1
|
Ratnasiri K, Zheng H, Toh J, Yao Z, Duran V, Donato M, Roederer M, Kamath M, Todd JPM, Gagne M, Foulds KE, Francica JR, Corbett KS, Douek DC, Seder RA, Einav S, Blish CA, Khatri P. Systems immunology of transcriptional responses to viral infection identifies conserved antiviral pathways across macaques and humans. Cell Rep 2024; 43:113706. [PMID: 38294906 PMCID: PMC10915397 DOI: 10.1016/j.celrep.2024.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiaying Toh
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhiyuan Yao
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Veronica Duran
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Michele Donato
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirit Einav
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Plaça DR, Fonseca DLM, Marques AHC, Zaki Pour S, Usuda JN, Baiocchi GC, Prado CADS, Salgado RC, Filgueiras IS, Freire PP, Rocha V, Camara NOS, Catar R, Moll G, Jurisica I, Calich VLG, Giil LM, Rivino L, Ochs HD, Cabral-Miranda G, Schimke LF, Cabral-Marques O. Immunological signatures unveiled by integrative systems vaccinology characterization of dengue vaccination trials and natural infection. Front Immunol 2024; 15:1282754. [PMID: 38444851 PMCID: PMC10912564 DOI: 10.3389/fimmu.2024.1282754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.
Collapse
Affiliation(s)
- Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Crispim Baiocchi
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ranieri Coelho Salgado
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
- Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Niels Olsen Saraiva Camara
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vera Lúcia Garcia Calich
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Research Institute, Seattle, WA, United States
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Qi F, Cao Y, Shen Y, Wang H, Li D, Yang Q, Li Z, Zhang Z. Nasopharyngeal neutrophilic-retention signatures could predict disease progression in early SARS-CoV-2 infection. J Med Virol 2024; 96:e29328. [PMID: 38146903 DOI: 10.1002/jmv.29328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
The nasopharynx is the initial site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and neutrophils play a critical role in preventing viral transmission into the lower airways or lungs during the early phases of infection. However, neutrophil dynamics, functional signatures, and predictive roles in the nasopharynx of coronavirus disease 2019 (COVID-19) patients have not yet been elucidated. In this study, we carried out RNA sequencing of nasopharyngeal swabs from a cohort of COVID-19 patients with mild, moderate, severe outcomes and healthy donors as controls. Over 32.7% of the differentially expressed genes associated with COVID-19 severity were neutrophil-related, including those involved in migration, neutrophil extracellular traps formation, and inflammasome activation. Multicohort single-cell RNA sequencing analysis further confirmed these findings and identified a population of neutrophils expressing Vacuolar-type ATPase (V-ATPase) and the chemokine receptor CXCR4 in the nasopharynx. This population of neutrophils preferentially expressed pro-inflammatory genes relevant to phagosomal maturation as well as local reactive oxygen species and reactive nitrogen species production in the nasopharynx of patients with severe outcomes. A four-gene panel defined as a neutrophil signature associated with COVID-19 progression (NSAP) was identified as an early diagnostic predictor of severe COVID-19, which potentially distinguished severe patients from mild cases with influenza, respiratory syncytial virus, dengue virus, or hepatitis B virus infection. NSAP is mainly expressed on CXCR4high neutrophils and exhibits a significant association with the cell fraction of this neutrophil population. This study highlights novel potential therapeutic targets or diagnostic tools for predicting patients at a higher risk of severe outcomes.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Single-Cell Omics Research and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yunyun Shen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dapeng Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyan Li
- Department of Ultrasonography, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Single-Cell Omics Research and Application, Shenzhen, China
| |
Collapse
|
4
|
Ioannidis LJ, Studniberg SI, Eriksson EM, Suwarto S, Denis D, Liao Y, Shi W, Garnham AL, Sasmono RT, Hansen DS. Integrated systems immunology approach identifies impaired effector T cell memory responses as a feature of progression to severe dengue fever. J Biomed Sci 2023; 30:24. [PMID: 37055751 PMCID: PMC10103532 DOI: 10.1186/s12929-023-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Collapse
Affiliation(s)
- Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital (RSCM), Jakarta, Indonesia
| | - Dionisius Denis
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Diana S Hansen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Garishah FM, Boahen CK, Vadaq N, Pramudo SG, Tunjungputri RN, Riswari SF, van Rij RP, Alisjahbana B, Gasem MH, van der Ven AJAM, de Mast Q. Longitudinal proteomic profiling of the inflammatory response in dengue patients. PLoS Negl Trop Dis 2023; 17:e0011041. [PMID: 36595532 PMCID: PMC9838874 DOI: 10.1371/journal.pntd.0011041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/13/2023] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The immunopathogenesis of dengue virus (DENV) infection remains incompletely understood. To increase our understanding of inflammatory response in non-severe dengue, we assessed longitudinal changes in the inflammatory proteome in patients with an acute DENV infection. METHODS Using a multiplex proximity extension assay (PEA), we measured relative levels of 368 inflammatory markers in plasma samples from hospitalized patients with non-severe DENV infection in the acute (n = 43) and convalescence (n = 35) phase of the infection and samples of healthy controls (n = 10). RESULTS We identified 203 upregulated and 39 downregulated proteins in acute versus convalescent plasma samples. The upregulated proteins had a strong representation of interferon (IFN) and IFN-inducible effector proteins, cytokines (e.g. IL-10, IL-33) and cytokine receptors, chemokines, pro-apoptotic proteins (e.g. granzymes) and endothelial markers. A number of differentially expressed proteins (DEPs) have not been reported in previous studies. Functional network analysis highlighted a central role for IFNγ, IL-10, IL-33 and chemokines. We identified different novel associations between inflammatory proteins and circulating concentrations of the endothelial glycocalyx disruption surrogate marker syndecan-1. Conclusion: This unbiased proteome analysis provides a comprehensive insight in the inflammatory response in DENV infection and its association with glycocalyx disruption.
Collapse
Affiliation(s)
- Fadel Muhammad Garishah
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Collins K. Boahen
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Setyo G. Pramudo
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Department of Internal Medicine, William Booth Hospital, Semarang, Indonesia
| | - Rahajeng N. Tunjungputri
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - André J. A. M. van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Fonseka CL, Hardman CS, Woo J, Singh R, Nahler J, Yang J, Chen YL, Kamaladasa A, Silva T, Salimi M, Gray N, Dong T, Malavige GN, Ogg GS. Dengue virus co-opts innate type 2 pathways to escape early control of viral replication. Commun Biol 2022; 5:735. [PMID: 35869167 PMCID: PMC9306424 DOI: 10.1038/s42003-022-03682-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cell products and high levels of type 2 cytokines are associated with severe dengue disease. Group 2 innate lymphoid cells (ILC2) are type-2 cytokine-producing cells that are activated by epithelial cytokines and mast cell-derived lipid mediators. Through ex vivo RNAseq analysis, we observed that ILC2 are activated during acute dengue viral infection, and show an impaired type I-IFN signature in severe disease. We observed that circulating ILC2 are permissive for dengue virus infection in vivo and in vitro, particularly when activated through prostaglandin D2 (PGD2). ILC2 underwent productive dengue virus infection, which was inhibited through CRTH2 antagonism. Furthermore, exogenous IFN-β induced expression of type I-IFN responsive anti-viral genes by ILC2. PGD2 downregulated type I-IFN responsive gene and protein expression; and urinary prostaglandin D2 metabolite levels were elevated in severe dengue. Moreover, supernatants from activated ILC2 enhanced monocyte infection in a GM-CSF and mannan-dependent manner. Our results indicate that dengue virus co-opts an innate type 2 environment to escape early type I-IFN control and facilitate viral dissemination. PGD2 downregulates type I-IFN induced anti-viral responses in ILC2. CRTH2 antagonism may be a therapeutic strategy for dengue-associated disease.
Collapse
Affiliation(s)
- Chathuranga L Fonseka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jeongmin Woo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Randeep Singh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Janina Nahler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jiahe Yang
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Achala Kamaladasa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Tehani Silva
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Maryam Salimi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Gathsaurie N Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Aisenberg LK, Rousseau KE, Cascino K, Massaccesi G, Aisenberg WH, Luo W, Muthumani K, Weiner DB, Whitehead SS, Chattergoon MA, Durbin AP, Cox AL. Cross-reactive antibodies facilitate innate sensing of dengue and Zika viruses. JCI Insight 2022; 7:151782. [PMID: 35588060 DOI: 10.1172/jci.insight.151782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Aedes aegypti mosquito transmits both dengue (DENV) and Zika (ZIKV) viruses. Individuals in endemic areas are at risk for infection with both viruses as well as repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life-threatening. Further, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear.We assessed the ability of cross-reactive DENV monoclonal antibodies or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) in response to both heterotypic DENV- and ZIKV- infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and Fab binding of an epitope on infected cells was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which pre-existing cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.
Collapse
Affiliation(s)
- Laura K Aisenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kimberly E Rousseau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Katherine Cascino
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - William H Aisenberg
- Department of Medicine, Division of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Wensheng Luo
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Michael A Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Anna P Durbin
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Andrea L Cox
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
8
|
Biggs JR, Sy AK, Ashall J, Santoso MS, Brady OJ, Reyes MAJ, Quinones MA, Jones-Warner W, Tandoc AO, Sucaldito NL, Mai HK, Lien LT, Thai HD, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Menten J, Rasschaert F, Van Wesenbeeck L, Masyeni S, Haryanto S, Yohan B, Cutiongco-de la Paz E, Yoshida LM, Hue S, Rosario Z. Capeding M, Padilla CD, Sasmono RT, Hafalla JCR, Hibberd ML. Combining rapid diagnostic tests to estimate primary and post-primary dengue immune status at the point of care. PLoS Negl Trop Dis 2022; 16:e0010365. [PMID: 35507552 PMCID: PMC9067681 DOI: 10.1371/journal.pntd.0010365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Characterising dengue virus (DENV) infection history at the point of care is challenging as it relies on intensive laboratory techniques. We investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis. METHODS AND FINDINGS Serum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) were assayed using dengue laboratory assays and RDTs. Using logistic regression modelling, we determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics. Laboratory test thresholds for RDT positivity/negativity were calculated using Youden's J index and were utilized to estimate the RDT outcomes in patients from the Philippines, where only data for viremia, IgM and IgG were available (N:28,326). Lastly, the probabilities of being primary or post-primary according to every outcome using all RDTs, by day of fever, were calculated. Combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1-2 of fever, yet were confirmatory of primary infections on days 3-5 of fever. CONCLUSION We demonstrate how the primary and post-primary DENV immune status of reporting patients can be estimated at the point of care by combining NS1, IgM and IgG RDTs and considering the days since symptoms onset. This framework has the potential to strengthen surveillance operations and dengue prognosis, particularly in low resource settings.
Collapse
Affiliation(s)
- Joseph R. Biggs
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ava Kristy Sy
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
| | - James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marsha S. Santoso
- Dengue Research Unit, Eijkman Institute for Molecular Biology, National Agency for Research and Innovation of the Republic of Indonesia, Jakarta, Indonesia
| | - Oliver J. Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mary Anne Joy Reyes
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
| | - Mary Ann Quinones
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amadou O. Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
| | - Nemia L. Sucaldito
- Philippine Epidemiology Bureau, Department of Health, Manila, Philippines
| | | | - Le Thuy Lien
- Pasteur Institute of Nha Trang, Nha Trang, Vietnam
| | - Hung Do Thai
- Pasteur Institute of Nha Trang, Nha Trang, Vietnam
| | | | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriko Kitamura
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, Horsham, Pennsylvania, United States of America
| | - Joris Menten
- Quantitative Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Freya Rasschaert
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, Indonesia
| | | | - Benediktus Yohan
- Dengue Research Unit, Eijkman Institute for Molecular Biology, National Agency for Research and Innovation of the Republic of Indonesia, Jakarta, Indonesia
| | - Eva Cutiongco-de la Paz
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
- Philippine Genome Centre, University of the Philippines, Manila, Philippines
| | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maria Rosario Z. Capeding
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
| | - Carmencita D. Padilla
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
- Philippine Genome Centre, University of the Philippines, Manila, Philippines
| | - R. Tedjo Sasmono
- Dengue Research Unit, Eijkman Institute for Molecular Biology, National Agency for Research and Innovation of the Republic of Indonesia, Jakarta, Indonesia
| | - Julius Clemence R. Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
- Philippine Genome Centre, University of the Philippines, Manila, Philippines
| |
Collapse
|
9
|
Liu YE, Saul S, Rao AM, Robinson ML, Agudelo Rojas OL, Sanz AM, Verghese M, Solis D, Sibai M, Huang CH, Sahoo MK, Gelvez RM, Bueno N, Estupiñan Cardenas MI, Villar Centeno LA, Rojas Garrido EM, Rosso F, Donato M, Pinsky BA, Einav S, Khatri P. An 8-gene machine learning model improves clinical prediction of severe dengue progression. Genome Med 2022; 14:33. [PMID: 35346346 PMCID: PMC8959795 DOI: 10.1186/s13073-022-01034-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Each year 3-6 million people develop life-threatening severe dengue (SD). Clinical warning signs for SD manifest late in the disease course and are nonspecific, leading to missed cases and excess hospital burden. Better SD prognostics are urgently needed. METHODS We integrated 11 public datasets profiling the blood transcriptome of 365 dengue patients of all ages and from seven countries, encompassing biological, clinical, and technical heterogeneity. We performed an iterative multi-cohort analysis to identify differentially expressed genes (DEGs) between non-severe patients and SD progressors. Using only these DEGs, we trained an XGBoost machine learning model on public data to predict progression to SD. All model parameters were "locked" prior to validation in an independent, prospectively enrolled cohort of 377 dengue patients in Colombia. We measured expression of the DEGs in whole blood samples collected upon presentation, prior to SD progression. We then compared the accuracy of the locked XGBoost model and clinical warning signs in predicting SD. RESULTS We identified eight SD-associated DEGs in the public datasets and built an 8-gene XGBoost model that accurately predicted SD progression in the independent validation cohort with 86.4% (95% CI 68.2-100) sensitivity and 79.7% (95% CI 75.5-83.9) specificity. Given the 5.8% proportion of SD cases in this cohort, the 8-gene model had a positive and negative predictive value (PPV and NPV) of 20.9% (95% CI 16.7-25.6) and 99.0% (95% CI 97.7-100.0), respectively. Compared to clinical warning signs at presentation, which had 77.3% (95% CI 58.3-94.1) sensitivity and 39.7% (95% CI 34.7-44.9) specificity, the 8-gene model led to an 80% reduction in the number needed to predict (NNP) from 25.4 to 5.0. Importantly, the 8-gene model accurately predicted subsequent SD in the first three days post-fever onset and up to three days prior to SD progression. CONCLUSIONS The 8-gene XGBoost model, trained on heterogeneous public datasets, accurately predicted progression to SD in a large, independent, prospective cohort, including during the early febrile stage when SD prediction remains clinically difficult. The model has potential to be translated to a point-of-care prognostic assay to reduce dengue morbidity and mortality without overwhelming limited healthcare resources.
Collapse
Affiliation(s)
- Yiran E. Liu
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Cancer Biology Graduate Program, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| | - Sirle Saul
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| | - Aditya Manohar Rao
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Immunology Graduate Program, School of Medicine, Stanford University, CA Stanford, USA
| | - Makeda Lucretia Robinson
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | | | - Ana Maria Sanz
- grid.477264.4Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Michelle Verghese
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Daniel Solis
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Mamdouh Sibai
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Chun Hong Huang
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Malaya Kumar Sahoo
- grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Rosa Margarita Gelvez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Bucaramanga, Colombia
| | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Bucaramanga, Colombia
| | | | | | | | - Fernando Rosso
- grid.477264.4Clinical Research Center, Fundación Valle del Lili, Cali, Colombia ,grid.477264.4Division of Infectious Diseases, Department of Internal Medicine, Fundación Valle del Lili, Cali, Colombia
| | - Michele Donato
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| | - Benjamin A. Pinsky
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, CA Stanford, USA
| | - Shirit Einav
- grid.168010.e0000000419368956Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Department of Microbiology and Immunology, School of Medicine, Stanford University, CA Stanford, USA
| | - Purvesh Khatri
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, CA Stanford, USA ,grid.168010.e0000000419368956Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA Stanford, USA
| |
Collapse
|
10
|
Winter C, Camarão AAR, Steffen I, Jung K. Network meta-analysis of transcriptome expression changes in different manifestations of dengue virus infection. BMC Genomics 2022; 23:165. [PMID: 35220956 PMCID: PMC8882220 DOI: 10.1186/s12864-022-08390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Several studies have been performed to study transcriptome profiles after dengue virus infections with partly different results. Due to slightly different settings of the individual studies, different genes and enriched gene sets are reported in these studies. The main aim of this network meta-analysis was to aggregate a selection of these studies to identify genes and gene sets that are more generally associated with dengue virus infection, i.e. with less dependence on the individual study settings.
Methods
We performed network meta-analysis by different approaches using publicly available gene expression data of five selected studies from the Gene Expression Omnibus database. The study network includes dengue fever (DF), hemorrhagic fever (DHF), shock syndrome (DSS) patients as well as convalescent and healthy control individuals. After data merging and missing value imputation, study-specific batch effects were removed. Pairwise differential expression analysis and subsequent gene-set enrichment analysis were performed between the five study groups. Furthermore, mutual information networks were derived from the top genes of each group comparison, and the separability between the three patient groups was studied by machine learning models.
Results
From the 10 possible pairwise group comparisons in the study network, six genes (IFI27, TPX2, CDT1, DTL, KCTD14 and CDCA3) occur with a noticeable frequency among the top listed genes of each comparison. Thus, there is an increased evidence that these genes play a general role in dengue virus infections. IFI27 and TPX2 have also been highlighted in the context of dengue virus infection by other studies. A few of the identified gene sets from the network meta-analysis overlap with findings from the original studies. Mutual information networks yield additional genes for which the observed pairwise correlation is different between the patient groups. Machine learning analysis shows a moderate separability of samples from the DF, DHF and DSS groups (accuracy about 80%).
Conclusions
Due to an increased sample size, the network meta-analysis could reveal additional genes which are called differentially expressed between the studied groups and that may help to better understand the molecular basis of this disease.
Collapse
|
11
|
Sierra B, Magalhães AC, Soares D, Cavadas B, Perez AB, Alvarez M, Aguirre E, Bracho C, Pereira L, Guzman MG. Multi-Tissue Transcriptomic-Informed In Silico Investigation of Drugs for the Treatment of Dengue Fever Disease. Viruses 2021; 13:v13081540. [PMID: 34452405 PMCID: PMC8402662 DOI: 10.3390/v13081540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico–informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, “Adrenergic receptor antagonist”, “ATPase inhibitor”, “NF-kB pathway inhibitor” and “Serotonin receptor antagonist”, were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.
Collapse
Affiliation(s)
- Beatriz Sierra
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Ana Cristina Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniel Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana B. Perez
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Mayling Alvarez
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Eglis Aguirre
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Claudia Bracho
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Luisa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| | - Maria G. Guzman
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| |
Collapse
|
12
|
Hanley JP, Tu HA, Dragon JA, Dickson DM, Rio-Guerra RD, Tighe SW, Eckstrom KM, Selig N, Scarpino SV, Whitehead SS, Durbin AP, Pierce KK, Kirkpatrick BD, Rizzo DM, Frietze S, Diehl SA. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun 2021; 12:3054. [PMID: 34031380 PMCID: PMC8144425 DOI: 10.1038/s41467-021-22930-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
About 20-25% of dengue virus (DENV) infections become symptomatic ranging from self-limiting fever to shock. Immune gene expression changes during progression to severe dengue have been documented in hospitalized patients; however, baseline or kinetic information is difficult to standardize in natural infection. Here we profile the host immunotranscriptome response in humans before, during, and after infection with a partially attenuated rDEN2Δ30 challenge virus (ClinicalTrials.gov NCT02021968). Inflammatory genes including type I interferon and viral restriction pathways are induced during DENV2 viremia and return to baseline after viral clearance, while others including myeloid, migratory, humoral, and growth factor immune regulation factors pathways are found at non-baseline levels post-viremia. Furthermore, pre-infection baseline gene expression is useful to predict rDEN2Δ30-induced immune responses and the development of rash. Our results suggest a distinct immunological profile for mild rDEN2Δ30 infection and offer new potential biomarkers for characterizing primary DENV infection.
Collapse
Affiliation(s)
- John P Hanley
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Huy A Tu
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Dorothy M Dickson
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roxana Del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Scott W Tighe
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Korin M Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Nicholas Selig
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Seth Frietze
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA.
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
13
|
Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning. PLoS Negl Trop Dis 2020; 14:e0008960. [PMID: 33362244 PMCID: PMC7757819 DOI: 10.1371/journal.pntd.0008960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dengue virus causes a wide spectrum of disease, which ranges from subclinical disease to severe dengue shock syndrome. However, estimating the risk of severe outcomes using clinical presentation or laboratory test results for rapid patient triage remains a challenge. Here, we aimed to develop prognostic models for severe dengue using machine learning, according to demographic information and clinical laboratory data of patients with dengue. METHODOLOGY/PRINCIPAL FINDINGS Out of 1,581 patients in the National Cheng Kung University Hospital with suspected dengue infections and subjected to NS1 antigen, IgM and IgG, and qRT-PCR tests, 798 patients including 138 severe cases were enrolled in the study. The primary target outcome was severe dengue. Machine learning models were trained and tested using the patient dataset that included demographic information and qualitative laboratory test results collected on day 1 when they sought medical advice. To develop prognostic models, we applied various machine learning methods, including logistic regression, random forest, gradient boosting machine, support vector classifier, and artificial neural network, and compared the performance of the methods. The artificial neural network showed the highest average discrimination area under the receiver operating characteristic curve (0.8324 ± 0.0268) and balance accuracy (0.7523 ± 0.0273). According to the model explainer that analyzed the contributions/co-contributions of the different factors, patient age and dengue NS1 antigenemia were the two most important risk factors associated with severe dengue. Additionally, co-existence of anti-dengue IgM and IgG in patients with dengue increased the probability of severe dengue. CONCLUSIONS/SIGNIFICANCE We developed prognostic models for the prediction of dengue severity in patients, using machine learning. The discriminative ability of the artificial neural network exhibited good performance for severe dengue prognosis. This model could help clinicians obtain a rapid prognosis during dengue outbreaks. However, the model requires further validation using external cohorts in future studies.
Collapse
|
14
|
Chan KWK, Watanabe S, Jin JY, Pompon J, Teng D, Alonso S, Vijaykrishna D, Halstead SB, Marzinek JK, Bond PJ, Burla B, Torta F, Wenk MR, Ooi EE, Vasudevan SG. A T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice. Sci Transl Med 2020; 11:11/498/eaat7726. [PMID: 31243154 DOI: 10.1126/scitranslmed.aat7726] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/11/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Dengue viruses cause severe and sudden human epidemics worldwide. The secreted form of the nonstructural protein 1 (sNS1) of dengue virus causes vascular leakage, a hallmark of severe dengue disease. Here, we reverse engineered the T164S mutation of NS1, associated with the severity of dengue epidemics in the Americas, into a dengue virus serotype 2 mildly infectious strain. The T164S mutant virus decreased infectious virus production and increased sNS1 production in mammalian cell lines and human peripheral blood mononuclear cells (PBMCs) without affecting viral RNA replication. Gene expression profiling of 268 inflammation-associated human genes revealed up-regulation of genes induced in response to vascular leakage. Infection of the mosquito vector Aedes aegypti with the T164S mutant virus resulted in increased viral load in the mosquito midgut and higher sNS1 production compared to wild-type virus infection. Infection of type 1 and 2 interferon receptor-deficient AG129 mice with the T164S mutant virus resulted in severe disease coupled with increased complement activation, tissue inflammation, and more rapid mortality compared to AG129 mice infected with wild-type virus. Molecular dynamics simulations predicted that mutant sNS1 formed stable dimers similar to the wild-type protein, whereas the hexameric mutant sNS1 was predicted to be unstable. Immunoaffinity-purified sNS1 from T164S mutant virus-infected mammalian cells was associated with different lipid classes compared to wild-type sNS1. Treatment of human PBMCs with sNS1 purified from T164S mutant virus resulted in a twofold higher production of proinflammatory cytokines, suggesting a mechanism for how mutant sNS1 may cause more severe dengue disease.
Collapse
Affiliation(s)
- Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Department of Microbiology and Immunology, 5 Science Drive 2, Singapore 117545, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jocelyn Y Jin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Julien Pompon
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,MIVEGEC, UMR IRD 224-CNRS5290 Université de Montpellier, Montpellier, France
| | - Don Teng
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Sylvie Alonso
- Department of Microbiology and Immunology, 5 Science Drive 2, Singapore 117545, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
| | - Dhanasekaran Vijaykrishna
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis St., Singapore 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis St., Singapore 138671, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Department of Microbiology and Immunology, 5 Science Drive 2, Singapore 117545, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore. .,Department of Microbiology and Immunology, 5 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
15
|
Risk factors and biomarkers of severe dengue. Curr Opin Virol 2020; 43:1-8. [PMID: 32688269 DOI: 10.1016/j.coviro.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Dengue virus infects several million people each year. Although usually a self-limiting disease, some patients can develop life-threatening severe complications, characterized by plasma leakage, hemorrhaging, and shock. The signs and symptoms of severe disease usually arise late in the disease course when patients are recovering and fever has subsided, making it difficult to predict. Efforts are underway to identify risk factors and biomarkers that can accurately predict disease severity in the acute febrile phase of the disease, facilitating early intervention and treatment strategies for those at greatest risk. In this review we discuss recent advancements in identifying risk factors and biomarkers for the prognosis of severe dengue.
Collapse
|
16
|
Loganathan T, Ramachandran S, Shankaran P, Nagarajan D, Mohan S S. Host transcriptome-guided drug repurposing for COVID-19 treatment: a meta-analysis based approach. PeerJ 2020; 8:e9357. [PMID: 32566414 PMCID: PMC7293190 DOI: 10.7717/peerj.9357] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic by the World Health Organization, and the identification of effective therapeutic strategy is a need of the hour to combat SARS-CoV-2 infection. In this scenario, the drug repurposing approach is widely used for the rapid identification of potential drugs against SARS-CoV-2, considering viral and host factors. METHODS We adopted a host transcriptome-based drug repurposing strategy utilizing the publicly available high throughput gene expression data on SARS-CoV-2 and other respiratory infection viruses. Based on the consistency in expression status of host factors in different cell types and previous evidence reported in the literature, pro-viral factors of SARS-CoV-2 identified and subject to drug repurposing analysis based on DrugBank and Connectivity Map (CMap) using the web tool, CLUE. RESULTS The upregulated pro-viral factors such as TYMP, PTGS2, C1S, CFB, IFI44, XAF1, CXCL2, and CXCL3 were identified in early infection models of SARS-CoV-2. By further analysis of the drug-perturbed expression profiles in the connectivity map, 27 drugs that can reverse the expression of pro-viral factors were identified, and importantly, twelve of them reported to have anti-viral activity. The direct inhibition of the PTGS2 gene product can be considered as another therapeutic strategy for SARS-CoV-2 infection and could suggest six approved PTGS2 inhibitor drugs for the treatment of COVID-19. The computational study could propose candidate repurposable drugs against COVID-19, and further experimental studies are required for validation.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Srimathy Ramachandran
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prakash Shankaran
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Devipriya Nagarajan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Suma Mohan S
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
17
|
Robinson M, Einav S. Towards Predicting Progression to Severe Dengue. Trends Microbiol 2020; 28:478-486. [PMID: 31982232 DOI: 10.1016/j.tim.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
There is an urgent need for prognostic assays to predict progression to severe dengue infection, which is a major global threat. While the majority of symptomatic dengue patients experience an acute febrile illness, 5-20% progress to severe infection associated with significant morbidity and mortality. Early monitoring and administration of supportive care reduce mortality and clinically usable biomarkers to predict severe dengue are needed. Here, we review recent discoveries of gene sets, anti-dengue antibody properties, and inflammatory markers with potential utility as predictors of disease progression. Upon larger scale validation and development of affordable sample-to-answer technologies, some of these biomarkers may be utilized to develop the first prognostic assay for improving patient care and allocating healthcare resources more effectively in dengue endemic countries.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Grifoni A, Tian Y, Sette A, Weiskopf D. Transcriptomic immune profiles of human flavivirus-specific T-cell responses. Immunology 2020; 160:3-9. [PMID: 31778581 DOI: 10.1111/imm.13161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/06/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022] Open
Abstract
The Flavivirus genus of viruses includes dengue (DENV), Zika (ZIKV), yellow fever (YFV), Japanese encephalitis (JEV), and West Nile (WNV) viruses. Infections with these species combined are prevalent in tropical and sub-tropical areas, affecting millions of people and ranging from asymptomatic to severe forms of the disease. They therefore pose a serious threat to global public health. Several studies imply a role for T cells in the protection but also pathogenesis against the different flavivirus species. Identifying flavivirus-specific T-cell immune profiles and determining how pre-exposure of one species might affect the immune response against subsequent infections from other species is important to further define the role of T cells in the immune response against infection. Understanding the immune profiles of the flavivirus-specific T-cell response in natural infection is important to understand the T-cell response in the context of vaccination. In this review, we summarize the current knowledge on human immune profiles of flavivirus-specific T-cell reactivity, comparing natural infection with the acute form of the disease and vaccination in different flavivirus infections.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| |
Collapse
|
19
|
Robinson M, Sweeney TE, Barouch-Bentov R, Sahoo MK, Kalesinskas L, Vallania F, Sanz AM, Ortiz-Lasso E, Albornoz LL, Rosso F, Montoya JG, Pinsky BA, Khatri P, Einav S. A 20-Gene Set Predictive of Progression to Severe Dengue. Cell Rep 2019; 26:1104-1111.e4. [PMID: 30699342 PMCID: PMC6352713 DOI: 10.1016/j.celrep.2019.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/01/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
There is a need to identify biomarkers predictive of severe dengue. Single-cohort transcriptomics has not yielded generalizable results or parsimonious, predictive gene sets. We analyzed blood samples of dengue patients from seven gene expression datasets (446 samples, five countries) using an integrated multi-cohort analysis framework and identified a 20-gene set that predicts progression to severe dengue. We validated the predictive power of this 20-gene set in three retrospective dengue datasets (84 samples, three countries) and a prospective Colombia cohort (34 patients), with an area under the receiver operating characteristic curve of 0.89, 100% sensitivity, and 76% specificity. The 20-gene dengue severity scores declined during the disease course, suggesting an infection-triggered host response. This 20-gene set is strongly associated with the progression to severe dengue and represents a predictive signature, generalizable across ages, host genetic factors, and virus strains, with potential implications for the development of a host response-based dengue prognostic assay.
Collapse
Affiliation(s)
- Makeda Robinson
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy E Sweeney
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Rina Barouch-Bentov
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Larry Kalesinskas
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Francesco Vallania
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Eliana Ortiz-Lasso
- Pathology and Laboratory Department, Fundación Valle del Lili, Cali, Colombia
| | | | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia; Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Jose G Montoya
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA.
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Popper SJ, Strouts FR, Lindow JC, Cheng HK, Montoya M, Balmaseda A, Durbin AP, Whitehead SS, Harris E, Kirkpatrick BD, Relman DA. Early Transcriptional Responses After Dengue Vaccination Mirror the Response to Natural Infection and Predict Neutralizing Antibody Titers. J Infect Dis 2018; 218:1911-1921. [PMID: 30010906 PMCID: PMC6217718 DOI: 10.1093/infdis/jiy434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background Several promising live attenuated dengue vaccines are in development, but information about innate immune responses and early correlates of protection is lacking. Methods We characterized human genome-wide transcripts in whole blood from 10 volunteers at 11 time points after immunization with the dengue virus type 3 (DENV-3) component of the National Institutes of Health dengue vaccine candidate TV003 and from 30 hospitalized children with acute primary DENV-3 infection. We compared day-specific gene expression patterns with subsequent neutralizing antibody (NAb) titers. Results The transcriptional response to vaccination was largely confined to days 5-20 and was dominated by an interferon-associated signature and a cell cycle signature that peaked on days 8 and 14, respectively. Changes in transcript abundance were much greater in magnitude and scope in symptomatic natural infection than following vaccination (maximum fold-change >200 vs 21 postvaccination; 3210 vs 286 transcripts with significant fold-change), but shared gene modules were induced in the same sequence. The abundances of 131 transcripts on days 8 and 9 postvaccination were strongly correlated with NAb titers measured 6 weeks postvaccination. Conclusions Live attenuated dengue vaccination elicits early transcriptional responses that mirror those found in symptomatic natural infection and provide candidate early markers of protection against DENV infection. Clinical Trials Registration NCT00831012.
Collapse
Affiliation(s)
- Stephen J Popper
- Department of Medicine, Stanford University School of Medicine, California
| | - Fiona R Strouts
- Department of Medicine, Stanford University School of Medicine, California
| | - Janet C Lindow
- Vaccine Testing Center, University of Vermont College of Medicine, Burlington
| | - Henry K Cheng
- Department of Medicine, Stanford University School of Medicine, California
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Beth D Kirkpatrick
- Vaccine Testing Center, University of Vermont College of Medicine, Burlington
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, California
- Department of Microbiology and Immunology, Stanford University School of Medicine
- Veterans Affairs Palo Alto Health Care System, California
| |
Collapse
|
21
|
Martins SDT, Kuczera D, Lötvall J, Bordignon J, Alves LR. Characterization of Dendritic Cell-Derived Extracellular Vesicles During Dengue Virus Infection. Front Microbiol 2018; 9:1792. [PMID: 30131785 PMCID: PMC6090163 DOI: 10.3389/fmicb.2018.01792] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
The dengue virus (DENV), transmitted by Aedes spp. mosquitoes, is one of the most important arboviral infections in the world. Dengue begins as a febrile condition, and in certain patients, it can evolve severe clinical outcomes, such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The reasons why certain patients develop DHF or DSS have not been thoroughly elucidated to date, and both patient and viral factors have been implicated. Previous work has shown that a severe immune dysfunction involving dendritic cells and T cells plays a key role in increasing the disease severity, especially in secondary heterologous infections. Extracellular vesicles (EVs) are membranous particles that are secreted by several cell types involved in homeostatic and pathological processes. Secretion of EVs by infected cells can enhance immune responses or favor viral evasion. In this study, we compare the molecular content of EVs that are secreted by human primary dendritic cells under different conditions: uninfected or infected with DENV3 strains isolated from patients with different infection phenotypes (a severe case involving DSS and a mild case). Human monocyte-derived dendritic cells (mdDCs) were infected with the dengue virus strains DENV3 5532 (severe) or DENV3 290 (mild), and the EVs were isolated. The presence of cup-shaped EVs was confirmed by electron microscopy and immunostaining with CD9, CD81, and CD83. The RNA content from the mdDC-infected cells contained several mRNAs and miRNAs related to immune responses compared to the EVs from mock-infected mdDCs. A number of these RNAs were detected exclusively during infection with DENV3 290 or DENV3 5532. This result suggests that the differential immune modulation of mdDCs by dengue strains can be achieved through the EV pathway. Additionally, we observed an association of EVs with DENV-infectious particles that seem to be protected from antibodies targeting the DENV envelope protein. We also showed that EVs derived from cells treated with IFN alpha have a protective effect against DENV infection in other cells. These results suggested that during DENV infection, the EV pathway could be exploited to favor viral viability, although immune mechanisms to counteract viral infection can also involve DC-derived EVs.
Collapse
Affiliation(s)
- Sharon de T Martins
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - Diogo Kuczera
- Laboratory of Molecular Virology, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - Jan Lötvall
- Krefting Research Centre, University of Gothenburg, Gothenburg, Sweden
| | - Juliano Bordignon
- Laboratory of Molecular Virology, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - Lysangela R Alves
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| |
Collapse
|
22
|
Guy B. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? Questions Raised by the Development and Implementation of Dengue Vaccines: Example of the Sanofi Pasteur Tetravalent Dengue Vaccine. Cold Spring Harb Perspect Biol 2018; 10:a029462. [PMID: 28716892 PMCID: PMC5983191 DOI: 10.1101/cshperspect.a029462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dengue is a still-growing public health concern in many tropical and subtropical regions of the world. The development and implementation of an effective dengue vaccine in these regions is a high priority. This insight focuses on the expected characteristics of a safe and efficacious vaccine, referring to the clinical experience obtained during the development of the first tetravalent dengue vaccine from Sanofi Pasteur, now licensed in several endemic countries. Safety and efficacy data from both short- and long-term follow-up of large-scale efficacy studies will be discussed, as well as the next steps following vaccine introduction.
Collapse
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France
| |
Collapse
|
23
|
Oliveira M, Lert-itthiporn W, Cavadas B, Fernandes V, Chuansumrit A, Anunciação O, Casademont I, Koeth F, Penova M, Tangnararatchakit K, Khor CC, Paul R, Malasit P, Matsuda F, Simon-Lorière E, Suriyaphol P, Pereira L, Sakuntabhai A. Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome. PLoS Negl Trop Dis 2018; 12:e0006202. [PMID: 29447178 PMCID: PMC5813895 DOI: 10.1371/journal.pntd.0006202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022] Open
Abstract
Ethnic diversity has been long considered as one of the factors explaining why the severe forms of dengue are more prevalent in Southeast Asia than anywhere else. Here we take advantage of the admixed profile of Southeast Asians to perform coupled association-admixture analyses in Thai cohorts. For dengue shock syndrome (DSS), the significant haplotypes are located in genes coding for phospholipase C members (PLCB4 added to previously reported PLCE1), related to inflammation of blood vessels. For dengue fever (DF), we found evidence of significant association with CHST10, AHRR, PPP2R5E and GRIP1 genes, which participate in the xenobiotic metabolism signaling pathway. We conducted functional analyses for PPP2R5E, revealing by immunofluorescence imaging that the coded protein co-localizes with both DENV1 and DENV2 NS5 proteins. Interestingly, only DENV2-NS5 migrated to the nucleus, and a deletion of the predicted top-linking motif in NS5 abolished the nuclear transfer. These observations support the existence of differences between serotypes in their cellular dynamics, which may contribute to differential infection outcome risk. The contribution of the identified genes to the genetic risk render Southeast and Northeast Asian populations more susceptible to both phenotypes, while African populations are best protected against DSS and intermediately protected against DF, and Europeans the best protected against DF but the most susceptible against DSS.
Collapse
Affiliation(s)
- Marisa Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Worachart Lert-itthiporn
- Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Bruno Cavadas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Verónica Fernandes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Orlando Anunciação
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Isabelle Casademont
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Fanny Koeth
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Marina Penova
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kanchana Tangnararatchakit
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chiea Chuen Khor
- Genome Institute of Singapore, A-STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Richard Paul
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, Paris, France
| | - Prida Malasit
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Fumihiko Matsuda
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Etienne Simon-Lorière
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, Paris, France
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Luisa Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- * E-mail: (LP); (AS)
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, Paris, France
- * E-mail: (LP); (AS)
| |
Collapse
|
24
|
Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model. J Virol 2017; 91:JVI.00617-17. [PMID: 28659489 PMCID: PMC5571258 DOI: 10.1128/jvi.00617-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8+ T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease.IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease.
Collapse
|
25
|
Banerjee A, Shukla S, Pandey AD, Goswami S, Bandyopadhyay B, Ramachandran V, Das S, Malhotra A, Agarwal A, Adhikari S, Rahman M, Chatterjee S, Bhattacharya N, Basu N, Pandey P, Sood V, Vrati S. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res 2017; 186:62-78.e9. [PMID: 28683259 DOI: 10.1016/j.trsl.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Patients infected with Dengue virus usually present a mild, self-limiting febrile dengue infection (DI) that occasionally leads to a potentially lethal complication, called the severe dengue (DS). The ability to identify the prognostic markers of DS could allow an improved disease intervention and management. To identify the transcriptional signatures associated with the dengue disease progression, we carried out the high-throughput sequencing of the RNA isolated from the peripheral blood mononuclear cells (PBMCs) of the dengue patients of varying severity and compared with that in the patients with other febrile illnesses (OFIs) or the healthy controls. The transcriptional signatures that discriminated the DS patients from OFI and DI patients were broadly related to the pathways involving glycine, serine, and threonine metabolisms, extracellular matrix organization, ubiquitination, and cytokines and inflammatory response. Several upregulated genes in the inflammatory process (MPO, DEFA4, ELANE, AUZ1, CTSG, OLFM4, SLC16A14, and CRISP3) that were associated with the dengue disease progression are known to facilitate leukocyte-mediated migration, and neutrophil activation and degranulation process. High activity of MPO and ELANE in the plasma samples of the follow-up and recovered dengue patients, as well as and the presence of a larger amount of cell-free dsDNA in the DS patients, suggested an association of neutrophil-mediated immunity with dengue disease progression. Careful monitoring of some of these gene transcripts, and control of the activity of proteins encoded by them, may have a great translational significance for the prognosis and management of the dengue patients.
Collapse
Affiliation(s)
- Arup Banerjee
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| | - Shweta Shukla
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Abhay Deep Pandey
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Saptamita Goswami
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Bhaswati Bandyopadhyay
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Shukla Das
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Arjun Malhotra
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Amitesh Agarwal
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Srima Adhikari
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Mehebubar Rahman
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Nemai Bhattacharya
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Nandita Basu
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Priyanka Pandey
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - Vikas Sood
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
26
|
Carter MJ, Mitchell RM, Meyer Sauteur PM, Kelly DF, Trück J. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications. Front Immunol 2017; 8:630. [PMID: 28620385 PMCID: PMC5451496 DOI: 10.3389/fimmu.2017.00630] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Despite the availability of advances in molecular diagnostic testing for infectious disease, there is still a need for tools that advance clinical care and public health. Current methods focus on pathogen detection with unprecedented precision, but often lack specificity. In contrast, the host immune response is highly specific for the infecting pathogen. Serological studies are rarely helpful in clinical settings, as they require acute and convalescent antibody testing. However, the B cell response is much more rapid and short-lived, making it an optimal target for determining disease aetiology in patients with infections. The performance of tests that aim to detect circulating antigen-specific antibody-secreting cells (ASCs) has previously been unclear. Test performance is reliant on detecting the presence of ASCs in the peripheral blood. As such, the kinetics of the ASC response to infection, the antigen specificity of the ASC response, and the methods of ASC detection are all critical. In this review, we summarize previous studies that have used techniques to enumerate ASCs during infection. We describe the emergence, peak, and waning of these cells in peripheral blood during infection with a number of bacterial and viral pathogens, as well as malaria infection. We find that the timing of antigen-specific ASC appearance and disappearance is highly conserved across pathogens, with a peak response between day 7 and day 8 of illness and largely absent following day 14 since onset of symptoms. Data show a sensitivity of ~90% and specificity >80% for pathogen detection using ASC-based methods. Overall, the summarised work indicates that ASC-based methods may be very sensitive and highly specific for determining the etiology of infection and have some advantages over current methods. Important areas of research remain, including more accurate definition of the timing of the ASC response to infection, the biological mechanisms underlying variability in its magnitude and the evolution and the B cell receptor in response to immune challenge. Nonetheless, there is potential of the ASC response to infection to be exploited as the basis for novel diagnostic tests to inform clinical care and public health priorities.
Collapse
Affiliation(s)
- Michael J Carter
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ruth M Mitchell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
27
|
Taguchi YH. Principal Components Analysis Based Unsupervised Feature Extraction Applied to Gene Expression Analysis of Blood from Dengue Haemorrhagic Fever Patients. Sci Rep 2017; 7:44016. [PMID: 28276456 PMCID: PMC5343617 DOI: 10.1038/srep44016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
Dengue haemorrhagic fever (DHF) sometimes occurs after recovery from the disease caused by Dengue virus (DENV), and is often fatal. However, the mechanism of DHF has not been determined, possibly because no suitable methodologies are available to analyse this disease. Therefore, more innovative methods are required to analyse the gene expression profiles of DENV-infected patients. Principal components analysis (PCA)-based unsupervised feature extraction (FE) was applied to the gene expression profiles of DENV-infected patients, and an integrated analysis of two independent data sets identified 46 genes as critical for DHF progression. PCA using only these 46 genes rendered the two data sets highly consistent. The application of PCA to the 46 genes of an independent third data set successfully predicted the progression of DHF. A fourth in vitro data set confirmed the identification of the 46 genes. These 46 genes included interferon- and heme-biosynthesis-related genes. The former are enriched in binding sites for STAT1, STAT2, and IRF1, which are associated with DHF-promoting antibody-dependent enhancement, whereas the latter are considered to be related to the dysfunction of spliceosomes, which may mediate haemorrhage. These results are outcomes that other type of bioinformatic analysis could hardly achieve.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan
| |
Collapse
|
28
|
Afroz S, Giddaluru J, Abbas MM, Khan N. Transcriptome meta-analysis reveals a dysregulation in extra cellular matrix and cell junction associated gene signatures during Dengue virus infection. Sci Rep 2016; 6:33752. [PMID: 27651116 PMCID: PMC5030657 DOI: 10.1038/srep33752] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Dengue Viruses (DENVs) cause one of the most prevalent arthropod-borne viral diseases affecting millions of people worldwide. Identification of genes involved in DENV pathogenesis would help in deciphering molecular mechanisms responsible for the disease progression. Here, we carried out a meta-analysis of publicly available gene expression data of dengue patients and further validated the meta-profile using in-vitro infection in THP-1 cells. Our findings reveal that DENV infection modulates expression of several genes and signalling pathways including interferons, detoxification of ROS and viral assembly. Interestingly, we have identified novel gene signatures comprising of INADL/PATJ and CRTAP (Cartilage Associated Protein), which were significantly down-regulated across all patient data sets as well as in DENV infected THP-1 cells. PATJ and CRTAP genes are involved in maintaining cell junction integrity and collagen assembly (extracellular matrix component) respectively, which together play a crucial role in cell-cell adhesion. Our results categorically reveal that overexpression of CRTAP and PATJ genes restrict DENV infection, thereby suggesting a critical role of these genes in DENV pathogenesis. Conclusively, these findings emphasize the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease pathogenesis and possibly lead towards the development of better therapeutic interventions.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Jeevan Giddaluru
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Mohd Manzar Abbas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| |
Collapse
|
29
|
Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses. Sci Rep 2016; 6:29201. [PMID: 27380892 PMCID: PMC4933910 DOI: 10.1038/srep29201] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts’ antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection.
Collapse
|
30
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
31
|
Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med 2016; 67:387-404. [DOI: 10.1146/annurev-med-091014-090848] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Jean Lang
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Melanie Saville
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | | |
Collapse
|
32
|
Qi Y, Li Y, Zhang Y, Zhang L, Wang Z, Zhang X, Gui L, Huang J. IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PLoS One 2015; 10:e0132743. [PMID: 26244642 PMCID: PMC4526556 DOI: 10.1371/journal.pone.0132743] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/17/2015] [Indexed: 12/03/2022] Open
Abstract
Dengue hemorrhagic fever (DHF)/Dengue shock syndrome (DSS) is a fatal infectious disease that demands an effective treatment. Interferon (IFN)-stimulated genes (ISGs) induced by dengue virus (DENV) exert antiviral effects. Among ISGs, IFN-α inducible gene 6 (IFI6) was increased in DENV infected human umbilical vascular endothelial cells (HUVECs) by microarray analysis in our previous study. However, its function is incompletely understood. In this study, we confirmed that IFI6 was markedly induced in DENV infection of both primary HUVECs and EA.hy926 cell lines. Recombinant EA.hy926 cell lines in which IFI6 was either over-expressed (IFI6+/+) or knocked-down (IFI6-/-) were generated. The activation of caspase-3 and intrinsic apoptosis-related protein caspase-9 were down-regulated in IFI6+/+ but up-regulated in IFI6-/- cells at 24–48 hrs post-infection. After incubation with DENV for 48 hrs, the mitochondrial membrane potential (Δψ(m)) was more stable in IFI6+/+ cells but reduced in IFI6-/- cells, as assayed by fluorescence staining with JC-1. We observed that Bcl-2 expression was increased in IFI6+/+ and decreased in IFI6-/- cells. By contrast, Bax expression was decreased in IFI6+/+ and increased in IFI6-/- cells. It is presumed that the anti-apoptotic function of IFI6 is expressed by regulating the rheostatic balance between bcl-2/bax expression and inhibition of Δψ(m) depolarization during DENV infection of vascular endothelial cells(VECs). In addition, the pro-apoptotic protein X-linked Inhibitor of Apoptosis (XIAP)-Associated Factor 1(XAF1) expression had been reported to be up-regulated and led to the induction of apoptosis in DENV2-infected VECs,but the relationship between XAF1 and IFI6 dengue virus-induced apoptosis in VECs warrants further study.
Collapse
Affiliation(s)
- Yiming Qi
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
| | - Ying Li
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
| | - Yingke Zhang
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
| | - Lin Zhang
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
| | - Zilian Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuzhi Zhang
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
| | - Lian Gui
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
| | - Junqi Huang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, PR China
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
33
|
McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D, Kluge SF, Götz N, Heilmann J, Mack K, Sauter D, Thompson D, Perreaud J, Rausell A, Munoz M, Ciuffi A, Kirchhoff F, Telenti A. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015; 12:41. [PMID: 25980612 PMCID: PMC4434878 DOI: 10.1186/s12977-015-0165-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. Results Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. Conclusions A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0165-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul J McLaren
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, 1005, Lausanne, Switzerland.
| | - Ali Gawanbacht
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Nitisha Pyndiah
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Christian Krapp
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Nicola Götz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Jessica Heilmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Katharina Mack
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Danielle Thompson
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Jérémie Perreaud
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Antonio Rausell
- Swiss Institute of Bioinformatics, 1005, Lausanne, Switzerland. .,Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Miguel Munoz
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Angela Ciuffi
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | | |
Collapse
|
34
|
Time since onset of disease and individual clinical markers associate with transcriptional changes in uncomplicated dengue. PLoS Negl Trop Dis 2015; 9:e0003522. [PMID: 25768297 PMCID: PMC4358925 DOI: 10.1371/journal.pntd.0003522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dengue virus (DENV) infection causes viral haemorrhagic fever that is characterized by extensive activation of the immune system. The aim of this study is to investigate the kinetics of the transcriptome signature changes during the course of disease and the association of genes in these signatures with clinical parameters. METHODOLOGY/PRINCIPLE FINDINGS Sequential whole blood samples from DENV infected patients in Jakarta were profiled using affymetrix microarrays, which were analysed using principal component analysis, limma, gene set analysis, and weighted gene co-expression network analysis. We show that time since onset of disease, but not diagnosis, has a large impact on the blood transcriptome of patients with non-severe dengue. Clinical diagnosis (according to the WHO classification) does not associate with differential gene expression. Network analysis however, indicated that the clinical markers platelet count, fibrinogen, albumin, IV fluid distributed per day and liver enzymes SGOT and SGPT strongly correlate with gene modules that are enriched for genes involved in the immune response. Overall, we see a shift in the transcriptome from immunity and inflammation to repair and recovery during the course of a DENV infection. CONCLUSIONS/SIGNIFICANCE Time since onset of disease associates with the shift in transcriptome signatures from immunity and inflammation to cell cycle and repair mechanisms in patients with non-severe dengue. The strong association of time with blood transcriptome changes hampers both the discovery as well as the potential application of biomarkers in dengue. However, we identified gene expression modules that associate with key clinical parameters of dengue that reflect the systemic activity of disease during the course of infection. The expression level of these gene modules may support earlier detection of disease progression as well as clinical management of dengue.
Collapse
|
35
|
Silva MMCD, Gil LHVG, Marques ETDA, Calzavara-Silva CE. Potential biomarkers for the clinical prognosis of severe dengue. Mem Inst Oswaldo Cruz 2014; 108:755-62. [PMID: 24037198 PMCID: PMC3970693 DOI: 10.1590/0074-0276108062013012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/21/2013] [Indexed: 01/27/2023] Open
Abstract
Currently, several assays can confirm acute dengue infection at the
point-of-care. However, none of these assays can predict the severity of the
disease symptoms. A prognosis test that predicts the likelihood of a dengue
patient to develop a severe form of the disease could permit more efficient
patient triage and treatment. We hypothesise that mRNA expression of apoptosis
and innate immune response-related genes will be differentially regulated during
the early stages of dengue and might predict the clinical outcome. Aiming to
identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral
blood mononuclear cells of mild and severe dengue patients during the febrile
stage of the disease to measure the expression levels of selected genes by
quantitative polymerase chain reaction. The selected candidate biomarkers were
previously identified by our group as differentially expressed in microarray
studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and
FCGR3B were differentially expressed between patients who developed clinical
symptoms associated with the mild type of dengue and patients who showed
clinical symptoms associated with severe dengue. We suggest that this gene
expression panel could putatively serve as biomarkers for the clinical prognosis
of dengue haemorrhagic fever.
Collapse
Affiliation(s)
- Mayara Marques Carneiro da Silva
- Laboratório de Virologia e Terapia Experimental, Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, RecifePE, Brasil
| | | | | | | |
Collapse
|
36
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
37
|
Chacón-Duque JC, Adhikari K, Avendaño E, Campo O, Ramirez R, Rojas W, Ruiz-Linares A, Restrepo BN, Bedoya G. African genetic ancestry is associated with a protective effect on Dengue severity in colombian populations. INFECTION GENETICS AND EVOLUTION 2014; 27:89-95. [PMID: 25017656 DOI: 10.1016/j.meegid.2014.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 12/14/2022]
Abstract
The wide variation in severity displayed during Dengue Virus (DENV) infection may be influenced by host susceptibility. In several epidemiological approaches, differences in disease outcomes have been found between some ethnic groups, suggesting that human genetic background has an important role in disease severity. In the Caribbean, It has been reported that populations of African descent present considerable less frequency of severe forms compared with Mestizo and White self-reported groups. Admixed populations offer advantages for genetic epidemiology studies due to variation and distribution of alleles, such as those involved in disease susceptibility, as well to provide explanations of individual variability in clinical outcomes. The current study analysed three Colombian populations, which like most of Latin American populations, are made up of the product of complex admixture processes between European, Native American and African ancestors; having as a main goal to assess the effect of genetic ancestry, estimated with 30 Ancestry Informative Markers (AIMs), on DENV infection severity. We found that African ancestry has a protective effect against severe outcomes under several systems of clinical classification: Severe Dengue (OR: 0.963 for every 1% increase in African ancestry, 95% confidence interval (0.934-0.993), p-value: 0.016), Dengue Haemorrhagic Fever (OR: 0.969, 95% CI (0.947-0.991), p-value: 0.006), and occurrence of haemorrhages (OR: 0.971, 95% CI (0.952-0.989), p-value: 0.002). Conversely, decrease from 100% to 0% African ancestry significantly increases the chance of severe outcomes: OR is 44-fold for Severe Dengue, 24-fold for Dengue Haemorrhagic Fever, and 20-fold for occurrence of haemorrhages. Furthermore, several warning signs also showed statistically significant association given more evidences in specific stages of DENV infection. These results provide consistent evidence in order to infer statistical models providing a framework for future genetic epidemiology and clinical studies.
Collapse
Affiliation(s)
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, University College London (UCL), London, UK
| | - Efren Avendaño
- Grupo GENMOL, Universidad de Antioquia. Medellín, Colombia
| | - Omer Campo
- Grupo GENMOL, Universidad de Antioquia. Medellín, Colombia
| | - Ruth Ramirez
- Instituto Colombiano de Medicina Tropical "Antonio Roldán Betancur" (ICMT), Universidad CES, Sabaneta, Colombia
| | - Winston Rojas
- Grupo GENMOL, Universidad de Antioquia. Medellín, Colombia
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London (UCL), London, UK
| | - Berta Nelly Restrepo
- Instituto Colombiano de Medicina Tropical "Antonio Roldán Betancur" (ICMT), Universidad CES, Sabaneta, Colombia
| | - Gabriel Bedoya
- Grupo GENMOL, Universidad de Antioquia. Medellín, Colombia
| |
Collapse
|
38
|
Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F, Perng GC, Yoksan S, Pattanapanyasat K, Chokephaibulkit K, Ahmed R, Pulendran B. Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell Host Microbe 2014; 16:115-27. [PMID: 24981333 PMCID: PMC4116428 DOI: 10.1016/j.chom.2014.06.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022]
Abstract
Dengue virus (DENV) infection induces the expansion of plasmablasts, which produce antibodies that can neutralize DENV but also enhance disease upon secondary infection with another DENV serotype. To understand how these immune responses are generated, we used a systems biological approach to analyze immune responses to dengue in humans. Transcriptomic analysis of whole blood revealed that genes encoding proinflammatory mediators and type I interferon-related proteins were associated with high DENV levels during initial symptomatic disease. Additionally, CD14(+)CD16(+) monocytes increased in the blood. Similarly, in a nonhuman primate model, DENV infection boosted CD14(+)CD16(+) monocyte numbers in the blood and lymph nodes. Upon DENV infection in vitro, monocytes upregulated CD16 and mediated differentiation of resting B cells to plasmablasts as well as immunoglobulin G (IgG) and IgM secretion. These findings provide a detailed picture of innate responses to dengue and highlight a role for CD14(+)CD16(+) monocytes in promoting plasmablast differentiation and anti-DENV antibody responses.
Collapse
Affiliation(s)
- Marcin Kwissa
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Helder I Nakaya
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Nattawat Onlamoon
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jens Wrammert
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Division of Pathology at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Guey Chuen Perng
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sutee Yoksan
- Insitute of Molecular Biosciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rafi Ahmed
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Chiu HC, Hannemann H, Heesom KJ, Matthews DA, Davidson AD. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One 2014; 9:e93305. [PMID: 24671231 PMCID: PMC3966871 DOI: 10.1371/journal.pone.0093305] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/01/2014] [Indexed: 01/18/2023] Open
Abstract
Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.
Collapse
Affiliation(s)
- Han-Chen Chiu
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Holger Hannemann
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - David A. Matthews
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Targeting host factors to treat West Nile and dengue viral infections. Viruses 2014; 6:683-708. [PMID: 24517970 PMCID: PMC3939478 DOI: 10.3390/v6020683] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/15/2023] Open
Abstract
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.
Collapse
|
41
|
Green AM, Beatty PR, Hadjilaou A, Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 2013; 426:1148-60. [PMID: 24316047 DOI: 10.1016/j.jmb.2013.11.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
Dengue is a major public health issue in tropical and subtropical regions worldwide. The four serotypes of dengue virus (DENV1-DENV4) are spread primarily by Aedes aegypti and Aedes albopictus mosquitoes, whose geographic range continues to expand. Humans are the only host for epidemic strains of DENV, and the virus has developed sophisticated mechanisms to evade human innate immune responses. The host cell's first line of defense begins with an intracellular signaling cascade resulting in production of interferon α/β (IFN-α/β), which promotes intracellular antiviral responses and helps initiates the adaptive response during the course of DENV infection. In response, DENV has developed numerous ways to subvert these intracellular antiviral responses and directly inhibit cellular signaling cascades. Specifically, DENV manipulates the unfolded protein response and autophagy to counter cellular stress and delay apoptosis. The DENV non-structural protein NS4B and subgenomic flavivirus RNA interfere with the RNA interference pathway by inhibiting the RNase Dicer. During heterotypic secondary DENV infection, subneutralizing antibodies can enable viral uptake through Fcγ receptors and down-regulate signaling cascades initiated via the pattern recognition receptors TLR-3 and MDA5/RIG-I, thus reducing the antiviral state of the cell. The DENV NS2B/3 protein cleaves human STING/MITA, interfering with induction of IFN-α/β. Finally, DENV NS2A, NS4A, and NS4B complex together to block STAT1 phosphorylation, while NS5 binds and promotes degradation of human STAT2, thus preventing formation of the STAT1/STAT2 heterodimer and its transcriptional induction of interferon stimulating genes. Here, we discuss the host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses.
Collapse
Affiliation(s)
- Angela M Green
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Alexandros Hadjilaou
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
42
|
Lee GE, Sung L, Fisher BT, Sullivan KE, McWilliams T, Tobias JW, Meshinchi S, Alonzo TA, Gamis A, Aplenc R. Gene expression profiling to predict viridans group streptococcal and invasive fungal infection in pediatric acute myeloid leukemia: a brief report from the Children's Oncology Group. Acta Haematol 2013; 131:167-9. [PMID: 24217778 PMCID: PMC4443693 DOI: 10.1159/000353758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Grace E Lee
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pa., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun P, García J, Comach G, Vahey MT, Wang Z, Forshey BM, Morrison AC, Sierra G, Bazan I, Rocha C, Vilcarromero S, Blair PJ, Scott TW, Camacho DE, Ockenhouse CF, Halsey ES, Kochel TJ. Sequential waves of gene expression in patients with clinically defined dengue illnesses reveal subtle disease phases and predict disease severity. PLoS Negl Trop Dis 2013; 7:e2298. [PMID: 23875036 PMCID: PMC3708824 DOI: 10.1371/journal.pntd.0002298] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Dengue virus (DENV) infection can range in severity from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Changes in host gene expression, temporally through the progression of DENV infection, especially during the early days, remains poorly characterized. Early diagnostic markers for DHF are also lacking. Methodology/Principal Findings In this study, we investigated host gene expression in a cohort of DENV-infected subjects clinically diagnosed as DF (n = 51) and DHF (n = 13) from Maracay, Venezuela. Blood specimens were collected daily from these subjects from enrollment to early defervescence and at one convalescent time-point. Using convalescent expression levels as baseline, two distinct groups of genes were identified: the “early” group, which included genes associated with innate immunity, type I interferon, cytokine-mediated signaling, chemotaxis, and complement activity peaked at day 0–1 and declined on day 3–4; the second “late” group, comprised of genes associated with cell cycle, emerged from day 4 and peaked at day 5–6. The up-regulation of innate immune response genes coincided with the down-regulation of genes associated with viral replication during day 0–3. Furthermore, DHF patients had lower expression of genes associated with antigen processing and presentation, MHC class II receptor, NK and T cell activities, compared to that of DF patients. These results suggested that the innate and adaptive immunity during the early days of the disease are vital in suppressing DENV replication and in affecting outcome of disease severity. Gene signatures of DHF were identified as early as day 1. Conclusions/Significance Our study reveals a broad and dynamic picture of host responses in DENV infected subjects. Host response to DENV infection can now be understood as two distinct phases with unique transcriptional markers. The DHF signatures identified during day 1–3 may have applications in developing early molecular diagnostics for DHF. The clinical outcome of DENV infection in humans can be DF or the more severe DHF and DSS. The individual's previous DENV exposure history, infecting serotypes, and host genetics are thought to be contributing factors to dengue disease severity. Our study contributed to the current dengue research field in the following ways: 1) Our study reveals the dynamics of host gene expression over each day post onset of symptoms. The gene transcription patterns enabled classification of dengue disease into 2 subtle phases: early acute and late acute. 2) The study identified gene markers differentiating severe dengue cases from non-severe cases with >90% accuracy. Taken together, our study offers insight into host responses in DENV-infected subjects and these results may be valuable for the future development of diagnostic tools for disease severity.
Collapse
Affiliation(s)
- Peifang Sun
- Naval Medical Research Center, Silver Spring, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, Rozen S, Ooi EE. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl Trop Dis 2013; 7:e2107. [PMID: 23516652 PMCID: PMC3597485 DOI: 10.1371/journal.pntd.0002107] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/28/2013] [Indexed: 01/22/2023] Open
Abstract
Dengue viruses 1-4 (DENV1-4) rely heavily on the host cell machinery to complete their life cycle, while at the same time evade the host response that could restrict their replication efficiency. These requirements may account for much of the broad gene-level changes to the host transcriptome upon DENV infection. However, host gene function is also regulated through transcriptional start site (TSS) selection and post-transcriptional modification to the RNA that give rise to multiple gene isoforms. The roles these processes play in the host response to dengue infection have not been explored. In the present study, we utilized RNA sequencing (RNAseq) to identify novel transcript variations in response to infection with both a pathogenic strain of DENV1 and its attenuated derivative. RNAseq provides the information necessary to distinguish the various isoforms produced from a single gene and their splice variants. Our data indicate that there is an extensive amount of previously uncharacterized TSS and post-transcriptional modifications to host RNA over a wide range of pathways and host functions in response to DENV infection. Many of the differentially expressed genes identified in this study have previously been shown to be required for flavivirus propagation and/or interact with DENV gene products. We also show here that the human transcriptome response to an infection by wild-type DENV or its attenuated derivative differs significantly. This differential response to wild-type and attenuated DENV infection suggests that alternative processing events may be part of a previously uncharacterized innate immune response to viral infection that is in large part evaded by wild-type DENV.
Collapse
Affiliation(s)
- October M. Sessions
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
| | - Ying Tan
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
| | - Kenneth C. Goh
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
| | - Yujing Liu
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore
- Computational Systems Biology, Singapore-MIT Alliance, National University of Singapore, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Steve Rozen
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|
45
|
Temporal dynamics of the transcriptional response to dengue virus infection in Nicaraguan children. PLoS Negl Trop Dis 2012; 6:e1966. [PMID: 23285306 PMCID: PMC3527342 DOI: 10.1371/journal.pntd.0001966] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
Dengue is the most prevalent mosquito-borne human illness worldwide. The ability to predict disease severity during the earliest days of the illness is a long-sought, but unachieved goal. We examined human genome-wide transcript abundance patterns in daily peripheral blood mononuclear cell (PBMC) samples from 41 children hospitalized with dengue virus (DENV) infection in Nicaragua, as well as 8 healthy control subjects. Nine patients had primary dengue fever (DF1), 11 had dengue fever with serologic evidence of prior DENV infection, i.e., secondary dengue fever (DF2), 12 had dengue hemorrhagic fever (DHF), and 9 had dengue shock syndrome (DSS). We identified 2,092 genes for which transcript abundance differed significantly between patients on days 3–6 of fever and healthy subjects (FDR<1%). Prior DENV infection explained the greatest amount of variation in gene expression among patients. The number of differentially expressed genes was greatest on fever day 3 in patients with DF1, while the number in patients with DF2 or DHF/DSS was greatest on day 5. Genes associated with the mitotic cell cycle and B cell differentiation were expressed at higher levels, and genes associated with signal transduction and cell adhesion were expressed at lower levels, in patients versus healthy controls. On fever day 3, a set of interferon-stimulated gene transcripts was less abundant in patients who subsequently developed DSS than in other patient groups (p<0.05, ranksum). Patients who later developed DSS also had higher levels of transcripts on day 3 associated with mitochondrial function (p<0.01, ranksum). These day 3 transcript abundance findings were not evident on subsequent fever days. In conclusion, we identified differences in the timing and magnitude of human gene transcript abundance changes in DENV patients that were associated with serologic evidence of prior infection and with disease severity. Some of these differential features may predict the outcome of DENV infection. Infection with dengue virus (DENV) causes dengue fever, the most prevalent mosquito-borne illness of humans worldwide. Tens of millions of cases occur annually; up to 500,000 patients develop additional life-threatening complications, including hemorrhage and shock. The clinical course of the disease evolves rapidly, making it difficult to identify patients at risk for severe disease and suggesting that biological events associated with the development of severe disease may be short-lived. We examined gene expression patterns in the blood of children hospitalized with DENV infection, and found that patients with differences in disease severity and history of previous DENV infection shared a common set of gene expression features, but the timing and magnitude of these features differed. In our study, prior DENV infection explained the greatest amount of variation in gene expression among patients. We discovered features of gene expression on day 3 that were associated with subsequent disease severity—features that were not apparent on subsequent days, emphasizing the importance of looking at temporal patterns of gene expression in acute infection.
Collapse
|
46
|
Abstract
Dengue viruses and other members of the Flaviviridae family are emerging human pathogens. Dengue is transmitted to humans by Aedes aegypti female mosquitoes. Following infection through the bite, cells of the hematopoietic lineage, like dendritic cells, are the first targets of dengue virus infection. Dendritic cells (DCs) are key antigen presenting cells, sensing pathogens, processing and presenting the antigens to T lymphocytes, and triggering an adaptive immune response. Infection of DCs by dengue virus may induce apoptosis, impairing their ability to present antigens to T cells, and thereby contributing to dengue pathogenesis. This review focuses on general mechanisms by which dengue virus triggers apoptosis, and possible influence of DC-apoptosis on dengue disease severity.
Collapse
|
47
|
Luciani F, Bull RA, Lloyd AR. Next generation deep sequencing and vaccine design: today and tomorrow. Trends Biotechnol 2012; 30:443-52. [PMID: 22721705 PMCID: PMC7127335 DOI: 10.1016/j.tibtech.2012.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 12/20/2022]
Abstract
Next generation sequencing (NGS) technologies have redefined the modus operandi in both human and microbial genetics research, allowing the unprecedented generation of very large sequencing datasets on a short time scale and at affordable costs. Vaccine development research is rapidly taking full advantage of the advent of NGS. This review provides a concise summary of the current applications of NGS in relation to research seeking to develop vaccines for human infectious diseases, incorporating studies of both the pathogen and the host. We focus on rapidly mutating viral pathogens, which are major targets in current vaccine research. NGS is unraveling the complex dynamics of viral evolution and host responses against these viruses, thus contributing substantially to the likelihood of successful vaccine development.
Collapse
Affiliation(s)
- Fabio Luciani
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
48
|
Abstract
The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media. In this review, we focus on the cytokine storm in the context of virus infection, and we highlight how high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling. We also address evidence for and against the role of the cytokine storm in the pathology of clinical and infectious disease and discuss why it has been so difficult to use knowledge of the cytokine storm and immunomodulatory therapies to improve the clinical outcomes for patients with severe acute infections.
Collapse
|
49
|
Abstract
Huge emphasis has been placed on the role of the adaptive immune system in dengue pathogenesis. Yet there is increasing evidence for the importance of the innate immune system in regulating dengue infection and possibly influencing the disease. This review focuses on the interplay between the innate immune system and dengue and highlights the role of soluble immunological mediators. Type I and type II interferons of the innate immune system demonstrate non-overlapping roles in dengue infection. Furthermore, while some IFN responses to dengue are protective, others may exert disease-related effects on the host. But aside from interferons, a number of cytokines have also been implicated in dengue pathogenesis. Our expanding knowledge of cytokines indicates that these soluble mediators act upon a complicated network of events to provoke the disease. This cytokine storm is generally attributed to massive T cell activation as an outcome of secondary infection. However, there is reason to believe that innate immune response-derived cytokines also have contributory effects, especially in the context of severe cases of primary dengue infection. Another less popular but interesting perspective on dengue pathogenesis is the effect of mosquito feeding on host immune responses and viral infection. Various studies have shown that soluble factors from vector saliva have the capacity to alter immune reactions and thereby influence pathogen transmission and establishment. Hence, modulation of the innate immune system at various levels of infection is a critical component of dengue disease. In the absence of an approved drug or vaccine for dengue, soluble mediators of the innate immune system could be a strategic foothold for developing anti-viral therapeutics and improving clinical management.
Collapse
Affiliation(s)
- Lyre Anni Espada-Murao
- Department of Virology, Institute of Tropical Medicine, GCOE Programme, Nagasaki University, Sakamoto machi 1-12-4, Nagasaki 852-8523, Japan
| | | |
Collapse
|
50
|
Abstract
Epidemiological evidence indicates that host genetic factors are relevant and predispose DHF/DSS development. Here, we review the host genetic studies concerning human leucocyte antigens, antibody receptors, immune/inflammatory mediators, attachment molecules, cytokines and other factors exerting an immunoregulatory effect as well as the current genome-wide association studies. We also discuss some viewpoints on future challenges related to the design of safe and effective prevention and treatment options.
Collapse
Affiliation(s)
- Nguyen Thi Phuong Lan
- Department of Microbiology and Immunology, Pasteur Institute Ho Chi Minh City, Vietnam
| | | |
Collapse
|