1
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
2
|
Ramezany H, Kheirandish M, Sharifi Z, Samiee S. Study on genotyping and coinfection rate of human parvovirus 4 among the HTLV-I/II infected blood donors in Khorasan Razavi, Iran. Heliyon 2023; 9:e21406. [PMID: 37954296 PMCID: PMC10637982 DOI: 10.1016/j.heliyon.2023.e21406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Human Parvovirus 4 (PARV4) is an emerging virus infecting individuals with other blood-borne diseases. This study aimed to determine the prevalence of PARV4 in confirmed HTLVI/II positive samples from blood donors, assessing PARV4 viral load (DNA) and genotyping. METHODS A novel qReal-Time PCR, based on a plasmid construct, was developed to simultaneously detect all three PARV4 genotypes using in-house primers and probes. Positive qPCR samples were subjected to nested PCR amplification and subsequent sequencing. Phylogenetic trees were constructed using the Neighbor-joining (N.J.) method. RESULTS The coinfection rate of PARV4-DNA in HTLVI/II confirmed infected donors, who were previously deferred, was 14.4 % (13 out of 90), with no observed association with donation status (p = 1.0). Phylogenetic analysis indicated that PARV4-positive samples closely resembled genotype 2 in Iran.qPCR quantification demonstrated significant PARV4 viral loads in positive samples, ranging between 104 and 106 DNA copies/mL of serum. CONCLUSION This study presents the first evaluation of HTLVI/II and PARV4coinfection rates among blood donors. Notably, elevated PARV4-DNA titers were detected in HTLVI/II-positive donors. Given PARV's resistance to standard plasma refinery inactivation methods and the absence of its targeted inactivation, its potential impact remains a concern.
Collapse
Affiliation(s)
- Hooman Ramezany
- Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization, Tehran, Tehran, Iran
| | - Maryam Kheirandish
- Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization, Tehran, Tehran, Iran
| | - Zohreh Sharifi
- Department of Medical Virology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iran
| | - Shahram Samiee
- Department of Molecular Pathology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iran
| |
Collapse
|
3
|
Asiyabi S, Marashi SM, Vahabpour R, Nejati A, Azizi-Saraji A, Mustafa AS, Baghernejad A, Shoja Z, Mansouritorghabeh H. Parvovirus 4 in Individuals with Severe Hemophilia A and Matched Control Group. Int J Hematol Oncol Stem Cell Res 2021; 15:192-198. [PMID: 35083000 PMCID: PMC8748245 DOI: 10.18502/ijhoscr.v15i3.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Hemophilia is a well-known bleeding disorder with worldwide distribution. Replacement therapy, using plasma-derived or recombinant coagulation factors, comprises a gold standard regimen for the treatment. Regardless of the advancements made in viral inactivation methods in the production of plasma-derived coagulation factors, the possibility of transmission of new viral infections remained as a noticeable concern yet. The aim of the current study was to investigate the status of parvovirus 4 (PARV4) in severe hemophilia A, von Willebrand disease (vWD), and healthy control. Materials and Methods: In the current case-control study, 76 patients with hemophilia and vWD and 60 individuals from their family members entered the study. Nested PCR used to determine the presence of PARV4 in study subjects (76 cases). To characterize the PARV4 genotype, positive samples subjected to sequencing and phylogenetic analysis. Results: PARV4 genome detected in 11 (14.47%) patients with bleeding disorders. Among whom, nine patients (14.75%) were with severe hemophilia A and two (13.33%) patients with vWD. Only five healthy controls (8.33%) were positive for PARV4. All PARV4 sequences were found to be genotype 1. Conclusion: PARV4 infection in patients with hemophilia and vWD was higher than the control group. While detection of PARV4 DNA in patients with bleeding disorders may not necessarily reflect a clinical urgency, future investigations are needed to define the clinical significance of PARV4. It seems the detection of the virus immune signature of PARV4 infection, particularly in the context of acute and persistent infections, needs to focus on cellular and tissue targets.
Collapse
Affiliation(s)
- Sanaz Asiyabi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aliyeh Sadat Mustafa
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Asgar Baghernejad
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabiholla Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Mansouritorghabeh
- Central Diagnostic Laboratories, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Lazutka J, Simutis K, Matulis P, Petraitytė-Burneikienė R, Kučinskaitė-Kodzė I, Simanavičius M, Tamošiunas PL. Antigenicity study of the yeast-generated human parvovirus 4 (PARV4) virus-like particles. Virus Res 2020; 292:198236. [PMID: 33242523 DOI: 10.1016/j.virusres.2020.198236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
Human parvovirus 4 (PARV4) is a novel tetraparvovirus that was isolated from intravenous drug users in 2005. Recombinant PARV4 capsid protein VP2 can form stable virus-like particles (VLPs) in yeast. These VLPs could act as antigen carriers during vaccine development. Therefore, the information about PARV4 VP2 VLP antigenic sites could advance further research in this area. In this work, human parvovirus 4 VLPs obtained from yeast were used to generate monoclonal antibodies (mAbs) in mice. Epitope mapping of the obtained mAbs showed at least three distinct antigenic sites of the VP2 protein. On top of that, molecular cloning was used to replace PARV4 VP2 antigenic sites with heterologous peptides. The chimeric PARV4 VLPs bearing polyhistidine inserts obtained from yeast were observed using electron microscopy while polyhistidine-specific antibodies detected heterologous peptides of the chimeric VP2 proteins.
Collapse
Affiliation(s)
- Justas Lazutka
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania.
| | - Karolis Simutis
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| | - Paulius Matulis
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| | - Rasa Petraitytė-Burneikienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| | - Indrė Kučinskaitė-Kodzė
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al.7, Vilnius, Lithuania
| | - Martynas Simanavičius
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al.7, Vilnius, Lithuania
| | - Paulius Lukas Tamošiunas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| |
Collapse
|
5
|
Du J, Wang W, Chan JFW, Wang G, Huang Y, Yi Y, Zhu Z, Peng R, Hu X, Wu Y, Zeng J, Zheng J, Cui X, Niu L, Zhao W, Lu G, Yuen KY, Yin F. Identification of a Novel Ichthyic Parvovirus in Marine Species in Hainan Island, China. Front Microbiol 2019; 10:2815. [PMID: 31866980 PMCID: PMC6907010 DOI: 10.3389/fmicb.2019.02815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Parvoviruses are a diverse group of viruses that are capable of infecting a wide range of animals. In this study, we report the discovery of a novel parvovirus, tilapia parvovirus HMU-HKU, in the fecal samples of crocodiles and intestines of tilapia in Hainan Province, China. The novel parvovirus was firstly identified from crocodiles fed with tilapia using next-generation sequencing (NGS). Screening studies revealed that the prevalence of the novel parvovirus in crocodile feces samples fed on tilapia (75–86%) was apparently higher than that in crocodiles fed with chicken (4%). Further studies revealed that the prevalence of the novel parvovirus in tilapia feces samples collected at four areas in Hainan Province was between 40 and 90%. Four stains of the novel parvovirus were identified in this study based on sequence analyses of NS1 and all the four strains were found in tilapia in contrast only two of them were detected in crocodile feces. The nearly full-length genome sequence of the tilapia parvovirus HMU-HKU-1 was determined and showed less than 45.50 and 40.38% amino acid identity with other members of Parvoviridae in NS1 and VP1 genes, respectively. Phylogenetic analysis based on the complete helicase domain amino acid sequences showed that the tilapia parvovirus HMU-HKU-1 formed a relatively independent branch in the newly proposed genus Chaphamaparvovirus in the subfamily Hamaparvovirinae according to the ICTV’s most recent taxonomic criteria for Parvoviridae classification. Tilapia parvovirus HMU-HKU-1 likely represented a new species within the new genus Chaphamaparvovirus. The identification of tilapia parvovirus HMU-HKU provides further insight into the viral and genetic diversity of parvoviruses and its infections in tilapia populations need to be evaluated in terms of pathogenicity and production losses in tilapia farming.
Collapse
Affiliation(s)
- Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Wenqi Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jasper Fuk-Woo Chan
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yufang Yi
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zheng Zhu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yue Wu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jifeng Zeng
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Haikou, China
| | - Jiping Zheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xiuji Cui
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Lina Niu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Wei Zhao
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Kwok-Yung Yuen
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Abstract
Parvoviruses are structurally simple viruses with linear single-stranded DNA genomes and nonenveloped icosahedral capsids. They infect a wide range of animals from insects to humans. Parvovirus B19 is a long-known human pathogen, whereas adeno-associated viruses are nonpathogenic. Since 2005, many parvoviruses have been discovered in human-derived samples: bocaviruses 1-4, parvovirus 4, bufavirus, tusavirus, and cutavirus. Some human parvoviruses have already been shown to cause disease during acute infection, some are associated with chronic diseases, and others still remain to be proven clinically relevant-or harmless commensals, a distinction not as apparent as it might seem. One initially human-labeled parvovirus might not even be a human virus, whereas another was originally overlooked due to inadequate diagnostics. The intention of this review is to follow the rocky road of emerging human parvoviruses from discovery of a DNA sequence to current and future clinical status, highlighting the perils along the way.
Collapse
|
7
|
Brožová K, Modrý D, Dadáková E, Mapua MI, Piel AK, Stewart FA, Celer V, Hrazdilová K. PARV4 found in wild chimpanzee faeces: an alternate route of transmission? Arch Virol 2018; 164:573-578. [PMID: 30343383 DOI: 10.1007/s00705-018-4073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling features, such as uncertain clinical importance/significance, unclear routes of transmission, and discontinuous geographical distribution. The origin, or the general reservoir, of human PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal samples collected from two wild chimpanzee populations and 19 species of captive non-human primates. We aimed to investigate these species as a potential reservoir and alternate route of transmission on the African continent. From almost 500 samples screened, a single wild Pan troglodytes schweinfurthii sample tested positive. Full genome analysis, as well as single ORF phylogenies, confirmed species-specific PARV4 infection.
Collapse
Affiliation(s)
- Kristýna Brožová
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - David Modrý
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Eva Dadáková
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Mwanahamisi I Mapua
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alex K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L33AF, UK.,Greater Mahale Ecosystem Research and Conservation Project (GMERC), Dar es Salaam, Tanzania
| | - Fiona A Stewart
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L33AF, UK.,Greater Mahale Ecosystem Research and Conservation Project (GMERC), Dar es Salaam, Tanzania
| | - Vladimír Celer
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Kristýna Hrazdilová
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic. .,Department of Virology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Rastegarpouyani H, Mohebbi SR, Hosseini SM, Azimzadeh P, beyraghie S, Sharifian A, Asadzadeh-Aghdaei H, Arshi S, Zali MR. Detection ofParvovirus4 in Iranian patients with HBV, HCV, HIV mono-infection, HIV and HCV co-infection. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:138-144. [PMID: 29910855 PMCID: PMC5990921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIM In this study, we investigated the prevalence of PARV4 virus among the healthy population and four other groups of HBV infected, HCV infected, HIV infected and HIV/HCV co-infected individuals in Iran. BACKGROUND Parvovirus 4 (PARV4) was first discovered in 2005, in a hepatitis B virus-infected injecting drug user (IDU). To date, the best evidence about PARV4 transmission is parenteral roots which comes from IDU individuals. It seems that the prevalence of the virus in the normal population is very low. METHODS A total of 613 patients, including chronic HCV (n=103), HBV (n=193), HIV (n=180) infected individuals, HIV/HCV (n=34) co-infected patients and 103 healthy controls, were studied by using nested-PCR and also real-time PCR techniques. RESULTS Of those 180 samples were positive for HIV RNA, co-infection of PARV4 was detected in 3 cases (1.66%). All these three patients were male with the age of 28, 32 and 36 years (mean: 32). No statistical differences were found between HIV positive group and the healthy individuals. (P>0.05) The result of PARV4 PCR was negative in all other samples and healthy controls as well. CONCLUSION This study is the first to investigate the occurrence of PARV4 among these groups in Iran. The results show that the virus is not significant in Iranian population, even in patients with blood born infections such as HCV, HBV or even HIV patients. Further studies in other areas and various groups are required.
Collapse
Affiliation(s)
- Hosna Rastegarpouyani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and microbial biotechnology, Faculty of life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Pedram Azimzadeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh beyraghie
- Shahid Jafari HIV Reference Laboratory, Deputy of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sharifian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnam Arshi
- Shahid Jafari HIV Reference Laboratory, Deputy of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Javanmard D, Ziaee M, Ghaffari H, Namaei MH, Tavakoli A, Mollaei H, Moghoofei M, Mortazavi HS, Monavari SH. Human parvovirus B19 and parvovirus 4 among Iranian patients with hemophilia. Blood Res 2017; 52:311-315. [PMID: 29333409 PMCID: PMC5762743 DOI: 10.5045/br.2017.52.4.311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/15/2017] [Accepted: 06/14/2017] [Indexed: 01/26/2023] Open
Abstract
Background Human parvovirus B19 (B19V) is one of the smallest DNA viruses and shows great resistance to most disinfectants. Therefore, it is one of the common contaminant pathogens present in blood and plasma products. Parvovirus 4 (PARV4) is a newly identified parvovirus, which is also prevalent in parenteral transmission. In this study, we aimed to evaluate the prevalence of B19V and PARV4 DNA among patients with hemophilia in Birjand County in eastern Iran. Methods This was a cross-sectional epidemiological study comprising nearly all people with hemophilia in this region. Whole blood samples were taken after patient registration and sent for plasma isolation. After nucleic acid extraction, B19V was detected with real-time polymerase chain reaction, PARV4 DNA was then detected using sensitive semi-nested PCR. Results In total, there were 86 patients with hemophilia, with mean age 28.5±1.5 years. Of these, 90.7% were men and 9.3% women; 84.9% had hemophilia A and 7.0% had hemophilia B. We found 11 patients (12.8%) were positive for B19V DNA and 8 were positive (9.3%) for PARV4 DNA. The prevalence of B19V was higher in middle-aged groups rather than younger people, whereas PARV4 infection was more common in younger patients (P <0.05). Conclusion There was a high prevalence of B19V and PARV4 infection in this high-risk group of patients with hemophilia. Due to the clinical significance of the B19 virus, imposing more precautionary measures for serum and blood products is recommended.
Collapse
Affiliation(s)
- Davod Javanmard
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Ziaee
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hadi Ghaffari
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Namaei
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmad Tavakoli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mollaei
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Helya Sadat Mortazavi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Amirahmadi F, Sarvari J, Hosseini SY, Pirbonyeh N, Gorzin AA. Frequency of human parvovirus 4 (PARV4) viremia among HBV-infected patients and healthy donors in Shiraz, Iran. Turk J Med Sci 2017; 47:868-873. [PMID: 28618736 DOI: 10.3906/sag-1603-83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 12/06/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM PARV4, a small DNA virus belonging to the family Parvoviridae, was first isolated in an HBV injecting drug user. Several studies have investigated PARV4 co-infection with HBV and HCV and its effect on the progression of liver disease. The aim of this study was to determine the frequency of PARV4 among HBV-infected patients and healthy individuals. MATERIALS AND METHODS A group of 90 HBV patients and a group of 90 healthy subjects were included in this study. Samples were selected after screening tests such as HBsAg ELISA, anti-HCV ELISA, and anti-HIV ELISA. Nested-PCRs were conducted to detect the PARV4 genome. Positive samples were then subjected to DNA sequencing. RESULTS PARV4 DNA was detected in 4.4% of HBV patients in comparison with 1.1% of healthy individuals (P-value: 0.36). DNA sequencing results revealed that PARV4 in all five positive samples was genotype I.Conclusions: Although this pilot study showed no significant difference between the frequency of PARV4 among HBV patients and healthy donors, further studies with a larger sample size are suggested to determine the association of PARV4 with HBV co-infection and the impact of this virus on the progression of liver disease in patients with hepatitis B.
Collapse
Affiliation(s)
- Fereshte Amirahmadi
- Deparment of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Deparment of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Deparment of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Pirbonyeh
- Deparment of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Gorzin
- Deparment of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Sharp CP, Gregory WF, Hattingh L, Malik A, Adland E, Daniels S, van Zyl A, Carlson JM, Wareing S, Ogwu A, Shapiro R, Riddell L, Chen F, Ndung'u T, Goulder PJR, Klenerman P, Simmonds P, Jooste P, Matthews PC. PARV4 prevalence, phylogeny, immunology and coinfection with HIV, HBV and HCV in a multicentre African cohort. Wellcome Open Res 2017; 2:26. [PMID: 28497124 PMCID: PMC5423528 DOI: 10.12688/wellcomeopenres.11135.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: The seroprevalence of human parvovirus-4 (PARV4) varies considerably by region. In sub-Saharan Africa, seroprevalence is high in the general population, but little is known about the transmission routes or the prevalence of coinfection with blood-borne viruses, HBV, HCV and HIV.
Methods: To further explore the characteristics of PARV4 in this setting, with a particular focus on the prevalence and significance of coinfection, we screened a cohort of 695 individuals recruited from Durban and Kimberley (South Africa) and Gaborone (Botswana) for PARV4 IgG and DNA, as well as documenting HIV, HBV and HCV status.
Results: Within these cohorts, 69% of subjects were HIV-positive. We identified no cases of HCV by PCR, but 7.4% were positive for HBsAg. PARV4 IgG was positive in 42%; seroprevalence was higher in adults (69%) compared to children (21%) (p<0.0001) and in HIV-positive (52%) compared to HIV-negative individuals (24%) (p<0.0001), but there was no association with HBsAg status. We developed an on-line tool to allow visualization of coinfection data (
https://purl.oclc.org/coinfection-viz). We identified five subjects who were PCR-positive for PARV4 genotype-3.
Ex vivo CD8+ T cell responses spanned the entire PARV4 proteome and we propose a novel HLA-B*57:03-restricted epitope within the NS protein.
Conclusions: This characterisation of PARV4 infection provides enhanced insights into the epidemiology of infection and co-infection in African cohorts, and provides the foundations for planning further focused studies to elucidate transmission pathways, immune responses, and the clinical significance of this organism.
Collapse
Affiliation(s)
- Colin P Sharp
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.,Edinburgh Genomics, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | | - Louise Hattingh
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Samantha Daniels
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Anriette van Zyl
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | | | - Susan Wareing
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Anthony Ogwu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lynn Riddell
- Northampton General Hospital NHS Trust, Northampton, NN1 5BD, UK
| | - Fabian Chen
- Royal Berkshire Hospital, Reading, RG1 5AN, UK
| | - Thumbi Ndung'u
- HIV Pathogenesis Program, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4041, South Africa
| | | | - Paul Klenerman
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - Pieter Jooste
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| |
Collapse
|
12
|
Matthews PC, Sharp C, Simmonds P, Klenerman P. Human parvovirus 4 'PARV4' remains elusive despite a decade of study. F1000Res 2017; 6:82. [PMID: 28184291 PMCID: PMC5288687 DOI: 10.12688/f1000research.9828.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Human parvovirus 4 ('PARV4') is a small DNA tetraparvovirus, first reported in 2005. In some populations, PARV4 infection is uncommon, and evidence of exposure is found only in individuals with risk factors for parenteral infection who are infected with other blood-borne viruses. In other settings, seroprevalence studies suggest an endemic, age-associated transmission pattern, independent of any specific risk factors. The clinical impact of PARV4 infection remains uncertain, but reported disease associations include an influenza-like syndrome, encephalitis, acceleration of HIV disease, and foetal hydrops. In this review, we set out to report progress updates from the recent literature, focusing on the investigation of cohorts in different geographical settings, now including insights from Asia, the Middle East, and South America, and discussing whether attributes of viral or host populations underpin the striking differences in epidemiology. We review progress in understanding viral phylogeny and biology, approaches to diagnostics, and insights that might be gained from studies of closely related animal pathogens. Crucial questions about pathogenicity remain unanswered, but we highlight new evidence supporting a possible link between PARV4 and an encephalitis syndrome. The unequivocal evidence that PARV4 is endemic in certain populations should drive ongoing research efforts to understand risk factors and routes of transmission and to gain new insights into the impact of this virus on human health.
Collapse
Affiliation(s)
- Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Colin Sharp
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
13
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Väisänen E, Paloniemi M, Kuisma I, Lithovius V, Kumar A, Franssila R, Ahmed K, Delwart E, Vesikari T, Hedman K, Söderlund-Venermo M. Epidemiology of two human protoparvoviruses, bufavirus and tusavirus. Sci Rep 2016; 6:39267. [PMID: 27966636 PMCID: PMC5155296 DOI: 10.1038/srep39267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023] Open
Abstract
Two human parvoviruses were recently discovered by metagenomics in Africa, bufavirus (BuV) in 2012 and tusavirus (TuV) in 2014. These viruses have been studied exclusively by PCR in stool and detected only in patients with diarrhoea, although at low prevalence. Three genotypes of BuV have been identified. We detected, by in-house EIA, BuV1-3 IgG antibodies in 7/228 children (3.1%) and 10/180 adults (5.6%), whereas TuV IgG was found in one child (0.4%). All children and 91% of the adults were Finnish, yet interestingly 3/6 adults of Indian origin were BuV-IgG positive. By competition EIA, no cross-reactivity between the BuVs was detected, indicating that the BuV genotypes represent distinct serotypes. Furthermore, we analysed by BuV qPCR stool and nasal swab samples from 955 children with gastroenteritis, respiratory illness, or both, and found BuV DNA in three stools (0.3%) and for the first time in a nasal swab (0.1%). This is the first study documenting the presence of BuV and TuV antibodies in humans. Although the seroprevalences of both viruses were low in Finland, our results indicate that BuV infections might be widespread in Asia. The BuV-specific humoral immune responses appeared to be strong and long-lasting, pointing to systemic infection in humans.
Collapse
Affiliation(s)
- Elina Väisänen
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Minna Paloniemi
- Vaccine Research Center, University of Tampere, Tampere 33520, Finland.,Fimlab laboratories ltd, Tampere 33520, Finland
| | - Inka Kuisma
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Väinö Lithovius
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Arun Kumar
- Department of Virology, University of Helsinki, Helsinki 00290, Finland.,Health Sciences North Research Institute, Sudbury, ON P3E 5J1, Canada
| | - Rauli Franssila
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Kamruddin Ahmed
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Tampere 33520, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki 00290, Finland.,Helsinki University Hospital, HUSLAB, Helsinki 00290, Finland
| | | |
Collapse
|
15
|
Morfini M. Pharmacokinetic drug evaluation of albutrepenonacog alfa (CSL654) for the treatment of hemophilia. Expert Opin Drug Metab Toxicol 2016; 12:1359-1365. [DOI: 10.1080/17425255.2016.1240168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Massimo Morfini
- Italian Association Haemophilia Centres – AICE, Firenze, Italy
| |
Collapse
|
16
|
Slavov SN, Otaguiri KK, Smid J, de Oliveira ACP, Casseb J, Martinez EZ, Covas DT, Eis-Hübinger AM, Kashima S. Human parvovirus 4 prevalence among HTLV-1/2 infected individuals in Brazil. J Med Virol 2016; 89:748-752. [PMID: 27589576 DOI: 10.1002/jmv.24673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
Abstract
Human parvovirus 4 (PARV4), a Tetraparvovirus, has been largely found in HIV, HBV, or HCV infected individuals. However, there is no data for the PARV4 occurrence in Human T-lymphotropic virus (HTLV-1/2) infected individuals, despite similar transmission routes. Here, PARV4 viremia was evaluated in 130 HTLV infected patients under care of a Brazilian HTLV outpatient clinic. PARV4 viremia was detected in 6.2% of the HTLV-1 infected patients. Most PARV4 positives showed no evidence for parenterally transmitted infections. It is suggested that in Brazil, transmission routes of PARV4 are more complex than in Europe and North America and resemble those in Africa. J. Med. Virol. 89:748-752, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Svetoslav Nanev Slavov
- Faculty of Medicine of Ribeirão Preto, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Faculty of Medicine of Ribeirão Preto, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | - Katia Kaori Otaguiri
- Faculty of Medicine of Ribeirão Preto, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, Department of Clinical, Toxicological and Bromatological Analyses, University of São Paulo, São Paulo, Brazil
| | - Jerusa Smid
- HTLV-Outpatient Clinic, Institute of Infectious Diseases "Emilio Ribas", São Paulo, Brazil
| | | | - Jorge Casseb
- HTLV-Outpatient Clinic, Institute of Infectious Diseases "Emilio Ribas", São Paulo, Brazil.,Laboratory of Medical Investigation 56, Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Edson Zangiacomi Martinez
- Faculty of Medicine of Ribeirão Preto, Department of Social Medicine, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Faculty of Medicine of Ribeirão Preto, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Faculty of Medicine of Ribeirão Preto, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Simone Kashima
- Faculty of Medicine of Ribeirão Preto, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, Department of Clinical, Toxicological and Bromatological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Yeast-generated virus-like particles as antigens for detection of human bocavirus 1–4 specific antibodies in human serum. Appl Microbiol Biotechnol 2016; 100:4935-46. [DOI: 10.1007/s00253-016-7336-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/22/2022]
|
18
|
Matthews PC, Sharp CP, Malik A, Gregory WF, Adland E, Jooste P, Goulder PJR, Simmonds P, Klenerman P. Human parvovirus 4 infection among mothers and children in South Africa. Emerg Infect Dis 2015; 21:713-5. [PMID: 25812109 PMCID: PMC4378500 DOI: 10.3201/eid2104.141545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Berntorp E, Dolan G, Hermans C, Laffan M, Santagostino E, Tiede A. Pharmacokinetics, phenotype and product choice in haemophilia B: how to strike a balance? Haemophilia 2015; 20 Suppl 7:1-11. [PMID: 25370925 DOI: 10.1111/hae.12556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 12/24/2022]
Abstract
At the 7th Annual Congress of the European Association for Haemophilia and Allied Disorders (EAHAD) held in Brussels, Belgium, in February 2014, Pfizer sponsored a satellite symposium entitled: "Pharmacokinetics, phenotype and product choice in haemophilia B: How to strike a balance?" Co-chaired by Cedric Hermans (Cliniques Universitaires Saint Luc, Brussels, Belgium) and Mike Laffan (Imperial College, London, UK), the symposium provided an opportunity to debate whether pharmacokinetic (PK) parameters are good surrogates for clinical efficacy for haemophilia B in clinical practice, consider the perceptions and evidence of disease severity, and examine how these considerations can inform approaches to balancing the potential risks and benefits of the currently available treatment options for haemophilia B. PK parameters are routinely measured in clinical practice and are a requirement of regulatory bodies to demonstrate the clinical efficacy of products; however, the relationship between measured PK parameters and clinical efficacy is yet to be determined, an issue that was debated by Gerry Dolan (University Hospital, Queen's Medical Centre, Nottingham, UK) and Erik Berntorp (Lund University, Malmö Centre for Thrombosis and Haemostasis, Malmö, Sweden). Elena Santagostino (Universita degli Studi di Milano, Milano, Italy) reviewed how differing perceptions on the severity of haemophilia B compared with haemophilia A may have an impact on clinical decision-making. Finally, Andreas Tiede (Hannover Medical School, Hannover, Germany), examined the considerations for balancing the potential risks and benefits of the currently available treatment options for haemophilia B. Although the pathophysiology of haemophilia B has been widely studied and is largely understood, continued investigation and discussion around the optimal management course and appropriate therapeutic choice is warranted.
Collapse
Affiliation(s)
- E Berntorp
- Malmö Centre for Thrombosis and Haemostasis, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Chen MY, Hung CC, Lee KL. Detection of human parvovirus 4 viremia in the follow-up blood samples from seropositive individuals suggests the existence of persistent viral replication or reactivation of latent viral infection. Virol J 2015; 12:94. [PMID: 26088443 PMCID: PMC4480887 DOI: 10.1186/s12985-015-0326-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/16/2015] [Indexed: 12/31/2022] Open
Abstract
Background The transmission routes for human parvovirus 4 (PARV4) infections in areas with high seroprevalence are not known. In the work described here, persistent PARV4 viral replication was investigated by conducting a longitudinal study. Methods Ten healthcare workers each provided a blood sample at the beginning of the study (first sample) and 12 months later (second sample). The paired samples were tested for PARV4-positivity by immunoblotting analysis and nested polymerase chain reactions. Results IgG antibodies against PARV4 were detected in six participants, three of whom also had IgM antibodies against PARV4. The immunoblotting results did not vary over time. PARV4 DNA was detected in the first blood sample from one participant who had IgG antibodies against PARV4 and in the second blood samples from 2 participants who had IgG and IgM antibodies against PARV4. Conclusions Detection of PARV4 DNA in the second blood samples from two seropositive participants suggests the existence of persistent PARV4 replication or reactivation of inactive virus in the tissues. The finding of persistent or intermittent PARV4 replication in individuals with past infections provides an important clue toward unraveling the non-parenteral transmission routes of PARV4 infection in areas where the virus is endemic.
Collapse
Affiliation(s)
- Mao-Yuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, 1000, Taipei, Taiwan.
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, 1000, Taipei, Taiwan.
| | - Kuang-Lun Lee
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, 1000, Taipei, Taiwan.
| |
Collapse
|
21
|
von Linstow ML, Rosenfeldt V, Lindberg E, Jensen L, Hedman L, Li X, Väisänen E, Hedman K, Norja P. Absence of novel human parvovirus (PARV4) in Danish mothers and children. J Clin Virol 2015; 65:23-5. [DOI: 10.1016/j.jcv.2015.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 01/09/2023]
|
22
|
Slavov SN, Kashima S, Rocha-Junior MC, Silva-Pinto AC, Oliveira LC, Eis-Hübinger AM, Covas DT. Human parvovirus 4 in Brazilian patients with haemophilia, beta-thalassaemia major and volunteer blood donors. Haemophilia 2014; 21:e86-8. [PMID: 25311656 DOI: 10.1111/hae.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 12/16/2022]
Affiliation(s)
- S N Slavov
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Amna Malik
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Ruth Simmons
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Colin Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Peter Simmonds
- The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
24
|
Servant-Delmas A, Laperche S, Lionnet F, Sharp C, Simmonds P, Lefrère JJ. Human parvovirus 4 infection in low- and high-risk French individuals. Transfusion 2014; 54:744-5. [DOI: 10.1111/trf.12512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annabelle Servant-Delmas
- Laboratoire Associé aux Centres Nationaux de Référence du VIH et des Hépatites B et C; Institut National de la Transfusion Sanguine; Paris France
| | - Syria Laperche
- Laboratoire Associé aux Centres Nationaux de Référence du VIH et des Hépatites B et C; Institut National de la Transfusion Sanguine; Paris France
| | | | | | | | - Jean-Jacques Lefrère
- Laboratoire Associé aux Centres Nationaux de Référence du VIH et des Hépatites B et C; Institut National de la Transfusion Sanguine; Paris France
| |
Collapse
|
25
|
Väisänen E, Lahtinen A, Eis-Hübinger A, Lappalainen M, Hedman K, Söderlund-Venermo M. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4. J Virol Methods 2014; 195:106-11. [DOI: 10.1016/j.jviromet.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
|
26
|
Maple PA, Beard S, Parry RP, Brown KE. Testing UK blood donors for exposure to human parvovirus 4 using a time-resolved fluorescence immunoassay to screen sera and Western blot to confirm reactive samples. Transfusion 2013; 53:2575-84. [DOI: 10.1111/trf.12278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/11/2013] [Accepted: 04/20/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A.C. Maple
- Immunisation and Diagnosis Unit, Virus Reference Department; Public Health England; London UK
| | - Stuart Beard
- Immunisation and Diagnosis Unit, Virus Reference Department; Public Health England; London UK
| | - Ruth P. Parry
- Immunisation and Diagnosis Unit, Virus Reference Department; Public Health England; London UK
| | - Kevin E. Brown
- Immunisation and Diagnosis Unit, Virus Reference Department; Public Health England; London UK
| |
Collapse
|
27
|
Baylis SA, Tuke PW, Miyagawa E, Blümel J. Studies on the inactivation of human parvovirus 4. Transfusion 2013; 53:2585-92. [PMID: 24032592 DOI: 10.1111/trf.12372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. STUDY DESIGN AND METHODS Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. RESULTS PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. CONCLUSION In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles.
Collapse
|
28
|
Tamošiūnas PL, Simutis K, Kodzė I, Firantienė R, Emužytė R, Petraitytė-Burneikienė R, Zvirblienė A, Sasnauskas K. Production of human parvovirus 4 VP2 virus-like particles in yeast and their evaluation as an antigen for detection of virus-specific antibodies in human serum. Intervirology 2013; 56:271-7. [PMID: 23941824 DOI: 10.1159/000353112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human parvovirus 4 (PARV4) is a recently discovered member of the Parvoviridae family, which is not closely related to any previously discovered human parvoviruses. PARV4 has been isolated from the plasma of individuals with symptoms of acute viral infection; however, until recently PARV4 had not been associated with any disease, and its prevalence in the human population is yet to be established. METHODS The major capsid protein VP2 of PARV4 was generated in the yeast Saccharomyces cerevisiae and used for serological detection of virus-specific IgG and IgM in the sera of low-risk individuals. RESULTS One hundred and seventy serum specimens obtained from patients with acute respiratory diseases were tested for PARV4-specific IgG and IgM antibodies. Sixteen individuals (9.4%) were diagnosed as seropositive, including 6 IgM and IgG positive, 6 IgM positive/IgG negative and 4 IgG positive/IgM negative. Seven of the 16 seropositive individuals were between the ages of 3 and 11 with no evidence of parenteral exposure to PARV4 infection. CONCLUSION Our data demonstrate that recombinant yeast-derived VP2 protein, self-assembled to virus-like particles, can represent a useful tool when studying the seroprevalence of PARV4 infection. The presence of PARV4-specific antibodies in a low-risk group may indicate the possibility of alternative routes of virus transmission.
Collapse
Affiliation(s)
- P L Tamošiūnas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Human parvoviruses B19, PARV4 and bocavirus in pediatric patients with allogeneic hematopoietic SCT. Bone Marrow Transplant 2013; 48:1308-12. [DOI: 10.1038/bmt.2013.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/19/2023]
|
30
|
Drexler JF, Reber U, Muth D, Herzog P, Annan A, Ebach F, Sarpong N, Acquah S, Adlkofer J, Adu-Sarkodie Y, Panning M, Tannich E, May J, Drosten C, Eis-Hübinger AM. Human parvovirus 4 in nasal and fecal specimens from children, Ghana. Emerg Infect Dis 2013; 18:1650-3. [PMID: 23018024 PMCID: PMC3471610 DOI: 10.3201/eid1810.111373] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonparenteral transmission might contribute to human parvovirus 4 (PARV4) infections in sub-Saharan Africa. PARV4 DNA was detected in 8 (0.83%) of 961 nasal samples and 5 (0.53%) of 943 fecal samples from 1,904 children in Ghana. Virus concentrations ≤6–7 log10 copies/mL suggest respiratory or fecal–oral modes of PARV4 transmission.
Collapse
|
31
|
Cotmore SF, Tattersall P. Parvovirus diversity and DNA damage responses. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012989. [PMID: 23293137 DOI: 10.1101/cshperspect.a012989] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral "rolling hairpin" DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ~260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell's entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
32
|
Abstract
PARV4 is a small DNA human virus that is strongly associated with hepatitis C virus (HCV) and HIV infections. The immunologic control of acute PARV4 infection has not been previously described. We define the acute onset of PARV4 infection and the characteristics of the acute-phase and memory immune responses to PARV4 in a group of HCV- and HIV-negative, active intravenous drug users. Ninety-eight individuals at risk of blood-borne infections were tested for PARV4 IgG. Gamma interferon enzyme-linked immunosorbent spot assays, intracellular cytokine staining, and a tetrameric HLA-A2-peptide complex were used to define the T cell populations responding to PARV4 peptides in those individuals who acquired infection during the study. Thirty-five individuals were found to be PARV4 seropositive at the end of the study, eight of whose baseline samples were found to be seronegative. Persistent and functional T cell responses were detected in the acute infection phase. These responses had an active, mature, and cytotoxic phenotype and were maintained several years after infection. Thus, PARV4 infection is common in individuals exposed to blood-borne infections, independent of their HCV or HIV status. Since PARV4 elicits strong, broad, and persistent T cell responses, understanding of the processes responsible may prove useful for future vaccine design.
Collapse
|
33
|
Norja P, Hedman L, Kantola K, Kemppainen K, Suvilehto J, Pitkäranta A, Aaltonen LM, Seppänen M, Hedman K, Söderlund-Venermo M. Occurrence of human bocaviruses and parvovirus 4 in solid tissues. J Med Virol 2012; 84:1267-73. [PMID: 22711355 DOI: 10.1002/jmv.23335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human bocaviruses 1-4 (HBoV1-4) and parvovirus 4 (PARV4) are recently discovered human parvoviruses. HBoV1 is associated with respiratory infections of young children, while HBoV2-4 are enteric viruses. The clinical manifestations of PARV4 remain unknown. The objective of this study was to determine whether the DNAs of HBoV1-4 and PARV4 persist in human tissues long after primary infection. Biopsies of tonsillar tissue, skin, and synovia were examined for HBoV1-4 DNA and PARV4 DNA by PCR. Serum samples from the tissue donors were assayed for HBoV1 and PARV4 IgG and IgM antibodies. To obtain species-specific seroprevalences for HBoV1 and for HBoV2/3 combined, the sera were analyzed after virus-like particle (VLP) competition. While HBoV1 DNA was detected exclusively in the tonsillar tissues of 16/438 individuals (3.7%), all of them ≤8 years of age. HBoV2-4 and PARV4 DNAs were absent from all tissue types. HBoV1 IgG seroprevalence was 94.9%. No subject had HBoV1 or PARV4 IgM, nor did they have PARV4 IgG. The results indicate that HBoV1 DNA occurred in a small proportion of tonsils of young children after recent primary HBoV1 infection, but did not persist long in the other tissue types studied, unlike parvovirus B19 DNA. The results obtained by the PARV4 assays are in line with previous results on PARV4 epidemiology.
Collapse
Affiliation(s)
- Päivi Norja
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Norja P, Lassila R, Makris M. Parvovirus transmission by blood products - a cause for concern? Br J Haematol 2012; 159:385-93. [PMID: 23025427 DOI: 10.1111/bjh.12060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The introduction of dual viral inactivation of clotting factor concentrates has practically eliminated infections by viruses associated with significant pathogenicity over the last 20 years. Despite this, theoretical concerns about transmission of infection have remained, as it is known that currently available viral inactivation methods are unable to eliminate parvovirus B19 or prions from these products. Recently, concern has been raised following the identification of the new parvoviruses, human parvovirus 4 (PARV4) and new genotypes of parvovirus B19, in blood products. Parvoviruses do not cause chronic pathogenicity similar to human immunodeficiency virus or hepatitis C virus, but nevertheless may cause clinical manifestations, especially in immunosuppressed patients. Manufacturers should institute measures, such as minipool polymerase chain reaction testing, to ensure that their products contain no known viruses. So far, human bocavirus, another new genus of parvovirus, has not been detected in fractionated blood products, and unless their presence can be demonstrated, routine testing during manufacture is not essential. Continued surveillance of the patients and of the safety of blood products remains an important ongoing issue.
Collapse
Affiliation(s)
- Päivi Norja
- Department of Virology, Haartman Institute, Helsinki University, Helsinki, Finland
| | | | | |
Collapse
|
35
|
No evidence of presence of parvovirus 4 in a Swedish cohort of severely immunocompromised children and adults. PLoS One 2012; 7:e46430. [PMID: 23050026 PMCID: PMC3458858 DOI: 10.1371/journal.pone.0046430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/01/2012] [Indexed: 02/01/2023] Open
Abstract
The recently discovered human parvovirus 4 (PARV4) has been associated with seropositivity for human immunodeficiency virus, hepatitis B virus and hepatitis C virus. High prevalence is seen especially in intravenous drug users. The virus has been detected in blood products and persons who have been repeatedly transfused have shown to be a risk-group. Furthermore, reports from different parts of the world suggesting a prevalence ranging from zero to one third of the healthy population and the virus is thought to cause a latent or persistent infection. We investigated the presence of PARV4 DNA and parvovirus B19 (B19) DNA in serum from 231 severely immunocompromised cancer patients that have been exposed for blood products. Compared to B19, which was found in 3.9% of the patients, we found no evidence of PARV4. Our results may indicate a very low prevalence of the virus in Sweden, and it would be useful to measure the real PARV4 exposure of the healthy population as well as individuals with known risk factors by serology.
Collapse
|
36
|
Delwart E. Human parvovirus 4 in the blood supply and transmission by pooled plasma-derived clotting factors: does it matter? Transfusion 2012; 52:1398-403. [PMID: 22780892 DOI: 10.1111/j.1537-2995.2012.03721.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Abstract
Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum can temporarily link symptoms with a recent infection. Neutralizing antibody detection require often difficult cell culture virus amplification. Antibody binding assays require proper antigen synthesis and positive control sera to set assay thresholds. High levels of viral genetic diversity within orphan viral groups, frequent co-infections, low or rare pathogenicity, and chronic virus shedding, can all complicate disease association studies. The limited availability of matched cases and controls sample sets from different age groups and geographic origins is a major block for estimating the pathogenic potential of recently characterized orphan viruses. Current limitations on the practical use of deep sequencing for viral diagnostics are listed.
Collapse
Affiliation(s)
- Linlin Li
- Blood Systems Research Institute, San Francisco, CA, USA
| | | |
Collapse
|
38
|
Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus. J Virol 2012; 86:11024-30. [PMID: 22855485 DOI: 10.1128/jvi.01427-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.
Collapse
|
39
|
Lavoie M, Sharp CP, Pépin J, Pennington C, Foupouapouognigni Y, Pybus OG, Njouom R, Simmonds P. Human parvovirus 4 infection, Cameroon. Emerg Infect Dis 2012; 18:680-3. [PMID: 22469425 PMCID: PMC3309673 DOI: 10.3201/eid1804.110628] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In a post hoc analysis of samples collected in 2009, we determined seroprevalence of parvovirus 4 (PARV4) among elderly Cameroonians. PARV4 seropositivity was associated with receipt of intravenous antimalarial drugs, intramuscular streptomycin, or an intramuscular contraceptive, but not hepatitis C virus seropositivity. Findings suggest parenteral acquisition of some PARV4 infections.
Collapse
Affiliation(s)
- Myriam Lavoie
- Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Simmonds P, Sharp CP, Donfield S, Gomperts ED. In reply. Transfusion 2012. [DOI: 10.1111/j.1537-2995.2012.03664.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Xiao CT, Giménez-Lirola LG, Halbur PG, Opriessnig T. Increasing porcine PARV4 prevalence with pig age in the U.S. pig population. Vet Microbiol 2012; 160:290-6. [PMID: 22728123 DOI: 10.1016/j.vetmic.2012.05.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 12/20/2022]
Abstract
A novel parvovirus in pigs currently known as porcine PARV4 was recently discovered in pigs in Asia and Europe. The objective of this study was to investigate if porcine PARV4 is present in the U.S. pig population using a newly developed quantitative real-time PCR assay. Lung tissues obtained from 483 pigs across five different age groups with varying disease manifestations (reproductive failure/abortion, enteritis, respiratory disease, systemic/central nervous disease) were tested. While porcine PARV4 DNA was not detected in fetuses (0/28) or suckling pigs (0/15), it was detected in pigs from 10 of 16 states with increasing prevalence rates in the older pigs. Specifically, porcine PARV4 DNA was detected in 5.6% (10/178) of the nursery pigs, 18.7% (44/235) of the grow-finish pigs and 22.2% (6/27) of the mature pigs tested. Genome sequence comparison and phylogenetic analysis of U.S. porcine PARV4s confirmed that they have similar genomic characteristics and 97.6-99.1% sequence identities to available porcine PARV4 sequences from China, Romania, and the U.K. Porcine PARV4 was identified in 14.4% of respiratory cases and in 11.6% of cases with a history of systemic/central nervous system disease. As strict non-diseased controls were not included in this study, a possible role of porcine PARV4 in these disease manifestations remains inconclusive. To the authors' knowledge, this is the first description of porcine PARV4 in the U.S. pig population.
Collapse
Affiliation(s)
- Chao-Ting Xiao
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | | | | | |
Collapse
|
42
|
Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci 2012; 48:217-49. [PMID: 22185616 DOI: 10.3109/10408363.2011.640976] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The appearance of eight new respiratory viruses, including the SARS coronavirus in 2003 and swine-origin influenza A/H1N1 in 2009, in the human population in the past nine years has tested the ability of virology laboratories to develop diagnostic tests to identify these viruses. Nucleic acid based amplification tests (NATs) for respiratory viruses were first introduced two decades ago and today are utilized for the detection of both conventional and emerging viruses. These tests are more sensitive than other diagnostic approaches, including virus isolation in cell culture, shell vial culture (SVC), antigen detection by direct fluorescent antibody (DFA) staining, and rapid enzyme immunoassay (EIA), and now form the backbone of clinical virology laboratory testing around the world. NATs not only provide fast, accurate and sensitive detection of respiratory viruses in clinical specimens but also have increased our understanding of the epidemiology of both new emerging viruses such as the pandemic H1N1 influenza virus of 2009, and conventional viruses such as the common cold viruses, including rhinovirus and coronavirus. Multiplex polymerase chain reaction (PCR) assays introduced in the last five years detect up to 19 different viruses in a single test. Several multiplex PCR tests are now commercially available and tests are working their way into clinical laboratories. The final chapter in the evolution of respiratory virus diagnostics has been the addition of allelic discrimination and detection of single nucleotide polymorphisms associated with antiviral resistance. These assays are now being multiplexed with primary detection and subtyping assays, especially in the case of influenza virus. These resistance assays, together with viral load assays, will enable clinical laboratories to provide physicians with new and important information for optimal treatment of respiratory virus infections.
Collapse
Affiliation(s)
- James B Mahony
- M.G. DeGroote Institute for Infectious Disease Research, St. Joseph’s Healthcare, Hamilton, Canada.
| | | | | |
Collapse
|
43
|
Simmons R, Sharp C, McClure CP, Rohrbach J, Kovari H, Frangou E, Simmonds P, Irving W, Rauch A, Bowness P, Klenerman P. Parvovirus 4 infection and clinical outcome in high-risk populations. J Infect Dis 2012; 205:1816-20. [PMID: 22492853 PMCID: PMC3357136 DOI: 10.1093/infdis/jis291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parvovirus 4 (PARV4) is a DNA virus frequently associated with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections, but its clinical significance is unknown. We studied the prevalence of PARV4 antibodies in 2 cohorts of HIV- and HCV-infected individuals (n = 469) and the correlations with disease status. We found that PARV4 infection frequently occurred in individuals exposed to bloodborne viruses (95% in HCV-HIV coinfected intravenous drug users [IDUs]). There were no correlations between PARV4 serostatus and HCV outcomes. There was, however, a significant association with early HIV-related symptoms, although because this was tightly linked to both HCV status and clinical group (IDU), the specific role of PARV4 is not yet clear.
Collapse
Affiliation(s)
- Ruth Simmons
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen MY, Yang SJ, Hung CC. Placental transmission of human parvovirus 4 in newborns with hydrops, Taiwan. Emerg Infect Dis 2012; 17:1954-6. [PMID: 22000381 PMCID: PMC3310659 DOI: 10.3201/eid1710.101841] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In studying the epidemiology of parvovirus 4 (PARV4) in Taiwan, we detected DNA in plasma of 3 mothers and their newborns with hydrops. In 1 additional case, only the mother had PARV4 DNA. Our findings demonstrate that PARV4 can be transmitted through the placenta.
Collapse
Affiliation(s)
- Mao-Yuan Chen
- National Taiwan University Hospital, Taipei, Taiwan.
| | | | | |
Collapse
|
45
|
Yu X, Zhang J, Hong L, Wang J, Yuan Z, Zhang X, Ghildyal R. High prevalence of human parvovirus 4 infection in HBV and HCV infected individuals in shanghai. PLoS One 2012; 7:e29474. [PMID: 22235298 PMCID: PMC3250454 DOI: 10.1371/journal.pone.0029474] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/29/2011] [Indexed: 01/20/2023] Open
Abstract
Human parvovirus 4 (PARV4) has been detected in blood and diverse tissues samples from HIV/AIDS patients who are injecting drug users. Although B19 virus, the best characterized human parvovirus, has been shown to co-infect patients with hepatitis B or hepatitis C virus (HBV, HCV) infection, the association of PARV4 with HBV or HCV infections is still unknown. The aim of this study was to characterise the association of viruses belonging to PARV4 genotype 1 and 2 with chronic HBV and HCV infection in Shanghai. Serum samples of healthy controls, HCV infected subjects and HBV infected subjects were retrieved from Shanghai Center for Disease Control and Prevention (SCDC) Sample Bank. Parvovirus-specific nested-PCR was performed and results confirmed by sequencing. Sequences were compared with reference sequences obtained from Genbank to derive phylogeny trees. The frequency of parvovirus molecular detection was 16–22%, 33% and 41% in healthy controls, HCV infected and HBV infected subjects respectively, with PARV4 being the only parvovirus detected. HCV infected and HBV infected subjects had a significantly higher PARV4 prevalence than the healthy population. No statistical difference was found in PARV4 prevalence between HBV or HCV infected subjects. PARV4 sequence divergence within study groups was similar in healthy subjects, HBV or HCV infected subjects. Our data clearly demonstrate that PARV4 infection is strongly associated with HCV and HBV infection in Shanghai but may not cause increased disease severity.
Collapse
Affiliation(s)
- Xuelian Yu
- Microbiology Laboratory, Hongkou District Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jing Zhang
- Microbiology Laboratory, Hongkou District Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Liang Hong
- Microbiology Laboratory, Hongkou District Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jiayu Wang
- Microbiology Laboratory, Hongkou District Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Zhengan Yuan
- Shanghai Municipal Center for Disease Control and Prevention, Hongkou District Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xi Zhang
- Microbiology Laboratory, Hongkou District Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Applied Science, University of Canberra, Canberra, Australia
- * E-mail:
| |
Collapse
|
46
|
Benjamin LA, Lewthwaite P, Vasanthapuram R, Zhao G, Sharp C, Simmonds P, Wang D, Solomon T. Human parvovirus 4 as potential cause of encephalitis in children, India. Emerg Infect Dis 2011; 17:1484-7. [PMID: 21801629 PMCID: PMC3381555 DOI: 10.3201/eid1708.110165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate whether uncharacterized infectious agents were associated with neurologic disease, we analyzed cerebrospinal fluid specimens from 12 children with acute central nervous system infection. A high-throughput pyrosequencing screen detected human parvovirus 4 DNA in cerebrospinal fluid of 2 children with encephalitis of unknown etiology.
Collapse
Affiliation(s)
- Laura A Benjamin
- University of Liverpool Institute of Infection and Global Health, Liverpool, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sharp CP, Lail A, Donfield S, Gomperts ED, Simmonds P. Virologic and clinical features of primary infection with human parvovirus 4 in subjects with hemophilia: frequent transmission by virally inactivated clotting factor concentrates. Transfusion 2011; 52:1482-9. [DOI: 10.1111/j.1537-2995.2011.03420.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Abstract
One consequence of the global HIV/AIDS pandemic has been the emergence of a broad awareness of the potential role of syringes in the transmission of infectious diseases. In addition to HIV/AIDS, the use of unsterile syringes by multiple persons has been linked to the spread of Hepatitis B, Hepatitis C, Leishmaniasis, malaria and various other infections. The purpose of this paper is to extend awareness of the grave risks of multiperson syringe use by examining the role of this behavior in the development of infectious disease syndemics. The term syndemics refers to the clustering, often due to noxious social conditions, of two or more diseases in a population resulting in adverse disease synergies that impact human life and well-being. The contemporary appearance and spread of identified syringe-mediated syndemics, and the potential for the emergence of future syringe-mediated syndemics, both of which are reviewed in this paper, underline the importance of public health measures designed to limit syringe-related disease transmission.
Collapse
Affiliation(s)
- Nicola Bulled
- Department of Anthropology, University of Connecticut, Storrs, 06269-2176, USA.
| | | |
Collapse
|
49
|
Simmons R, Sharp C, Sims S, Kloverpris H, Goulder P, Simmonds P, Bowness P, Klenerman P. High frequency, sustained T cell responses to PARV4 suggest viral persistence in vivo. J Infect Dis 2011; 203:1378-87. [PMID: 21502079 PMCID: PMC3080894 DOI: 10.1093/infdis/jir036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/22/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parvovirus 4 (PARV4) is a recently identified human virus that has been found in livers of patients infected with hepatitis C virus (HCV) and in bone marrow of individuals infected with human immunodeficiency virus (HIV). T cells are important in controlling viruses but may also contribute to disease pathogenesis. The interaction of PARV4 with the cellular immune system has not been described. Consequently, we investigated whether T cell responses to PARV4 could be detected in individuals exposed to blood-borne viruses. METHODS Interferon γ (IFN-γ) enzyme-linked immunospot assay, intracellular cytokine staining, and a tetrameric HLA-A*0201-peptide complex were used to define the lymphocyte populations responding to PARV4 NS peptides in 88 HCV-positive and 13 HIV-positive individuals. Antibody responses were tested using a recently developed PARV4 enzyme-linked immunosorbent assay. RESULTS High-frequency T cell responses against multiple PARV4 NS peptides and antibodies were observed in 26% of individuals. Typical responses to the NS pools were >1000 spot-forming units per million peripheral blood mononuclear cells. CONCLUSIONS PARV4 infection is common in individuals exposed to blood-borne viruses and elicits strong T cell responses, a feature typically associated with persistent, contained infections such as cytomegalovirus. Persistence of PARV4 viral antigen in tissue in HCV-positive and HIV-positive individuals and/or the associated activated antiviral T cell response may contribute to disease pathogenesis.
Collapse
Affiliation(s)
| | - Colin Sharp
- University of Edinburgh, Centre for Infectious Diseases, United Kingdom
| | - Stuart Sims
- University of Edinburgh, Centre for Infectious Diseases, United Kingdom
| | - Henrik Kloverpris
- Department of Pediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, United Kingdom
| | - Philip Goulder
- Department of Pediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, United Kingdom
| | - Peter Simmonds
- University of Edinburgh, Centre for Infectious Diseases, United Kingdom
| | - Paul Bowness
- Weatherall Institute of Molecular Medicine
- National Institute for Health Research Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine
- National Institute for Health Research Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
50
|
Lahtinen A, Kivelä P, Hedman L, Kumar A, Kantele A, Lappalainen M, Liitsola K, Ristola M, Delwart E, Sharp C, Simmonds P, Söderlund-Venermo M, Hedman K. Serodiagnosis of primary infections with human parvovirus 4, Finland. Emerg Infect Dis 2011; 17:79-82. [PMID: 21192859 PMCID: PMC3204632 DOI: 10.3201/eid1701.100750] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To determine the prevalence of parvovirus 4 infection and its clinical and sociodemographic correlations in Finland, we used virus-like particle-based serodiagnostic procedures (immunoglobulin [Ig] G, IgM, and IgG avidity) and PCR. We found 2 persons with parvovirus 4 primary infection who had mild or asymptomatic clinical features among hepatitis C virus-infected injection drug users.
Collapse
Affiliation(s)
- Anne Lahtinen
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|