1
|
Khairallah M, Abroug N, Smit D, Chee SP, Nabi W, Yeh S, Smith JR, Ksiaa I, Cunningham E. Systemic and Ocular Manifestations of Arboviral Infections: A Review. Ocul Immunol Inflamm 2024; 32:2190-2208. [PMID: 38441549 DOI: 10.1080/09273948.2024.2320724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To provide an overview of pre-selected emerging arboviruses (arthropod-borne viruses) that cause ocular inflammation in humans. METHODS A comprehensive review of the literature published between 1997 and 2023 was conducted in PubMed database. We describe current insights into epidemiology, systemic and ocular manifestations, diagnosis, treatment, and prognosis of arboviral diseases including West Nile fever, Dengue fever, Chikungunya, Rift Valley fever, Zika, and Yellow fever. RESULTS Arboviruses refer to a group of ribonucleic acid viruses transmitted to humans by the bite of hematophagous arthropods, mainly mosquitoes. They mostly circulate in tropical and subtropical zones and pose important public health challenges worldwide because of rising incidence, expanding geographic range, and occurrence of prominent outbreaks as a result of climate change, travel, and globalization. The clinical signs associated with infection from these arboviruses are often inapparent, mild, or non-specific, but they may include serious, potentially disabling or life-threatening complications. A wide spectrum of ophthalmic manifestations has been described including conjunctival involvement, anterior uveitis, intermediate uveitis, various forms of posterior uveitis, maculopathy, optic neuropathy, and other neuro-ophthalmic manifestations. Diagnosis of arboviral diseases is confirmed with either real time polymerase chain reaction or serology. Management involves supportive care as there are currently no specific antiviral drug options. Corticosteroids are often used for the treatment of associated ocular inflammation. Most patients have a good visual prognosis, but there may be permanent visual impairment due to ocular structural complications in some. Community-based integrated mosquito management programs and personal protection measures against mosquito bites are the best ways to prevent human infection and disease. CONCLUSION Emerging arboviral diseases should be considered in the differential diagnosis of ocular inflammatory conditions in patients living in or returning from endemic regions. Early clinical consideration followed by confirmatory testing can limit or prevent unnecessary treatments for non-arboviral causes of ocular inflammation. Prevention of these infections is crucial.
Collapse
Affiliation(s)
- Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Nesrine Abroug
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Derrick Smit
- Division of Ophthalmology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soon-Phaik Chee
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Eye & Retina Surgeons, Singapore, Singapore
| | - Wijden Nabi
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Steven Yeh
- Department of Ophthalmology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Imen Ksiaa
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Emmett Cunningham
- The Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA
- The Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA
| |
Collapse
|
2
|
Weber WC, Streblow DN, Coffey LL. Chikungunya Virus Vaccines: A Review of IXCHIQ and PXVX0317 from Pre-Clinical Evaluation to Licensure. BioDrugs 2024; 38:727-742. [PMID: 39292392 PMCID: PMC11530495 DOI: 10.1007/s40259-024-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Chikungunya virus is an emerging mosquito-borne alphavirus that causes febrile illness and arthritic disease. Chikungunya virus is endemic in 110 countries and the World Health Organization estimates that it has caused more than 2 million cases of crippling acute and chronic arthritis globally since it re-emerged in 2005. Chikungunya virus outbreaks have occurred in Africa, Asia, Indian Ocean islands, South Pacific islands, Europe, and the Americas. Until recently, no specific countermeasures to prevent or treat chikungunya disease were available. To address this need, multiple vaccines are in human trials. These vaccines use messenger RNA-lipid nanoparticles, inactivated virus, and viral vector approaches, with a live-attenuated vaccine VLA1553 and a virus-like particle PXVX0317 in phase III testing. In November 2023, the US Food and Drug Administration (FDA) approved the VLA1553 live-attenuated vaccine, which is marketed as IXCHIQ. In June 2024, Health Canada approved IXCHIQ, and in July 2024, IXCHIQ was approved by the European Commission. On August 13, 2024, the US FDA granted priority review for PXVX0317. The European Medicine Agency is considering accelerated assessment review of PXVX0317, with potential for approval by both agencies in 2025. In this review, we summarize published data from pre-clinical and clinical trials for the IXCHIQ and PXVX0317 vaccines. We also discuss unanswered questions including potential impacts of pre-existing chikungunya virus immunity on vaccine safety and immunogenicity, whether long-term immunity can be achieved, safety in children, pregnant, and immunocompromised individuals, and vaccine efficacy in people with previous exposure to other emerging alphaviruses in addition to chikungunya virus.
Collapse
Affiliation(s)
- Whitney C Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis One Shields Avenue, Davis One Shields Avenue, 5327 VM3A, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Buerger V, Maurer G, Kosulin K, Hochreiter R, Larcher-Senn J, Dubischar K, Eder-Lingelbach S. Combined immunogenicity evaluation for a new single-dose live-attenuated chikungunya vaccine. J Travel Med 2024; 31:taae084. [PMID: 38959854 DOI: 10.1093/jtm/taae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Chikungunya is a serious and debilitating viral infection with a significant disease burden. VLA1553 (IXCHIQ®) is a live-attenuated vaccine licensed for active immunization for prevention of disease caused by chikungunya virus (CHIKV). METHODS Immunogenicity following a single dose of VLA1553 was evaluated in healthy adults aged ≥18 years in two Phase 3 trials [N = 656 participants (per protocol analysis set)]. Immunogenicity data to 180 days post-vaccination [geometric mean titres (GMTs), seroresponse rate, seroconversion rate] were pooled for the two trials. A comparison of subgroups based on age, sex, body mass index (BMI), race and baseline seropositivity was included. All analyses were descriptive. RESULTS Most participants were aged 18-64 years (N = 569/656 [86.7%]), there were slightly more females (N = 372/656 [56.7%]), most were not Hispanic/Latino (N = 579/656 [88.3%]), and most were White (N = 517/656 [78.8%]). In baseline seronegative participants, GMT peaked at Day 29 post-vaccination, and subsequently declined slightly but remained elevated until Day 180. At Days 29, 85 and 180, seroresponse rate was 98.3, 97.7 and 96.4% and seroconversion rate was 98.5, 98.4 and 98.2%. There were no differences in seroresponse rate in participants aged 18-64 years or ≥65 years at Day 29 (98.1 vs 100%), Day 85 (97.4 vs 100%) and Day 180 (96.3 vs 96.5%) nor based on sex, BMI, ethnicity or race. An immune response was shown in a small heterogenous population of baseline seropositive participants, with GMTs showing the same trend as baseline seronegative participants. CONCLUSIONS A single dose of VLA1553 elicited a very strong immune response by Day 29 that remained elevated at Day 180 in both baseline seronegative and seropositive participants in a combined evaluation of two Phase 3 trials. The vaccine was similarly immunogenic in participants aged ≥65 years and 18-64 years, and there were no differences based on subgroup analyses for sex, BMI, ethnicity or race.
Collapse
Affiliation(s)
- Vera Buerger
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | - Gabriele Maurer
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | - Karin Kosulin
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | | | - Julian Larcher-Senn
- Assign Data Management and Statistics GmbH, Stadlweg 23, 6020 Innsbruck, Austria
| | - Katrin Dubischar
- Valneva Austria GmbH, Campus Vienna Biocenter, 3103 Vienna, Austria
| | | |
Collapse
|
4
|
Mahendradas P, Patil A, Kawali A, Rathinam SR. Systemic and Ophthalmic Manifestations of Chikungunya Fever. Ocul Immunol Inflamm 2024; 32:1796-1803. [PMID: 37773977 DOI: 10.1080/09273948.2023.2260464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Chikungunya is a re-emerging viral infection across the globe. The purpose of this article is to review the systemic and ophthalmic manifestations associated with chikungunya fever. METHOD A review of literature was conducted using online databases. RESULTS In this report, we have reviewed the presently available literature on uveitis caused by chikungunya and highlighted the current knowledge of its clinical manifestations, imaging features, laboratory diagnostics, and the available therapeutic modalities from the systemic and ophthalmic standpoint. CONCLUSIONS Ocular involvement in chikungunya infection may occur at the time of systemic manifestations or it may occur as a delayed presentation many weeks after the fever. Treatment relies on a supportive therapy for systemic illness. Treatment of ocular manifestation depends on the type of manifestations and usually includes a combination of topical and oral steroids.
Collapse
Affiliation(s)
| | - Aditya Patil
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | - Ankush Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | | |
Collapse
|
5
|
Fox LE, Lenschow DJ. IFNs: Maestros of the Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:541-542. [PMID: 39159407 DOI: 10.4049/jimmunol.2400386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024]
Abstract
This Pillars of Immunology article is a commentary on “Functional role of type I and type II interferons in antiviral defense,” a pivotal article written by U. Müller, U. Steinhoff, L. F. L. Reis, S. Hemmi, J. Pavlovic, R. M. Zinkernagel, and M. Aguet, and published in Science, in 1994. https://doi.org/10.1126/science.8009221.
Collapse
Affiliation(s)
- Lindsey E Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Deborah J Lenschow
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
6
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
McMahon R, Toepfer S, Sattler N, Schneider M, Narciso-Abraham M, Hadl S, Hochreiter R, Kosulin K, Mader R, Zoihsl O, Wressnigg N, Dubischar K, Buerger V, Eder-Lingelbach S, Jaramillo JC. Antibody persistence and safety of a live-attenuated chikungunya virus vaccine up to 2 years after single-dose administration in adults in the USA: a single-arm, multicentre, phase 3b study. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00357-8. [PMID: 39146946 DOI: 10.1016/s1473-3099(24)00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Chikungunya virus infection can lead to long-term debilitating symptoms. A precursor phase 3 clinical study showed high seroprotection (defined as a 50% plaque reduction of chikungunya virus-specific neutralising antibodies on a micro plaque reduction neutralisation test [μPRNT] titre of ≥150 in baseline seronegative participants) up to 6 months after a single vaccination of the chikungunya virus vaccine VLA1553 (Valneva Austria, Vienna, Austria) and a good safety profile. Here we report antibody persistence and safety up to 2 years. METHODS In this single-arm, multicentre, phase 3b study, we recruited participants from the precursor phase 3 trial from professional vaccine trial sites in the USA. Participants (aged ≥18 years) were eligible if they had completed the previous study and received VLA1553. Chikungunya virus-specific neutralising antibodies were evaluated at 28 days, 6 months, and 1 year and 2 years after vaccination. The primary outcome was the proportion of seroprotected participants (ie, μPRNT50 titre of ≥150) at 1 and 2 years, assessed in all eligible participants who had at least one post-vaccination immunogenicity sample available, overall and by age group at the time of vaccination (18-64 years and ≥65 years). Adverse events of special interest at the time of transition from the previous study to the current study (ie, at 6 months) and serious adverse events during the current study were recorded (ie, between 6 months and 2 years). All analyses were descriptive. This study is registered with ClinicalTrials.gov, NCT04838444, and immunogenicity follow-up is ongoing. FINDINGS In the precursor study, participants were screened between Sept 17, 2020, and April 10, 2021; data cutoff for this analysis was March 31, 2023. Of 2724 participants in the precursor study who received one dose of VLA1553, 363 participants were analysed in this study (310 [85%] aged 18-64 years and 53 [15%] aged ≥65 years at enrolment in the precursor study; mean age 47·7 years [SD 14·2], 207 [57%] of 363 participants were female, 156 [43%] were male, 280 [77%] were White, and 314 [87%] were not Hispanic or Latino). Strong seroprotection was observed at 1 year (98·9% [356 of 360 assessable participants; 97·2-99·7]) and 2 years (96·8% [306 of 316; 94·3-98·5]) after vaccination, and was very similar between those aged 18-64 years (at 1 year: 98·7% [303 of 307; 96·7-99·6]; at 2 years: 96·6% [256 of 265; 93·7-98·4]) and those aged 65 years and older (at 1 year: 100% [53 of 53; 93·3-100]; at 2 years: 98·0% [50 of 51; 89·6-100]) at each timepoint. No adverse events of special interest were ongoing at the time of transition. Ten serious adverse events occurred in nine (2%) participants between the 6-month and 2-year timepoints, including one death (due to drug overdose) that was determined to not be related to VLA1553. INTERPRETATION After a single VLA1553 vaccination, chikungunya virus-neutralising antibodies above the threshold considered to be protective persisted up to 2 years and there were no long-term serious adverse events related to vaccination. VLA1553 is an efficient and safe intervention that offers high seroprotection against chikungunya virus infection, a virus likely to spread globally with an urgent demand for long-lasting prophylaxis. FUNDING Valneva Austria, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
8
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
9
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
11
|
Devaraju M, Li A, Ha S, Li M, Shivakumar M, Li H, Nishiguchi EP, Gérardin P, Waldorf KA, Al-Haddad BJS. Beyond TORCH: A narrative review of the impact of antenatal and perinatal infections on the risk of disability. Neurosci Biobehav Rev 2023; 153:105390. [PMID: 37708918 PMCID: PMC10617835 DOI: 10.1016/j.neubiorev.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Infections and inflammation during pregnancy or early life can alter child neurodevelopment and increase the risk for structural brain abnormalities and mental health disorders. There is strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental domains and contribute to motor and cognitive disabilities. However, the impact of a broader range of viral and bacterial infections on fetal development and disability is less well understood. We performed a literature review of human studies to identify gaps in the link between maternal infections, inflammation, and several neurodevelopmental domains. We found strong and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is little evidence for an increased risk of language and sensory disabilities. While guidelines for TORCH infection prevention during pregnancy are common, further consideration for prevention of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
Collapse
Affiliation(s)
- Monica Devaraju
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Amanda Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA
| | - Sandy Ha
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Miranda Li
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Megana Shivakumar
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hanning Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Erika Phelps Nishiguchi
- University of Hawaii, Department of Pediatrics, Division of Community Pediatrics, 1319 Punahou St, Honolulu, HI, USA
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire, Saint Pierre, Réunion, France
| | - Kristina Adams Waldorf
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Benjamin J S Al-Haddad
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Academic Office Building, 2450 Riverside Ave S AO-401, Minneapolis, MN 55454, USA; Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN 55414, USA.
| |
Collapse
|
12
|
Pati I, Cruciani M, Candura F, Massari MS, Piccinini V, Masiello F, Profili S, De Fulvio L, Pupella S, De Angelis V. Hyperimmune Globulins for the Management of Infectious Diseases. Viruses 2023; 15:1543. [PMID: 37515229 PMCID: PMC10385259 DOI: 10.3390/v15071543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
This review is focused on the use of hyperimmune globulin therapy to treat some infectious diseases of viral or bacterial origin. Despite the introduction of antibiotics and vaccines, plasma immunoglobulin therapy from whole blood donation can still play a key role. These treatments provide passive transfer of high-titer antibodies that either reduces the risk or the severity of the infection and offer immediate but short-term protection against specific diseases. Antibody preparations derived from immunized human donors are commonly used for the prophylaxis and treatment of rabies, hepatitis A and B viruses, varicella-zoster virus, and pneumonia caused by respiratory syncytial virus, Clostridium tetani, Clostridium botulinum. The use of hyperimmune globulin therapy is a promising challenge, especially for the treatment of emerging viral infections for which there are no specific therapies or licensed vaccines.
Collapse
Affiliation(s)
- Ilaria Pati
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Mario Cruciani
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Fabio Candura
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | | | - Vanessa Piccinini
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Francesca Masiello
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Samantha Profili
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Lucia De Fulvio
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Simonetta Pupella
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| | - Vincenzo De Angelis
- National Blood Centre, Italian National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
13
|
Barker D, Han X, Wang E, Dagley A, Anderson DM, Jha A, Weaver SC, Julander J, Nykiforuk C, Kodihalli S. Equine Polyclonal Antibodies Prevent Acute Chikungunya Virus Infection in Mice. Viruses 2023; 15:1479. [PMID: 37515166 PMCID: PMC10384969 DOI: 10.3390/v15071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen that causes chikungunya disease (CHIK); the disease is characterized by fever, muscle ache, rash, and arthralgia. This arthralgia can be debilitating and long-lasting, seriously impacting quality of life for years. Currently, there is no specific therapy available for CHIKV infection. We have developed a despeciated equine polyclonal antibody (CHIKV-EIG) treatment against CHIKV and evaluated its protective efficacy in mouse models of CHIKV infection. In immunocompromised (IFNAR-/-) mice infected with CHIKV, daily treatment for five consecutive days with CHIKV-EIG administered at 100 mg/kg starting on the day of infection prevented mortality, reduced viremia, and improved clinical condition as measured by body weight loss. These beneficial effects were seen even when treatment was delayed to 1 day after infection. In immunocompetent mice, CHIKV-EIG treatment reduced virus induced arthritis (including footpad swelling), arthralgia-associated cytokines, viremia, and tissue virus loads in a dose-dependent fashion. Collectively, these results suggest that CHIKV-EIG is effective at preventing CHIK and could be a viable candidate for further development as a treatment for human disease.
Collapse
Affiliation(s)
- Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Xiaobing Han
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Eryu Wang
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Ashley Dagley
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | | | - Aruni Jha
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Justin Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Cory Nykiforuk
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | | |
Collapse
|
14
|
Schneider M, Narciso-Abraham M, Hadl S, McMahon R, Toepfer S, Fuchs U, Hochreiter R, Bitzer A, Kosulin K, Larcher-Senn J, Mader R, Dubischar K, Zoihsl O, Jaramillo JC, Eder-Lingelbach S, Buerger V, Wressnigg N. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2023; 401:2138-2147. [PMID: 37321235 PMCID: PMC10314240 DOI: 10.1016/s0140-6736(23)00641-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND VLA1553 is a live-attenuated vaccine candidate for active immunisation and prevention of disease caused by chikungunya virus. We report safety and immunogenicity data up to day 180 after vaccination with VLA1553. METHODS This double-blind, multicentre, randomised, phase 3 trial was done in 43 professional vaccine trial sites in the USA. Eligible participants were healthy volunteers aged 18 years and older. Patients were excluded if they had history of chikungunya virus infection or immune-mediated or chronic arthritis or arthralgia, known or suspected defect of the immune system, any inactivated vaccine received within 2 weeks before vaccination with VLA1553, or any live vaccine received within 4 weeks before vaccination with VLA1553. Participants were randomised (3:1) to receive VLA1553 or placebo. The primary endpoint was the proportion of baseline negative participants with a seroprotective chikungunya virus antibody level defined as 50% plaque reduction in a micro plaque reduction neutralisation test (μPRNT) with a μPRNT50 titre of at least 150, 28 days after vaccination. The safety analysis included all individuals who received vaccination. Immunogenicity analyses were done in a subset of participants at 12 pre-selected study sites. These participants were required to have no major protocol deviations to be included in the per-protocol population for immunogenicity analyses. This trial is registered at ClinicalTrials.gov, NCT04546724. FINDINGS Between Sept 17, 2020 and April 10, 2021, 6100 people were screened for eligibility. 1972 people were excluded and 4128 participants were enrolled and randomised (3093 to VLA1553 and 1035 to placebo). 358 participants in the VLA1553 group and 133 participants in the placebo group discontinued before trial end. The per-protocol population for immunogenicity analysis comprised 362 participants (266 in the VLA1553 group and 96 in the placebo group). After a single vaccination, VLA1553 induced seroprotective chikungunya virus neutralising antibody levels in 263 (98·9%) of 266 participants in the VLA1553 group (95% CI 96·7-99·8; p<0·0001) 28 days post-vaccination, independent of age. VLA1553 was generally safe with an adverse event profile similar to other licensed vaccines and equally well tolerated in younger and older adults. Serious adverse events were reported in 46 (1·5%) of 3082 participants exposed to VLA1553 and eight (0·8%) of 1033 participants in the placebo arm. Only two serious adverse events were considered related to VLA1553 treatment (one mild myalgia and one syndrome of inappropriate antidiuretic hormone secretion). Both participants recovered fully. INTERPRETATION The strong immune response and the generation of seroprotective titres in almost all vaccinated participants suggests that VLA1553 is an excellent candidate for the prevention of disease caused by chikungunya virus. FUNDING Valneva, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
15
|
Shaw CA, August A, Bart S, Booth PGJ, Knightly C, Brasel T, Weaver SC, Zhou H, Panther L. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults. Vaccine 2023:S0264-410X(23)00488-7. [PMID: 37210308 DOI: 10.1016/j.vaccine.2023.04.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chikungunya, a mosquito-borne viral disease caused by the chikungunya virus (CHIKV), causes a significant global health burden, and there is currently no approved vaccine to prevent chikungunya disease. In this study, the safety and immunogenicity of a CHIKV mRNA vaccine candidate (mRNA-1388) were evaluated in healthy participants in a CHIKV-nonendemic region. METHODS This phase 1, first-in-human, randomized, placebo-controlled, dose-ranging study enrolled healthy adults (ages 18-49 years) between July 2017 and March 2019 in the United States. Participants were randomly assigned (3:1) to receive 2 intramuscular injections 28 days apart with mRNA-1388 in 3 dose-level groups (25 μg, 50 μg, and 100 μg) or placebo and were followed for up to 1 year. Safety (unsolicited adverse events [AEs]), tolerability (local and systemic reactogenicity; solicited AEs), and immunogenicity (geometric mean titers [GMTs] of CHIKV neutralizing and binding antibodies) of mRNA-1388 versus placebo were evaluated. RESULTS Sixty participants were randomized and received ≥ 1 vaccination; 54 (90 %) completed the study. mRNA-1388 demonstrated favorable safety and reactogenicity profiles at all dose levels. Immunization with mRNA-1388 induced substantial and persistent humoral responses. Dose-dependent increases in neutralizing antibody titers were observed; GMTs (95 % confidence intervals [CIs]) at 28 days after dose 2 were 6.2 (5.1-7.6) for mRNA-1388 25 μg, 53.8 (26.8-108.1) for mRNA-1388 50 μg, 92.8 (43.6-197.6) for mRNA-1388 100 μg, and 5.0 (not estimable) for placebo. Persistent humoral responses were observed up to 1 year after vaccination and remained higher than placebo in the 2 higher mRNA-1388 dose groups. The development of CHIKV-binding antibodies followed a similar trend as that observed with neutralizing antibodies. CONCLUSIONS mRNA-1388, the first mRNA vaccine against CHIKV, was well tolerated and elicited substantial and long-lasting neutralizing antibody responses in healthy adult participants in a nonendemic region. CLINICALTRIALS gov: NCT03325075.
Collapse
Affiliation(s)
| | | | | | | | | | - Trevor Brasel
- University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
16
|
Raju S, Adams LJ, Earnest JT, Warfield K, Vang L, Crowe JE, Fremont DH, Diamond MS. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci Transl Med 2023; 15:eade8273. [PMID: 37196061 PMCID: PMC10562830 DOI: 10.1126/scitranslmed.ade8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidemics of acute and chronic musculoskeletal disease. Here, we analyzed the human B cell response to a CHIKV-like particle-adjuvanted vaccine (PXVX0317) from samples obtained from a phase 2 clinical trial in humans (NCT03483961). Immunization with PXVX0317 induced high levels of neutralizing antibody in serum against CHIKV and circulating antigen-specific B cells up to 6 months after immunization. Monoclonal antibodies (mAbs) generated from peripheral blood B cells of three PXVX0317-vaccinated individuals on day 57 after immunization potently neutralized CHIKV infection, and a subset of these inhibited multiple related arthritogenic alphaviruses. Epitope mapping and cryo-electron microscopy defined two broadly neutralizing mAbs that uniquely bind to the apex of the B domain of the E2 glycoprotein. These results demonstrate the inhibitory breadth and activity of the human B cell response induced by the PXVX0317 vaccine against CHIKV and potentially other related alphaviruses.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James T. Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Fox JM, Roy V, Gunn BM, Bolton GR, Fremont DH, Alter G, Diamond MS, Boesch AW. Enhancing the therapeutic activity of hyperimmune IgG against chikungunya virus using FcγRIIIa affinity chromatography. Front Immunol 2023; 14:1153108. [PMID: 37251375 PMCID: PMC10213286 DOI: 10.3389/fimmu.2023.1153108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Chikungunya virus (CHIKV) is a re-emerging mosquito transmitted alphavirus of global concern. Neutralizing antibodies and antibody Fc-effector functions have been shown to reduce CHIKV disease and infection in animals. However, the ability to improve the therapeutic activity of CHIKV-specific polyclonal IgG by enhancing Fc-effector functions through modulation of IgG subclass and glycoforms remains unknown. Here, we evaluated the protective efficacy of CHIKV-immune IgG enriched for binding to Fc-gamma receptor IIIa (FcγRIIIa) to select for IgG with enhanced Fc effector functions. Methods Total IgG was isolated from CHIKV-immune convalescent donors with and without additional purification by FcγRIIIa affinity chromatography. The enriched IgG was characterized in biophysical and biological assays and assessed for therapeutic efficacy during CHIKV infection in mice. Results FcγRIIIa-column purification enriched for afucosylated IgG glycoforms. In vitro characterization showed the enriched CHIKV-immune IgG had enhanced human FcγRIIIa and mouse FcγRIV affinity and FcγR-mediated effector function without reducing virus neutralization in cellular assays. When administered as post-exposure therapy in mice, CHIKV-immune IgG enriched in afucosylated glycoforms promoted reduction in viral load. Discussion Our study provides evidence that, in mice, increasing Fc engagement of FcγRs on effector cells, by leveraging FcγRIIIa-affinity chromatography, enhanced the antiviral activity of CHIKV-immune IgG and reveals a path to produce more effective therapeutics against these and potentially other emerging viruses.
Collapse
Affiliation(s)
- Julie M. Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vicky Roy
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA, United States
| | - Bronwyn M. Gunn
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA, United States
| | | | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA, United States
- Moderna, Inc., Cambridge, MA, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
18
|
Millsapps EM, Underwood EC, Barr KL. Development and Application of Treatment for Chikungunya Fever. Res Rep Trop Med 2022; 13:55-66. [PMID: 36561535 PMCID: PMC9767026 DOI: 10.2147/rrtm.s370046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development and application of treatment for Chikungunya fever (CHIKF) remains complicated as there is no current standard treatment and many barriers to research exist. Chikungunya virus (CHIKV) causes serious global health implications due to its socioeconomic impact and high morbidity rates. In research, treatment through natural and pharmaceutical techniques is being evaluated for their efficacy and effectiveness. Natural treatment options, such as homeopathy and physiotherapy, give patients a variety of options for how to best manage acute and chronic symptoms. Some of the most used pharmaceutical therapies for CHIKV include non-steroidal anti-inflammatory drugs (NSAIDS), methotrexate (MTX), chloroquine, and ribavirin. Currently, there is no commercially available vaccine for chikungunya, but vaccine development is crucial for this virus. Potential treatments need further research until they can become a standard part of treatment. The barriers to research for this complicated virus create challenges in the efficacy and equitability of its research. The rising need for increased research to fully understand chikungunya in order to develop more effective treatment options is vital in protecting endemic populations globally.
Collapse
Affiliation(s)
- Erin M Millsapps
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Emma C Underwood
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Kelli L Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA,Correspondence: Kelli L Barr, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd. Suite 304, Tampa, FL, 33612, USA, Tel +1 813 974 4480, Fax +1 813 974 4962, Email
| |
Collapse
|
19
|
Tagore R, Alagarasu K, Patil P, Pyreddy S, Polash SA, Kakade M, Shukla R, Parashar D. Targeted in vitro gene silencing of E2 and nsP1 genes of chikungunya virus by biocompatible zeolitic imidazolate framework. Front Bioeng Biotechnol 2022; 10:1003448. [PMID: 36601387 PMCID: PMC9806579 DOI: 10.3389/fbioe.2022.1003448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever caused by the mosquito-transmitted chikungunya virus (CHIKV) is a major public health concern in tropical, sub-tropical and temperate climatic regions. The lack of any licensed vaccine or antiviral agents against CHIKV warrants the development of effective antiviral therapies. Small interfering RNA (siRNA) mediated gene silencing of CHIKV structural and non-structural genes serves as a potential antiviral strategy. The therapeutic efficiency of siRNA can be improved by using an efficient delivery system. Metal-organic framework biocomposits have demonstrated an exceptional capability in protecting and efficiently delivering nucleic acids into cells. In the present study, carbonated ZIF called ZIF-C has been utilized to deliver siRNAs targeted against E2 and nsP1 genes of CHIKV to achieve a reduction in viral replication and infectivity. Cellular transfection studies of E2 and nsP1 genes targeting free siRNAs and ZIF-C encapsulated siRNAs in CHIKV infected Vero CCL-81 cells were performed. Our results reveal a significant reduction of infectious virus titre, viral RNA levels and percent of infected cells in cultures transfected with ZIF-C encapsulated siRNA compared to cells transfected with free siRNA. The results suggest that delivery of siRNA through ZIF-C enhances the antiviral activity of CHIKV E2 and nsP1 genes directed siRNAs.
Collapse
Affiliation(s)
- Rajarshee Tagore
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Kalichamy Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Poonam Patil
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Suneela Pyreddy
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Shakil Ahmed Polash
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Mahadeo Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| | - Deepti Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| |
Collapse
|
20
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|
21
|
Bennett SR, McCarty JM, Ramanathan R, Mendy J, Richardson JS, Smith J, Alexander J, Ledgerwood JE, de Lame PA, Royalty Tredo S, Warfield KL, Bedell L. Safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted chikungunya virus-like particle vaccine: a randomised, double-blind, parallel-group, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1343-1355. [PMID: 35709798 DOI: 10.1016/s1473-3099(22)00226-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chikungunya virus (CHIKV) disease is an ongoing public health threat. We aimed to evaluate the safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted formulation of a CHIKV virus-like particle (VLP) vaccine. METHODS This randomised, double-blind, parallel-group, phase 2 trial was conducted at three clinical trial centres in the USA. Eligible participants were healthy CHIKV-naïve adults aged 18-45 years. Participants were stratified by site and randomly assigned (1:1:1:1:1:1:1:1) to one of the eight vaccination groups using a block size of 16. Group 1 received two doses of unadjuvanted PXVX0317 28 days apart (2 × 20 μg; standard); all other groups received adjuvanted PXVX0317: groups 2-4 received two doses 28 days apart (2 × 6 μg [group 2], 2 × 10 μg [group 3], or 2 × 20 μg [group 4]; standard); group 4 also received a booster dose 18 months after the first active injection (40 μg; standard plus booster); groups 5-7 received two doses 14 days apart (2 × 6 μg [group 5], 2 × 10 μg [group 6], or 2 × 20 μg [group 7]; accelerated); and group 8 received one dose (1 × 40 μg; single). The primary endpoint was the geometric mean titre of anti-CHIKV neutralising antibody on day 57 (28 days after the last vaccination), assessed in the immunogenicity-evaluable population. Additionally, we assessed safety. This trial is registered at ClinicalTrials.gov, NCT03483961. FINDINGS This trial was conducted from April 18, 2018, to Sept 21, 2020; 468 participants were assessed for eligibility. Of these, 415 participants were randomly assigned to eight groups (n=53 in groups 1, 5, and 6; n=52 in groups 2 and 8; n=51 in groups 3 and 7; and n=50 in group 4) and 373 were evaluable for immunogenicity. On day 57, serum neutralising antibody geometric mean titres were 2057·0 (95% CI 1584·8-2670·0) in group 1, 1116·2 (852·5-1461·4; p=0·0015 vs group 1 used as a reference) in group 2, 1465·3 (1119·1-1918·4; p=0·076) in group 3, 2023·8 (1550·5-2641·7; p=0·93) in group 4, 920·1 (710·9-1190·9; p<0·0001) in group 5, 1206·9 (932·4-1562·2; p=0·0045) in group 6, 1562·8 (1204·1-2028·3; p=0·14) in group 7, and 1712·5 (1330·0-2205·0; p=0·32) in group 8. In group 4, a booster dose increased serum neutralising antibody geometric mean titres from 215·7 (95% CI 160·9-289·1) on day 547 to 10 941·1 (7378·0-16 225·1) on day 575. Durability of the immune response (evaluated in groups 1, 4, and 8) was shown up to 2 years. The most common solicited adverse event was pain at the injection site, reported in 12 (23%) of 53 participants who received the unadjuvanted vaccine (group 1) and 111 (31%) of 356 who received the adjuvanted vaccine. No vaccine-related serious adverse events were reported. INTERPRETATION PXVX0317 was well tolerated and induced a robust and durable serum neutralising antibody immune response against CHIKV up to 2 years. A single 40 μg injection of adjuvanted PXVX0317 is being further investigated in phase 3 clinical trials (NCT05072080 and NCT05349617). FUNDING Emergent BioSolutions.
Collapse
Affiliation(s)
| | | | - Roshan Ramanathan
- Emergent BioSolutions, Gaithersburg, MD, USA; GlaxoSmithKline Pharmaceuticals, Philadelphia, PA, USA
| | - Jason Mendy
- Emergent BioSolutions, Gaithersburg, MD, USA
| | | | - Jonathan Smith
- Emergent BioSolutions, Gaithersburg, MD, USA; VLP Therapeutics, Gaithersburg, MD, USA
| | | | - Julie E Ledgerwood
- Vaccine Research Center, US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Lisa Bedell
- Emergent BioSolutions, Gaithersburg, MD, USA.
| |
Collapse
|
22
|
Farhangnia P, Dehrouyeh S, Safdarian AR, Farahani SV, Gorgani M, Rezaei N, Akbarpour M, Delbandi AA. Recent advances in passive immunotherapies for COVID-19: The Evidence-Based approaches and clinical trials. Int Immunopharmacol 2022; 109:108786. [PMID: 35483235 PMCID: PMC9021130 DOI: 10.1016/j.intimp.2022.108786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing a global pandemic called COVID-19. Currently, there is no definitive treatment for this emerging disease. Global efforts resulted in developing multiple platforms of COVID-19 vaccines, but their efficacy in humans should be wholly investigated in the long-term clinical and epidemiological follow-ups. Despite the international efforts, COVID-19 vaccination accompanies challenges, including financial and political obstacles, serious adverse effects (AEs), the impossibility of using vaccines in certain groups of people in the community, and viral evasion due to emerging novel variants of SARS-CoV-2 in many countries. For these reasons, passive immunotherapy has been considered a complementary remedy and a promising way to manage COVID-19. These approaches arebased on reduced inflammation due to inhibiting cytokine storm phenomena, immunomodulation,preventing acute respiratory distress syndrome (ARDS), viral neutralization, anddecreased viral load. This article highlights passive immunotherapy and immunomodulation approaches in managing and treating COVID-19 patients and discusses relevant clinical trials (CTs).
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Shiva Dehrouyeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Amir Reza Safdarian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Soheila Vasheghani Farahani
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, United States.
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Roques P, Fritzer A, Dereuddre-Bosquet N, Wressnigg N, Hochreiter R, Bossevot L, Pascal Q, Guehenneux F, Bitzer A, Corbic Ramljak I, Le Grand R, Lundberg U, Meinke A. Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera. JCI Insight 2022; 7:160173. [PMID: 35700051 PMCID: PMC9431671 DOI: 10.1172/jci.insight.160173] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro–plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.
Collapse
Affiliation(s)
- Pierre Roques
- Unité de Virologie, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | | - Nina Wressnigg
- Clinical Strategy, Valneva Austria GmbH, Vienna, Austria
| | | | - Laetitia Bossevot
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | - Quentin Pascal
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | | | | - Roger Le Grand
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
24
|
Tharmalingam T, Han X, Wozniak A, Saward L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum Vaccin Immunother 2022; 18:1886560. [PMID: 34010089 PMCID: PMC9090292 DOI: 10.1080/21645515.2021.1886560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements. The review will reflect on key learnings from development of HIGs in the response to public health threats due to Zika, influenza, and severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Xiaobing Han
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ashley Wozniak
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Laura Saward
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Nyamwaya DK, Thumbi SM, Bejon P, Warimwe GM, Mokaya J. The global burden of Chikungunya fever among children: A systematic literature review and meta-analysis. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000914. [PMID: 36962807 PMCID: PMC10022366 DOI: 10.1371/journal.pgph.0000914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Chikungunya fever (CHIKF) is an arboviral illness that was first described in Tanzania (1952). In adults, the disease is characterised by debilitating arthralgia and arthritis that can persist for months, with severe illness including neurological complications observed in the elderly. However, the burden, distribution and clinical features of CHIKF in children are poorly described. We conducted a systematic literature review and meta-analysis to determine the epidemiology of CHIKF in children globally by describing its prevalence, geographical distribution, and clinical manifestations. We searched electronic databases for studies describing the epidemiology of CHIKF in children. We included peer-reviewed primary studies that reported laboratory confirmed CHIKF. We extracted information on study details, sampling approach, study participants, CHIKF positivity, clinical presentation and outcomes of CHIKF in children. The quality of included studies was assessed using Joanna Briggs Institute Critical Appraisal tool for case reports and National Institute of Health quality assessment tool for quantitative studies and case series. Random-effects meta-analysis was used to estimate the pooled prevalence of CHIKF among children by geographical location. We summarised clinical manifestations, laboratory findings, administered treatment and disease outcomes associated with CHIKF in children. We identified 2104 studies, of which 142 and 53 articles that met the inclusion criteria were included in the systematic literature review and meta-analysis, respectively. Most of the selected studies were from Asia (54/142 studies) and the fewest from Europe (5/142 studies). Included studies were commonly conducted during an epidemic season (41.5%) than non-epidemic season (5.1%). Thrombocytopenia was common among infected children and CHIKF severity was more prevalent in children <1 year. Children with undifferentiated fever before CHIKF was diagnosed were treated with antibiotics and/or drugs that managed specific symptoms or provided supportive care. CHIKF is a significant under-recognised and underreported health problem among children globally and development of drugs/vaccines should target young children.
Collapse
Affiliation(s)
- Doris K Nyamwaya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Samuel M Thumbi
- Paul G Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - George M Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Jolynne Mokaya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S, Pajon R, Han S, Lecerf JM, Tomassini JE, Hard M, Ptaszek LM, Crowe JE, Zaks T. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med 2021; 27:2224-2233. [PMID: 34887572 PMCID: PMC8674127 DOI: 10.1038/s41591-021-01573-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 ( NCT03829384 ). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18-50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg-1, or two weekly doses at 0.3 mg kg-1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml-1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg-1 (mean t1/2 approximately 69 d). A second 0.3 mg kg-1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Han
- Moderna, Inc., Cambridge, MA, USA
| | | | | | | | | | - James E Crowe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA, USA
| |
Collapse
|
28
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
29
|
Manzoor KN, Javed F, Ejaz M, Ali M, Mujaddadi N, Khan AA, Khattak AA, Zaib A, Ahmad I, Saeed WK, Manzoor S. The global emergence of Chikungunya infection: An integrated view. Rev Med Virol 2021; 32:e2287. [PMID: 34428335 DOI: 10.1002/rmv.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.
Collapse
Affiliation(s)
| | - Farakh Javed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Muhammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Mubashar Ali
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Neelam Mujaddadi
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Abid Ali Khan
- Institute of Precision Medicine, Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Ibrar Ahmad
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman school of applied biosciences, National University of science and Technology, Islamabad, Pakistan
| |
Collapse
|
30
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
31
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
32
|
Zhao Z, Deng Y, Niu P, Song J, Wang W, Du Y, Huang B, Wang W, Zhang L, Zhao P, Tan W. Co-Immunization With CHIKV VLP and DNA Vaccines Induces a Promising Humoral Response in Mice. Front Immunol 2021; 12:655743. [PMID: 33868299 PMCID: PMC8044884 DOI: 10.3389/fimmu.2021.655743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Chikungunya fever is an acute infectious disease that is mediated by the mosquito-transmitted chikungunya virus (CHIKV), for which no licensed vaccines are currently available. Here, we explored several immunization protocols and investigated their immunity and protective effects in mice, with DNA- and virus-like particle (VLP)- vaccines, both alone and in combination. Both DNA and VLP vaccine candidates were developed and characterized, which express CHIKV structural genes (C-E3-E2-6K-E1). Mice were immunized twice, with different protocols, followed by immunological detection and CHIKV Ross challenge. The highest antigen-specific IgG and neutralizing activity were induced by DNA and VLP co-immunization, while the highest cellular immunity was induced by DNA vaccination alone. Although all vaccine groups could protect mice from lethal CHIKV challenge, demonstrated as reduced viral load in various tissues, without weight loss, mice co-immunized with DNA and VLP exhibited the mildest histopathological changes and lowest International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) scores, in comparison to mice with either DNA or VLP vaccination alone. We concluded that co-immunization with DNA and VLP is a promising strategy to inducing better protective immunity against CHIKV infection.
Collapse
Affiliation(s)
- Zhimin Zhao
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yao Deng
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Peihua Niu
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jingdong Song
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wen Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yongping Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Baoying Huang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wenling Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ping Zhao
- Shanghai Key Laboratory of Biomedical Protection, Department of Biomedical Protection, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Wenjie Tan
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
33
|
Prophylactic strategies to control chikungunya virus infection. Virus Genes 2021; 57:133-150. [PMID: 33590406 PMCID: PMC7883954 DOI: 10.1007/s11262-020-01820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.
Collapse
|
34
|
Levi LI, Rezelj VV, Henrion-Lacritick A, Erazo D, Boussier J, Vallet T, Bernhauerová V, Suzuki Y, Carrau L, Weger-Lucarelli J, Saleh MC, Vignuzzi M. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog 2021; 17:e1009110. [PMID: 33556143 PMCID: PMC7870000 DOI: 10.1371/journal.ppat.1009110] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced during virus replication. Described in many RNA virus families, some of them have interfering activity on their parental virus and/or strong immunostimulatory potential, and are being considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo in experimentally infected Aedes aegypti mosquitoes. We combined experimental and computational approaches to select DVG candidates most likely to have inhibitory activity and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian and mosquito cells. We further demonstrated that some DVGs present broad-spectrum activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo.
Collapse
Affiliation(s)
- Laura I. Levi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
- École doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Veronica V. Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | | | - Diana Erazo
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - J Boussier
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
- École doctorale Frontières du vivant, Université Paris Diderot, Paris, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Veronika Bernhauerová
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Yasutsugu Suzuki
- Institut Pasteur, Viruses and RNAi Unit, CNRS UMR 3569, Paris, France
| | - Lucia Carrau
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
- École doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - James Weger-Lucarelli
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNAi Unit, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| |
Collapse
|
35
|
Liu JL, Webb EM, Zabetakis D, Burke CW, Gardner CL, Glass PJ, Legler PM, Weger-Lucarelli J, Anderson GP, Goldman ER. Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Front Med (Lausanne) 2021; 8:626028. [PMID: 33585527 PMCID: PMC7876468 DOI: 10.3389/fmed.2021.626028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
A single domain antibody (clone CC3) previously found to neutralize a vaccine strain of the chikungunya virus (PRNT50 = 2. 5 ng/mL) was found to be broadly neutralizing. Clone CC3 is not only able to neutralize a wild-type (WT) strain of chikungunya virus (CHIKV), but also neutralizes WT strains of Mayaro virus (MAYV) and Ross River virus (RRV); both arthralgic, Old World alphaviruses. Interestingly, CC3 also demonstrated a degree of neutralizing activity against the New World alphavirus, Venezuelan equine encephalitis virus (VEEV); albeit both the vaccine strain, TC-83, and the parental, WT Trinidad donkey strain had PRNT50 values ~1,000-fold higher than that of CHIKV. However, no neutralization activity was observed with Western equine encephalitis virus (WEEV). Ten CC3 variants designed to possess a range of isoelectric points, both higher and lower, were constructed. This approach successfully identified several lower pI mutants which possessed improved thermal stabilities by as much as 10°C over the original CC3 (Tm = 62°C), and excellent refolding abilities while maintaining their capacity to bind and neutralize CHIKV.
Collapse
Affiliation(s)
- Jinny L Liu
- U.S. Naval Research Laboratory, Center for BioMolecular Science and Engineering, Washington, DC, United States
| | - Emily M Webb
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Dan Zabetakis
- U.S. Naval Research Laboratory, Center for BioMolecular Science and Engineering, Washington, DC, United States
| | - Crystal W Burke
- Virology Division, U.S. Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, United States
| | - Christina L Gardner
- Virology Division, U.S. Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, United States
| | - Pamela J Glass
- Virology Division, U.S. Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory, Center for BioMolecular Science and Engineering, Washington, DC, United States
| | | | - George P Anderson
- U.S. Naval Research Laboratory, Center for BioMolecular Science and Engineering, Washington, DC, United States
| | - Ellen R Goldman
- U.S. Naval Research Laboratory, Center for BioMolecular Science and Engineering, Washington, DC, United States
| |
Collapse
|
36
|
Campos RK, Preciado-Llanes L, Azar SR, Kim YC, Brandon O, López-Camacho C, Reyes-Sandoval A, Rossi SL. Adenoviral-Vectored Mayaro and Chikungunya Virus Vaccine Candidates Afford Partial Cross-Protection From Lethal Challenge in A129 Mouse Model. Front Immunol 2020; 11:591885. [PMID: 33224148 PMCID: PMC7672187 DOI: 10.3389/fimmu.2020.591885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Mayaro (MAYV) and chikungunya viruses (CHIKV) are vector-borne arthritogenic alphaviruses that cause acute febrile illnesses. CHIKV is widespread and has recently caused large urban outbreaks, whereas the distribution of MAYV is restricted to tropical areas in South America with small and sporadic outbreaks. Because MAYV and CHIKV are closely related and have high amino acid similarity, we investigated whether vaccination against one could provide cross-protection against the other. We vaccinated A129 mice (IFNAR -/-) with vaccines based on chimpanzee adenoviral vectors encoding the structural proteins of either MAYV or CHIKV. ChAdOx1 May is a novel vaccine against MAYV, whereas ChAdOx1 Chik is a vaccine against CHIKV already undergoing early phase I clinical trials. We demonstrate that ChAdOx1 May was able to afford full protection against MAYV challenge in mice, with most samples yielding neutralizing PRNT80 antibody titers of 1:258. ChAdOx1 May also provided partial cross-protection against CHIKV, with protection being assessed using the following parameters: survival, weight loss, foot swelling and viremia. Reciprocally, ChAdOx1 Chik vaccination reduced MAYV viral load, as well as morbidity and lethality caused by this virus, but did not protect against foot swelling. The cross-protection observed is likely to be, at least in part, secondary to cross-neutralizing antibodies induced by both vaccines. In summary, our findings suggest that ChAdOx1 Chik and ChAdOx1 May vaccines are not only efficacious against CHIKV and MAYV, respectively, but also afford partial heterologous cross-protection.
Collapse
Affiliation(s)
- Rafael Kroon Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lorena Preciado-Llanes
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Olivia Brandon
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
37
|
Abstract
Chikungunya virus (CHIKV) is a significant human pathogen that causes debilitating and long-lasting arthritis. Currently, there is no approved vaccine or specific therapeutic. We show that two highly potent anti-CHIKV antibodies—CHK-124 and CHK-263—can inhibit multiple steps of the CHIKV infection cycle and determined their cryogenic electron microscopy structures in complex with CHIKV particles to a 4- to 5-Å resolution. We describe the structural details of the epitopes of CHK-124 and CHK-263 and how they relate to their functional mechanisms of neutralization. Our results provide important information that will advance antibody therapeutics and vaccine development against this emerging pathogen. Chikungunya virus (CHIKV) is an emerging viral pathogen that causes both acute and chronic debilitating arthritis. Here, we describe the functional and structural basis as to how two anti-CHIKV monoclonal antibodies, CHK-124 and CHK-263, potently inhibit CHIKV infection in vitro and in vivo. Our in vitro studies show that CHK-124 and CHK-263 block CHIKV at multiple stages of viral infection. CHK-124 aggregates virus particles and blocks attachment. Also, due to antibody-induced virus aggregation, fusion with endosomes and egress are inhibited. CHK-263 neutralizes CHIKV infection mainly by blocking virus attachment and fusion. To determine the structural basis of neutralization, we generated cryogenic electron microscopy reconstructions of Fab:CHIKV complexes at 4- to 5-Å resolution. CHK-124 binds to the E2 domain B and overlaps with the Mxra8 receptor-binding site. CHK-263 blocks fusion by binding an epitope that spans across E1 and E2 and locks the heterodimer together, likely preventing structural rearrangements required for fusion. These results provide structural insight as to how neutralizing antibody engagement of CHIKV inhibits different stages of the viral life cycle, which could inform vaccine and therapeutic design.
Collapse
|
38
|
Wressnigg N, Hochreiter R, Zoihsl O, Fritzer A, Bézay N, Klingler A, Lingnau K, Schneider M, Lundberg U, Meinke A, Larcher-Senn J, Čorbic-Ramljak I, Eder-Lingelbach S, Dubischar K, Bender W. Single-shot live-attenuated chikungunya vaccine in healthy adults: a phase 1, randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:1193-1203. [DOI: 10.1016/s1473-3099(20)30238-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
|
39
|
Fox JM, Huang L, Tahan S, Powell LA, Crowe JE, Wang D, Diamond MS. A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathog 2020; 16:e1008743. [PMID: 32760128 PMCID: PMC7433899 DOI: 10.1371/journal.ppat.1008743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/18/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Arthritogenic alphaviruses cause debilitating musculoskeletal disease and historically have circulated in distinct regions. With the global spread of chikungunya virus (CHIKV), there now is more geographic overlap, which could result in heterologous immunity affecting natural infection or vaccination. Here, we evaluated the capacity of a cross-reactive anti-CHIKV monoclonal antibody (CHK-265) to protect against disease caused by the distantly related alphavirus, Ross River virus (RRV). Although CHK-265 only moderately neutralizes RRV infection in cell culture, it limited clinical disease in mice independently of Fc effector function activity. Despite this protective phenotype, RRV escaped from CHK-265 neutralization in vivo, with resistant variants retaining pathogenic potential. Near the inoculation site, CHK-265 reduced viral burden in a type I interferon signaling-dependent manner and limited immune cell infiltration into musculoskeletal tissue. In a parallel set of experiments, purified human CHIKV immune IgG also weakly neutralized RRV, yet when transferred to mice, resulted in improved clinical outcome during RRV infection despite the emergence of resistant viruses. Overall, this study suggests that weakly cross-neutralizing antibodies can protect against heterologous alphavirus disease, even if neutralization escape occurs, through an early viral control program that tempers inflammation. The induction of broadly neutralizing antibodies is a goal of many antiviral vaccine programs. In this study, we show that cross-reactive monoclonal and polyclonal antibodies developed after CHIKV infection or immunization with relatively weak cross-neutralizing activity can protect against RRV-induced musculoskeletal disease in mice. Even though RRV rapidly escaped from neutralization, antibody therapy reduced inflammation in musculoskeletal tissues and decreased viral burden near the site of infection in a manner that required type I interferon signaling. These studies in mice show that broadly reactive antibodies with limited neutralizing activity still can confer protection against heterologous alphaviruses.
Collapse
Affiliation(s)
- Julie M. Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ling Huang
- MacroGenics, Rockville, Maryland, United States of America
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Laura A. Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
40
|
|
41
|
Chisenga CC, Bosomprah S, Musukuma K, Mubanga C, Chilyabanyama ON, Velu RM, Kim YC, Reyes-Sandoval A, Chilengi R. Sero-prevalence of arthropod-borne viral infections among Lukanga swamp residents in Zambia. PLoS One 2020; 15:e0235322. [PMID: 32609784 PMCID: PMC7329080 DOI: 10.1371/journal.pone.0235322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The re-emergence of vector borne diseases affecting millions of people in recent years has drawn attention to arboviruses globally. Here, we report on the sero-prevalence of chikungunya virus (CHIKV), dengue virus (DENV), mayaro virus (MAYV) and zika virus (ZIKV) in a swamp community in Zambia. METHODS We collected blood and saliva samples from residents of Lukanga swamps in 2016 during a mass-cholera vaccination campaign. Over 10,000 residents were vaccinated with two doses of Shanchol™ during this period. The biological samples were collected prior to vaccination (baseline) and at specified time points after vaccination. We tested a total of 214 baseline stored serum samples for IgG antibodies against NS1 of DENV and ZIKV and E2 of CHIKV and MAYV on ELISA. We defined sero-prevalence as the proportion of participants with optical density (OD) values above a defined cut-off value, determined using a finite mixture model. RESULTS Of the 214 participants, 79 (36.9%; 95% CI 30.5-43.8) were sero-positive for Chikungunya; 23 (10.8%; 95% CI 6.9-15.7) for Zika, 36 (16.8%; 95% CI 12.1-22.5) for Dengue and 42 (19.6%; 95% CI 14.5-25.6) for Mayaro. Older participants were more likely to have Zika virus whilst those involved with fishing activities were at greater risk of contracting Chikungunya virus. Among all the antigens tested, we also found that Chikungunya saliva antibody titres correlated with baseline serum titres (Spearman's correlation coefficient = 0.222; p = 0.03). CONCLUSION Arbovirus transmission is occurring in Zambia. This requires proper screening tools as well as surveillance data to accurately report on disease burden in Zambia.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra
| | - Kalo Musukuma
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Cynthia Mubanga
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | | | - Rachel M. Velu
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Young Chan Kim
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Roma Chilengi
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| |
Collapse
|
42
|
Alzoughool F, Alanagreh L. Coronavirus drugs: Using plasma from recovered patients as a treatment for COVID-19. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2020; 31:47-51. [PMID: 32310190 PMCID: PMC7306893 DOI: 10.3233/jrs-201017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ongoing COVID-19 pandemic has infected nearly 3,582,233 individuals with 248,558 deaths since it was first identified in human populations in December 2019 in Wuhan, China. No antiviral therapies or vaccines are available for their treatment or prevention. Passive immunization PI through broadly neutralizing antibodies that bind to the specific antigens of SARS-CoV 2 might be a potential solution to address the immediate health threat of COVID-19 pandemic while vaccines are being developed. The PI approach in treating COVID-19 is discussed herein, including a summary of its historical applications to confront epidemics.
Collapse
Affiliation(s)
- Foad Alzoughool
- Department of Laboratory Medical Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Jordan
| | - Lo'ai Alanagreh
- Department of Laboratory Medical Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Jordan
| |
Collapse
|
43
|
Ragan I, Hartson L, Pidcoke H, Bowen R, Goodrich R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One 2020; 15:e0233947. [PMID: 32470046 PMCID: PMC7259667 DOI: 10.1371/journal.pone.0233947] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has recently been identified as the causative agent for Coronavirus Disease 2019 (COVID-19). The ability of this agent to be transmitted by blood transfusion has not been documented, although viral RNA has been detected in serum. Exposure to treatment with riboflavin and ultraviolet light (R + UV) reduces blood-borne pathogens while maintaining blood product quality. Here, we report on the efficacy of R + UV in reducing SARS-CoV-2 infectivity when tested in human plasma and whole blood products. STUDY DESIGN AND METHODS SARS-CoV-2 (isolate USA-WA1/2020) was used to inoculate plasma and whole blood units that then underwent treatment with riboflavin and UV light (Mirasol Pathogen Reduction Technology System, Terumo BCT, Lakewood, CO). The infectious titers of SARS-CoV-2 in the samples before and after R + UV treatment were determined by plaque assay on Vero E6 cells. Each plasma pool (n = 9) underwent R + UV treatment performed in triplicate using individual units of plasma and then repeated using individual whole blood donations (n = 3). RESULTS Riboflavin and UV light reduced the infectious titer of SARS-CoV-2 below the limit of detection for plasma products at 60-100% of the recommended energy dose. At the UV light dose recommended by the manufacturer, the mean log reductions in the viral titers were ≥ 4.79 ± 0.15 Logs in plasma and 3.30 ± 0.26 in whole blood units. CONCLUSION Riboflavin and UV light effectively reduced the titer of SARS-CoV-2 to the limit of detection in human plasma and by 3.30 ± 0.26 on average in whole blood. Two clades of SARS-CoV-2 have been described and questions remain about whether exposure to one strain confers strong immunity to the other. Pathogen-reduced blood products may be a safer option for critically ill patients with COVID-19, particularly those in high-risk categories.
Collapse
Affiliation(s)
- Izabela Ragan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lindsay Hartson
- Infectious Disease Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Heather Pidcoke
- Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Raymond Goodrich
- Infectious Disease Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
44
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
45
|
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front Immunol 2020; 11:592. [PMID: 32373111 PMCID: PMC7179680 DOI: 10.3389/fimmu.2020.00592] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
Arboviruses represent major challenges to public health, particularly in tropical, and subtropical regions, and a substantial risk to other parts of the world as respective vectors extend their habitats. In recent years, two viruses transmitted by Aedes mosquitoes, Chikungunya and Zika virus, have gathered increased interest. After decades of regionally constrained outbreaks, both viruses have recently caused explosive outbreaks on an unprecedented scale, causing immense suffering and massive economic burdens in affected regions. Chikungunya virus causes an acute febrile illness that often transitions into a chronic manifestation characterized by debilitating arthralgia and/or arthritis in a substantial subset of infected individuals. Zika infection frequently presents as a mild influenza-like illness, often subclinical, but can cause severe complications such as congenital malformations in pregnancy and neurological disorders, including Guillain-Barré syndrome. With no specific treatments or vaccines available, vector control remains the most effective measure to manage spread of these diseases. Given that both viruses cause antibody responses that confer long-term, possibly lifelong protection and that such responses are cross-protective against the various circulating genetic lineages, the development of Zika and Chikungunya vaccines represents a promising route for disease control. In this review we provide a brief overview on Zika and Chikungunya viruses, the etiology and epidemiology of the illnesses they cause and the host immune response against them, before summarizing past and current efforts to develop vaccines to alleviate the burden caused by these emerging diseases. The development of the urgently needed vaccines is hampered by several factors including the unpredictable epidemiology, feasibility of rapid clinical trial implementation during outbreaks and regulatory pathways. We will give an overview of the current developments.
Collapse
|
46
|
Fox JM, Roy V, Gunn BM, Huang L, Edeling MA, Mack M, Fremont DH, Doranz BJ, Johnson S, Alter G, Diamond MS. Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc-FcγR interaction on monocytes. Sci Immunol 2020; 4:4/32/eaav5062. [PMID: 30796092 DOI: 10.1126/sciimmunol.aav5062] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne virus that has caused explosive outbreaks worldwide. Although neutralizing monoclonal antibodies (mAbs) against CHIKV inhibit infection in animals, the contribution of Fc effector functions to protection remains unknown. Here, we evaluated the activity of therapeutic mAbs that had or lacked the ability to engage complement and Fcγ receptors (FcγR). When administered as post-exposure therapy in mice, the Fc effector functions of mAbs promoted virus clearance from infected cells and reduced joint swelling-results that were corroborated in antibody-treated transgenic animals lacking activating FcγR. The control of CHIKV infection by antibody-FcγR engagement was associated with an accelerated influx of monocytes. A series of immune cell depletions revealed that therapeutic mAbs required monocytes for efficient clearance of CHIKV infection. Overall, our study suggests that in mice, FcγR expression on monocytes is required for optimal therapeutic activity of antibodies against CHIKV and likely other related viruses.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | | | - Melissa A Edeling
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthias Mack
- Regensburg University Medical Center, Regensburg 93042, Germany
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA. .,Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
47
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
48
|
Pre-existing chikungunya virus neutralizing antibodies correlate with risk of symptomatic infection and subclinical seroconversion in a Philippine cohort. Int J Infect Dis 2020; 95:167-173. [PMID: 32247051 DOI: 10.1016/j.ijid.2020.03.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A longitudinal cohort study performed in Cebu City, Philippines found that the presence of pre-existing chikungunya virus (CHIKV) neutralizing antibodies (NAb) was associated with a decreased risk of symptomatic CHIKV infection. However, the relationship between pre-existing NAb and the risk of subclinical seroconversion has not been well described. METHODS Data were analyzed from a longitudinal cohort aged 6 months to 83 years who underwent active fever surveillance in Cebu City, Philippines from 2012 to 2014. Participants with a history of fever underwent acute and 3-week convalescent visits with blood collection, and annual visits at baseline, 12 months, and 24 months. Symptomatic CHIKV infections were detected by PCR of acute illness sera. Subclinical seroconversion was defined as a ≥8-fold rise in 80% plaque reduction neutralization test (PRNT80) titer between annual visits without intervening symptomatic infection. RESULTS Among 854 participants who completed the 12-month visit (year 1) and 765 who completed the 24-month visit (year 2), 25 symptomatic CHIKV infections and 104 subclinical seroconversions occurred among 615 individuals with no detectable pre-year NAb in year 1 and 444 in year 2, while no symptomatic infections and one subclinical seroconversion occurred in those with a pre-year PRNT80 titer ≥1:10. Pre-year PRNT80 titer ≥1:10 was associated with zero relative risk of symptomatic CHIKV infection and 0.018 risk of subclinical seroconversion. CONCLUSIONS The presence of detectable pre-existing CHIKV NAb correlated with a decreased risk of both symptomatic CHIKV infection and subclinical seroconversion. These findings support the potential use of CHIKV NAb titer as a surrogate endpoint of protection from infection for vaccine development.
Collapse
|
49
|
Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya: Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. Infect Dis Clin North Am 2020; 33:1003-1025. [PMID: 31668189 DOI: 10.1016/j.idc.2019.08.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chikungunya, a zoonotic disease caused by the Chikungunya virus (CHIKV), is transmitted by infected Aedes spp mosquitoes. CHIKV has now spread to more than 100 countries and is listed on the WHO Blueprint priority pathogens. After an incubation period of 1 to 12 days, symptoms similar to other febrile infections appear, with a sudden onset of high fever, nausea, polyarthralgia, myalgia, widespread skin rash, and conjunctivitis. Serious complications include myocarditis, uveitis, retinitis, hepatitis, acute renal disease, severe bullous lesions, meningoencephalitis, Guillain-Barré syndrome, myelitis, and cranial nerve palsies. Treatment is supportive; there is no specific antiviral treatment and no effective vaccine.
Collapse
Affiliation(s)
- Francesco Vairo
- National Institute for Infectious Diseases, "Lazzaro Spallanzani"Istituto di ricovero e cura a carattere scientifico - IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Techniques, University Marien Ngouabi, PO Box 69, Brazzaville, Congo; Institute for Tropical Medicine, University of Tübingen, Wilhelmstraße 27 72074, Tübingen, Germany
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, "Lazzaro Spallanzani"Istituto di ricovero e cura a carattere scientifico - IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
50
|
Bappy SS, Sultana S, Adhikari J, Mahmud S, Khan MA, Kibria KMK, Rahman MM, Shibly AZ. Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: a computational biology approach. J Biomol Struct Dyn 2020; 39:1139-1154. [PMID: 32037968 DOI: 10.1080/07391102.2020.1726815] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) instigating Chikungunya fever is a global infective menace resulting in high fever, weakened joint-muscle pain, and brain inflammation. Inaccessibility and unavailability of effective drugs have led us to an uncertain arena when it comes to providing proper medical treatment to the affected people. In this study, authentic encroachment has been made concerning the peptide-based epitope vaccine designing against CHIKV. A Proteome-wide search was performed to locate a conserved portion among the accessible viral outer membrane proteins which showcase a remarkable immune response using specific immunoinformatics and docking simulation tools. Primarily, the most probable immunogenic envelope glycoproteins E1 and E2 were identified from the UniProt database depending on their antigenicity scores. Subsequently, we selected two distinctive sequences "SEDVYANTQLVLQRP" and "IMLLYPDHPTLLSYR" in both E1 and E2 glycoproteins respectively. These two sequences identified as the most potent T and B cell epitope-based peptides as they interacted with 6 and 7 HLA-I and 5 HLA-II molecules with an extremely low IC50 score that was verified by molecular docking. Moreover, the sequences possess no allergenicity and are certainly located outside the transmembrane region. In addition, the sequences exhibited 88.46% and 100.00% Conservancy, covering high population coverage of 89.49% to 94.74% and 60.51% to 88.87% respectively in endemic countries. The identified peptide SEDVYANTQLVLQRP and IMLLYPDHPTLLSYR can be utilized next for the development of peptide-based epitope vaccine contrary to CHIKV, so further documentations and experimentations like Antigen testing, Antigen production, Clinical trials are needed to prove the validity of it. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Shahariar Bappy
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Juthi Adhikari
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.,Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, Dhaka, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|