1
|
Rittweg TD, Trueman C, Wiedenbeck M, Fietzke J, Wolter C, Talluto L, Dennenmoser S, Nolte A, Arlinghaus R. Variable habitat use supports fine-scale population differentiation of a freshwater piscivore (northern pike, Esox lucius) along salinity gradients in brackish lagoons. Oecologia 2024:10.1007/s00442-024-05627-7. [PMID: 39424687 DOI: 10.1007/s00442-024-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
In mobile animals, selection pressures resulting from spatio-temporally varying ecological factors often drive adaptations in migration behavior and associated physiological phenotypes. These adaptations may manifest in ecologically and genetically distinct ecotypes within populations. We studied a meta-population of northern pike (Esox lucius) in brackish environments and examined intrapopulation divergence along environmental gradients. Behavioral phenotypes in habitat use were characterized via otolith microchemistry in 120 individuals sampled from brackish lagoons and adjacent freshwater tributaries. We genotyped 1514 individual pike at 33 highly informative genetic markers. The relationship between behavioral phenotype and genotype was examined in a subset of 101 pikes for which both phenotypic and genomic data were available. Thermosaline differences between juvenile and adult life stages indicated ontogenetic shifts from warm, low-saline early habitats towards colder, higher-saline adult habitats. Four behavioral phenotypes were found: Freshwater residents, anadromous, brackish residents, and cross-habitat individuals, the latter showing intermediary habitat use between brackish and freshwater areas. Underlying the behavioral phenotypes were four genotypes, putative freshwater, putative anadromous, and two putatively brackish genotypes. Through phenotype-genotype matching, three ecotypes were identified: (i) a brackish resident ecotype, (ii) a freshwater ecotype expressing freshwater residency or anadromy, and (iii) a previously undescribed intermediary cross-habitat ecotype adapted to intermediate salinities, showing limited reliance on freshwater. Life-time growth of all ecotypes was similar, suggesting comparable fitness. By combining genetic data with lifelong habitat use and growth as a fitness surrogate, our study revealed strong differentiation in response to abiotic environmental gradients, primarily salinity, indicating ecotype diversity in coastal northern pike is higher than previously believed.
Collapse
Affiliation(s)
- Timo D Rittweg
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany.
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| | - Clive Trueman
- School of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO143ZH, UK
| | - Michael Wiedenbeck
- German Research Center for Geosciences (GFZ) Potsdam, Telegrafenberg, 14473, Potsdam, Brandenburg, Germany
| | - Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Schleswig-Holstein, Germany
| | - Christian Wolter
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
| | - Lauren Talluto
- Research Group Fluvial Ecosystem Ecology, Department of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Stefan Dennenmoser
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Arne Nolte
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Robert Arlinghaus
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
2
|
Li F, Yang J, Li J, Lin X. Adaptive Strategies and Underlying Response Mechanisms of Ciliates to Salinity Change with Note on Fluctuation Properties. Microorganisms 2024; 12:1957. [PMID: 39458267 PMCID: PMC11509147 DOI: 10.3390/microorganisms12101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The adaptability of marine organisms to changes in salinity has been a significant research area under global climate change. However, the underlying mechanisms of this adaptability remain a debated subject. We hypothesize that neglecting salinity fluctuation properties is a key contributing factor to the controversy. The ciliate Euplotes vannus was used as the model organism, with two salinity fluctuation period sets: acute (24 h) and chronic (336 h). We examined its population growth dynamics and energy metabolism parameters following exposure to salinity levels from 15‱ to 50‱. The carrying capacity (K) decreased with increasing salinity under both acute and chronic stresses. The intrinsic growth rate (r) decreased with increasing salinity under acute stress. Under chronic stress, the r initially increased with stress intensity before decreasing when salinity exceeded 40‱. Overall, glycogen and lipid content decreased with stress increasing and were significantly higher in the acute stress set compared to the chronic one. Both hypotonic and hypertonic stresses enhanced the activities of metabolic enzymes. A trade-off between survival and reproduction was observed, prioritizing survival under acute stress. Under chronic stress, the weight on reproduction increased in significance. In conclusion, the tested ciliates adopted an r-strategy in response to salinity stress. The trade-off between reproduction and survival is a significant biological response mechanism varying with salinity fluctuation properties.
Collapse
Affiliation(s)
- Fenfen Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jing Yang
- College of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Li J, Yu Z, Zheng Q, Chen W, Lin X. How antibiotic exposure affect predator-prey interactions by population dynamics in ciliates? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106814. [PMID: 38160499 DOI: 10.1016/j.aquatox.2023.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Biodiversity loss resulting from environmental pollution is a global concern. While interspecific interactions are central to ecology, the impact of environmental pollution on predator-prey interactions and its ecological consequences, such as extinction and biodiversity loss, remain unclear. To investigate the effects of antibiotic exposure on predation strength and the resulting ecological consequence, the Didinium-Paramecium was utilized as a predator-prey model and exposed to nitrofurazone or erythromycin, two common pollutants, respectively. Initially, we determined prey population growth dynamics, body size, and predator numerical-functional responses. Subsequently, these above parameters were integrated into a mathematical model of predator-prey predation. Then both the long time-series data and phase portraits obtained through model simulation were used to estimate interaction strength and to predict the outcome of predator-prey coexistence. Our results revealed that exposure to either antibiotic significantly reduced prey population growth parameters (e.g., μmax and K) while increasing individual body size. The combined effects of antibiotic exposure and predation pressure on population growth inhibition or body size promotion were variable, mostly additive, with a few cases of synergy and extremely rare antagonism, depending on antibiotic exposure concentration. As antibiotic exposure concentration increased, the predator rmax generally declined, while functional responses varied depending on specific parameters, implying a decrease in predator-prey interaction strength. Analyses of phase portrait features showed that the population oscillation amplitude decreased with increasing antibiotic exposure concentrations, the cycle length of adjacent peaks increased, and prey extinction occurred earlier. In conclusion, antibiotic exposure reduced both predator and prey fitness, underlying the reason antibiotics reduces the strength of predator-prey interaction. Despite the indirect benefits of prey gain from this, the presence of predators can expedite the process of prey extinction caused by antibiotic exposure.
Collapse
Affiliation(s)
- Jiqiu Li
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Ziyue Yu
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qinyun Zheng
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Weihuang Chen
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Scheuffele H, Todd EV, Donald JA, Clark TD. Daily thermal variability does not modify long-term gene expression relative to stable thermal environments: A case study of a tropical fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111532. [PMID: 37816418 DOI: 10.1016/j.cbpa.2023.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Global warming is leading to an increase in the frequency and intensity of extreme weather events, magnifying the breadth of temperatures faced by ectotherms across days and seasons. Despite the importance and ecological relevance of diurnal thermal variability, the vast majority of knowledge on gene expression patterns and physiology stems from animals acclimated to constant temperatures or in the early stages of exposure to a new temperature regime. If heterothermal environments modulate responses differently from constant thermal environments, our existing capacity to forecast impacts of climate warming may be compromised. To address this knowledge gap, we acclimated barramundi (Lates calcarifer) to 23 °C, 29 °C (optimal), 35 °C and to thermal cycling conditions (23-35 °C daily with a mean of 29 °C) and sampled liver and white muscle tissue before acclimation and after 2 and 17 weeks of acclimation. NanoString nCounter technologies were used to measure expression of 20 genes related to metabolism, growth and maintenance of cellular homeostasis. Acclimation to cool and warm conditions caused predictable changes in whole-animal performance (metabolism and growth) and the underlying gene expression patterns. Acclimation to a cycling temperature regime did not change the molecular regulation of metabolism or growth compared with barramundi acclimated to constant 29 °C, nor did it cause any discernible effects on whole-animal performance. However, the heat shock response was higher in the former group, suggesting that barramundi under a daily temperature cycle have an increased need for cellular chaperoning to minimise detrimental effects of temperature on proteins. We conclude that the genetic regulation of metabolism and growth may be more dependent on the mean daily temperature than on the daily temperature range.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - John A Donald
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/JohnDon17043551
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia. https://twitter.com/Timothy_D_Clark
| |
Collapse
|
5
|
Moniruzzaman M, Datta U, Saha NC, Bhowmick AR, Mukherjee J. Abiotic factors and heavy metals defining eco-physiological niche in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162328. [PMID: 36863592 DOI: 10.1016/j.scitotenv.2023.162328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Ecosystem dynamics undergoing alterations in structure and function highlights the need to look into the relations between ecological parameters and organismal fitness and tolerance. Ecophysiological studies are used to understand how organisms adapt to and cope up with environmental stress. Current study uses a process-based approach to model physiochemical parameters regarding seven different fish species. Species respond to climatic variations via acclimation or adaptation through physiological plasticity. Four sites are differentiated into two types based on the water quality parameters and metal contamination. Seven fish species are clustered into two groups, each group depicting separate pattern of response in similar habitat. In this manner, biomarkers from three different physiological axes- stress, reproduction, and neurology were taken to determine the organism's ecological niche. Cortisol, Testosterone, Estradiol, and AChE are the signature molecules estimated for the said physiological axes. The ordination technique, nonmetric multidimensional scaling, has been utilized to visualize the differentiated physiological response to changing environmental conditions. Then, Bayesian Model Averaging (BMA) was used to identify the factors that play a key role in refining the stress physiology and determining the niche. Current study confirms different species belonging to similar habitats respond to various environmental and physiological factors in a different manner as various biomarkers respond in a species-specific pattern that induces the choice of habitat preference controlling its ecophysiological niche. In the present study, it is quite apparent that adaptive mechanism of fish to environmental stress is achieved through modification of physiological mechanisms through a panel of biochemical markers. These markers organize a cascade of physiological event at various levels including reproduction.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Estuarine and Coastal Studies Foundation, Howrah, West Bengal, India
| | - Urbi Datta
- Department of Mathematics, Institute of Chemical Technology, Mumbai, India
| | - Nimai Chandra Saha
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Joyita Mukherjee
- Department of Zoology, Krishna Chandra College, Hetampur, Birbhum, West Bengal, India.
| |
Collapse
|
6
|
Reis-Júnior J, Bertrand A, Frédou T, Vasconcelos-Filho J, Aparecido KC, Duarte-Neto PJ. Community-scale relationships between body shape and trophic ecology in tropical demersal marine fish of northeast Brazil. JOURNAL OF FISH BIOLOGY 2023; 102:1017-1028. [PMID: 36794454 DOI: 10.1111/jfb.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 05/13/2023]
Abstract
Functional morphology investigates the relationships between morphological characters and external factors, such as environmental, physical and ecological features. Here, we evaluate the functional relationships between body shape and trophic ecology of a tropical demersal marine fish community using geometric morphometrics techniques and modelling, hypothesizing that shape variables could partially explain fish trophic level. Fish were collected over the continental shelf of northeast Brazil (4-9°S). Analysed fish were distributed into 14 orders, 34 families and 72 species. Each individual was photographed in lateral view, and 18 landmarks were distributed along the body. A principal component analysis (PCA) applied on morphometric indices revealed that fish body elongation and fin base shape were the main axes of variation explaining the morphology. Low trophic levels (herbivore and omnivore) are characterized by deep bodies and longer dorsal and anal fin bases, while predators present elongated bodies and narrow fin bases. Fin position (dorsal and anal fins) on the fish body is another important factor contributing to (i) body stability at high velocity (top predators) or (ii) manoeuvrability (low trophic levels). Using multiple linear regression, we verified that 46% of trophic level variability could be explained by morphometric variables, with trophic level increasing with body elongation and size. Interestingly, intermediate trophic categories (e.g., low predators) presented morphological divergence for a given trophic level. Our results, which can likely be expanded to other tropical and nontropical systems, show that morphometric approaches can provide important insights into fish functional characteristics, especially in trophic ecology.
Collapse
Affiliation(s)
- Josafá Reis-Júnior
- Programa de Pós-graduação em Biometria e Estatística Aplicada, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Arnaud Bertrand
- MARBEC, Université de Montpellier, CNRS, Ifremer, Institut de Recherche pour le Développement (IRD), Sète, France
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Thierry Frédou
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Jonas Vasconcelos-Filho
- Programa de Pós-graduação em Biometria e Estatística Aplicada, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Kátia C Aparecido
- MARBEC, Université de Montpellier, CNRS, Ifremer, Institut de Recherche pour le Développement (IRD), Sète, France
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Paulo J Duarte-Neto
- Programa de Pós-graduação em Biometria e Estatística Aplicada, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Li J, Yu Z, Warren A, Lin X. Predation risk affects the ecotoxicity evaluation of antibiotics: Population growth and antioxidase activity in the ciliate Paramecium jenningsi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114536. [PMID: 36634479 DOI: 10.1016/j.ecoenv.2023.114536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/05/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Although predation risk exists under natural conditions, its role is usually ignored when evaluating the ecotoxicity of environmental contaminants, and the interaction between predation risk and antibiotic ecotoxicity is not yet clear. To investigate the nonconsumptive effects (NCEs) of predation on the ecotoxicity evaluation of antibiotics, the median lethal concentration (LC50), relative population growth rate (RGR), and activities of three antioxidases were measured in the ciliate Paramecium jenningsi exposed to graded concentrations of the antibiotics nitrofurazone (NFZ) or erythromycin (ERY) in the presence or absence of a predator, i.e., the ciliate Didinium nasutum. The results showed that (1) NCEs significantly reduced the LC50 of NFZ but had no effect on that of ERY; (2) predation pressure alone had no significant effect on the inhibitory rate of the P. jenningsi population, but the interaction with NFZ was synergistic, while that with CRY was additive; (3) the concentrationresponse (i.e., mortality) model for each antibiotic exposure with and without predation pressure differed significantly in the parameter slope; (4) RGRs were significantly reduced by antibiotic exposure or NCEs; only in NFZ-exposed groups did the RGRs decrease linearly with increasing exposure concentration; and (5) the activities of all three antioxidases significantly increased due to NCEs or following exposure to antibiotics. In brief, NCEs were detected in P. jenningsi, and these had additive or synergistic effects on antibiotic ecotoxicity, but their magnitude depended on the properties and exposure concentrations of the antibiotics. Our findings suggest that it is necessary to consider the roles of NCEs in the ecotoxicity evaluation of environmental contaminants.
Collapse
Affiliation(s)
- Jiqiu Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| | - Ziyue Yu
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xiaofeng Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Drown MK, Crawford DL, Oleksiak MF. Transcriptomic analysis provides insights into molecular mechanisms of thermal physiology. BMC Genomics 2022; 23:421. [PMID: 35659182 PMCID: PMC9167525 DOI: 10.1186/s12864-022-08653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Physiological trait variation underlies health, responses to global climate change, and ecological performance. Yet, most physiological traits are complex, and we have little understanding of the genes and genomic architectures that define their variation. To provide insight into the genetic architecture of physiological processes, we related physiological traits to heart and brain mRNA expression using a weighted gene co-expression network analysis. mRNA expression was used to explain variation in six physiological traits (whole animal metabolism (WAM), critical thermal maximum (CTmax), and four substrate specific cardiac metabolic rates (CaM)) under 12 °C and 28 °C acclimation conditions. Notably, the physiological trait variations among the three geographically close (within 15 km) and genetically similar F. heteroclitus populations are similar to those found among 77 aquatic species spanning 15–20° of latitude (~ 2,000 km). These large physiological trait variations among genetically similar individuals provide a powerful approach to determine the relationship between mRNA expression and heritable fitness related traits unconfounded by interspecific differences. Expression patterns explained up to 82% of metabolic trait variation and were enriched for multiple signaling pathways known to impact metabolic and thermal tolerance (e.g., AMPK, PPAR, mTOR, FoxO, and MAPK) but also contained several unexpected pathways (e.g., apoptosis, cellular senescence), suggesting that physiological trait variation is affected by many diverse genes.
Collapse
|
9
|
Kaniewska P, Sampayo EM. Macro- and micro-scale adaptations allow distinct Stylophora pistillata-symbiodiniaceae holobionts to optimize performance across a broad light habitat. JOURNAL OF PHYCOLOGY 2022; 58:55-70. [PMID: 34612522 DOI: 10.1111/jpy.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In sessile organisms, phenotypic plasticity represents an important strategy for dealing with environmental variability. Here we test if phenotypic plasticity enables the common coral Stylophora pistillata to occupy a broad niche. We find clear differences in the photo-physiology of four putative species of photosynthetic dinoflagellate symbionts associated with the coral S. pistillata, namely, Cladocopium 'C35a', 'C79', 'C78a' and 'C8a'. Coral phenotypic responses were also tightly linked to symbiont identity. Corals with Cladocopium 'C8a' have more "open" macro-morphology compared to colonies associating with depth-restricted Cladocopium 'C35a' or 'C78a' in the same shallow water habitat. Corals with Cladocopium 'C8a' had 40 to 60% lower symbiont cell densities compared to other holobionts but were more efficient at acclimating over a range of light levels, with clear mechanisms to dissipate excess light energy. This holobiont contains host-based green fluorescent pigments, increased concentrations of symbiont-based mycosporine amino acids, and xanthophyll cycling in high light habitats. Photosynthetic efficiency was also adjusted over the light habitat. In contrast, limited micro-scale responses were observed between three depth-restricted symbionts: Cladocopium 'C79', 'C35a', and 'C78a'. To optimize light levels reaching the photosynthetic unit, these colonies rely on a more closed macro-morphology under high light levels, which reduces incident light levels by up to 43%, and higher symbiont densities . Our results show that distinct macro- and micro-scale adaptations lead to functional differences between four distinct S. pistillata holobionts, allowing them to co-exist by filling specific niches on a small, but environmentally diverse, spatial scale. Key index words: Light, Symbiodiniaceae, coral, pigments, Stylophora pistillata, ITS2, phenotypic plasticity, niche diversification.
Collapse
Affiliation(s)
- Paulina Kaniewska
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
10
|
Chen X, Yang H, Fan J, Li J, Warren A, Lin X. Toxicity of silver nanoparticles (AgNPs) in the model ciliate Paramecium multimicronucleatum: Molecular mechanisms of activation are dose- and particle size-dependent. Eur J Protistol 2021; 81:125792. [PMID: 34695764 DOI: 10.1016/j.ejop.2021.125792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Current understanding of toxicity mechanisms of nanoparticles is still far from comprehensive, partly because of the neglect of control factors such as the dependence of mechanism activation on the exposure dosage and particle size. To reveal molecular mechanisms of silver nanoparticle (AgNP) toxicity, the model ciliate Paramecium multimicronucleatum was exposed for 12 h to different concentrations of AgNPs with particle size of 20 nm (0.08, 0.12, and 0.30 mg/l) and 40 nm (0.08 and 0.30 mg/l). Transcriptomes of the tested ciliates were then analyzed based on dendrograms of gene expression, Gene Ontology (GO) terms, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, and up- and down-regulated genes. Results showed that: (1) toxicity mechanisms of AgNP revealed by analyses of GO and KEEG were significantly involved in the metabolic pathways of nutrients and the biosynthesis of macromolecules; (2) the top five up-regulated genes were mainly related to biological oxidation, biosynthesis, and oxidative stress, while top five down-regulated genes were mainly related to glycolysis; (3) activated mechanisms varied both in quantity and in type with dosages and particle sizes of AgNPs; (4) AgNP-treatments with different exposure dosages and particle sizes can produce the same toxicity in terms of 12 h-EC50, but the underlying molecular mechanisms differed significantly. In brief, this study provides insights into the molecular mechanisms of AgNP toxicity through transcriptome analyses and confirmed their dependence of activation on the exposure dosage and particle size of AgNPs.
Collapse
Affiliation(s)
- Xin Chen
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jie Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jiqiu Li
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xiaofeng Lin
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
11
|
Adding New Pieces to the Puzzle of Karyotype Evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian Species. BIOLOGY 2021; 10:biology10090922. [PMID: 34571799 PMCID: PMC8472603 DOI: 10.3390/biology10090922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.
Collapse
|
12
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:40. [PMID: 34321114 PMCID: PMC8320048 DOI: 10.1186/s40462-021-00244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182 Cedex 5, Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Bergen, Germany
| |
Collapse
|
13
|
Factors Influencing the Distribution of Endemic Damselflies in Vanuatu. INSECTS 2021; 12:insects12080670. [PMID: 34442236 PMCID: PMC8396446 DOI: 10.3390/insects12080670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Predicting the distribution of endemic insects is vital to continual study and conservation efforts. Here we used ecological niche models and pH data to determine which environmental factors may be influencing the distribution of a group of damselflies in Vanuatu. We tested the utility of niche models in this context and found pH to be a strong predictor for this genus. Abstract Vanuatubasis Ober and Staniczek is a genus of damselfly endemic to Vanuatu. Little is known about the distribution and general natural history of the genus. We present the results of 14 weeks of fieldwork in Vanuatu to provide a better understanding of the biology of this genus. Specifically, we tested ecological niche models to predict the presence of Vanuatubasis throughout the region and explored how water pH may play a role in their distribution and ecology. The results of this fieldwork refined our model and further predicted the presence of this genus on additional islands. We also found stream pH as a strong predictor for the presence of Vanuatubasis, with their presence in alkaline streams significantly higher (p < 0.001). The mean pH for those streams where the genus was collected was 8.44 (n = 53).
Collapse
|
14
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Campos DF, Amanajás RD, Almeida-Val VMF, Val AL. Climate vulnerability of South American freshwater fish: Thermal tolerance and acclimation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:723-734. [PMID: 33689240 DOI: 10.1002/jez.2452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/06/2022]
Abstract
Freshwater fish are restricted by their physiology to rivers and lakes, and are generally limited in their capacity to disperse across basins. As a result, there is often a close match between the evolutionary history of river basins and their natural history. Thus, the regional landscape and ecological features, such as temperature, have shaped the evolution and adaptation of local fish assemblages. Climate change is expected to affect fish diversity and increase extinction, especially in low latitudes, and it has been suggested that species that inhabit low latitude species are more susceptible since they live close to their maximum thermal limits and have low capacity for acclimation. To understand the mechanisms of variation in thermal tolerance across a broad-scale of South American fishes is fundamental to be able to assess the vulnerability of species and habitat to global warming. Herein, we present the first attempt to analyze the vulnerability of South American freshwater fish species, based on the review of upper thermal limits of 106 species from a broad range of latitudinal habitats. Our findings show that upper thermal limits decrease with latitude, while the thermal safety margin (TSM) increase. Furthermore, the latitude has little effects on the acclimation response ratio, and the TSM decreased with rising temperatures. These data suggest that thermal phenotypic acclimation has low potential for mitigating global warming. These results indicate that South American fish species living in tropical areas are more susceptible to global warming since they are already living close to their maximum habitat temperature.
Collapse
Affiliation(s)
- Derek F Campos
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Renan D Amanajás
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Vera M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| |
Collapse
|
16
|
Tunnicliffe V, Gasbarro R, Juanes F, Qualley J, Soderberg N, Chu JWF. An hypoxia-tolerant flatfish: consequences of sustained stress on the slender sole Lyopsetta exilis (Pleuronectidae) in the context of a changing ocean. JOURNAL OF FISH BIOLOGY 2020; 96:394-407. [PMID: 31755100 PMCID: PMC7028253 DOI: 10.1111/jfb.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Slender sole Lyopsetta exilis is an abundant groundfish on the continental shelf and inner waters of British Columbia, Canada, where it reaches a maximum standard length of 44 cm. Benthic image surveys coupled with oxygen measurements in Saanich Inlet document a dense population in bottom conditions near anoxia (0.03 ml l-1 oxygen) where diel migrating zooplankton intersect the bottom; we confirm this species is a planktivore, which limits its depth range to the base of the migration layer. In a comparison with slender sole from a nearby well-oxygenated habitat, several probable effects of living in severe hypoxia emerge: both sexes are significantly smaller in Saanich and the sex ratio is male-skewed. Otoliths from the Saanich fish were difficult to read due to many checks, but both sexes were smaller at age with the largest female (20 cm) from the hypoxia zone registering 17 years. Hypoxia appears to have a direct consequence on growth despite good food supply in this productive basin. Hyperventilation, a low metabolic rate and a very low critical oxygen tension help this fish regulate oxygen uptake in severely hypoxic conditions; it will be particularly resilient as the incidence of hypoxia increases on the continental shelf. Data from small-mesh bottom-trawl surveys over four decades reveal an increase in mean annual catch per unit effort in southern regions of the province, including the outer shelf and the Strait of Georgia. The California Cooperative Oceanic Fisheries Investigations (CalCOFI) ichthyoplankton database records a general decline in fish larvae on the Oregon-California shelf since 1990, but slender sole larvae are increasing there, as they are in the Strait of Georgia. We project that the slender sole will gain relative benefits in the future warming, deoxygenated northeast Pacific Ocean.
Collapse
Affiliation(s)
- Verena Tunnicliffe
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- School of Earth & Ocean SciencesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Ryan Gasbarro
- School of Earth & Ocean SciencesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Department of BiologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Francis Juanes
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Jessica Qualley
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Nicole Soderberg
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Jackson W. F. Chu
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Department of Ocean SciencesMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
17
|
Zhao Y, Zhang C, Zhou H, Song L, Wang J, Zhao J. Transcriptome changes for Nile tilapia (Oreochromis niloticus) in response to alkalinity stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100651. [PMID: 31923799 DOI: 10.1016/j.cbd.2019.100651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/10/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Nile tilapia is an important economic fish in the world because of its fast growth, high meat yield and strong adaptability. It is more adaptable to high alkalinity than common freshwater fish and provides valuable material for developing alkaline-tolerant strains and understanding the adaptation mechanism of fish to extreme environmental stress. In this study, we employed high throughput RNA sequencing to reveal the tissues (gill, kidney and liver) transcriptome differences of O. niloticus at different carbonate alkalinities (FW, AW40 and AW60). A total of 1,369,381,790 raw reads were obtained, including 496,441,232 reads in FW group, 437,907,696 reads in AW40 and 435,032,862 reads in AW60. In addition, 484,555,626 reads in gill, 451,618,224 reads in kidney and 433,207,940 reads in liver. A large number of stress-regulated changes were detected comprehensively. We focused on 3 significantly change pathways (steroid biosynthesis, drug metabolism and protein digestion/absorption) and 17 DEGs (HMG-CoA reductase, UDP-glucuronosyltransferase, and carbonic anhydrase etc.) which were shared among compared groups (AW40 vs FW, AW60 vs FW, AW40 vs 60 AW60) in gill, kidney and liver, respectively. These pathways/genes are sensitive to alkalinity stress and crucial to the alkalinity adaptation of tilapia. Overall, we found a large number of candidate genes, which encode important regulators of stress tolerance and ultimately contribute to future alkaline-tolerant fish breeding. Among these genes, lipid metabolism (involving signal transduction), detoxification and immune related genes are more prominent to the response and adaptability of fish to alkalinity stress.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Chengshuo Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Haotian Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Lingyuan Song
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Jinling Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| |
Collapse
|
18
|
Dos Santos QM, Maina JN, Avenant-Oldewage A. Gyrodactylus magadiensis n. sp. (Monogenea, Gyrodactylidae) parasitising the gills of Alcolapia grahami (Perciformes, Cichlidae), a fish inhabiting the extreme environment of Lake Magadi, Kenya. ACTA ACUST UNITED AC 2019; 26:76. [PMID: 31859621 PMCID: PMC6924288 DOI: 10.1051/parasite/2019077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/06/2019] [Indexed: 11/14/2022]
Abstract
A new species of Gyrodactylus von Nordmann, 1832 is described from the gills of Alcolapia grahami, a tilapian fish endemic to Lake Magadi. This alkaline soda lake in the Rift Valley in Kenya is an extreme environment with pH as high as 11, temperatures up to 42 °C, and diurnal fluctuation between hyperoxia and virtual anoxia. Nevertheless, gyrodactylid monogeneans able to survive these hostile conditions were detected from the gills the Magadi tilapia. The worms were studied using light microscopy, isolated sclerites observed using scanning electron microscopy, and molecular techniques used to genetically characterize the specimens. The gyrodactylid was described as Gyrodactylus magadiensis n. sp. and could be distinguished from other Gyrodactylus species infecting African cichlid fish based on the comparatively long and narrow hamuli, a ventral bar with small rounded anterolateral processes and a tongue-shaped posterior membrane, and marginal hooks with slender sickles which are angled forward, a trapezoid to square toe, rounded heel, a long bridge prior to reaching marginal sickle shaft, and a long lateral edge of the toe. The species is also distinct from all other Gyrodactylus taxa based on the ITS region of rDNA (ITS1-5.8s-ITS2), strongly supporting the designation of a new species. These findings represent the second record of Gyrodactylus from Kenya, with the description of G. magadiensis bringing the total number of Gyrodactylus species described from African cichlids to 18.
Collapse
Affiliation(s)
- Quinton Marco Dos Santos
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| | - John Ndegwa Maina
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| |
Collapse
|
19
|
Yang J, Wei H, Yalin T, Alan W, Xiaofeng L, Jiqiu L. Combined effects of food resources and exposure to ammonium nitrogen on population growth performance in the bacterivorous ciliate Paramecium caudatum. Eur J Protistol 2019; 71:125631. [PMID: 31542654 DOI: 10.1016/j.ejop.2019.125631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Ciliated protozoa (ciliates) play vital roles in biological wastewater-treatment processes, however, combined effects of abiotic and biotic factors as well as the importance of species-specificity of bacterial food organisms on population growth dynamics remain poorly understood, which are hampering the management and optimization of biological wastewater treatment processes. This study investigated the effects of food resources and ammonium nitrogen (NH4+) exposure, both independently and in combination, on the population growth of the bacterivorous ciliate Paramecium caudatum. Results showed that, when fed with two different bacterial food organisms, population growth performance of P. caudatum differed significantly and increased with the addition of protozoa pellet medium. When exposed to NH4+ population growth declined and metabolic enzyme activities were altered. The negative effects of NH4+ on population growth could be weakened by supplementing the food resource with protozoa pellet media. In brief, it was confirmed that the existence of interactive effect of food resources and ammonium nitrogen, as well as the importance of species-specificity of bacterial food organisms on the population growth performance of ciliates. These findings might lead to the development of a valuable strategy for improving the performance of biological wastewater-treatment processes.
Collapse
Affiliation(s)
- Jing Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Hu Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Tan Yalin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Warren Alan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Lin Xiaofeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Li Jiqiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
20
|
Ruan Y, Dou Y, Chen J, Warren A, Li J, Lin X. Evaluation of phenol-induced ecotoxicity in two model ciliate species: Population growth dynamics and antioxidant enzyme activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:176-185. [PMID: 30269012 DOI: 10.1016/j.ecoenv.2018.09.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/08/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The application of identical exposure dosages in different species generally leads to a limited understanding of dose-response patterns because of species-specific factors. To evaluate phenol-induced ecotoxicity, antioxidant enzyme activity and population growth dynamics were compared in two model ciliates, the marine species Euplotes vannus and the freshwater species Paramecium multimicronucleatum. Dosage ranges of phenol exposure were based on tolerance limits of test ciliates as determined by their carrying capacity (K) and growth rate (r). When the exposure duration of phenol increased from 48 h to 96 h, the median effective dose (ED50) for P. multimicronucleatum decreased faster than that for E. vannus, and the ratio of the former to the latter declined from 2.75 to 0.30. When E. vannus was exposed to increasing concentrations of phenol (0-140 mg l-1), r rose initially and then dropped significantly at concentrations higher than 40 mg l-1, whereas K decreased linearly over the entire range. For P. multimicronucleatum, both r and K declined gradually over the range 0-200 mg l-1 phenol. Dose-response patterns of activities of three individual antioxidant enzymes, and the integrative index of the three enzymes, presented a biphasic (inverse U-shaped) curve at each of four durations of exposure, i.e. 12 h, 24 h, 36 h and 48 h. Cluster analyses and multidimensional scaling analyses of antioxidant enzyme activities revealed differences in the temporal succession of physiological states between the two model ciliates. In brief, combining ED50 with growth dynamic parameters is helpful for designing exposure dosages of toxicants in ecotoxicity tests.
Collapse
Affiliation(s)
- Yuanyuan Ruan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Yingfeng Dou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jingyi Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China.
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
21
|
Franklin OD, Skúlason S, Morrissey MB, Ferguson MM. Natural selection for body shape in resource polymorphic Icelandic Arctic charr. J Evol Biol 2018; 31:1498-1512. [PMID: 29961959 DOI: 10.1111/jeb.13346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 01/22/2023]
Abstract
Resource polymorphisms exhibit remarkable intraspecific diversity and in many cases are expected to be maintained by diversifying selection. Phenotypic trade-offs can constrain morphologically intermediate individuals from effectively exploiting both alternate resources, resulting in ecological barriers to gene flow. Determining if and how phenotypic trade-offs cause fitness variation in the wild is challenging because of phenotypic and environmental correlations associated with alternative resource strategies. We investigated multiple pathways through which morphology could affect organismal performance, as measured by growth rate, and whether these effects generate diversifying selection in polymorphic Icelandic Arctic charr (Salvelinus alpinus) populations. We considered direct effects of morphology on growth and indirect effects via trophic resource use, estimated by stable isotopic signatures, and via parasitism associated with trophic resources. We sampled over 3 years in (lakes) Thingvallavatn and Vatnshlíðarvatn using the extended selection gradient path analytical approach and estimating size-dependent mortality. We found evidence for diversifying selection only in Thingvallavatn: more streamlined and terminally mouthed planktivore charr experienced greater growth, with the opposite pattern in small benthic charr. However, this effect was mediated by parasitism and nontrophic pathways, rather than trophic performance as often expected. Detection of between-morph differences in the presence (Vatnshlíðarvatn) and direction (Thingvallavatn) of size-dependent mortality, together with nontrophic effects of shape, suggests that a morphological trophic performance explanation for polymorphism is insufficient. This rare insight into selection during early diversification suggests that a complex of interacting local factors must be considered to understand how phenotype influences fitness, despite morphological variation reflecting intuitive trade-off explanations.
Collapse
Affiliation(s)
- Oliver D Franklin
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Saudárkrókur, Iceland
| | - Michael B Morrissey
- Dyers Brae House, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Lumír Gvoždík
- Inst. of Vertebrate Biology of the Czech Academy of Sciences, Květná 8; CZ-603 65 Brno Czech Republic
| |
Collapse
|
23
|
Boucher MA, Baker DW, Brauner CJ, Shrimpton JM. The effect of substrate rearing on growth, aerobic scope and physiology of larval white sturgeon Acipenser transmontanus. JOURNAL OF FISH BIOLOGY 2018; 92:1731-1746. [PMID: 29691861 DOI: 10.1111/jfb.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
The effect of substratum on growth and metabolic rate was assessed in larval white sturgeon Acipenser transmontanus. Yolk-sac larvae (YSL) were reared in bare tanks or tanks with gravel as substratum from hatch until approximately 16 days post hatch (dph). The effect of an artificial substratum was also evaluated on growth alone. Substratum had a significant effect on mass, with larvae reared in gravel and artificial substrata being larger than those reared without substratum. Routine metabolic rates were significantly lower and relative aerobic scope (the difference between maximum and routine metabolic rate) was significantly higher for YSL and feeding larvae (FL) reared in gravel relative to those reared in bare tanks, particularly before fish started feeding exogenously. Furthermore, gravel-reared larvae had higher whole-body glycogen concentrations relative to bare-tank-reared larvae. Routine factorial scope (maximum metabolic rate divided by routine metabolic rate) was relatively low in all treatments (< 1·7) indicating a limited ability to elevate metabolic rate above routine early in development and mass exponents for metabolic rate exceeded 1. Taken together, these data indicate that YSL reared without substratum may divert more of their energy to non-growth related processes impairing growth. This finding underscores the importance of adequate rearing substratum for growth of A. transmontanus and may provide support for habitat restoration and alternative hatchery rearing methods associated with sturgeon conservation.
Collapse
Affiliation(s)
- M A Boucher
- Research, Evaluation, and Development Section, Ecosystem Science and Management (Biology) Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - D W Baker
- Department of Fisheries and Aquaculture, International Centre for Sturgeon Studies, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada
| | - C J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - J M Shrimpton
- Research, Evaluation, and Development Section, Ecosystem Science and Management (Biology) Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| |
Collapse
|
24
|
Ethmalosa fimbriata (Bowdich 1825), a Clupeid Fish That Exhibits Elevated Batch Fecundity in Hypersaline Waters. FISHES 2017. [DOI: 10.3390/fishes2030013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Pörtner HO, Bock C, Mark FC. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 2017; 220:2685-2696. [DOI: 10.1242/jeb.134585] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacity-limited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting ‘total excess aerobic power budget’ supports an animal's performance (e.g. comprising motor activity, reproduction and growth) within an individual's thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximum difference between resting and the highest exercise-induced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes – mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism. We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development of OCLTT. We propose that OCLTT explains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land.
Collapse
Affiliation(s)
- Hans-O. Pörtner
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| | - Christian Bock
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| | - Felix C. Mark
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| |
Collapse
|
26
|
Yang H, Meng Y, Song Y, Tan Y, Warren A, Li J, Lin X. Salinity fluctuation influencing biological adaptation: growth dynamics and Na + /K + -ATPase activity in a euryhaline bacterium. J Basic Microbiol 2017; 57:617-624. [PMID: 28493363 DOI: 10.1002/jobm.201700124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022]
Abstract
Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na+ /K+ -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na+ /K+ -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na+ /K+ -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na+ /K+ -ATPase activity, and tradeoffs between r, K, and Na+ /K+ -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change.
Collapse
Affiliation(s)
- Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Yang Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Youxin Song
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Yalin Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
27
|
Ottimofiore E, Albouy C, Leprieur F, Descombes P, Kulbicki M, Mouillot D, Parravicini V, Pellissier L. Responses of coral reef fishes to past climate changes are related to life-history traits. Ecol Evol 2017; 7:1996-2005. [PMID: 28331606 PMCID: PMC5355194 DOI: 10.1002/ece3.2800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 01/21/2023] Open
Abstract
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present-day distributions of coral reef fish species. We investigated whether species-specific responses are associated with life-history traits. We collected a database of coral reef fish distribution together with life-history traits for the Indo-Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo-Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.
Collapse
Affiliation(s)
| | - Camille Albouy
- Swiss Federal Research Institute WSL Birmensdorf Switzerland; Landscape Ecology Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland; IFREMER, unité Ecologie et Modèles pour l'Halieutiquerue de l'Ile d'Yeu, BP21105 44311 Nantes cedex 3 France
| | | | - Patrice Descombes
- Swiss Federal Research Institute WSL Birmensdorf Switzerland; Landscape Ecology Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
| | - Michel Kulbicki
- Institut pour la Recherche en Développement UR UMR "Entropie", Labex Corail, Université de Perpignan Perpignan France
| | - David Mouillot
- UMR MARBEC (CNRS IRD IFREMER UM) Montpellier Cedex 5 France
| | - Valeriano Parravicini
- CRIOBE, USR 3278 CNRS-EPHE-UPVD, LABEX "CORAIL" University of Perpignan Perpignan France
| | - Loïc Pellissier
- Swiss Federal Research Institute WSL Birmensdorf Switzerland; Landscape Ecology Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
| |
Collapse
|
28
|
Rooke AC, Burness G, Fox MG. Thermal physiology of native cool-climate, and non-native warm-climate Pumpkinseed sunfish raised in a common environment. J Therm Biol 2017; 64:48-57. [DOI: 10.1016/j.jtherbio.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 11/25/2022]
|
29
|
Brooker RM, Feeney WE, White JR, Manassa RP, Johansen JL, Dixson DL. Using insights from animal behaviour and behavioural ecology to inform marine conservation initiatives. Anim Behav 2016; 120:211-221. [PMID: 29104297 PMCID: PMC5665575 DOI: 10.1016/j.anbehav.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The impacts of human activities on the natural world are becoming increasingly apparent, with rapid development and exploitation occurring at the expense of habitat quality and biodiversity. Declines are especially concerning in the oceans, which hold intrinsic value due to their biological uniqueness as well as their substantial sociological and economic importance. Here, we review the literature and investigate whether incorporation of knowledge from the fields of animal behaviour and behavioural ecology may improve the effectiveness of conservation initiatives in marine systems. In particular, we consider (1) how knowledge of larval behaviour and ecology may be used to inform the design of marine protected areas, (2) how protecting species that hold specific ecological niches may be of particular importance for maximizing the preservation of biodiversity, (3) how current harvesting techniques may be inadvertently skewing the behavioural phenotypes of stock populations and whether changes to current practices may lessen this skew and reinforce population persistence, and (4) how understanding the behavioural and physiological responses of species to a changing environment may provide essential insights into areas of particular vulnerability for prioritized conservation attention. The complex nature of conservation programmes inherently results in interdisciplinary responses, and the incorporation of knowledge from the fields of animal behaviour and behavioural ecology may increase our ability to stem the loss of biodiversity in marine environments.
Collapse
Affiliation(s)
- Rohan M. Brooker
- School of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A
| | - William E. Feeney
- School of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
- Department of Zoology, University of Cambridge, Cambridge, U.K
| | - James R. White
- College of Tropical and Marine Science, James Cook University, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Rachel P. Manassa
- Water Studies Centre, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Jacob L. Johansen
- Marine Science Institute, University of Texas, Port Aransas, TX, U.S.A
| | - Danielle L. Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A
| |
Collapse
|
30
|
Papetti C, Lucassen M, Pörtner HO. Integrated studies of organismal plasticity through physiological and transcriptomic approaches: examples from marine polar regions. Brief Funct Genomics 2016; 15:365-72. [PMID: 27345433 DOI: 10.1093/bfgp/elw024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptomic methods are now widely used in functional genomic research. The vast amount of information received from these studies comes along with the challenge of developing a precise picture of the functional consequences and the characteristic regulatory mechanisms. Here we assess recent studies in marine species and their adaptation to polar (and seasonal) cold and explore how they have been able to draw reliable conclusions from transcriptomic patterns on functional consequences in the organisms. Our analysis indicates that the interpretation of transcriptomic data suffers from insufficient understanding of the consequences for whole organism performance and fitness and comes with the risk of supporting only preliminary and superficial statements.We propose that the functional understanding of transcriptomic data may be improved by their tighter integration into overarching physiological concepts that support the more specific interpretation of the 'omics' data and, at the same time, can be developed further through embedding the transcriptomic phenomena observed. Such possibilities have not been fully exploited.In the context of thermal adaptation and limitation, we explore preliminary evidence that the concept of oxygen and capacity limited thermal tolerance (OCLTT) may provide sufficient complexity to guide the integration of such data and the development of associated functional hypotheses. At the same time, we identify a lack of methodological approaches linking genes and function to higher levels of integration, in terms of organism and ecosystem functioning, at temporal and geographical scales, to support more reliable conclusions and be predictive with respect to the effects of global changes.
Collapse
|
31
|
Gallo ND, Levin LA. Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of Ocean Deoxygenation. ADVANCES IN MARINE BIOLOGY 2016; 74:117-198. [PMID: 27573051 DOI: 10.1016/bs.amb.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxia-tolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world.
Collapse
Affiliation(s)
- N D Gallo
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States.
| | - L A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
32
|
Mammalian metabolic rates in the hottest fish on earth. Sci Rep 2016; 6:26990. [PMID: 27257105 PMCID: PMC4891707 DOI: 10.1038/srep26990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
The Magadi tilapia, Alcolapia grahami, a small cichlid fish of Lake Magadi, Kenya lives in one of the most challenging aquatic environments on earth, characterized by very high alkalinity, unusual water chemistry, and extreme O2, ROS, and temperature regimes. In contrast to most fishes which live at temperatures substantially lower than the 36–40 °C of mammals and birds, an isolated population (South West Hot Springs, SWHS) of Magadi tilapia thrives in fast-flowing hotsprings with daytime highs of 43 °C and night-time lows of 32 °C. Another population (Fish Springs Lagoon, FSL) lives in a lagoon with fairly stable daily temperatures (33–36 °C). The upper critical temperatures (Ctmax) of both populations are very high; moreover the SWHS tilapia exhibit the highest Ctmax (45.6 °C) ever recorded for a fish. Routine rates of O2 consumption (MO2) measured on site, together with MO2 and swimming performance at 25, 32, and 39 °C in the laboratory, showed that the SWHS tilapia exhibited the greatest metabolic performance ever recorded in a fish. These rates were in the basal range of a small mammal of comparable size, and were all far higher than in the FSL fish. The SWHS tilapia represents a bellwether organism for global warming.
Collapse
|
33
|
Recent Advances in Understanding the Effects of Climate Change on Coral Reefs. DIVERSITY-BASEL 2016. [DOI: 10.3390/d8020012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Hoey AS, Feary DA, Burt JA, Vaughan G, Pratchett MS, Berumen ML. Regional variation in the structure and function of parrotfishes on Arabian reefs. MARINE POLLUTION BULLETIN 2016; 105:524-531. [PMID: 26608505 DOI: 10.1016/j.marpolbul.2015.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/01/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Parrotfishes (f. Labridae) are a unique and ubiquitous group of herbivorous reef fishes. We compared the distribution and ecosystem function (grazing and erosion) of parrotfishes across 75 reefs in Arabia. Our results revealed marked regional differences in the abundance, and taxonomic and functional composition of parrotfishes between the Red Sea, Arabian Sea, and Arabian Gulf. High densities and diversity of parrotfishes, and high rates of grazing (210% year(-1)) and erosion (1.57 kgm(-2)year(-1)) characterised Red Sea reefs. Despite Arabian Sea and Red Sea reefs having broadly comparable abundances of parrotfishes, estimates of grazing (150% year(-1)) and erosion (0.43 kgm(-2)year(-1)) were markedly lower in the Arabian Sea. Parrotfishes were extremely rare within the southern Arabian Gulf, and as such rates of grazing and erosion were negligible. This regional variation in abundance and functional composition of parrotfishes appears to be related to local environmental conditions.
Collapse
Affiliation(s)
- Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia; Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - David A Feary
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - John A Burt
- Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Grace Vaughan
- Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
35
|
Hasenbein M, Fangue NA, Geist J, Komoroske LM, Truong J, McPherson R, Connon RE. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species. CONSERVATION PHYSIOLOGY 2016; 4:cow004. [PMID: 27293756 PMCID: PMC4795446 DOI: 10.1093/conphys/cow004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 05/26/2023]
Abstract
Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator-prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento-San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta smelt physiological performance, causing significant effects on overall stress, food intake and mortality. They also highlight the need for turbidity to be considered in habitat and water management decisions.
Collapse
Affiliation(s)
- Matthias Hasenbein
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, CA 95616, USA
- Chair of Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technische Universität München, Mühlenweg 22, Freising D-85354, Germany
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Chair of Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technische Universität München, Mühlenweg 22, Freising D-85354, Germany
| | - Lisa M Komoroske
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, CA 95616, USA
| | - Jennifer Truong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rina McPherson
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
36
|
Kavembe GD, Kautt AF, Machado-Schiaffino G, Meyer A. Eco-morphological differentiation in Lake Magadi tilapia, an extremophile cichlid fish living in hot, alkaline and hypersaline lakes in East Africa. Mol Ecol 2016; 25:1610-25. [DOI: 10.1111/mec.13461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/01/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Geraldine D. Kavembe
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
- Department of Biology; School of Pure and Applied Sciences; South Eastern Kenya University; P. O. Box 170 90200 Kitui Kenya
| | - Andreas F. Kautt
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
- International Max Planck Research School for Organismal Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Gonzalo Machado-Schiaffino
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
- International Max Planck Research School for Organismal Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
37
|
Baris TZ, Crawford DL, Oleksiak MF. Acclimation and acute temperature effects on population differences in oxidative phosphorylation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R185-96. [PMID: 26582639 DOI: 10.1152/ajpregu.00421.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range.
Collapse
Affiliation(s)
- Tara Z Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| |
Collapse
|
38
|
Hallman TA, Brooks ML. The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:88-94. [PMID: 26142755 DOI: 10.1016/j.envpol.2015.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/02/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Climate projections over the next century include disproportionately warmer nighttime temperatures ("asymmetrical warming"). Cool nighttime temperatures lower metabolic rates of aquatic ectotherms. In contaminated waters, areas with cool nights may provide thermal refugia from high rates of daytime contaminant uptake. We exposed Cope's gray tree frogs (Hyla chrysoscelis), southern leopard frogs (Lithobates sphenocephalus), and spotted salamanders (Ambystoma maculatum) to five concentrations of a mixture of cadmium, copper, and lead under three to four temperature regimes, representing asymmetrical warming. At concentrations with intermediate toxicosis at test termination (96 h), temperature effects on acute toxicity or escape distance were evident in all study species. Asymmetrical warming (day:night, 22:20 °C; 22:22 °C) doubled or tripled mortality relative to overall cooler temperatures (20:20 °C) or cool nights (22:18 °C). Escape distances were 40-70% shorter under asymmetrical warming. Results suggest potentially grave ecological impacts from unexpected toxicosis under climate change.
Collapse
Affiliation(s)
- Tyler A Hallman
- Department of Zoology, Southern Illinois University, 1125 Lincoln Dr, Carbondale, IL 62901-6501, USA.
| | - Marjorie L Brooks
- Department of Zoology, Southern Illinois University, 1125 Lincoln Dr, Carbondale, IL 62901-6501, USA.
| |
Collapse
|
39
|
What do metabolic rates tell us about thermal niches? Mechanisms driving crayfish distributions along an altitudinal gradient. Oecologia 2015; 180:45-54. [PMID: 26440800 DOI: 10.1007/s00442-015-3463-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Humans are rapidly altering thermal landscapes, so a central challenge to organismal ecologists is to better understand the thermal niches of ectotherms. However, there is much disagreement over how we should go about this. Some ecologists assume that a statistical model of abundance as a function of habitat temperature provides a sufficient approximation of the thermal niche, but ecophysiologists have shown that the relationship between fitness and temperature can be complicated, and have stressed the need to elucidate the causal mechanisms underlying the response of species to thermal change. Towards this end, we studied the distribution of two crayfishes, Euastacus woiwuru and Euastacus armatus, along an altitudinal gradient, and for both species conducted experiments to determine the temperature-dependence of: (1) aerobic scope (the difference between maximum and basal metabolic rate; purported to be a proxy of the thermal niche); and (2) burst locomotor performance (primarily fuelled using anaerobic pathways). E. woiwuru occupied cooler habitats than E. armatus, but we found no difference in aerobic scope between these species. In contrast, locomotor performance curves differed significantly and strongly between species, with peak locomotor performances of E. woiwuru and E. armatus occurring at ~10 and ~18 °C, respectively. Crayfish from different thermal landscapes may have similar aerobic thermal performance curves but different anaerobic thermal performance curves. Our results support a growing body of literature implying different components of ectotherm fitness have different thermal performance curves, and further challenge our understanding of the ecology and evolution of thermal niches.
Collapse
|
40
|
Johansen JL, Steffensen JF, Jones GP. Winter temperatures decrease swimming performance and limit distributions of tropical damselfishes. CONSERVATION PHYSIOLOGY 2015; 3:cov039. [PMID: 27293724 PMCID: PMC4778443 DOI: 10.1093/conphys/cov039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 07/20/2015] [Accepted: 07/24/2015] [Indexed: 05/03/2023]
Abstract
Coral reefs within 10° of the equator generally experience ≤3°C seasonal variation in water temperature. Ectotherms that have evolved in these conditions are therefore expected to exhibit narrow thermal optima and be very sensitive to the greater thermal variability (>6°C) experienced at higher latitudes (≥10°N/S). The impact of increased thermal variability on the fitness and distribution of thermally sensitive reef ectotherms is currently unknown. Here, we examine site-attached planktivorous coral reef damselfishes that rely on their physiological capacity to swim and forage in the water column year round. We focus on 10 species spanning four evolutionarily distinct genera from a region of the Great Barrier Reef that experiences ≥6°C difference between seasons. Four ecologically important indicators showed reduced performance during the winter low (23°C) compared with the summer peak (29°C), with effect sizes varying among species and genera, as follows: (i) the energy available for activity (aerobic scope) was reduced by 35-45% in five species and three genera; (ii) the energetically most efficient swimming speed was reduced by 17% across all species; and (iii) the maximal critical swimming speed and (iv) the gait transition speed (the swimming mode predominantly used for foraging) were reduced by 16-42% in six species spanning all four genera. Comparisons with field surveys within and across latitudes showed that species-specific distributions were strongly correlated with these performance indicators. Species occupy habitats where they can swim faster than prevailing habitat currents year round, and >95% of individuals were observed only in habitats where the gait transition speed can be maintained at or above habitat currents. Thermal fluctuation at higher latitudes appears to reduce performance as well as the possible distribution of species and genera within and among coral reef habitats. Ultimately, thermal variability across latitudes may progressively cause sublethal changes to species performance and lead to a contraction of biogeographical range.
Collapse
Affiliation(s)
- Jacob L Johansen
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
41
|
Johansen J, Pratchett M, Messmer V, Coker D, Tobin A, Hoey A. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean. Sci Rep 2015; 5:13830. [PMID: 26345733 PMCID: PMC4561880 DOI: 10.1038/srep13830] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/07/2015] [Indexed: 11/08/2022] Open
Abstract
Increased ocean temperature due to climate change is raising metabolic demands and energy requirements of marine ectotherms. If productivity of marine systems and fisheries are to persist, individual species must compensate for this demand through increasing energy acquisition or decreasing energy expenditure. Here we reveal that the most important coral reef fishery species in the Indo-west Pacific, the large predatory coral trout Plectropomus leopardus (Serranidae), can behaviourally adjust food intake to maintain body-condition under elevated temperatures, and acclimate over time to consume larger meals. However, these increased energetic demands are unlikely to be met by adequate production at lower trophic levels, as smaller prey species are often the first to decline in response to climate-induced loss of live coral and structural complexity. Consequently, ubiquitous increases in energy consumption due to climate change will increase top-down competition for a dwindling biomass of prey, potentially distorting entire food webs and associated fisheries.
Collapse
Affiliation(s)
- J.L. Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, 32080, Florida, USA
| | - M.S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| | - V. Messmer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| | - D.J. Coker
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955, Kingdom of Saudi Arabia
| | - A.J. Tobin
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - A.S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
42
|
Kavembe GD, Franchini P, Irisarri I, Machado-Schiaffino G, Meyer A. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth’s Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. J Mol Evol 2015; 81:90-109. [DOI: 10.1007/s00239-015-9696-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/29/2015] [Indexed: 11/29/2022]
|
43
|
Kreiss CM, Michael K, Lucassen M, Jutfelt F, Motyka R, Dupont S, Pörtner HO. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). J Comp Physiol B 2015. [PMID: 26219611 PMCID: PMC4568026 DOI: 10.1007/s00360-015-0923-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3–4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na+/H+-exchange and HCO3− transport at high PCO2 (2200 µatm), paralleled by higher Na+/K+-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na+/K+-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na+ and/or Cl− concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.
Collapse
Affiliation(s)
- C M Kreiss
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - K Michael
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - M Lucassen
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - F Jutfelt
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden.,The Sven Lovén Centre for Marine Sciences, Kristineberg 566, 451 78, Fiskebäckskil, Sweden
| | - R Motyka
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden
| | - S Dupont
- The Sven Lovén Centre for Marine Sciences, Kristineberg 566, 451 78, Fiskebäckskil, Sweden
| | - H-O Pörtner
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Integrative Ecophysiology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
44
|
Ford AGP, Dasmahapatra KK, Rüber L, Gharbi K, Cezard T, Day JJ. High levels of interspecific gene flow in an endemic cichlid fish adaptive radiation from an extreme lake environment. Mol Ecol 2015; 24:3421-40. [PMID: 25997156 PMCID: PMC4973668 DOI: 10.1111/mec.13247] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022]
Abstract
Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence.
Collapse
Affiliation(s)
- Antonia G P Ford
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | | | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, Bern, 3005, Switzerland
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Timothee Cezard
- Edinburgh Genomics, Ashworth Laboratories, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Julia J Day
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
45
|
Bozinovic F, Pörtner HO. Physiological ecology meets climate change. Ecol Evol 2015; 5:1025-30. [PMID: 25798220 PMCID: PMC4364817 DOI: 10.1002/ece3.1403] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.
Collapse
Affiliation(s)
- Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
46
|
Johansen JL, Messmer V, Coker DJ, Hoey AS, Pratchett MS. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. GLOBAL CHANGE BIOLOGY 2014; 20:1067-1074. [PMID: 24277276 DOI: 10.1111/gcb.12452] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/13/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
Large-bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West-Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24-27 °C, spontaneous swimming speeds of common coral trout were 0.43-0.45 body lengths per second (bls(-1)), but dropped sharply to 0.29 bls(-1) at 30 °C and 0.25 bls(-1) at 33 °C. Concurrently, individuals spent 9.3-10.6% of their time resting motionless on the bottom at 24-27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (<45 cm TL), showing significant changes to swimming speeds across every temperature tested, while medium (45-55 cm TL) and large individuals (>55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high-latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low-latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and survival of individuals and populations.
Collapse
Affiliation(s)
- J L Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | | | | | | | | |
Collapse
|
47
|
Wood CM, Nawata CM, Wilson JM, Laurent P, Chevalier C, Bergman HL, Bianchini A, Maina JN, Johannsson OE, Bianchini LF, Kavembe GD, Papah MB, Ojoo RO. Rh proteins and NH4(+)-activated Na+-ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish. ACTA ACUST UNITED AC 2014; 216:2998-3007. [PMID: 23885087 DOI: 10.1242/jeb.078634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small cichlid fish Alcolapia grahami lives in Lake Magadi, Kenya, one of the most extreme aquatic environments on Earth (pH ~10, carbonate alkalinity ~300 mequiv l(-1)). The Magadi tilapia is the only 100% ureotelic teleost; it normally excretes no ammonia. This is interpreted as an evolutionary adaptation to overcome the near impossibility of sustaining an NH3 diffusion gradient across the gills against the high external pH. In standard ammoniotelic teleosts, branchial ammonia excretion is facilitated by Rh glycoproteins, and cortisol plays a role in upregulating these carriers, together with other components of a transport metabolon, so as to actively excrete ammonia during high environmental ammonia (HEA) exposure. In Magadi tilapia, we show that at least three Rh proteins (Rhag, Rhbg and Rhcg2) are expressed at the mRNA level in various tissues, and are recognized in the gills by specific antibodies. During HEA exposure, plasma ammonia levels and urea excretion rates increase markedly, and mRNA expression for the branchial urea transporter mtUT is elevated. Plasma cortisol increases and branchial mRNAs for Rhbg, Rhcg2 and Na(+),K(+)-ATPase are all upregulated. Enzymatic activity of the latter is activated preferentially by NH4(+) (versus K(+)), suggesting it can function as an NH4(+)-transporter. Model calculations suggest that active ammonia excretion against the gradient may become possible through a combination of Rh protein and NH4(+)-activated Na(+)-ATPase function.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cooke SJ, Killen SS, Metcalfe JD, McKenzie DJ, Mouillot D, Jørgensen C, Peck MA. Conservation physiology across scales: insights from the marine realm. CONSERVATION PHYSIOLOGY 2014; 2:cou024. [PMID: 27293645 PMCID: PMC4732490 DOI: 10.1093/conphys/cou024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/11/2014] [Accepted: 05/19/2014] [Indexed: 05/21/2023]
Abstract
As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology-both the challenges and the opportunities that it creates-will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6. Tel: +1 613 867 6711.
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health, and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian D. Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| | - David J. McKenzie
- Equipe Diversité et Ecologie des Poissons, UMR5119 Ecologie des Systèmes Marins Côtiers, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - David Mouillot
- Equipe Diversité et Ecologie des Poissons, UMR5119 Ecologie des Systèmes Marins Côtiers, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | | | - Myron A. Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, D-22767 Hamburg, Germany
| |
Collapse
|
49
|
Ohlberger J, Brännström Å, Dieckmann U. Adaptive phenotypic diversification along a temperature-depth gradient. Am Nat 2013; 182:359-73. [PMID: 23933726 DOI: 10.1086/671169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Theoretical models suggest that sympatric speciation along environmental gradients might be common in nature. Here we present the first data-based model of evolutionary diversification along a continuous environmental gradient. On the basis of genetic analyses, it has been suggested that a pair of coregonid fishes (Coregonus spp.) in a postglacial German lake originated by sympatric speciation. Within this lake, the two species segregate vertically and show metabolic adaptations to, as well as behavioral preferences for, correspondingly different temperatures. We test the plausibility of the hypothesis that this diversifying process has been driven by adaptations to different thermal microhabitats along the lake's temperature-depth gradient. Using an adaptive-dynamics model that is calibrated with empirical data and allows the gradual evolution of a quantitative trait describing optimal foraging temperature, we show that under the specific environmental conditions in the lake, evolutionary branching of a hypothetical ancestral population into two distinct phenotypes may have occurred. We also show that the resultant evolutionary diversification yields two stably coexisting populations with trait values and depth distributions that are in agreement with those currently observed in the lake. We conclude that divergent thermal adaptations along the temperature-depth gradient might have brought about the two species observed today.
Collapse
Affiliation(s)
- Jan Ohlberger
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, D-12587 Berlin, Germany.
| | | | | |
Collapse
|
50
|
Filipe AF, Markovic D, Pletterbauer F, Tisseuil C, De Wever A, Schmutz S, Bonada N, Freyhof J. Forecasting fish distribution along stream networks: brown trout (Salmo trutta) in Europe. DIVERS DISTRIB 2013. [DOI: 10.1111/ddi.12086] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ana Filipa Filipe
- Grup de Recerca “Freshwater Ecology and Management” (FEM); Department d'Ecologia; Facultat de Biologia; Universitat de Barcelona (UB); Diagonal 643; 08028; Barcelona; Catalonia; Spain
| | - Danijela Markovic
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310; 12587; Berlin; Germany
| | - Florian Pletterbauer
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG); University of Natural Resources and Life Sciences Vienna (BOKU); Max Emanuel Strasse 17; 1180; Vienna; Austria
| | - Clément Tisseuil
- Département Milieux et Peuplements Aquatiques; UMR BOREA-IRD 207/CNRS 7208/MNHN/UPMC; Muséum National d'Histoire Naturelle; Paris; France
| | - Aaike De Wever
- Freshwater Laboratory; Royal Belgian Institute of Natural Sciences; Vautierstraat 29; 1000; Brussels; Belgium
| | - Stefan Schmutz
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG); University of Natural Resources and Life Sciences Vienna (BOKU); Max Emanuel Strasse 17; 1180; Vienna; Austria
| | - Núria Bonada
- Grup de Recerca “Freshwater Ecology and Management” (FEM); Department d'Ecologia; Facultat de Biologia; Universitat de Barcelona (UB); Diagonal 643; 08028; Barcelona; Catalonia; Spain
| | - Jörg Freyhof
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Müggelseedamm 310; 12587; Berlin; Germany
| |
Collapse
|