1
|
Chen C, Xu T, Li S, Xue M, Deng Y, Fan B, Yang C, Hao D. The Key Phytochemical Cue Camphor Is a Promising Lure for Traps Monitoring the New Monophagous Camphor Tree Borer Pagiophloeus tsushimanus (Coleoptera: Curculionidae). J Chem Ecol 2024:10.1007/s10886-024-01537-3. [PMID: 39167251 DOI: 10.1007/s10886-024-01537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/13/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The landscape plant, Cinnamomum camphora, is a broad-spectrum insect-repelling tree species, mainly due to a diversity of terpenoids, such as camphor. Despite its formidable chemical defenses, C. camphora is easily attacked and invaded by a monophagous weevil pest, Pagiophloeus tsushimanus. Deciphering the key olfactory signal components regulating host preference could facilitate monitoring and control strategies for this pest. Herein, two host volatiles, camphor and ocimene, induced GC-EAD/EAG reactions in both male and female adult antennae. Correspondingly, Y-tube olfactometer assays showed that the two compounds were attractive to both male and female adults. In field assays, a self-made trap device baited with 5 mg dose d(+)-camphor captured significantly more P. tsushimanus adults than isopropanol solvent controls without sexual bias. The trunk gluing trap device baited with bait can capture adults, but the number was significantly less than that of the self-made trap device and adults often fell after struggling. The cross baffle trap device never trapped adults. Neither ocimene nor isopropanol solvent control captured adults. When used in combination, ocimene did not enhance the attraction of d(+)-camphor to both female and male adults. These results indicate that d(+)-camphor is a key active compound of P. tsushimanus adults for host location. The combination of the host-volatile lure based on d(+)-camphor and the self-made trapping device is promising to monitor and provide an eco-friendly control strategy for this novel pest P. tsushimanus in C. camphora plantations.
Collapse
Affiliation(s)
- Cong Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- College of Life Sciences, Zhaoqing University, Zhaoqing, Guangdong, 526061, China
| | - Tian Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Mingyu Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yadi Deng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Binqi Fan
- Forest Station of Shanghai, Shanghai, 200072, China
| | - Chufeng Yang
- Forest Station of Shanghai, Shanghai, 200072, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
2
|
Hettiarachchi DK, Rostás M, Sullivan JJ, Jackman S, van Koten C, Cripps MG. Plant phylogeny determines host selection and acceptance of the oligophagous leaf beetle Cassida rubiginosa. PEST MANAGEMENT SCIENCE 2023; 79:4694-4703. [PMID: 37450765 DOI: 10.1002/ps.7669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Predicting the host range of biocontrol agents is important for the safe and effective implementation of biocontrol of weeds. In this study, we examined the phylogenetic pattern of host selection and acceptance by the biocontrol beetle, Cassida rubiginosa. The beetle was released in New Zealand for control of Cirsium arvense, its primary host plant, but has potential to attack many Cardueae (thistles and knapweeds) species. We conducted a series of no-choice and choice experiments and modelled the responses of Cassida rubiginosa in relation to phylogenetic distance from Cirsium arvense. RESULTS The olfactory recognition (single odour) and preference (two odours) of the beetle showed a significant phylogenetic relationship. These relationships showed a high degree of correlation with 66.9% of the variation in olfactory recognition and 82.8% of the variation in olfactory preference explained by phylogeny. Where the beetle could contact plants, under no-choice conditions there was no phylogenetic pattern to host plant acceptance. However, under choice conditions, phylogenetic distance was a strong predictor of feeding and oviposition preference. These relationships showed a high degree of correlation, with 63.4% of the variation in feeding preference, and 89.0% of the variation in oviposition preference, explained by phylogeny. CONCLUSIONS As far as we are aware, this is the first demonstration of an herbivorous insect that exhibits a phylogenetic pattern to olfactory host plant selection. Host plant utilisation by Cassida rubiginosa in New Zealand will be mostly restricted to Cirsium and Carduus species, with minimal potential for impact on other Cardueae weeds. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Dilani K Hettiarachchi
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Jon J Sullivan
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Sarah Jackman
- AgResearch Ltd., Lincoln Science Centre, Lincoln, New Zealand
| | | | | |
Collapse
|
3
|
Kariñho-Betancourt E, Vázquez-Lobo A, Núñez-Farfán J. Effect of Plant Defenses and Plant Nutrients on the Performance of Specialist and Generalist Herbivores of Datura: A Macroevolutionary Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:2611. [PMID: 37514225 PMCID: PMC10384791 DOI: 10.3390/plants12142611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Macroevolutionary patterns in the association between plant species and their herbivores result from ecological divergence promoted by, among other factors, plants' defenses and nutritional quality, and herbivore adaptations. Here, we assessed the performance of the herbivores Lema trilineata daturaphila, a trophic specialist on Datura, and Spodoptera frugiperda, a polyphagous pest herbivore, when fed with species of Datura. We used comparative phylogenetics and multivariate methods to examine the effects of Datura species' tropane alkaloids, leaf trichomes, and plant macronutrients on the two herbivores´ performances (amount of food consumed, number of damaged leaves, larval biomass increment, and larval growth efficiency). The results indicate that species of Datura do vary in their general suitability as food host for the two herbivores. Overall, the specialist performs better than the generalist herbivore across Datura species, and performance of both herbivores is associated with suites of plant defenses and nutrient characteristics. Leaf trichomes and major alkaloids of the Datura species are strongly related to herbivores' food consumption and biomass increase. Although hyoscyamine better predicts the key components of the performance of the specialist herbivore, scopolamine better predicts the performance of the generalist; however, only leaf trichomes are implicated in most performance components of the two herbivores. Nutrient quality more widely predicts the performance of the generalist herbivore. The contrasting effects of plant traits and the performances of herbivores could be related to adaptive differences to cope with plant toxins and achieve nutrient balance and evolutionary trade-offs and synergisms between plant traits to deal with a diverse community of herbivores.
Collapse
Affiliation(s)
- Eunice Kariñho-Betancourt
- Laboratorio de Genética Ecológica y Evolución, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Alejandra Vázquez-Lobo
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Agrawal AA, Hastings AP. Tissue-specific plant toxins and adaptation in a specialist root herbivore. Proc Natl Acad Sci U S A 2023; 120:e2302251120. [PMID: 37216531 PMCID: PMC10235950 DOI: 10.1073/pnas.2302251120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.
Collapse
Affiliation(s)
- Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
- Department of Entomology, Cornell University, Ithaca, NY14853
| | - Amy P. Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
5
|
Sierra‐Botero L, Calonje M, Robbins RK, Rosser N, Pierce NE, López‐Gallego C, Valencia‐Montoya WA. Cycad phylogeny predicts host plant use of Eumaeus butterflies. Ecol Evol 2023; 13:e9978. [PMID: 37056692 PMCID: PMC10085819 DOI: 10.1002/ece3.9978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Eumaeus butterflies are obligate herbivores of Zamia, the most diverse neotropical genus of cycads. Eumaeus-Zamia interactions have been characterized mainly for species distributed in North and Central America. However, larval host plant use by the southern Eumaeus clade remains largely unknown, precluding a comprehensive study of co-evolution between the genera. Here, we combine fieldwork with museum and literature surveys to expand herbivory records for Eumaeus from 21 to 38 Zamia species. We inferred a time-calibrated phylogeny of Eumaeus to test for distinct macroevolutionary scenarios of larval host plant conservatism and co-evolution. We found a remarkable coincidence between Eumaeus and Zamia diversification, with the butterfly stem group diverging at the same time as the most recent radiation of Zamia in the Miocene. Cophylogenetic reconciliation analyses show a strong cophylogenetic signal between cycads and their butterfly herbivores. Bipartite model-based approaches indicate that this is because closely related Zamia species are used by the same Eumaeus species, suggesting larval host plant resource tracking by the butterfly herbivores. Our results highlight a case of tight evolution between Eumaeus butterflies and cycads, pointing to the generality of correlated evolution and phylogenetic tracking in plant-herbivore interactions across seed plants.
Collapse
Affiliation(s)
| | | | - Robert K. Robbins
- Department of EntomologySmithsonian InstitutionWashingtonDistrict of Columbia20013‐7012USA
| | - Neil Rosser
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | | | - Wendy A. Valencia‐Montoya
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
6
|
Herbivory, plant traits and nectar chemistry interact to affect the community of insect visitors and pollination in common milkweed, Asclepias syriaca. Oecologia 2023; 201:91-105. [PMID: 36456875 DOI: 10.1007/s00442-022-05290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
Herbivory can alter plant fitness directly through changing reproductive allocation and indirectly through changing pollinator identity or behavior. Common milkweed is a plant of conservation concern with an inducible chemical defense that is also an important nectar resource. In this study, we aim to understand how herbivory severity and plant traits, including morphology and nectar chemistry, interact to affect insect visitation and pod production in common milkweed. We conducted pollinator watches on plants with experimentally varied herbivory severity and quantified insect frequency and visit length as a response to nectar chemistry, ramet height, number of inflorescences, number of flowers per inflorescence and percent tissue removed. We also quantified pollinator effectiveness and importance. Increased herbivory severity reduced floral displays, including fewer inflorescences and fewer flowers per inflorescence. A reduced floral display was correlated with reduced sucrose, fructose and glucose and resulted in a reduced number and species richness of insect visitors. Fewer flowers per inflorescence reduced the frequency of bumble bee and fly visitors, which were two important pollinators. Although honeybees, flies, small bees, soldier beetles and bumble bees were equally effective pollinators, only bumble bee frequency was positively correlated with pod production. The differences in pollinator visitation have the potential to create diversifying selection on plant floral traits, many of which are also affected by herbivores. This research demonstrates potentially conflicting selection pressures between native and non-native pollinators as well as non-native herbivores.
Collapse
|
7
|
Shi MZ, Li JY, Chen YT, Fang L, Wei H, Fu JW. Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae). Life (Basel) 2022; 12:life12081257. [PMID: 36013435 PMCID: PMC9410005 DOI: 10.3390/life12081257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Plants release a variety of volatiles and herbivore-induced plant volatiles (HIPVs) after being damaged by herbivorous insects, which play multiple roles in the interactions with other plants and insects. Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae) is a monophagous natural enemy and an effective biocontrol agent for Alternanthera philoxeroides (Mart.) Griseb. Here, we reported differences among the volatiles of A. philoxeroides by solid phase microextraction (SPME) using a gas chromatography-mass spectrometer (GC-MS). We compared the volatile emission of: (1) clean plants (CK); (2) A. philoxeroides plants with mechanical damage treatment (MD); and (3) A. philoxeroides plants infested with A. hygrophila 1st, 2nd, and 3rd larvae and female and male adults. A total of 97 volatiles were recorded, of which 5 occurred consistently in all treatments, while 61 volatiles were only observed in A. philoxeroides infested by A. hygrophila, such as trans-nerolidol, (E)-β-farnesene, and (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (E, E-TMTT), etc. Among the 97 volatile compounds, 37 compounds belong to alkenes, 29 compounds belong to alkanes, and there were 8 esters, 8 alcohols and 6 ketones. Orthogonal partial least squares-discrimination analysis (OPLS-DA) showed that the different treatments were separated from each other, especially insect feeding from CK and MD treatments, and 19 volatiles contributed most to the separation among the treatments, with variable importance for the projection (VIP) values > 1. Our findings indicated that the alligatorweed plants could be induced to release volatiles by different stages of A. hygrophila, and the volatile compounds released differ quantitatively and qualitatively. The results from this study laid an important foundation for using volatile organic compounds (VOCs) and HIPVs of alligatorweed to improve the control effect of A. hygrophila on A. philoxeroides.
Collapse
Affiliation(s)
- Meng-Zhu Shi
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
- Institute of Plant Protection, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
- Correspondence: (M.-Z.S.); (J.-W.F.)
| | - Jian-Yu Li
- Institute of Plant Protection, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Yan-Ting Chen
- Institute of Plant Protection, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Jian-Wei Fu
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
- Correspondence: (M.-Z.S.); (J.-W.F.)
| |
Collapse
|
8
|
He J, Chen K, Jiang F, Pan X. Host shifts in economically significant fruit flies (Diptera: Tephritidae) with high degree of polyphagy. Ecol Evol 2021; 11:13692-13701. [PMID: 34707811 PMCID: PMC8525164 DOI: 10.1002/ece3.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
Insects tend to feed on related hosts. Coevolution tends to be dominated by interactions resulting from plant chemistry in defense strategies, and evolution of secondary metabolisms being in response to insect herbivory remains a classic explanation of coevolution. The present study examines whether evolutionary constraints existing in host associations of economically important fruit flies in the species-rich tribe Dacini (Diptera: Tephritidae) and to what extent these species have evolved specialized dietary patterns. We found a strong effect of host phylogeny on associations on the 37 fruit flies tested, although the fruit fly species feeding on ripe commercially grown fruits that lost the toxic compounds after long-term domestication are mostly polyphagous. We assessed the phylogenetic signal of host breadth across the fruit fly species, showing that the results were substantially different depending on partition levels. Further, we mapped main host family associations onto the fruit fly phylogeny and Cucurbitaceae has been inferred as the most likely ancestral host family for Dacini based on ancestral state reconstruction.
Collapse
Affiliation(s)
- Jiayao He
- Institute of Plant Inspection and QuarantineChinese Academy of Inspection and QuarantineBeijing100176China
| | - Ke Chen
- Institute of Plant Inspection and QuarantineChinese Academy of Inspection and QuarantineBeijing100176China
| | - Fan Jiang
- Institute of Plant Inspection and QuarantineChinese Academy of Inspection and QuarantineBeijing100176China
| | - Xubin Pan
- Institute of Plant Inspection and QuarantineChinese Academy of Inspection and QuarantineBeijing100176China
| |
Collapse
|
9
|
van der Linden CFH, WallisDeVries MF, Simon S. Great chemistry between us: The link between plant chemical defenses and butterfly evolution. Ecol Evol 2021; 11:8595-8613. [PMID: 34257918 PMCID: PMC8258229 DOI: 10.1002/ece3.7673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Plants constantly cope with insect herbivory, which is thought to be the evolutionary driver for the immense diversity of plant chemical defenses. Herbivorous insects are in turn restricted in host choice by the presence of plant chemical defense barriers. In this study, we analyzed whether butterfly host-plant patterns are determined by the presence of shared plant chemical defenses rather than by shared plant evolutionary history. Using correlation and phylogenetic statistics, we assessed the impact of host-plant chemical defense traits on shaping northwestern European butterfly assemblages at a macroevolutionary scale. Shared chemical defenses between plant families showed stronger correlation with overlap in butterfly assemblages than phylogenetic relatedness, providing evidence that chemical defenses may determine the assemblage of butterflies per plant family rather than shared evolutionary history. Although global congruence between butterflies and host-plant families was detected across the studied herbivory interactions, cophylogenetic statistics showed varying levels of congruence between butterflies and host chemical defense traits. We attribute this to the existence of multiple antiherbivore traits across plant families and the diversity of insect herbivory associations per plant family. Our results highlight the importance of plant chemical defenses in community ecology through their influence on insect assemblages.
Collapse
Affiliation(s)
| | - Michiel F. WallisDeVries
- De Vlinderstichting/Dutch Butterfly ConservationWageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
10
|
Zhao J, Segar ST, McKey D, Chen J. Macroevolution of defense syndromes in
Ficus
(Moraceae). ECOL MONOGR 2020. [DOI: 10.1002/ecm.1428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jin Zhao
- CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla Yunnan666303China
| | - Simon T. Segar
- Department of Crop and Environment Sciences Harper Adams University NewportTF10 8NBUnited Kingdom
| | - Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175 CNRS–University of Montpellier–University Paul–Valéry–EPHE–SupAgro Montpellier–INRA–IRD Montpellier34293France
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla Yunnan666303China
| |
Collapse
|
11
|
Pereira Martins L, Matos Medina A, Lewinsohn TM, Almeida‐Neto M. The effect of species composition dissimilarity on plant–herbivore network structure is not consistent over time. Biotropica 2020. [DOI: 10.1111/btp.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas Pereira Martins
- Departamento de Ecologia Laboratório de Interações Ecológicas e Biodiversidade Universidade Federal de Goiás Goiânia, Goiás Brazil
| | - Anderson Matos Medina
- Departamento de Ecologia Laboratório de Interações Ecológicas e Biodiversidade Universidade Federal de Goiás Goiânia, Goiás Brazil
| | - Thomas M. Lewinsohn
- Laboratório de Interações Insetos‐Plantas Departamento de Biologia Animal Universidade Estadual de Campinas Campinas, São Paulo Brazil
| | - Mário Almeida‐Neto
- Departamento de Ecologia Laboratório de Interações Ecológicas e Biodiversidade Universidade Federal de Goiás Goiânia, Goiás Brazil
| |
Collapse
|
12
|
Padovani RJ, Salisbury A, Bostock H, Roy DB, Thomas CD. Introduced plants as novel Anthropocene habitats for insects. GLOBAL CHANGE BIOLOGY 2020; 26:971-988. [PMID: 31840377 PMCID: PMC7027573 DOI: 10.1111/gcb.14915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Major environmental changes in the history of life on Earth have given rise to novel habitats, which gradually accumulate species. Human-induced change is no exception, yet the rules governing species accumulation in anthropogenic habitats are not fully developed. Here we propose that nonnative plants introduced to Great Britain may function as analogues of novel anthropogenic habitats for insects and mites, analysing a combination of local-scale experimental plot data and geographic-scale data contained within the Great Britain Database of Insects and their Food Plants. We find that novel plant habitats accumulate the greatest diversity of insect taxa when they are widespread and show some resemblance to plant habitats which have been present historically (based on the relatedness between native and nonnative plant species), with insect generalists colonizing from a wider range of sources. Despite reduced per-plant diversity, nonnative plants can support distinctive insect communities, sometimes including insect taxa that are otherwise rare or absent. Thus, novel plant habitats may contribute to, and potentially maintain, broader-scale (assemblage) diversity in regions that contain mixtures of long-standing and novel plant habitats.
Collapse
Affiliation(s)
| | | | | | | | - Chris D. Thomas
- Leverhulme Centre for Anthropocene BiodiversityUniversity of YorkYorkUK
| |
Collapse
|
13
|
Freedman MG, Jason C, Ramírez SR, Strauss SY. Host plant adaptation during contemporary range expansion in the monarch butterfly. Evolution 2020; 74:377-391. [DOI: 10.1111/evo.13914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Micah G. Freedman
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Christopher Jason
- Department of Evolution and Ecology University of California, Davis Davis California
- School of Biological Sciences Washington State University Vancouver Washington 98686
| | - Santiago R. Ramírez
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Sharon Y. Strauss
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| |
Collapse
|
14
|
Rapo CB, Schaffner U, Eigenbrode SD, Hinz HL, Price WJ, Morra M, Gaskin J, Schwarzländer M. Feeding intensity of insect herbivores is associated more closely with key metabolite profiles than phylogenetic relatedness of their potential hosts. PeerJ 2019; 7:e8203. [PMID: 31871839 PMCID: PMC6924328 DOI: 10.7717/peerj.8203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Determinants of the host ranges of insect herbivores are important from an evolutionary perspective and also have implications for applications such as biological control. Although insect herbivore host ranges typically are phylogenetically constrained, herbivore preference and performance ultimately are determined by plant traits, including plant secondary metabolites. Where such traits are phylogenetically labile, insect hervivore host ranges are expected to be phylogenetically disjunct, reflecting phenotypic similarities rather than genetic relatedness among potential hosts. We tested this hypothesis in the laboratory with a Brassicaceae-specialized weevil, Ceutorhynchus cardariae Korotyaev (Coleoptera: Curculionidae), on 13 test plant species differing in their suitability as hosts for the weevil. We compared the associations between feeding by C. cardariae and either phenotypic similarity (secondary chemistry—glucosinolate profile) or genetic similarity (sequence of the chloroplast gene ndhF) using two methods—simple correlations or strengths of association between feeding by each species, and dendrograms based on either glucosinolates or ndhF sequence (i.e., a phylogram). For comparison, we performed a similar test with the oligophagous Plutella xylostella (L.) (Lepidoptera: Plutellidae) using the same plant species. We found using either method that phenotypic similarity was more strongly associated with feeding intensity by C. cardariae than genetic similarity. In contrast, neither genetic nor phenotypic similarity was significantly associated with feeding intensity on the test species by P. xylostella. The result indicates that phenotypic traits can be more reliable indicators of the feeding preference of a specialist than phylogenetic relatedness of its potential hosts. This has implications for the evolution and maintenance of host ranges and host specialization in phytophagous insects. It also has implications for identifying plant species at risk of nontarget attack by potential weed biological control agents and hence the approach to prerelease testing.
Collapse
Affiliation(s)
- Carole B Rapo
- Climate-KIC Office, Swiss Federal Institute of Technology, Zürich, Switzerland.,CABI Switzerland, Delemont, Switzerland.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | | | - Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | | | | | - Matthew Morra
- Soil and Water Systems, University of Idaho, Moscow, ID, USA
| | - John Gaskin
- Northern Plains Agricultural Research Laboratory, USDA ARS, Sidney, MT, USA
| | - Mark Schwarzländer
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
15
|
Hervé MR, Erb M. Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia 2019; 191:127-139. [PMID: 31367912 DOI: 10.1007/s00442-019-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Root-feeding insect herbivores are of substantial evolutionary, ecological and economical importance. Plants defend themselves against insect herbivores through a variety of tolerance and resistance strategies. To date, few studies have systematically assessed the prevalence and importance of these strategies for root-herbivore interactions across different plant species. Here, we characterize the defense strategies used by three different grassland species to cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha melolontha. Our results reveal that the different plant species rely on distinct sets of defense strategies. The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through the release of repellent chemicals. White clover (Trifolium repens) does not repel the herbivore, but reduces feeding, most likely through structural defenses and low nutritional quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to feed abundantly but compensates for tissue loss through induced regrowth. Thus, three co-occurring plant species have evolved different solutions to defend themselves against attack by a generalist root herbivore. The different root defense strategies may reflect distinct defense syndromes.
Collapse
Affiliation(s)
- Maxime R Hervé
- University of Rennes, Inra, Agrocampus Ouest, IGEPP, UMR-A 1349, Campus Beaulieu, Avenue du Général Leclerc, 35000, Rennes, France.
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
16
|
Wood TJ, Roberts SPM. Constrained patterns of pollen use in Nearctic Andrena (Hymenoptera: Andrenidae) compared with their Palaearctic counterparts. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Thomas James Wood
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Stuart P M Roberts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
17
|
Züst T, Mou S, Agrawal AA. What doesn’t kill you makes you stronger: The burdens and benefits of toxin sequestration in a milkweed aphid. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Sophie Mou
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
| |
Collapse
|
18
|
Okamoto KW, Amarasekare P. A framework for high‐throughput eco‐evolutionary simulations integrating multilocus forward‐time population genetics and community ecology. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kenichi W. Okamoto
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
- Department of Entomology North Carolina State University Raleigh NC USA
- Department of Ecology and Evolutionary Biology Yale Institute for Biospheric Studies Yale University New Haven CT USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| |
Collapse
|
19
|
Charlery de la Masselière M, Ravigné V, Facon B, Lefeuvre P, Massol F, Quilici S, Duyck PF. Changes in phytophagous insect host ranges following the invasion of their community: Long-term data for fruit flies. Ecol Evol 2017; 7:5181-5190. [PMID: 28770058 PMCID: PMC5528217 DOI: 10.1002/ece3.2968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/03/2017] [Accepted: 03/16/2017] [Indexed: 01/16/2023] Open
Abstract
The invasion of an established community by new species can trigger changes in community structure. Invasions often occur in phytophagous insect communities, the dynamics of which are driven by the structure of the host assemblage and the presence of competitors. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The community included four generalist and four specialist species of Tephritidae fruit flies. We analyzed a long‐term database recording observed numbers of flies per fruit for each species on 36 host plants, over 18 years, from 1991 to 2009. Community structure before the last invasion by Bactrocera zonata in 2000 was described in relation to host plant phylogeny and resource availability. Changes in the host range of each species after the arrival of B. zonata were then documented by calculating diversity indices. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialist, and Cucurbitaceae specialists). After the arrival of B. zonata, no change in the host range of specialist species was observed. However, the host ranges of two generalist species, Ceratitis quilicii and Ceratitis capitata, tended to shrink, as shown by the decreases in species richness and host plant α‐diversity. Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources. These findings could be used to improve predictions of new interactions between invaders and recipient communities.
Collapse
Affiliation(s)
| | | | - Benoît Facon
- UMR CBGP INRA Montferrier-sur-Lez France.,UMR PVBMT INRA Saint-Pierre Réunion France
| | | | - François Massol
- CNRS UMR 8198 - Evo-Eco-Paleo Univ. Lille SPICI group Lille France
| | | | | |
Collapse
|
20
|
Groen SC, LaPlante ER, Alexandre NM, Agrawal AA, Dobler S, Whiteman NK. Multidrug transporters and organic anion transporting polypeptides protect insects against the toxic effects of cardenolides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:51-61. [PMID: 28011348 PMCID: PMC5428987 DOI: 10.1016/j.ibmb.2016.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 05/10/2023]
Abstract
In the struggle against dietary toxins, insects are known to employ target site insensitivity, metabolic detoxification, and transporters that shunt away toxins. Specialized insects across six taxonomic orders feeding on cardenolide-containing plants have convergently evolved target site insensitivity via specific amino acid substitutions in the Na/K-ATPase. Nonetheless, in vitro pharmacological experiments have suggested a role for multidrug transporters (Mdrs) and organic anion transporting polypeptides (Oatps), which may provide a basal level of protection in both specialized and non-adapted insects. Because the genes coding for these proteins are evolutionarily conserved and in vivo genetic evidence in support of this hypothesis is lacking, here we used wildtype and mutant Drosophila melanogaster (Drosophila) in capillary feeder (CAFE) assays to quantify toxicity of three chemically diverse, medically relevant cardenolides. We examined multiple components of fitness, including mortality, longevity, and LD50, and found that, while the three cardenolides each stimulated feeding (i.e., no deterrence to the toxin), all decreased lifespan, with the most apolar cardenolide having the lowest LD50 value. Flies showed a clear non-monotonic dose response and experienced high levels of toxicity at the cardenolide concentration found in plants. At this concentration, both Mdr and Oatp knockout mutant flies died more rapidly than wildtype flies, and the mutants also experienced more adverse neurological effects on high-cardenolide-level diets. Our study further establishes Drosophila as a model for the study of cardenolide pharmacology and solidifies support for the hypothesis that multidrug and organic anion transporters are key players in insect protection against dietary cardenolides.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Erika R LaPlante
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Nicolas M Alexandre
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Susanne Dobler
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel, Universität Hamburg, Martin-Luther-King Pl. 3, 20146 Hamburg, Germany
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species. J Chem Ecol 2016; 42:1086-1097. [DOI: 10.1007/s10886-016-0750-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/29/2022]
|
22
|
Host range expansion is density dependent. Oecologia 2016; 182:779-88. [DOI: 10.1007/s00442-016-3711-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
23
|
Ballhorn DJ, Rakotoarivelo FP, Kautz S. Coevolution of Cyanogenic Bamboos and Bamboo Lemurs on Madagascar. PLoS One 2016; 11:e0158935. [PMID: 27532127 PMCID: PMC4988758 DOI: 10.1371/journal.pone.0158935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/24/2016] [Indexed: 11/24/2022] Open
Abstract
Feeding strategies of specialist herbivores often originate from the coevolutionary arms race of plant defenses and counter-adaptations of herbivores. The interaction between bamboo lemurs and cyanogenic bamboos on Madagascar represents a unique system to study diffuse coevolutionary processes between mammalian herbivores and plant defenses. Bamboo lemurs have different degrees of dietary specialization while bamboos show different levels of chemical defense. In this study, we found variation in cyanogenic potential (HCNp) and nutritive characteristics among five sympatric bamboo species in the Ranomafana area, southeastern Madagascar. The HCNp ranged from 209±72 μmol cyanide*g-1 dwt in Cathariostachys madagascariensis to no cyanide in Bambusa madagascariensis. Among three sympatric bamboo lemur species, the greater bamboo lemur (Prolemur simus) has the narrowest food range as it almost exclusively feeds on the highly cyanogenic C. madagascariensis. Our data suggest that high HCNp is the derived state in bamboos. The ancestral state of lemurs is most likely "generalist" while the ancestral state of bamboo lemurs was determined as equivocal. Nevertheless, as recent bamboo lemurs comprise several "facultative specialists" and only one "obligate specialist" adaptive radiation due to increased flexibility is likely. We propose that escaping a strict food plant specialization enabled facultative specialist bamboo lemurs to inhabit diverse geographical areas.
Collapse
Affiliation(s)
- Daniel J. Ballhorn
- Department of Biology, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, United States of America
| | | | - Stefanie Kautz
- Department of Biology, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, United States of America
| |
Collapse
|
24
|
Ali JG, Agrawal AA. Trade‐offs and tritrophic consequences of host shifts in specialized root herbivores. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jared G. Ali
- Department of Entomology The Pennsylvania State University University Park PA 16802 USA
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
25
|
Nakadai R, Kawakita A. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer). Ecol Evol 2016; 6:4958-70. [PMID: 27547326 PMCID: PMC4979720 DOI: 10.1002/ece3.2266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023] Open
Abstract
The traditional explanation for the exceptional diversity of herbivorous insects emphasizes host shift as the major driver of speciation. However, phylogenetic studies have often demonstrated widespread host plant conservatism by insect herbivores, calling into question the prevalence of speciation by host shift to distantly related plants. A limitation of previous phylogenetic studies is that host plants were defined at the family or genus level; thus, it was unclear whether host shifts predominate at a finer taxonomic scale. The lack of a statistical approach to test the hypothesis of host-shift-driven speciation also hindered studies at the species level. Here, we analyze the radiation of leaf cone moths (Caloptilia) associated with maples (Acer) using a newly developed, phylogeny-based method that tests the role of host shift in speciation. This method has the advantage of not requiring complete taxon sampling from an entire radiation. Based on 254 host plant records for 14 Caloptilia species collected at 73 sites in Japan, we show that major dietary changes are more concentrated toward the root of the phylogeny, with host shift playing a minor role in recent speciation. We suggest that there may be other roles for host shift in promoting herbivorous insect diversification rather than facilitating speciation per se.
Collapse
Affiliation(s)
- Ryosuke Nakadai
- Center for Ecological ResearchKyoto UniversityHirano 2‐509‐3OtsuShiga520‐2113Japan
| | - Atsushi Kawakita
- Center for Ecological ResearchKyoto UniversityHirano 2‐509‐3OtsuShiga520‐2113Japan
| |
Collapse
|
26
|
Gagic V, Petrović-Obradović O, Fründ J, Kavallieratos NG, Athanassiou CG, Starý P, Tomanović Ž. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage. PLoS One 2016; 11:e0157674. [PMID: 27309729 PMCID: PMC4910996 DOI: 10.1371/journal.pone.0157674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.
Collapse
Affiliation(s)
- Vesna Gagic
- CSIRO, GPO Box 2583, Brisbane, QLD, 4001, Australia
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | | | - Jochen Fründ
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Agrarökologie, Georg-August-Universität, Göttingen, Germany
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, Athens, Attica, Greece
- Laboratory of Agricultural Entomology, Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Attica, Greece
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Magnissia, Greece
| | - Petr Starý
- Laboratory of Aphidology, Department of Experimental Ecology, Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, ČeskéBudějovice, Czech Republic
| | - Željko Tomanović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Huber M, Epping J, Schulze Gronover C, Fricke J, Aziz Z, Brillatz T, Swyers M, Köllner TG, Vogel H, Hammerbacher A, Triebwasser-Freese D, Robert CAM, Verhoeven K, Preite V, Gershenzon J, Erb M. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLoS Biol 2016; 14:e1002332. [PMID: 26731567 PMCID: PMC4701418 DOI: 10.1371/journal.pbio.1002332] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.
Collapse
Affiliation(s)
- Meret Huber
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Janina Epping
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Münster, Germany
| | | | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zohra Aziz
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Théo Brillatz
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Swyers
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniella Triebwasser-Freese
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christelle A. M. Robert
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Koen Verhoeven
- Netherlands Institute of Ecology, Wageningen, Netherlands
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Cripps MG, Jackman SD, Roquet C, van Koten C, Rostás M, Bourdôt GW, Susanna A. Evolution of Specialization of Cassida rubiginosa on Cirsium arvense (Compositae, Cardueae). FRONTIERS IN PLANT SCIENCE 2016; 7:1261. [PMID: 27602042 PMCID: PMC4994537 DOI: 10.3389/fpls.2016.01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/08/2016] [Indexed: 05/08/2023]
Abstract
The majority of herbivorous insects are specialized feeders restricted to a plant family, genus, or species. The evolution of specialized insect-plant interactions is generally considered to be a result of trade-offs in fitness between possible hosts. Through the course of natural selection, host plants that maximize insect fitness should result in optimal, specialized, insect-plant associations. However, the extent to which insects are tracking plant phylogeny or key plant traits that act as herbivore resistance or acceptance characters is uncertain. Thus, with regard to the evolution of host plant specialization, we tested if insect performance is explained by phylogenetic relatedness of potential host plants, or key plant traits that are not phylogenetically related. We tested the survival (naive first instar to adult) of the oligophagous leaf-feeding beetle, Cassida rubiginosa, on 16 selected representatives of the Cardueae tribe (thistles and knapweeds), including some of the worst weeds in temperate grasslands of the world in terms of the economic impacts caused by lost productivity. Leaf traits (specific leaf area, leaf pubescence, flavonoid concentration, carbon and nitrogen content) were measured as explanatory variables and tested in relation to survival of the beetle, and the phylogenetic signal of the traits were examined. The survival of C. rubiginosa decreased with increasing phylogenetic distance from the known primary host plant, C. arvense, suggesting that specialization is a conserved character, and that insect host range, to a large degree is constrained by evolutionary history. The only trait measured that clearly offered some explanatory value for the survival of C. rubiginosa was specific leaf area. This trait was not phylogenetically dependant, and when combined with phylogenetic distance from C. arvense gave the best model explaining C. rubiginosa survival. We conclude that the specialization of the beetle is explained by a combination of adaptation to an optimal host plant over evolutionary time, and key plant traits such as specific leaf area that can restrict or broaden host utilization within the Cardueae lineage. The phylogenetic pattern of C. rubiginosa fitness will aid in predicting the ability of this biocontrol agent to control multiple Cardueae weeds.
Collapse
Affiliation(s)
- Michael G. Cripps
- AgResearch Ltd.Lincoln, New Zealand
- *Correspondence: Michael G. Cripps,
| | | | - Cristina Roquet
- Laboratoire d’Écologie Alpine, Centre National de la Recherche Scientifique, Université Grenoble AlpesGrenoble, France
| | | | - Michael Rostás
- Bio-Protection Research Centre, University of LincolnLincoln, New Zealand
| | | | - Alfonso Susanna
- Institut Botànic de Barcelona – Consejo Superior de Investigaciones Científicas – Institut de Cultura de BarcelonaBarcelona, Spain
| |
Collapse
|
29
|
Keefover-Ring K. Bergamot versus beetle: evidence for intraspecific chemical specialization. AOB PLANTS 2015; 7:plv132. [PMID: 26578745 PMCID: PMC4683979 DOI: 10.1093/aobpla/plv132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
A large proportion of phytophagous insects show host plant specificity (monophagy or oligophagy), often determined by host secondary chemistry. Yet, even specialists can be negatively affected by host chemistry at high levels or with novel compounds, which may manifest itself if their host species is chemically variable. This study tested for reciprocal effects of a specialist tortoise beetle (Physonota unipunctata) feeding on a host plant (Monarda fistulosa) with two monoterpene chemotypes [thymol (T) and carvacrol (C)] using a controlled field experiment where larvae fed on caged plants of both chemotypes, haphazardly collected natural plants with and without beetle damage, and growth chamber experiments where larvae that hatched and briefly fed on one chemotype were reared on either chemotype. In the field experiment, plant chemotype did not affect larval weight or length, but did influence larval survival with almost 8.3 % more surviving on T plants. Herbivores reduced seed head area (86.5 % decrease), stem mass (41.2 %) and stem height (21.1 %) of caged plants, but this was independent of host chemotype. Natural plants experienced similar reductions in these variables (74.0, 41.4 and 8.7 %) and T chemotypes were more frequently damaged. In the growth chamber, larval relative growth rate (RGR) differed for both feeding history and year. Larvae from T natal plants reared on T hosts grew at almost twice the rate of those from C and reared on T. Larvae from either T or C natal plants reared on C plants showed intermediate growth rates. Additional analyses revealed natal plant chemotype as the most important factor, with the RGR of larvae from T natal plants almost one-third higher than that of those from C natal plants. These cumulative results demonstrate intraspecific variation in plant resistance that may lead to herbivore specialization on distinct host chemistry, which has implications for the evolutionary trajectory of both the insect and plant species.
Collapse
Affiliation(s)
- Ken Keefover-Ring
- Department of Ecology and Evolutionary Biology, University of Colorado, N122 Ramaley CB 334, Boulder, CO 80309, USA Present address: Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
30
|
Vamosi JC, Armbruster WS, Renner SS. Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc Biol Sci 2015; 281:rspb.2014.2004. [PMID: 25274367 DOI: 10.1098/rspb.2014.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this Special feature, we assemble studies that illustrate phylogenetic approaches to studying salient questions regarding the effect of specialization on lineage diversification. The studies use an array of techniques involving a wide-ranging collection of biological systems (plants, butterflies, fish and amphibians are all represented). Their results reveal that macroevolutionary examination of specialization provides insight into the patterns of trade-offs in specialized systems; in particular, the genetic mechanisms of trade-offs appear to extend to very different aspects of life history in different groups. In turn, because a species may be a specialist from one perspective and a generalist in others, these trade-offs influence whether we perceive specialization to have effects on the evolutionary success of a lineage when we examine specialization only along a single axis. Finally, how geographical range influences speciation and extinction of specialist lineages remains a question offering much potential for further insight.
Collapse
Affiliation(s)
- Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2L 0Z3
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99709, USA Department of Biology, NTNU, Trondheim 7491, Norway
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich 80638, Germany
| |
Collapse
|
31
|
Orsucci M, Audiot P, Pommier A, Raynaud C, Ramora B, Zanetto A, Bourguet D, Streiff R. Host specialization involving attraction, avoidance and performance, in two phytophagous moth species. J Evol Biol 2015; 29:114-25. [PMID: 26406269 DOI: 10.1111/jeb.12766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
Host specialization plays a key role in the extreme diversification of phytophagous insects. Whereas proximate mechanisms of specialization have been studied extensively, their consequences for species divergence remain unclear. Preference for, and performance on hosts are thought to be a major source of divergence in phytophagous insects. We assessed these major components of specialization in two moth species, the European corn borer (ECB) and the Adzuki bean borer (ABB), by testing their oviposition behaviour in different conditions (choice or no-choice set-ups) and their performances, by reciprocal transplant at the larval stage on the usual host and an alternative host plant. We demonstrated that both ABB and ECB have a strong preference for their host plants for oviposition, but that relative larval performances on the usual host and an alternative host differed according to the experiment and the trait considered (weight or survival). Finally, we show for the first time that the preference for maize in ECB conceals a strong avoidance of mugwort. The differences in performance, attraction and avoidance between ECB and ABB are discussed in the light of the underlying mechanisms and divergence process.
Collapse
Affiliation(s)
- M Orsucci
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France.,DGIMI UMR 1333, INRA-Université de Montpellier, Montpellier, France
| | - P Audiot
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France
| | - A Pommier
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France
| | - C Raynaud
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - B Ramora
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - A Zanetto
- MELGUEIL DIASCOPE UE 0398, INRA, Mauguio, France
| | - D Bourguet
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France
| | - R Streiff
- CBGP UMR 1062, INRA-IRD-CIRAD-Montpellier SupAgro, Montferrier sur Lez, France.,DGIMI UMR 1333, INRA-Université de Montpellier, Montpellier, France
| |
Collapse
|
32
|
Grandez-Rios JM, Lima Bergamini L, Santos de Araújo W, Villalobos F, Almeida-Neto M. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts. PLoS One 2015; 10:e0138031. [PMID: 26379159 PMCID: PMC4575019 DOI: 10.1371/journal.pone.0138031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic) on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.
Collapse
Affiliation(s)
- Julio Miguel Grandez-Rios
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
- * E-mail:
| | - Leonardo Lima Bergamini
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Walter Santos de Araújo
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Fabricio Villalobos
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mário Almeida-Neto
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
33
|
Agrawal AA, Weber MG. On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett 2015; 18:985-91. [DOI: 10.1111/ele.12482] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University, Corson Hall Ithaca NY 14853 USA
| | - Marjorie G. Weber
- Center for Population Biology University of California Davis CA 95616 USA
| |
Collapse
|
34
|
Becerra JX. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc Natl Acad Sci U S A 2015; 112:6098-103. [PMID: 25902509 PMCID: PMC4434756 DOI: 10.1073/pnas.1418643112] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some of the most fascinating and challenging questions in ecology are why biodiversity is highest in tropical forests and whether the factors involved are unique to these habitats. I did a worldwide test of the hypotheses that plant community divergence in antiherbivore traits results in higher insect herbivore diversity, and that predominant attack by specialized herbivores promotes plant richness. I found strong correlative support for both ideas. Butterfly diversity was greatest in regions where the community average species-pairwise dissimilarity in antiherbivore traits among plant species was highest. There was also a strong positive relationship between specialized (insect) vs. generalized (mammal) herbivores and plant richness. Regions where herbivory impact by mammals was higher than that of insects tended to have lower plant diversities. In contrast, regions in which insects are the main consumers, particularly in the Central and South American tropics, had the highest plant richness. Latitude did not explain any residual variance in insect or plant richness. The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing our understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future.
Collapse
Affiliation(s)
- Judith X Becerra
- Department of Biosphere 2, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
35
|
Becerra JX. Macroevolutionary and geographical intensification of chemical defense in plants driven by insect herbivore selection pressure. CURRENT OPINION IN INSECT SCIENCE 2015; 8:15-21. [PMID: 32846662 DOI: 10.1016/j.cois.2015.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 06/11/2023]
Abstract
Plants produce an extensive array of secondary chemical compounds that often function as defenses against insect herbivores. In theory, because of steadily herbivore adaptation, lineages of plants have reacted by escalating their chemical arsenals over time. Following this assumption, over the last three decades researchers have searched for potential signs of chemical intensification in plants. Although modern methodologies now allow the inference of macroevolutionary chemical trends with substantial confidence there are still only a handful of studies on this subject. These examples suggest that intensification of plant chemical defenses is the result of lineages progressively incrementing their compounds as well as recruiting an increasing number of biosynthetic pathways to produce more complex chemical mixtures.
Collapse
Affiliation(s)
- Judith X Becerra
- Department of Biosphere 2, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
36
|
Jorge LR, Prado PI, Almeida-Neto M, Lewinsohn TM. An integrated framework to improve the concept of resource specialisation. Ecol Lett 2014; 17:1341-50. [PMID: 25168335 DOI: 10.1111/ele.12347] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/14/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
Abstract
Resource specialisation, although a fundamental component of ecological theory, is employed in disparate ways. Most definitions derive from simple counts of resource species. We build on recent advances in ecophylogenetics and null model analysis to propose a concept of specialisation that comprises affinities among resources as well as their co-occurrence with consumers. In the distance-based specialisation index (DSI), specialisation is measured as relatedness (phylogenetic or otherwise) of resources, scaled by the null expectation of random use of locally available resources. Thus, specialists use significantly clustered sets of resources, whereas generalists use over-dispersed resources. Intermediate species are classed as indiscriminate consumers. The effectiveness of this approach was assessed with differentially restricted null models, applied to a data set of 168 herbivorous insect species and their hosts. Incorporation of plant relatedness and relative abundance greatly improved specialisation measures compared to taxon counts or simpler null models, which overestimate the fraction of specialists, a problem compounded by insufficient sampling effort. This framework disambiguates the concept of specialisation with an explicit measure applicable to any mode of affinity among resource classes, and is also linked to ecological and evolutionary processes. This will enable a more rigorous deployment of ecological specialisation in empirical and theoretical studies.
Collapse
Affiliation(s)
- Leonardo R Jorge
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, 13083-970, Brazil
| | | | | | | |
Collapse
|
37
|
Nakadai R, Murakami M, Hirao T. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 2014; 175:1237-45. [PMID: 24879058 DOI: 10.1007/s00442-014-2964-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/05/2014] [Indexed: 12/01/2022]
Abstract
Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.
Collapse
|
38
|
Vannette RL, Hunter MD, Rasmann S. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species. FRONTIERS IN PLANT SCIENCE 2013; 4:361. [PMID: 24065971 PMCID: PMC3776932 DOI: 10.3389/fpls.2013.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/26/2013] [Indexed: 05/23/2023]
Abstract
Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.
Collapse
Affiliation(s)
- Rachel L. Vannette
- Biology Department, Stanford UniversityStanford, CA, USA
- Department of Ecology and Evolutionary Biology, University of MichiganAnn Arbor, MI, USA
| | - Mark D. Hunter
- Department of Ecology and Evolutionary Biology, University of MichiganAnn Arbor, MI, USA
| | - Sergio Rasmann
- Department of Ecology and Evolutionary Biology, University of LausanneLausanne, Switzerland
| |
Collapse
|
39
|
Erwin AC, Geber MA, Agrawal AA. Specific impacts of two root herbivores and soil nutrients on plant performance and insect-insect interactions. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00434.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Laukkanen L, Leimu R, Muola A, Lilley M, Mutikainen P. Genetic factors affecting food-plant specialization of an oligophagous seed predator. J Evol Biol 2012. [DOI: 10.1111/jeb.12037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. Laukkanen
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - R. Leimu
- Department of Plant Sciences; University of Oxford; Oxford UK
| | - A. Muola
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - M. Lilley
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - P. Mutikainen
- Institute of Integrative Biology; ETH-Zürich; ETH-Zentrum; Zürich Switzerland
| |
Collapse
|
41
|
Sedivy C, Dorn S, Widmer A, Müller A. Host range evolution in a selected group of osmiine bees (Hymenoptera: Megachilidae): the Boraginaceae-Fabaceae paradox. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02013.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudio Sedivy
- ETH Zurich, Institute of Agricultural Sciences; Applied Entomology; Schmelzbergstrasse 9/LFO; 8092; Zurich; Switzerland
| | - Silvia Dorn
- ETH Zurich, Institute of Agricultural Sciences; Applied Entomology; Schmelzbergstrasse 9/LFO; 8092; Zurich; Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology; Plant Ecological Genetics; Universitätsstrasse 16/CHN; 8092; Zürich; Switzerland
| | - Andreas Müller
- ETH Zurich, Institute of Agricultural Sciences; Applied Entomology; Schmelzbergstrasse 9/LFO; 8092; Zurich; Switzerland
| |
Collapse
|
42
|
Vannette RL, Rasmann S. Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02046.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rachel L. Vannette
- Biology Department; Stanford University; 371 Serra Mall; Stanford; CA; 94305; USA
| | - Sergio Rasmann
- Department of Ecology and Evolution; University of Lausanne; UNIL Sorge; Le Biophore; CH - 1015; Lausanne; Switzerland
| |
Collapse
|
43
|
Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2012; 2:1818-25. [PMID: 22957184 PMCID: PMC3433986 DOI: 10.1002/ece3.296] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022] Open
Abstract
Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.
Collapse
Affiliation(s)
- Loïc Pellissier
- Department of Ecology and Evolution, University of Lausanne Bâtiment BiophoreCH-1015, Lausanne, Switzerland
| | - Konrad Fiedler
- Department of Tropical Ecology and Animal Biodiversity, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Charlotte Ndribe
- Department of Ecology and Evolution, University of Lausanne Bâtiment BiophoreCH-1015, Lausanne, Switzerland
| | - Anne Dubuis
- Department of Ecology and Evolution, University of Lausanne Bâtiment BiophoreCH-1015, Lausanne, Switzerland
| | - Jean-Nicolas Pradervand
- Department of Ecology and Evolution, University of Lausanne Bâtiment BiophoreCH-1015, Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne Bâtiment BiophoreCH-1015, Lausanne, Switzerland
| | - Sergio Rasmann
- Department of Ecology and Evolution, University of Lausanne Bâtiment BiophoreCH-1015, Lausanne, Switzerland
| |
Collapse
|
44
|
Barrett LG, Heil M. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. TRENDS IN PLANT SCIENCE 2012; 17:282-92. [PMID: 22465042 DOI: 10.1016/j.tplants.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/13/2012] [Accepted: 02/28/2012] [Indexed: 05/08/2023]
Abstract
Host ranges are commonly quantified to classify herbivores and plant pathogens as either generalists or specialists. Here, we summarize patterns and mechanisms in the interactions of plants with these enemies along different axes of specificity. We highlight the many dimensions within which plant enemies can specify and consider the underlying ecological, evolutionary and molecular mechanisms. Host resistance traits and enemy effectors emerge as central players determining host utilization and thus host range. Finally, we review approaches to studying the causes and consequences of variation in the specificity of plant-enemy interactions. Knowledge of the molecular mechanisms that determine host range is required to understand host shifts, and evolutionary transitions among specialist and generalist strategies, and to predict potential host ranges of pathogens and herbivores.
Collapse
Affiliation(s)
- Luke G Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT, 2601, Australia
| | | |
Collapse
|
45
|
Forister ML, Dyer LA, Singer MS, Stireman III JO, Lill JT. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 2012; 93:981-91. [DOI: 10.1890/11-0650.1] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. THE NEW PHYTOLOGIST 2012; 194:28-45. [PMID: 22292897 DOI: 10.1111/j.1469-8137.2011.04049.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na⁺/K⁺-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Petschenka
- Biozentrum Grindel, Molekulare Evolutionsbiologie, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Robin A Bingham
- Department of Natural and Environmental Sciences, Western State College of Colorado, Gunnison, CO 81231, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Sergio Rasmann
- Department of Ecology and Evolution, Bâtiment Biophore, University of Lausanne, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Desneux N, Blahnik R, Delebecque CJ, Heimpel GE. Host phylogeny and specialisation in parasitoids. Ecol Lett 2012; 15:453-60. [PMID: 22404869 DOI: 10.1111/j.1461-0248.2012.01754.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The host range of insect parasitoids and herbivores is influenced by both preference-related traits which mediate host choice behaviour, and performance-related traits which mediate the physiological suitability of the consumer-resource interaction. In a previous study, we characterised the influence of preference- and performance-related traits on the host range of the aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae) and herein we build upon those data sets by mapping a series of these traits onto the phylogeny of the (aphid) host species. We found a strong effect of host phylogeny on overall parasitoid reproduction on the 20 host species tested, but no effect of the phylogeny of host plants of the aphids. We found an effect of aphid phylogeny on host acceptance and sting rates (related to preference) from behavioural observations and for pupal survivorship (related to performance), showing that both classes of traits show phylogenetic conservatism with respect to host species.
Collapse
Affiliation(s)
- Nicolas Desneux
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
48
|
Yguel B, Bailey R, Tosh ND, Vialatte A, Vasseur C, Vitrac X, Jean F, Prinzing A. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol Lett 2011; 14:1117-24. [PMID: 21923895 DOI: 10.1111/j.1461-0248.2011.01680.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hosts belonging to the same species suffer dramatically different impacts from their natural enemies. This has been explained by host neighbourhood, that is, by surrounding host-species diversity or spatial separation between hosts. However, even spatially neighbouring hosts may be separated by many million years of evolutionary history, potentially reducing the establishment of natural enemies and their impact. We tested whether phylogenetic isolation of oak hosts from neighbouring trees within a forest canopy reduces phytophagy. We found that an increase in phylogenetic isolation by 100 million years corresponded to a 10-fold decline in phytophagy. This was not due to poorer living conditions for phytophages on phylogenetically isolated oaks. Neither species diversity of neighbouring trees nor spatial distance to the closest oak affected phytophagy. We suggest that reduced pressure by natural enemies is a major advantage for individuals within a host species that leave their ancestral niche and grow among distantly related species.
Collapse
Affiliation(s)
- Benjamin Yguel
- University of Rennes 1/Centre National de la Recherche Scientifique, Research Unit UMR 6553, Ecosystems, Biodiversity, Evolution, Campus Beaulieu, Bâtiment 14 A, 263 Av. du Général Leclerc, 35042 Rennes cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|