-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Additionally, numerous isolates of S. pneumoniae are antibiotic or multidrug resistant. Several conserved pneumococcal proteins prevalent in the majority of serotypes have been examined for their potential as vaccines in preclinical and clinical trials. An additional, yet-unexplored tool for disease prevention and treatment is the use of human monoclonal antibodies (MAbs) targeting conserved pneumococcal proteins. Here, we isolated the first human MAbs (PhtD3, PhtD6, PhtD7, PhtD8, and PspA16) against the pneumococcal histidine triad protein (PhtD) and the pneumococcal surface protein A (PspA), two conserved and protective antigens. MAbs to PhtD target diverse epitopes on PhtD, and MAb PspA16 targets the N-terminal segment of PspA. The PhtD-specific MAbs bind to multiple serotypes, while MAb PspA16 serotype breadth is limited. MAbs PhtD3 and PhtD8 prolong the survival of mice infected with pneumococcal serotype 3. Furthermore, MAb PhtD3 prolongs the survival of mice in intranasal and intravenous infection models with pneumococcal serotype 4 and in mice infected with pneumococcal serotype 3 when administered 24 h after pneumococcal infection. All PhtD and PspA MAbs demonstrate opsonophagocytic activity, suggesting a potential mechanism of protection. Our results identify new human MAbs for pneumococcal disease prevention and treatment and identify epitopes on PhtD and PspA recognized by human B cells.
Collapse
|
10
|
Ramos-Sevillano E, Ercoli G, Guerra-Assunção JA, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Tetteh KKA, Heyderman RS, Gordon SB, Ferreria DM, Brown JS. Protective Effect of Nasal Colonisation with ∆cps/piaA and ∆cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines (Basel) 2021; 9:vaccines9030261. [PMID: 33804077 PMCID: PMC8000150 DOI: 10.3390/vaccines9030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. MEASUREMENTS AND MAIN RESULTS The ∆cps/piaA and ∆cps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS Colonisation with the ∆cps/piaA and ∆cps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
| | | | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK;
| | - Kevin Kweku Adjei Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London WC1E 7HT, UK;
| | - Robert Simon Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London WC1E 6JF, UK;
| | - Stephen Brian Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 30096, Malawi;
| | - Daniela Mulari Ferreria
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Jeremy Stuart Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| |
Collapse
|
11
|
Carriage rates and antimicrobial sensitivity of pneumococci in the upper respiratory tract of children less than ten years old, in a north Indian rural community. PLoS One 2021; 16:e0246522. [PMID: 33539406 PMCID: PMC7861412 DOI: 10.1371/journal.pone.0246522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
Pneumococcal carriage studies are important for vaccine introduction and treatment strategies. Pneumococcal carriage rates estimated in this cohort study among children in a rural community of northern India. Between August 2012 and August 2014, trained nurses made weekly home visits to screen enrolled children aged <10 years for acute upper or lower respiratory infections (AURI/ALRI) in Ballabgarh, Haryana. Nasal swab from infants aged <1year and throat swab from children aged ≥1 year were collected. All specimens were cultured for pneumococci; isolates were serotyped and subjected to antimicrobial susceptibility testing. During the study period, 4348 nasal/throat swabs collected from children with clinical features of ARI (836 ALRI, 2492 AURI) and from 1020 asymptomatic children. Overall pneumococcal carriage was 5.1%, the highest carriage rate among children <1 year of age (22.6%). The detection rates were higher among children with ARI (5.6%; 95% CI: 4.8–6.4) than asymptomatic children (3.3%; 95% CI: 2.3–4.6). Among 220 pneumococcal isolates, 42 diverse serotypes were identified, with 6B/C (8.6%), 19A (7.2%), 19F (6.8%), 23F (6.4%), 35A/B/C (6.4%), 15B (5%), 14 (4.5%) and 11A/C/D (3.2%) accounting for 50%. Forty-five percent of the serotypes identified are included in the current formulation of 13-valent pneumococcal conjugate vaccine. Ninety-six percent of isolates were resistant to co-trimoxazole, 9% were resistant to erythromycin, and 10% had intermediate resistance to penicillin with minimum inhibitory concentration ranges (0.125 to 1.5 μg/ml). Pneumococcal detection was relatively low among children in our study community but demonstrated a diverse range of serotypes and half of these serotypes would be covered by the current formulation of 13-valent pneumococcal vaccine.
Collapse
|
12
|
Chaguza C, Senghore M, Bojang E, Gladstone RA, Lo SW, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat Commun 2020; 11:3442. [PMID: 32651390 PMCID: PMC7351774 DOI: 10.1038/s41467-020-17327-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
Genomic evolution, transmission and pathogenesis of Streptococcus pneumoniae, an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate within-host microevolution of naturally carried pneumococci in ninety-eight infants intensively sampled sequentially from birth until twelve months in a high-carriage African setting. We show that neutral evolution and nucleotide substitution rates up to forty-fold faster than observed over longer timescales in S. pneumoniae and other bacteria drives high within-host pneumococcal genetic diversity. Highly divergent co-existing strain variants emerge during colonisation episodes through real-time intra-host homologous recombination while the rest are co-transmitted or acquired independently during multiple colonisation episodes. Genic and intergenic parallel evolution occur particularly in antibiotic resistance, immune evasion and epithelial adhesion genes. Our findings suggest that within-host microevolution is rapid and adaptive during natural colonisation.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK.
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebrima Bojang
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rowan E Bancroft
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebenezer Foster-Nyarko
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Fatima Ceesay
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Catherine Okoi
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | | | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Richard A Adegbola
- RAMBICON Immunisation & Global Health Consulting, 6A Platinum Close, Lekki, Lagos State, Nigeria
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Brenda A Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
13
|
Chisholm RH, Sonenberg N, Lacey JA, McDonald MI, Pandey M, Davies MR, Tong SYC, McVernon J, Geard N. Epidemiological consequences of enduring strain-specific immunity requiring repeated episodes of infection. PLoS Comput Biol 2020; 16:e1007182. [PMID: 32502148 PMCID: PMC7299408 DOI: 10.1371/journal.pcbi.1007182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/17/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Group A Streptococcus (GAS) skin infections are caused by a diverse array of strain types and are highly prevalent in disadvantaged populations. The role of strain-specific immunity in preventing GAS infections is poorly understood, representing a critical knowledge gap in vaccine development. A recent GAS murine challenge study showed evidence that sterilising strain-specific and enduring immunity required two skin infections by the same GAS strain within three weeks. This mechanism of developing enduring immunity may be a significant impediment to the accumulation of immunity in populations. We used an agent-based mathematical model of GAS transmission to investigate the epidemiological consequences of enduring strain-specific immunity developing only after two infections with the same strain within a specified interval. Accounting for uncertainty when correlating murine timeframes to humans, we varied this maximum inter-infection interval from 3 to 420 weeks to assess its impact on prevalence and strain diversity, and considered additional scenarios where no maximum inter-infection interval was specified. Model outputs were compared with longitudinal GAS surveillance observations from northern Australia, a region with endemic infection. We also assessed the likely impact of a targeted strain-specific multivalent vaccine in this context. Our model produced patterns of transmission consistent with observations when the maximum inter-infection interval for developing enduring immunity was 19 weeks. Our vaccine analysis suggests that the leading multivalent GAS vaccine may have limited impact on the prevalence of GAS in populations in northern Australia if strain-specific immunity requires repeated episodes of infection. Our results suggest that observed GAS epidemiology from disease endemic settings is consistent with enduring strain-specific immunity being dependent on repeated infections with the same strain, and provide additional motivation for relevant human studies to confirm the human immune response to GAS skin infection. Group A Streptococcus (GAS) is a ubiquitous bacterial pathogen that exists in many distinct strains, and is a major cause of death and disability globally. Vaccines against GAS are under development, but their effective use will require better understanding of how immunity develops following infection. Evidence from an animal model of skin infection suggests that the generation of enduring strain-specific immunity requires two infections by the same strain within a short time frame. It is not clear if this mechanism of immune development operates in humans, nor how it would contribute to the persistence of GAS in populations and affect vaccine impact. We used a mathematical model of GAS transmission, calibrated to data collected in an Indigenous Australian community, to assess whether this mechanism of immune development is consistent with epidemiological observations, and to explore its implications for the impact of a vaccine. We found that it is plausible that repeat infections are required for the development of immunity in humans, and illustrate the difficulties associated with achieving sustained reductions in disease prevalence with a vaccine.
Collapse
Affiliation(s)
- Rebecca H. Chisholm
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nikki Sonenberg
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jake A. Lacey
- Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Malcolm I. McDonald
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Steven Y. C. Tong
- Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jodie McVernon
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Victoria, Australia
| | - Nicholas Geard
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Victoria, Australia
- School of Computing and Information Systems, Melbourne School of Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
14
|
Pichichero ME. Immunologic dysfunction contributes to the otitis prone condition. J Infect 2020; 80:614-622. [PMID: 32205139 DOI: 10.1016/j.jinf.2020.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Acute Otitis Media (AOM) is a multifactorial disease occurring mostly in young children who are immunologically naïve to AOM pathogens. This review focuses on work from Rochester NY, USA over the past 12 years among young children who had AOM infections microbiologically-confirmed by tympanocentesis, so called "stringently-defined". Among stringently-defined otitis prone children deficiencies in fundamental immune defense mechanisms have been identified that contribute to the propensity of young children to experience recurrent AOM. Dysfunction in innate immune responses that cause an immunopathological impact in the nasopharynx have been discovered including inadequate proinflammatory cytokine response and poor epithelial cell repair. Adaptive immunity defects in B cell function and immunologic memory resulting in low levels of antibody to otopathogen-specific antigens allows repeated infections. CD4+ and CD8+ T cell function and memory defects significantly contribute. The immune profile of an otitis prone child resembles that of a neonate through the first year of life. Immunologic deficits in otitis prone children cause them to be unusually vulnerable to viral upper respiratory infections and respond inadequately to routine pediatric vaccines.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY.
| |
Collapse
|
15
|
Chaguza C, Senghore M, Bojang E, Lo SW, Ebruke C, Gladstone RA, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Carriage Dynamics of Pneumococcal Serotypes in Naturally Colonized Infants in a Rural African Setting During the First Year of Life. Front Pediatr 2020; 8:587730. [PMID: 33489998 PMCID: PMC7820366 DOI: 10.3389/fped.2020.587730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) carriage precedes invasive disease and influences population-wide strain dynamics, but limited data exist on temporal carriage patterns of serotypes due to the prohibitive costs of longitudinal studies. Here, we report carriage prevalence, clearance and acquisition rates of pneumococcal serotypes sampled from newborn infants bi-weekly from weeks 1 to 27, and then bi-monthly from weeks 35 to 52 in the Gambia. We used sweep latex agglutination and whole genome sequencing to serotype the isolates. We show rapid pneumococcal acquisition with nearly 31% of the infants colonized by the end of first week after birth and quickly exceeding 95% after 2 months. Co-colonization with multiple serotypes was consistently observed in over 40% of the infants at each sampling point during the first year of life. Overall, the mean acquisition time and carriage duration regardless of serotype was 38 and 24 days, respectively, but varied considerably between serotypes comparable to observations from other regions. Our data will inform disease prevention and control measures including providing baseline data for parameterising infectious disease mathematical models including those assessing the impact of clinical interventions such as pneumococcal conjugate vaccines.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.,Darwin College, University of Cambridge, Cambridge, United Kingdom
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Ebrima Bojang
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Rowan E Bancroft
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Ebenezer Foster-Nyarko
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Fatima Ceesay
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Catherine Okoi
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, GA, United States
| | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Richard A Adegbola
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.,RAMBICON Immunisation & Global Health Consulting, Lekki, Nigeria
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brenda A Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.,NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
16
|
Georgieva M, Buckee CO, Lipsitch M. Models of immune selection for multi-locus antigenic diversity of pathogens. Nat Rev Immunol 2019; 19:55-62. [PMID: 30479379 DOI: 10.1038/s41577-018-0092-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well accepted that pathogens can evade recognition and elimination by the host immune system by varying their antigenic targets. Thus, it has become a truism that host immunity is a major driver and determinant of the antigenic diversity of pathogens. However, it remains puzzling how host immunity selects for antigenic diversity at the level of the pathogen population, given that hosts have acquired immune responses to multiple antigens of most pathogens - sometimes through multiple effectors of both humoral and cellular immunity. In this Opinion article, we address this puzzle and the related question of why pathogens often have diversity at multiple antigenic loci. Here, we describe five hypotheses to explain the polymorphism of multiple antigens in a single pathogen species and highlight research relevant to our current models of thinking about multi-locus antigenic diversity.
Collapse
Affiliation(s)
- Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Murad C, Dunne EM, Sudigdoadi S, Fadlyana E, Tarigan R, Pell CL, Watts E, Nguyen CD, Satzke C, Hinds J, Dewi MM, Dhamayanti M, Sekarwana N, Rusmil K, Mulholland EK, Kartasasmita C. Pneumococcal carriage, density, and co-colonization dynamics: A longitudinal study in Indonesian infants. Int J Infect Dis 2019; 86:73-81. [DOI: 10.1016/j.ijid.2019.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
|
18
|
Jochems SP, de Ruiter K, Solórzano C, Voskamp A, Mitsi E, Nikolaou E, Carniel BF, Pojar S, German EL, Reiné J, Soares-Schanoski A, Hill H, Robinson R, Hyder-Wright AD, Weight CM, Durrenberger PF, Heyderman RS, Gordon SB, Smits HH, Urban BC, Rylance J, Collins AM, Wilkie MD, Lazarova L, Leong SC, Yazdanbakhsh M, Ferreira DM. Innate and adaptive nasal mucosal immune responses following experimental human pneumococcal colonization. J Clin Invest 2019; 129:4523-4538. [PMID: 31361601 PMCID: PMC6763269 DOI: 10.1172/jci128865] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD161+CD8+ T cell clusters were significantly lower in colonized than in noncolonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide–specific and total plasmablasts in blood. Moreover, increased responses of blood mucosa-associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.
Collapse
Affiliation(s)
- Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Karin de Ruiter
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Astrid Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Beatriz F Carniel
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Rachel Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Angela D Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | | | - Pascal F Durrenberger
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | | | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Britta C Urban
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom.,Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Mark D Wilkie
- Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Lepa Lazarova
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Samuel C Leong
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Otorhinolaryngology - Head and Neck Surgery, Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
19
|
Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission. mBio 2019; 10:mBio.01032-19. [PMID: 31213554 PMCID: PMC6581856 DOI: 10.1128/mbio.01032-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiased in vivo transposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by the dlt locus, previously shown to add d-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another. Host-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogen Streptococcus pneumoniae generated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was the dlt locus, which adds d-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence of d-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of the dlt locus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in a lysM−/− host, there was no longer an effect of the dlt locus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.
Collapse
|
20
|
Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4 + T Cells. Infect Immun 2019; 87:IAI.00098-19. [PMID: 30910792 PMCID: PMC6529658 DOI: 10.1128/iai.00098-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
CD4+ T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+ T-cell studies are lacking. CD4+ T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+ T-cell studies are lacking. Here, we evaluate the potential of a bioinformatics tool for in silico prediction of immunogenicity as a method to reveal domains of pneumococcal proteins targeted by human CD4+ T cells. For 100 pneumococcal proteins, CD4+ T-cell immunogenicity was predicted based on HLA-DRB1 binding motifs. For 20 potentially CD4+ T-cell immunogenic proteins, epitope regions were verified by testing synthetic peptides in T-cell assays using peripheral blood mononuclear cells from healthy adults. Peptide pools of 19 out of 20 proteins evoked T-cell responses. The most frequent responses (detectable in ≥20% of donors tested) were found to SP_0117 (PspA), SP_0468 (putative sortase), SP_0546 (BlpZ), SP_1650 (PsaA), SP_1923 (Ply), SP_2048 (conserved hypothetical protein), SP_2216 (PscB), and SPR_0907 (PhtD). Responding donors had diverging recognition patterns and profiles of signature cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-13 [IL-13], and/or IL-17A) against single-epitope regions. Natural HLA-DR-restricted presentation and recognition of a predicted SP_1923-derived epitope were validated through the isolation of a CD4+ T-cell clone producing IFN-γ, TNF-α, and IL-17A in response to the synthetic peptide, whole protein, and heat-inactivated pneumococcus. This proof of principle for a bioinformatics tool to identify pneumococcal protein epitopes targeted by human CD4+ T cells provides a peptide-based strategy to study cell-mediated immune mechanisms for the pneumococcal proteome, advancing the development of immunomonitoring assays and targeted vaccine approaches.
Collapse
|
21
|
Ramos-Sevillano E, Ercoli G, Brown JS. Mechanisms of Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2019; 10:358. [PMID: 30881363 PMCID: PMC6405633 DOI: 10.3389/fimmu.2019.00358] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
In this review we give an update on the mechanisms of naturally acquired immunity against Streptococcus pneumoniae, one of the major human bacterial pathogens that is a common cause of pneumonia, septicaemia, and meningitis. A clear understanding of the natural mechanisms of immunity to S. pneumoniae is necessary to help define why the very young and elderly are at high risk of disease, and for devising new prevention strategies. Recent data has shown that nasopharynx colonization by S. pneumoniae induces antibody responses to protein and capsular antigens in both mice and humans, and also induces Th17 CD4+ cellular immune responses in mice and increases pre-existing responses in humans. These responses are protective, demonstrating that colonization is an immunizing event. We discuss the data from animal models and humans on the relative importance of naturally acquired antibody and Th17 cells on immunity to S. pneumoniae at three different anatomical sites of infection, the nasopharynx (the site of natural asymptomatic carriage), the lung (site of pneumonia), and the blood (site of sepsis). Mouse data suggest that CD4+ Th17 cells prevent both primary and secondary nasopharyngeal carriage with no role for antibody induced by previous colonization. In contrast, antibody is necessary for prevention of sepsis but CD4+ cellular responses are not. Protection against pneumonia requires a combination of both antibody and Th17 cells, in both cases targeting protein rather than capsular antigen. Proof of which immune component prevents human infection is less easily available, but two recent papers demonstrate that human IgG targeting S. pneumoniae protein antigens is highly protective against septicaemia. The role of CD4+ responses to prior nasopharyngeal colonization for protective immunity in humans is unclear. The evidence that there is significant naturally-acquired immunity to S. pneumoniae independent of anti-capsular polysaccharide has clinical implications for the detection of subjects at risk of S. pneumoniae infections, and the data showing the importance of protein antigens as targets for antibody and Th17 mediated immunity should aid the development of new vaccine strategies.
Collapse
Affiliation(s)
| | | | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| |
Collapse
|
22
|
Modelling appropriate use of trypanocides to restrict wide-spread multi-drug resistance during chemotherapy of animal African trypanosomiasis. Parasitology 2018; 146:774-780. [PMID: 30567619 DOI: 10.1017/s0031182018002093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanocide resistance remains a huge challenge in the management of animal African trypanosomiasis. Paucity of data on the prevalence of multi-drug resistant trypanosomes has greatly hindered optimal veterinary management practices. We use mathematical model predictions to highlight appropriate drug regimens that impede trypanocide resistance development in cattle. We demonstrate that using drugs in decreasing resistance order results in a negligible increase in number of cattle with resistant infection, in contrast to a more pronounced increase from trypanocide use in increasing resistance order. We demonstrate that the lowest levels of trypanocide resistance are achieved with combination therapy. We also show that increasing the number of cattle treated leads to a progressive reduction in the number of cattle with drug resistant infections for treatments of up to 80% of the cattle population for the combination treatment strategy. Our findings provide an initial evidence-based framework on some essential practices that promote optimal use of the handful of trypanocides. We anticipate that our modest forecasts will improve therapeutic outcomes by appropriately informing on the best choice, and combination of drugs that minimize treatment failure rates.
Collapse
|
23
|
Cai FY, Fussell T, Cobey S, Lipsitch M. Use of an individual-based model of pneumococcal carriage for planning a randomized trial of a whole-cell vaccine. PLoS Comput Biol 2018; 14:e1006333. [PMID: 30273332 PMCID: PMC6181404 DOI: 10.1371/journal.pcbi.1006333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/11/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023] Open
Abstract
For encapsulated bacteria such as Streptococcus pneumoniae, asymptomatic carriage is more common and longer in duration than disease, and hence is often a more convenient endpoint for clinical trials of vaccines against these bacteria. However, using a carriage endpoint entails specific challenges. Carriage is almost always measured as prevalence, whereas the vaccine may act by reducing incidence or duration. Thus, to determine sample size requirements, its impact on prevalence must first be estimated. The relationship between incidence and prevalence (or duration and prevalence) is convex, saturating at 100% prevalence. For this reason, the proportional effect of a vaccine on prevalence is typically less than its proportional effect on incidence or duration. This relationship is further complicated in the presence of multiple pathogen strains. In addition, host immunity to carriage accumulates rapidly with frequent exposures in early years of life, creating potentially complex interactions with the vaccine’s effect. We conducted a simulation study to predict the impact of an inactivated whole cell pneumococcal vaccine—believed to reduce carriage duration—on carriage prevalence in different age groups and trial settings. We used an individual-based model of pneumococcal carriage that incorporates relevant immunological processes, both vaccine-induced and naturally acquired. Our simulations showed that for a wide range of vaccine efficacies, sampling time and age at vaccination are important determinants of sample size. There is a window of favorable sampling times during which the required sample size is relatively low, and this window is prolonged with a younger age at vaccination, and in a trial setting with lower transmission intensity. These results illustrate the ability of simulation studies to inform the planning of vaccine trials with carriage endpoints, and the methods we present here can be applied to trials evaluating other pneumococcal vaccine candidates or comparing alternative dosing schedules for the existing conjugate vaccines. Streptococcus pneumoniae, a bacterium carried in the nasopharynx of many healthy people, is also a leading cause of bacterial pneumonia, sepsis, and ear infections in children aged five years and younger. Vaccines targeting select strains of S. pneumoniae have been effective, and the development of new vaccines, particularly those that target all strains, can further lower disease burden. For clinical trials of these vaccines, the number of study participants needed depends on the expected effect of the vaccine on a conveniently measured outcome: asymptomatic carriage. The most economical way to test a vaccine for its effect on carriage is by measuring prevalence at a specific time, and comparing vaccinated to unvaccinated participants. The relationship between incidence (or duration) and prevalence is complex, and changes with time as children develop natural immunity. We explored this relationship using a mathematical model. Given a vaccine efficacy, our computer simulations predict that fewer study participants are needed if they are vaccinated at a younger age, taken from a population with intermediate levels of transmission, and sampled for carriage at a certain time window: 9 to 18 months after vaccination. Our study illustrates how simulation studies can help plan more efficient vaccine trials.
Collapse
Affiliation(s)
- Francisco Y. Cai
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Thomas Fussell
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Marc Lipsitch
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Croucher NJ, Løchen A, Bentley SD. Pneumococcal Vaccines: Host Interactions, Population Dynamics, and Design Principles. Annu Rev Microbiol 2018; 72:521-549. [DOI: 10.1146/annurev-micro-090817-062338] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. Most isolates express a capsule, the species-wide diversity of which has been immunologically classified into ∼100 serotypes. Capsule polysaccharides have been combined into multivalent vaccines widely used in adults, but the T cell independence of the antibody response means they are not protective in infants. Polysaccharide conjugate vaccines (PCVs) trigger a T cell–dependent response through attaching a carrier protein to capsular polysaccharides. The immune response stimulated by PCVs in infants inhibits carriage of vaccine serotypes (VTs), resulting in population-wide herd immunity. These were replaced in carriage by non-VTs. Nevertheless, PCVs drove reductions in infant pneumococcal disease, due to the lower mean invasiveness of the postvaccination bacterial population; age-varying serotype invasiveness resulted in a smaller reduction in adult disease. Alternative vaccines being tested in trials are designed to provide species-wide protection through stimulating innate and cellular immune responses, alongside antibodies to conserved antigens.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| | - Alessandra Løchen
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| | - Stephen D. Bentley
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
25
|
Masala GL, Lipsitch M, Bottomley C, Flasche S. Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination. J R Soc Interface 2018; 14:rsif.2017.0620. [PMID: 29093131 PMCID: PMC5721164 DOI: 10.1098/rsif.2017.0620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023] Open
Abstract
The competitive pressure from non-vaccine serotypes may have helped pneumococcal conjugate vaccines (PCVs) to limit vaccine-type (VT) serotype prevalence. We aimed to investigate if, consequently, the indirect protection of vaccines targeting most pneumococcal serotypes could fall short of the profound effects of current formulations. We compared three previously described pneumococcal models harmonized to simulate 20 serotypes with a combined pre-vaccination prevalence in children younger than 5-years-old of 40%. We simulated vaccines of increasing valency by adding serotypes in order of their competitiveness and explored their ability to reduce VT carriage by 95% within 10 years after introduction. All models predicted that additional valency will reduce indirect vaccine effects and hence the overall vaccine impact on carriage both in children and adults. Consequently, the minimal effective coverage (efficacy against carriage×vaccine coverage) needed to eliminate VT carriage increased with increasing valency. One model predicted this effect to be modest, while the other two predicted that high-valency vaccines may struggle to eliminate VT pneumococci unless vaccine efficacy against carriage can be substantially improved. Similar results were obtained when settings of higher transmission intensity and different PCV formulations were explored. Failure to eliminate carriage as a result of increased valency could lead to overall decreased impact of vaccination if the disease burden caused by the added serotypes is low. Hence, a comparison of vaccine formulations of varying valency, and pan-valent formulations in particular, should consider the invasiveness of targeted serotypes, as well as efficacy against carriage.
Collapse
Affiliation(s)
- G L Masala
- Centre for Mathematical Modelling and Infectious Diseases, Department of Infectious disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - M Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - C Bottomley
- Centre for Mathematical Modelling and Infectious Diseases, Department of Infectious disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - S Flasche
- Centre for Mathematical Modelling and Infectious Diseases, Department of Infectious disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
26
|
Cobey S, Baskerville EB, Colijn C, Hanage W, Fraser C, Lipsitch M. Host population structure and treatment frequency maintain balancing selection on drug resistance. J R Soc Interface 2018; 14:rsif.2017.0295. [PMID: 28835542 PMCID: PMC5582124 DOI: 10.1098/rsif.2017.0295] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 11/15/2022] Open
Abstract
It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, UK
| | - William Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Christophe Fraser
- Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
27
|
Abstract
Colonization of the human nasopharynx by pneumococcus is extremely common and is both the primary reservoir for transmission and a prerequisite for disease. Current vaccines targeting the polysaccharide capsule effectively prevent colonization, conferring herd protection within vaccinated communities. However, these vaccines cover only a subset of all circulating pneumococcal strains, and serotype replacement has been observed. Given the success of pneumococcal conjugate vaccine (PCV) in preventing colonization in unvaccinated adults within vaccinated communities, reducing nasopharyngeal colonization has become an outcome of interest for novel vaccines. Here, we discuss the immunological mechanisms that control nasopharyngeal colonization, with an emphasis on findings from human studies. Increased understanding of these immunological mechanisms is required to identify correlates of protection against colonization that will facilitate the early testing and design of novel vaccines.
Collapse
Affiliation(s)
- Simon P. Jochems
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Malley
- Division of Infectious Diseases, Boston Children′s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela M. Ferreira
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| |
Collapse
|
28
|
A Combination of Recombinant Mycobacterium bovis BCG Strains Expressing Pneumococcal Proteins Induces Cellular and Humoral Immune Responses and Protects against Pneumococcal Colonization and Sepsis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00133-17. [PMID: 28768668 DOI: 10.1128/cvi.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022]
Abstract
Pneumococcal diseases remain a substantial cause of mortality in young children in developing countries. The development of potentially serotype-transcending vaccines has been extensively studied; ideally, such a vaccine should include antigens that are able to induce protection against colonization (likely mediated by interleukin-17A [IL-17A]) and invasive disease (likely mediated by antibody). The use of strong adjuvants or alternative delivery systems that are able to improve the immunological response of recombinant proteins has been proposed but poses potential safety and practical concerns in children. We have previously constructed a recombinant Mycobacterium bovis BCG strain expressing a pneumococcal surface protein A (PspA)-PdT fusion protein (rBCG PspA-PdT) that was able to induce an effective immune response and protection against sepsis in a prime-boost strategy. Here, we constructed two new rBCG strains expressing the pneumococcal proteins SP 0148 and SP 2108, which confer IL-17A-dependent protection against pneumococcal colonization in mouse models. Immunization of mice with rBCG 0148 or rBCG 2108 in a prime-boost strategy induced IL-17A and gamma interferon (IFN-γ) production. The combination of these rBCG strains with rBCG PspA-PdT (rBCG Mix), followed by a booster dose of the combined recombinant proteins (rMix) induced an IL-17A response against SP 0148 and SP 2108 and a humoral response characterized by increased levels of IgG2c against PspA and functional antibodies against pneumolysin. Furthermore, immunization with the rBCG Mix prime/rMix booster (rBCG Mix/rMix) provides protection against pneumococcal colonization and sepsis. These results suggest the use of combined rBCG strains as a potentially serotype-transcending pneumococcal vaccine in a prime-boost strategy, which could provide protection against pneumococcal colonization and sepsis.
Collapse
|
29
|
Eton V, Schroeter A, Kelly L, Kirlew M, Tsang RSW, Ulanova M. Epidemiology of invasive pneumococcal and Haemophilus influenzae diseases in Northwestern Ontario, Canada, 2010-2015. Int J Infect Dis 2017; 65:27-33. [PMID: 28951105 DOI: 10.1016/j.ijid.2017.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION North American indigenous populations experience a high burden of invasive bacterial infections. Because Streptococcus pneumoniae and Haemophilus influenzae have multiple antigenic variants, the existing vaccines cannot prevent all cases. This study addresses the current epidemiology of invasive H. influenzae and pneumococcal disease (IPD) in a region of Northwestern Ontario, Canada with a relatively high (82%) indigenous population. METHODS Data were retrieved from a retrospective chart review at a hospital servicing a population of 29000 (82% indigenous), during January 2010-July 2015. RESULTS Ten cases of invasive H. influenzae disease and 37 cases of IPD were identified. The incidence of both in the study population (6.3 and 23.1/100000/year, respectively) exceeded national rates (1.6 and 9.0/100000/year). H. influenzae serotype a (Hia) was the most common (50%), followed by non-typeable H. influenzae (20%). In adults, 77% of IPD cases were caused by serotypes included in the 23-valent pneumococcal polysaccharide vaccine. All paediatric IPD cases were caused by serotypes not included in the 13-valent pneumococcal conjugate vaccine. The case-fatality rate was 10% for invasive H. influenzae and 2.7% for IPD. Most cases exhibited substantial co-morbidity. CONCLUSIONS In Northwestern Ontario, the incidence of invasive Hia disease exceeds that of H. influenzae type b (Hib) in the pre-Hib vaccine era. This provides strong support for the development of a new Hia vaccine. Improved pneumococcal vaccination of high-risk adults in the region is warranted.
Collapse
Affiliation(s)
- Vic Eton
- Northern Ontario School of Medicine, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Annette Schroeter
- Sioux Lookout Meno Ya Win Health Centre, Sioux Lookout, Ontario, Canada
| | - Len Kelly
- Sioux Lookout Meno Ya Win Health Centre, Sioux Lookout, Ontario, Canada
| | - Michael Kirlew
- Sioux Lookout Meno Ya Win Health Centre, Sioux Lookout, Ontario, Canada; Northern Ontario School of Medicine, Sioux Lookout, Ontario, Canada
| | - Raymond S W Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Marina Ulanova
- Northern Ontario School of Medicine, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
30
|
Abstract
The capsular polysaccharide (CPS) of Streptococcus pneumoniae is characterized by its diversity, as it has over 95 known serotypes, and the variation in its thickness as it surrounds an organism. While within-host effects of CPS have been studied in detail, there is no information about its contribution to host-to-host transmission. In this study, we used an infant mouse model of intralitter transmission, together with isogenic capsule switch and cps promoter switch constructs, to explore the effects of CPS type and amount. The determining factor in the transmission rate in this model is the number of pneumococci shed in nasal secretions by colonized hosts. Two of seven capsule switch constructs showed reduced shedding. These constructs were unimpaired in colonization and expressed capsules similar in size to those of the wild-type strain. A cps promoter switch mutant expressing ~50% of wild-type amounts of CPS also displayed reduced shedding without a defect in colonization. Since shedding from the mucosal surface may require escape from mucus entrapment, a mucin-binding assay was used to compare capsule switch and cps promoter switch mutants. The CPS type or amount constructs that shed poorly were bound more robustly by immobilized mucin. These capsule switch and cps promoter switch constructs with increased mucin-binding affinity and reduced shedding also had lower rates of pup-to-pup transmission. Our results demonstrate that CPS type and amount affect transmission dynamics and may contribute to the marked differences in prevalence among pneumococcal types.IMPORTANCEStreptococcus pneumoniae, a leading cause of morbidity and mortality, is readily transmitted, especially among young children. Its structurally and antigenically diverse capsular polysaccharide is the target of currently licensed pneumococcal vaccines. Epidemiology studies show that only a subset of the >95 distinct serotypes are prevalent in the human population, suggesting that certain capsular polysaccharide types might be more likely to be transmitted within the community. Herein, we used an infant mouse model to show that both capsule type and amount are important determinants in the spread of pneumococci from host to host. Transmission rates correlate with those capsule types that are better at escaping mucus entrapment, a key step in exiting the host upper respiratory tract. Hence, our study provides a better mechanistic understanding of why certain pneumococcal serotypes are more common in the human population.
Collapse
|
31
|
Lees JA, Croucher NJ, Goldblatt D, Nosten F, Parkhill J, Turner C, Turner P, Bentley SD. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. eLife 2017; 6:e26255. [PMID: 28742023 PMCID: PMC5576492 DOI: 10.7554/elife.26255] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of invasive disease in infants, especially in low-income settings. Asymptomatic carriage in the nasopharynx is a prerequisite for disease, but variability in its duration is currently only understood at the serotype level. Here we developed a model to calculate the duration of carriage episodes from longitudinal swab data, and combined these results with whole genome sequence data. We estimated that pneumococcal genomic variation accounted for 63% of the phenotype variation, whereas the host traits considered here (age and previous carriage) accounted for less than 5%. We further partitioned this heritability into both lineage and locus effects, and quantified the amount attributable to the largest sources of variation in carriage duration: serotype (17%), drug-resistance (9%) and other significant locus effects (7%). A pan-genome-wide association study identified prophage sequences as being associated with decreased carriage duration independent of serotype, potentially by disruption of the competence mechanism. These findings support theoretical models of pneumococcal competition and antibiotic resistance.
Collapse
Affiliation(s)
- John A Lees
- Infection GenomicsWellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | - Nicholas J Croucher
- Department of Infectious Disease EpidemiologySt. Mary’s Campus, Imperial College LondonLondonUnited Kingdom
| | - David Goldblatt
- Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Julian Parkhill
- Infection GenomicsWellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Stephen D Bentley
- Infection GenomicsWellcome Trust Sanger InstituteHinxtonUnited Kingdom
| |
Collapse
|
32
|
Pneumococcal Capsular Polysaccharide Immunity in the Elderly. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00004-17. [PMID: 28424198 DOI: 10.1128/cvi.00004-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunity to pneumococcal infections is impaired in older people, and current vaccines are poorly protective against pneumococcal disease in this population. Naturally acquired immunity to pneumococcal capsular polysaccharides develops during childhood and is robust in young adults but deteriorates with advanced age. In particular, antibody levels and function are reduced in older people. Pneumococcal vaccines are recommended for people >65 years old. However, the benefits of polysaccharide and protein-conjugated vaccines in this population are small, because of both serotype replacement and incomplete protection against vaccine serotype pneumococcal disease. In this review, we overview the immune mechanisms by which naturally acquired and vaccine-induced pneumococcal capsular polysaccharide immunity declines with age, including altered colonization dynamics, reduced opsonic activity of antibodies (particularly IgM), and impaired mucosal immunity.
Collapse
|
33
|
Azarian T, Grant LR, Georgieva M, Hammitt LL, Reid R, Bentley SD, Goldblatt D, Santosham M, Weatherholtz R, Burbidge P, Goklish N, Thompson CM, Hanage WP, O'Brien KL, Lipsitch M. Association of Pneumococcal Protein Antigen Serology With Age and Antigenic Profile of Colonizing Isolates. J Infect Dis 2017; 215:713-722. [PMID: 28035010 DOI: 10.1093/infdis/jiw628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Several Streptococcus pneumoniae proteins play a role in pathogenesis and are being investigated as vaccine targets. It is largely unknown whether naturally acquired antibodies reduce the risk of colonization with strains expressing a particular antigenic variant. Methods Serum immunoglobulin G (IgG) titers to 28 pneumococcal protein antigens were measured among 242 individuals aged <6 months-78 years in Native American communities between 2007 and 2009. Nasopharyngeal swabs were collected >- 30 days after serum collection, and the antigen variant in each pneumococcal isolate was determined using genomic data. We assessed the association between preexisting variant-specific antibody titers and subsequent carriage of pneumococcus expressing a particular antigen variant. Results Antibody titers often increased across pediatric groups before decreasing among adults. Individuals with low titers against group 3 pneumococcal surface protein C (PspC) variants were more likely to be colonized with pneumococci expressing those variants. For other antigens, variant-specific IgG titers do not predict colonization. Conclusion We observed an inverse association between variant-specific antibody concentration and homologous pneumococcal colonization for only 1 protein. Further assessment of antibody repertoires may elucidate the nature of antipneumococcal antibody-mediated mucosal immunity while informing vaccine development.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lindsay R Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Laura L Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - David Goldblatt
- Immunobiology Section, Institute of Child Health, University College London, UK
| | - Mathuran Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Robert Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paula Burbidge
- Immunobiology Section, Institute of Child Health, University College London, UK
| | - Novalene Goklish
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Claudette M Thompson
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Kate L O'Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Paulo AC, Sá-Leão R. Periodic cycles of pneumococcal serotypes carried by children before and after 7-valent pneumococcal conjugate vaccine. PLoS One 2017; 12:e0176723. [PMID: 28453533 PMCID: PMC5409052 DOI: 10.1371/journal.pone.0176723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/15/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Periodic cycles in the serotype-specific incidence of invasive pneumococcal disease have been described but less is known in carriage. METHODS We analyzed serotype carriage prevalence among children 0-6 years old over a 15-year period that included pre-PCV7 data and a decade of PCV7 use. Mixed generalized additive models were used to study periodic cycles and how PCV7 impacted on them. RESULTS Pneumococcal carriage data of 7,463 children were analyzed. Periodic cycles ranging from 3 to 6 years were observed for PCV7-serotypes (VT) 14, 19F and 23F and for non-PCV7 types (NVT) 3, 6A, 6C, 11A, and NT. An indirect impact of PCV7 on periodic cycles of NVT was observed and could be translated in three ways: (i) a higher amplitude in the PCV7 period (serotypes 3 and 11A), (ii) sustained increase in the prevalence of carriage (serotypes 6C, 19A and NT) and (iii) an increase in the inter-epidemic period (serotypes 3, 6A and NT). An increase in the child's mean age of carriage of VTs 6B, 19F and 23F was observed. Serotypes 3, 6C, 11A and 15A became more frequent in ages previously associated with carriage of VTs. CONCLUSIONS Periodic cycles among serotypes frequently carried exist and can be modeled. These cycles can be perturbed upon introduction of PCVs and can lead to shifts in the mean age of carriage. Cyclic re-emergence of VTs can occur in settings with non-universal vaccine use. These results should be taken into account when interpreting surveillance data on pneumococcal carriage.
Collapse
Affiliation(s)
- Ana Cristina Paulo
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Quimíca e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Quimíca e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
35
|
Houri H, Tabatabaei SR, Saee Y, Fallah F, Rahbar M, Karimi A. Distribution of capsular types and drug resistance patterns of invasive pediatric Streptococcus pneumoniae isolates in Teheran, Iran. Int J Infect Dis 2017; 57:21-26. [PMID: 28131730 DOI: 10.1016/j.ijid.2017.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES To explore the serotype distribution and drug resistance patterns of invasive pneumococcal isolates from children under 5 years of age. METHODS During a 32-month period, 585 clinical samples (including blood, cerebrospinal fluid (CSF), and synovial fluid) from children suspected of having meningitis, sepsis, pneumonia, or septic arthritis were analyzed using the BACTEC culture system. Positive cultures were examined using biochemical tests and lytA amplification for the identification of pneumococcal strains. The confirmed pneumococcal isolates were examined to determine capsular types using a modified sequential multiplex PCR and susceptibility to antimicrobial agents. RESULTS Fifty-three pneumococcal isolates were detected in the 585 clinical samples: 21 (39.6%) blood samples and 32 (60.4%) CSF samples. The most frequent serotype was 23F (24.5%), followed by serotypes 19F (18.9%), 19A (7.5%), and 9V (7.5%). Twenty-one percent of pneumococcal isolates were penicillin-non-susceptible and serotype 19A was significantly associated with resistance to penicillin. CONCLUSIONS This study indicated that the 13-valent pneumococcal conjugate vaccine (PCV13) could cover the majority of the invasive pneumococcal isolates. Drug-resistant and multidrug-resistant Streptococcus pneumoniae strains are circulating in Iran. Therefore, public immunization of infants using PCV13 is recommended to reduce the incidence of pneumococcal disease and pneumococcal-resistant strains in Teheran.
Collapse
Affiliation(s)
- Hamidreza Houri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Rafiei Tabatabaei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Saee
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rahbar
- Health Reference Laboratories, Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Abdollah Karimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Wilson R, Cohen JM, Reglinski M, Jose RJ, Chan WY, Marshall H, de Vogel C, Gordon S, Goldblatt D, Petersen FC, Baxendale H, Brown JS. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens. PLoS Pathog 2017; 13:e1006137. [PMID: 28135322 PMCID: PMC5279798 DOI: 10.1371/journal.ppat.1006137] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/17/2016] [Indexed: 12/31/2022] Open
Abstract
Naturally acquired immunity against invasive pneumococcal disease (IPD) is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous immunoglobulin preparation (IVIG), representing natural IgG responses to S. pneumoniae, to identify the classes of antigens that are functionally relevant for immunity to IPD. IgG in IVIG recognised capsular antigen and multiple S. pneumoniae protein antigens, with highly conserved patterns between different geographical sources of pooled human IgG. Incubation of S. pneumoniae in IVIG resulted in IgG binding to the bacteria, formation of bacterial aggregates, and enhanced phagocytosis even for unencapsulated S. pneumoniae strains, demonstrating the capsule was unlikely to be the dominant protective antigen. IgG binding to S. pneumoniae incubated in IVIG was reduced after partial chemical or genetic removal of bacterial surface proteins, and increased against a Streptococcus mitis strain expressing the S. pneumoniae protein PspC. In contrast, depletion of type-specific capsular antibody from IVIG did not affect IgG binding, opsonophagocytosis, or protection by passive vaccination against IPD in murine models. These results demonstrate that naturally acquired protection against IPD largely depends on antibody to protein antigens rather than the capsule.
Collapse
Affiliation(s)
- Robert Wilson
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Jonathan M. Cohen
- Infectious Diseases & Microbiology Unit, UCL Institute of Child Health, London, United Kingdom
| | - Mark Reglinski
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Ricardo J. Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Win Yan Chan
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Corné de Vogel
- Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Stephen Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David Goldblatt
- Institute of Child Health, University College London, London, United Kingdom
| | | | - Helen Baxendale
- Clinical Immunology Department, Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
37
|
Hausdorff WP, Hanage WP. Interim results of an ecological experiment - Conjugate vaccination against the pneumococcus and serotype replacement. Hum Vaccin Immunother 2016; 12:358-74. [PMID: 26905681 PMCID: PMC5049718 DOI: 10.1080/21645515.2015.1118593] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae has more than 95 serotypes, each of which presumably can cause sepsis, meningitis, pneumonia, and acute otitis media. Pneumococcal conjugate vaccines (PCV) targeted against a limited number of serotypes have nonetheless revealed an impressive impact on each manifestation of pneumococcal disease. At the same time, growing evidence of significant non-vaccine type (NVT) replacement disease following implementation of infant PCV programs has raised questions about the long-term viability of PCV immunization strategies and how to optimize PCV formulations. We discuss here theoretical and practical considerations regarding serotype replacement, and provide a snapshot of the most important NVT types seen to date after implementation of the 2 higher-valent PCVs.
Collapse
Affiliation(s)
| | - William P Hanage
- b Department of Epidemiology ; Center for Communicable Disease Dynamics; Harvard TH Chan School of Public Health ; Boston , MA , USA
| |
Collapse
|
38
|
Sendi P, Moser Schaub EM, Nirgianakis K, Hathaway LJ, Bittel P, Goldblatt D, Streit S. An Uncommon Site of Streptococcus pneumoniae Colonization Leading to Recurrent Pneumococcal Disease. Open Forum Infect Dis 2016; 4:ofw257. [PMID: 28480250 PMCID: PMC5414031 DOI: 10.1093/ofid/ofw257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/12/2023] Open
Abstract
This report describes a case of relapsing pneumococcal peritonitis. The postulated source of infection was vaginal colonization and secondary adherence of pneumococci to an intrauterine contraceptive device. After immunization with a conjugate pneumococcal vaccine, her antibody levels were observed. She remained infection free at the 2-year follow-up investigation.
Collapse
Affiliation(s)
- Parham Sendi
- Departments of Infectious Diseases.,Infectious Diseases and
| | | | | | | | | | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sven Streit
- Primary Health Care (BIHAM), University of Bern, Switzerland
| |
Collapse
|
39
|
Berical AC, Harris D, Dela Cruz CS, Possick JD. Pneumococcal Vaccination Strategies. An Update and Perspective. Ann Am Thorac Soc 2016; 13:933-44. [PMID: 27088424 PMCID: PMC5461988 DOI: 10.1513/annalsats.201511-778fr] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an important global pathogen that causes a wide range of clinical disease in children and adults. Pneumococcal pneumonia is by far the common presentation of noninvasive and invasive pneumococcal disease and affects the young, the elderly, and the immunocompromised disproportionately. Patients with chronic pulmonary diseases are also at higher risk for pneumococcal infections. Substantial progress over the century has been made in the understanding of pneumococcal immunobiology and the prevention of invasive pneumococcal disease through vaccination. Currently, two pneumococcal vaccines are available for individuals at risk of pneumococcal disease: the 23-valent pneumococcal polysaccharide vaccine (PPV23) and the 13-valent pneumococcal protein-conjugate vaccine (PCV13). The goal of pneumococcal vaccination is to stimulate effective antipneumococcal antibody and mucosal immunity response and immunological memory. Vaccination of infants and young children with pneumococcal conjugate vaccine has led to significant decrease in nasal carriage rates and pneumococcal disease in all age groups. Recent pneumococcal vaccine indication and schedule recommendations on the basis of age and risk factors are outlined in this Focused Review. As new pneumococcal vaccine recommendations are being followed, continued efforts are needed to address the vaccine efficacy in the waning immunity of the ever-aging population, the implementation of vaccines using two different vaccines under very specific schedules and their real world clinical and cost effectiveness, and the development of next generation pneumococcal vaccines.
Collapse
Affiliation(s)
- Andrew C Berical
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Drew Harris
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jennifer D Possick
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Gjini E, Valente C, Sá-Leão R, Gomes MGM. How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems. J Theor Biol 2015; 388:50-60. [PMID: 26471070 DOI: 10.1016/j.jtbi.2015.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
We describe an integrated modeling framework for understanding strain coexistence in polymorphic pathogen systems. Previous studies have debated the utility of neutral formulations and focused on cross-immunity between strains as a major stabilizing mechanism. Here we convey that direct competition for colonization mediates stable coexistence only when competitive abilities amongst pathogen clones satisfy certain pairwise asymmetries. We illustrate our ideas with nested SIS models of single and dual colonization, applied to polymorphic pneumococcal bacteria. By fitting the models to cross-sectional prevalence data from Portugal (before and after the introduction of a seven-valent pneumococcal conjugate vaccine), we are able to not only statistically compare neutral and non-neutral epidemiological formulations, but also estimate vaccine efficacy, transmission and competition parameters simultaneously. Our study highlights that the response of polymorphic pathogen populations to interventions holds crucial information about strain interactions, which can be extracted by suitable nested modeling.
Collapse
Affiliation(s)
- Erida Gjini
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal.
| | - Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M Gabriela M Gomes
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Porto, Portugal; Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil; Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
41
|
Vaccination Drives Changes in Metabolic and Virulence Profiles of Streptococcus pneumoniae. PLoS Pathog 2015; 11:e1005034. [PMID: 26181911 PMCID: PMC4504489 DOI: 10.1371/journal.ppat.1005034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogen, Streptococcus pneumoniae (the pneumococcus), is a leading cause of life-threatening illness and death worldwide. Available conjugate vaccines target only a small subset (up to 13) of >90 known capsular serotypes of S. pneumoniae and, since their introduction, increases in non-vaccine serotypes have been recorded in several countries: a phenomenon termed Vaccine Induced Serotype Replacement (VISR). Here, using a combination of mathematical modelling and whole genome analysis, we show that targeting particular serotypes through vaccination can also cause their metabolic and virulence-associated components to transfer through recombination to non-vaccine serotypes: a phenomenon we term Vaccine-Induced Metabolic Shift (VIMS). Our results provide a novel explanation for changes observed in the population structure of the pneumococcus following vaccination, and have important implications for strain-targeted vaccination in a range of infectious disease systems.
Collapse
|
42
|
Sun T, Hou H, Lu J, Xu M, Gu T, Wang D, Dong Y, Jiang C, Kong W, Wu Y. Detection and comparison of structure and function of wild-type pneumolysin and its novel mutant PlyM2. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Numminen E, Chewapreecha C, Turner C, Goldblatt D, Nosten F, Bentley SD, Turner P, Corander J. Climate induces seasonality in pneumococcal transmission. Sci Rep 2015; 5:11344. [PMID: 26067932 PMCID: PMC4464306 DOI: 10.1038/srep11344] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 01/31/2023] Open
Abstract
Streptococcus pneumoniae is a significant human pathogen and a leading cause of infant mortality in developing countries. Considerable global variation in the pneumococcal carriage prevalence has been observed and the ecological factors contributing to it are not yet fully understood. We use data from a cohort of infants in Asia to study the effects of climatic conditions on both acquisition and clearance rates of the bacterium, finding significantly higher transmissibility during the cooler and drier months. Conversely, the length of a colonization period is unaffected by the season. Independent carriage data from studies conducted on the African and North American continents suggest similar effects of the climate on the prevalence of this bacterium, which further validates the obtained results. Further studies could be important to replicate the findings and explain the mechanistic role of cooler and dry air in the physiological response to nasopharyngeal acquisition of the pneumococcus.
Collapse
Affiliation(s)
- Elina Numminen
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Claire Chewapreecha
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Claudia Turner
- 1] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Goldblatt
- Immunobiology Unit, Institute of Child Health, University College London, UK
| | - Francois Nosten
- 1] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen D Bentley
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Paul Turner
- 1] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Palkola NV, Pakkanen SH, Kantele JM, Pakarinen L, Puohiniemi R, Kantele A. Differences in Homing Potentials of Streptococcus pneumoniae-Specific Plasmablasts in Pneumococcal Pneumonia and After Pneumococcal Polysaccharide and Pneumococcal Conjugate Vaccinations. J Infect Dis 2015; 212:1279-87. [PMID: 25838267 PMCID: PMC4577046 DOI: 10.1093/infdis/jiv208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
Background. Mucosal immune mechanisms in the upper and lower respiratory tracts may serve a critical role in preventing pneumonia due to Streptococcus pneumoniae. Streptococcus pneumoniae–specific plasmablasts presumably originating in the lower respiratory tract have recently been found in the circulation in patients with pneumonia. The localization of an immune response can be evaluated by exploring homing receptors on such plasmablasts, yet no data have thus far described homing receptors in pneumonia. Methods. The expression of α4β7, L-selectin, and cutaneous lymphocyte antigen (CLA) on S. pneumoniae–specific plasmablasts was examined in patients with pneumonia (n = 16) and healthy volunteers given pneumococcal polysaccharide vaccine (PPV; n = 14) or pneumococcal conjugate vaccine (PCV; n = 11). Results. In patients with pneumonia, the proportion of S. pneumoniae–specific plasmablasts expressing L-selectin was high, the proportion expressing α4β7 was moderate, and the proportion expressing CLA was low. The homing receptor α4β7 was expressed more frequently in the pneumonia group than in the PPV (P = .000) and PCV (P = .029) groups, L-selectin was expressed more frequently in the PPV group than in the PCV group (P = .014); and CLA was expressed more frequently in the pneumonia group than in the PPV group (P = .001). Conclusions. The homing receptor profile in patients with pneumonia was unique yet it was closer to that in PCV recipients than in PPV recipients. These data suggest greater mucosal localization for immune response in natural infection, which is clinically interesting, especially considering the shortcomings of vaccines in protecting against noninvasive pneumonia.
Collapse
Affiliation(s)
- Nina V Palkola
- Department of Bacteriology and Immunology Department of Clinical Medicine, University of Helsinki Inflammation Center, Clinic of Infectious Diseases
| | | | - Jussi M Kantele
- Department of Medical Microbiology and Immunology, University of Turku, Finland
| | | | - Ritvaleena Puohiniemi
- Department of Clinical Microbiology, HUSLAB, Helsinki University Hospital and University of Helsinki
| | - Anu Kantele
- Department of Clinical Medicine, University of Helsinki Inflammation Center, Clinic of Infectious Diseases
| |
Collapse
|
45
|
Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, Finkelstein JA, Lipsitch M, Hanage WP. Selective and genetic constraints on pneumococcal serotype switching. PLoS Genet 2015; 11:e1005095. [PMID: 25826208 PMCID: PMC4380333 DOI: 10.1371/journal.pgen.1005095] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes), which can be classified into “serogroups” based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps) locus. Twenty such “serotype switching” events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001) enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β–lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern. Streptococcus pneumoniae is a major respiratory pathogen responsible for a high burden of morbidity and mortality worldwide. Current anti-pneumococcal vaccines target the bacterium’s polysaccharide capsule, of which at least 95 different variants (‘serotypes’) are known, which are classified into ‘serogroups’. Bacteria can change their serotype through genetic recombination, termed ‘switching’, which can allow strains to evade vaccine-induced immunity. By combining epidemiological data with whole genome sequencing, this work finds a robust and unexpected pattern of serotype switching in a sample of bacteria collected following the introduction of routine anti-pneumococcal vaccination: switching was much more likely to exchange one serotype for another within the same serogroup than expected by chance. Several hypotheses are presented and tested to explain this pattern, including limitations of genetic recombination, interactions between the genes that determine serotype and the rest of the genome, and the constraints imposed by bacterial metabolism. This provides novel information on the evolution of S. pneumoniae, particularly regarding how the bacterium might diversify as newer vaccines are introduced.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Lisa Kagedan
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Claudette M. Thompson
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan A. Finkelstein
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
- Division of General Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
46
|
Gisselsson-Solén M, Henriksson G, Hermansson A, Melhus A. Effect of pneumococcal conjugate vaccination on nasopharyngeal carriage in children with early onset of acute otitis media - a randomized controlled trial. Acta Otolaryngol 2015; 135:7-13. [PMID: 25496176 DOI: 10.3109/00016489.2014.950326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONCLUSION Although children vaccinated with heptavalent pneumococcal conjugate vaccine (PCV) had fewer episodes of acute otitis media (AOM), this trial was unable to prove a simultaneous decrease in nasopharyngeal carriage. OBJECTIVE Carriage rates of AOM pathogens in the nasopharynx are high among children, and colonization is the first step towards infection. The possible impact of PCV on carriage is therefore of interest, particularly in children with recurrent AOM. The aims of this study were to examine the effect of heptavalent PCV on carriage of AOM pathogens in children at high risk of developing recurrent disease, and to monitor carriage of resistant pathogens in vaccinated and unvaccinated children. METHODS A total of 109 children with an onset of AOM before 6 months of age, 89 of whom developed recurrent disease, were enrolled in a trial. Fifty-two children were vaccinated and all were closely monitored for 3 years. RESULTS There was no difference statistically between vaccinated children and controls concerning the carriage of any of the major AOM pathogens. There was evidence of within-child clustering for S. pneumoniae (p = 0.002) and H. influenzae (p < 0.001), indicating that children continued to carry either species over time. Resistance rates were generally low and comparable with national levels.
Collapse
Affiliation(s)
- Marie Gisselsson-Solén
- Department of Otorhinolaryngology, Head and Neck Surgery, Lund University Hospital , Lund , Sweden
| | | | | | | |
Collapse
|
47
|
Ramirez M. Streptococcus pneumoniae. MOLECULAR MEDICAL MICROBIOLOGY 2015:1529-1546. [DOI: 10.1016/b978-0-12-397169-2.00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Athlin S, Kaltoft M, Slotved HC, Herrmann B, Holmberg H, Konradsen HB, Strålin K. Association between serotype-specific antibody response and serotype characteristics in patients with pneumococcal pneumonia, with special reference to degree of encapsulation and invasive potential. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1541-9. [PMID: 25230937 PMCID: PMC4248763 DOI: 10.1128/cvi.00259-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/30/2014] [Indexed: 11/20/2022]
Abstract
We studied the immunoglobulin (Ig) response to causative serotype-specific capsular polysaccharides in adult pneumococcal pneumonia patients. The serotypes were grouped according to their degree of encapsulation and invasive potential. Seventy patients with pneumococcal pneumonia, 20 of whom were bacteremic, were prospectively studied. All pneumococcal isolates from the patients were serotyped, and the Ig titers to the homologous serotype were determined in acute- and convalescent-phase sera using a serotype-specific enzyme-linked immunosorbent assay. The Ig titers were lower in bacteremic cases than in nonbacteremic cases (P < 0.042). The Ig titer ratio (convalescent/acute titer) was ≥2 in 33 patients, 1 to 1.99 in 20 patients, and <1 in 17 patients. Patients ≥65 years old had a lower median Ig titer ratio than did younger patients (P < 0.031). The patients with serotypes with a thin capsule (1, 4, 7F, 9N, 9V, and 14) and medium/high invasive potential (1, 4, 7F, 9N, 9V, 14, and 18C) had higher Ig titer ratios than did patients with serotypes with a thick capsule (3, 6B, 11A, 18C, 19A, 19F, and 23F) and low invasive potential (3, 6B, 19A, 19F, and 23F) (P < 0.05 for both comparisons after adjustment for age). Ig titer ratios of <1 were predominantly noted in patients with serotypes with a thick capsule. In 8 patients with pneumococcal DNA detected in plasma, the three patients with the highest DNA load had the lowest Ig titer ratios. In conclusion, a high antibody response was associated with serotypes with a thin capsule and medium/high invasive potential, although a low antibody response was associated with serotypes with a thick capsule and a high pneumococcal plasma load.
Collapse
Affiliation(s)
- Simon Athlin
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
| | | | | | - Björn Herrmann
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Holmberg
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
| | | | - Kristoffer Strålin
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
49
|
Abstract
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Rivera-Olivero IA, del Nogal B, Fuentes M, Cortez R, Bogaert D, Hermans PW, Waard JHD. Immunogenicity of a 7-valent pneumococcal conjugate vaccine (PCV7) and impact on carriage in Venezuelan children at risk of invasive pneumococcal diseases. Vaccine 2014; 32:4006-11. [DOI: 10.1016/j.vaccine.2014.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 03/06/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|