1
|
de Almeida Prado DM, de Figueiredo AC, Lima AS, Gomes FR, Madelaire CB. Corticosterone treatment results in fat deposition and body mass maintenance without effects on feeding behaviour or immunity in female lizards (Tropidurus catalanensis). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111712. [PMID: 39084515 DOI: 10.1016/j.cbpa.2024.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Throughout life, animals must maintain homeostasis while coping with challenging events. The period after reproduction can be challenging for oviparous females to maintain homeostasis since they direct most of their energy stores to vitellogenesis, possibly increasing the vulnerability to stressors. Changes in glucocorticoids' (GC) secretion promote various behavioural and physiological adjustments daily and to restore balance after facing stressors. However, when GC are elevated for extended periods, which usually occurs in response to chronic exposure to stressors, they can affect feeding behaviour and suppress the immune function. We aim to elucidate the effects of chronic corticosterone (CORT) exposure on feeding behaviour, body condition and immune function in female lizards, Tropidurus catalanensis, in the post-reproductive period. Thirty animals were divided into three groups: 1. Control (no experimental procedure performed); 2. Empty Implant (animals implanted with empty silastic tube); and 3. CORT Implant (animals implanted with silastic tube filled with CORT, with a chronic continuous release for at least a week). CORT plasma levels feeding behaviour, body condition (body index [BI] and fat index [FI]), leukocyte count, and several immune function variables (bacterial killing ability [BKA], hemagglutination titer, phytohemagglutinin [PHA] immune challenge and leukocyte count) were evaluated. After implantation, CORT treated animals maintained stable body mass through the experiment, while Control and Empty Implant groups displayed weight loss. In the CORT treated animals, there was also a positive relation between BI and FI, and higher FI when compared to groups 1 and 2. No effects of CORT were observed on feeding behaviour nor on the immune function.
Collapse
Affiliation(s)
- Débora Meyer de Almeida Prado
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil.
| | - Aymam Cobo de Figueiredo
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Alan Siqueira Lima
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Fernando Ribeiro Gomes
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Carla Bonetti Madelaire
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, United States. https://twitter.com/carlamadelaire
| |
Collapse
|
2
|
Reid R, Capilla-Lasheras P, Haddou Y, Boonekamp J, Dominoni DM. The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proc Biol Sci 2024; 291:20240617. [PMID: 39016598 PMCID: PMC11253839 DOI: 10.1098/rspb.2024.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Stressors associated with urban habitats have been linked to poor wildlife health but whether a general negative relationship between urbanization and animal health can be affirmed is unclear. We conducted a meta-analysis of avian literature to test whether health biomarkers differed on average between urban and non-urban environments, and whether there are systematic differences across species, biomarkers, life stages and species traits. Our dataset included 644 effect sizes derived from 112 articles published between 1989 and 2022, on 51 bird species. First, we showed that there was no clear impact of urbanization on health when we categorized the sampling locations as urban or non-urban. However, we did find a small negative effect of urbanization on health when this dichotomous variable was replaced by a quantitative variable representing the degree of urbanization at each location. Second, we showed that the effect of urbanization on avian health was dependent on the type of health biomarker measured as well as the individual life stage, with young individuals being more negatively affected. Our comprehensive analysis calls for future studies to disentangle specific urban-related drivers of health that might be obscured in categorical urban versus non-urban comparisons.
Collapse
Affiliation(s)
- Rachel Reid
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Yacob Haddou
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Jelle Boonekamp
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Davide M. Dominoni
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| |
Collapse
|
3
|
Beliniak A, Gryz J, Klich D, Łopucki R, Sadok I, Ożga K, Jasińska KD, Ścibior A, Gołębiowska D, Krauze-Gryz D. Long-term, medium-term and acute stress response of urban populations of Eurasian red squirrels affected by different levels of human disturbance. PLoS One 2024; 19:e0302933. [PMID: 38701075 PMCID: PMC11068185 DOI: 10.1371/journal.pone.0302933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Animals in urban areas often encounter novel and potentially stressful conditions. It is important to understand how wildlife cope with anthropogenic disturbance. To investigate this specific adaptation we live-trapped squirrels in two study sites in Warsaw: a forest reserve and an urban park and we estimated stress responses at three levels: long-term and medium-term stress (the level of stress hormones, i.e. cortisol and cortisone concentrations, in hair and feces) and acute reaction to human-induced stress (measured during handling with the aid of the three indices: breath rate, struggle rate, and vocalization). According to GLMM models no difference in the stress hormones level was found between the two populations. The only differences in cortisol concentrations clearly depended on the season, i.e. being higher in autumn and winter comparying to other seasons. There was no influence of sex, or reproductive status on stress hormones. Forest squirrels had significantly higher breath rates, suggesting they were more stressed by handling. There was no difference in the struggle rate between study areas, this index was mostly affected by season (i.e. being highest in winter). First-trapped squirrels vocalized less than during the subsequent trappings. Assumingly, during the first, and more stressful trapping, squirrels used 'freezing' and/or little vocalization, while during next captures they used alarm calls to warn conspecifics. Overall, we showed that the two squirrel populations differed only in terms of their breath rate. This suggests that they did not differ in medium-term and long-term stress in general, but they can differ in acute response to handling. This also suggests that both populations were similarly affected by environmental factors. The lack of clear effects may also be due to population heterogeneity. Thus, in order to assess the effects of anthropogenic stressors a broader range of indicators and diverse analytical methods, including behavioral analyses, should be employed.
Collapse
Affiliation(s)
- Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Raszyn, Poland
| | - Daniel Klich
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Warsaw, Poland
| | - Rafał Łopucki
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ilona Sadok
- Department of Chemistry, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kinga Ożga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Karolina D. Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Ścibior
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Dorota Gołębiowska
- Department of Chemistry, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Carrilho M, Monarca RI, Aparício G, Mathias MDL, Tapisso JT, von Merten S. Physiological and behavioural adjustment of a wild rodent to laboratory conditions. Physiol Behav 2024; 273:114385. [PMID: 37866641 DOI: 10.1016/j.physbeh.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Wild animals are brought to captivity for different reasons, for example to be kept in zoos and rehabilitation centres, but also for basic research. Such animals usually undergo a process of adjustment to captive conditions. While this adjustment occurs on the behavioural and the physiological level, those are usually studied separately. The aim of this study was to assess both the physiological and behavioural responses of wild wood mice, Apodemus sylvaticus, while adjusting to laboratory conditions. Over the course of four weeks, we measured in wild-caught mice brought to the laboratory faecal corticosterone metabolites and body mass as physiological parameters, stereotypic behaviour and nest-quality, as welfare-linked behavioural parameters, and four personality measures as additional behavioural parameters. The results of our study indicate that mice exhibited an adjustment in both behaviour and physiology over time in the laboratory. While the hormonal stress response decreased significantly, body mass and the proportion of stereotypic behaviours showed a tendency to increase over time. The slight increase of stereotypic behaviours, although not statistically significant, suggests the development of repetitive and non-functional behaviours as a response to laboratory conditions. However, we suggest that those behaviours might have been used by animals as a coping strategy to decrease the physiological stress response. Other behavioural parameters measured, such as boldness and nestbuilding behaviour were stable over time. The information obtained in the present study hints at a complex interplay between behavioural and physiological adjustments of wild animals to laboratory conditions, which should be considered when intending to use wild animals in experimental research.
Collapse
Affiliation(s)
- Maílis Carrilho
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal.
| | - Rita I Monarca
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Guilherme Aparício
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Maria da Luz Mathias
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Joaquim T Tapisso
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Sophie von Merten
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal; Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
5
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
6
|
Zhang Q, Li M, Yin Y, Ge S, Li D, Ahmad IM, Nabi G, Sun Y, Luo X, Li D. Physiological but not morphological adjustments along latitudinal gradients in a human commensal species, the Eurasian tree sparrow. Integr Zool 2023; 18:891-905. [PMID: 36880561 DOI: 10.1111/1749-4877.12709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Human commensal species take advantage of anthropogenic conditions that are less likely to be challenged by the selective pressures of natural environments. Their morphological and physiological phenotypes can therefore dissociate from habitat characteristics. Understanding how these species adjust their morphological and physiological traits across latitudinal gradients is fundamental to uncovering the eco-physiological strategies underlying coping mechanisms. Here, we studied morphological traits in breeding Eurasian tree sparrows (ETSs; Passer montanus) among low-latitude (Yunnan and Hunan) and middle-latitude (Hebei) localities in China. We then compared body mass; lengths of bill, tarsometatarsus, wing, total body, and tail feather; and baseline and capture stress-induced levels of plasma corticosterone (CORT) and the metabolites including glucose (Glu), total triglyceride (TG), free fatty acid (FFA), total protein, and uric acid (UA). None of the measured morphological parameters varied with latitude except in the Hunan population, which demonstrated longer bills than those in other populations. Stress-induced CORT levels significantly exceeded baseline levels and decreased with increasing latitude, but total integrated CORT levels did not vary with latitude. Capture stress-induced significantly increased Glu levels and decreased TG levels, independent of site. However, the Hunan population had significantly higher baseline CORT, baseline and stress-induced FFA levels, but lower UA levels, which differed from other populations. Our results suggest that rather than morphological adjustments, physiological adjustments are mainly involved in coping mechanisms for middle-latitude adaptation in ETSs. It is worth investigating whether other avian species also exhibit such dissociation from external morphological designs while depending on physiological adjustments.
Collapse
Affiliation(s)
- Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Mo Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Yuan Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Shiyong Ge
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Danjie Li
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Ghulam Nabi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Xu Luo
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Beattie UK, Fefferman N, Romero LM. Varying intensities of chronic stress induce inconsistent responses in weight and plasma metabolites in house sparrows ( Passer domesticus). PeerJ 2023; 11:e15661. [PMID: 37456877 PMCID: PMC10340100 DOI: 10.7717/peerj.15661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
One of the biggest unanswered questions in the field of stress physiology is whether variation in chronic stress intensity will produce proportional (a gradient or graded) physiological response. We were specifically interested in the timing of the entrance into homeostatic overload, or the start of chronic stress symptoms. To attempt to fill this knowledge gap we split 40 captive house sparrows (Passer domesticus) into four groups (high stress, medium stress, low stress, and a captivity-only control) and subjected them to six bouts of chronic stress over a 6-month period. We varied the number of stressors/day and the length of each individual bout with the goal of producing groups that would experience different magnitudes of wear-and-tear. To evaluate the impact of chronic stress, at the start and end of each stress bout we measured body weight and three plasma metabolites (glucose, ketones, and uric acid) in both a fasted and fed state. All metrics showed significant differences across treatment groups, with the high stress group most frequently showing the greatest changes. However, the changes did not produce a consistent profile that matched the different chronic stress intensities. We also took samples after a prolonged recovery period of 6 weeks after the chronic stressors ended. The only group difference that persisted after 6 weeks was weight-all differences across groups in metabolites recovered. The results indicate that common blood metabolites are sensitive to stressors and may show signs of wear-and-tear, but are not reliable indicators of the intensity of long-term chronic stress. Furthermore, regulatory mechanisms are robust enough to recover within 6 weeks post-stress.
Collapse
Affiliation(s)
- Ursula K. Beattie
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Nina Fefferman
- Departments of Ecology and Evolution, University of Tennessee—Knoxville, Knoxville, Tennessee, United States
| | - L. Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| |
Collapse
|
8
|
Chaprazov T, Petrov R, Yarkov D, Andonova Y, Lazarova I. Basic blood biochemical parameters of wild common ravens ( Corvuscorax). Biodivers Data J 2023; 11:e103271. [PMID: 38327363 PMCID: PMC10848622 DOI: 10.3897/bdj.11.e103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 02/09/2024] Open
Abstract
Baseline haematological and biochemical blood parameters in healthy wild birds are key to managing wild populations and to saving critically ill individuals. This knowledge is crucial for the care, rehabilitation and the release of birds after treatment in wildlife rescue centres. Plasma levels provide valuable information for the evaluation of the physical condition of animals. The objective of this study was to obtain reference values of some basic biochemical blood parameters of wild common ravens (Corvuscorax). Between 2020 and 2023, we took blood samples from the wild population of common ravens in Bulgaria (n = 36). We determined the values of 18 parameters - alanine transaminase (ALT, U/I), albumin (g/l), alkaline phosphatase (ALP, U/I), amylase (U/I), aspartate transaminase (AST, U/I), calcium (mmol/l), chloride (mmol/l), cholesterol (mmol/l), creatine kinase (CK, U/I), creatinine (μmol/l), blood glucose (mmol/l), lactate dehydrogenase (LDH, U/I), magnesium (mmol/l), phosphorus (mmol/l), total bilirubin (μmol/l), total protein (g/l), triglycerides (TG, mmol/l) and uric acid (μmol/l). We made a comparative analysis including the regions in which the groups were sampled and the time of year. Most of the presented results were comparable to published values of other species from the Corvidae family and some were higher (ALP, amylase, AST, CK, total protein and uric acid levels). Most of these could be explained by the capture- and handling stress. This is the first report in official literary sources presenting some basic biochemical blood parameters of healthy wild common ravens in Bulgaria. The results may be of use to scientists, veterinarians and other researchers in rescue and rehabilitation centres and they can provide the basis for further studies with regards to animal welfare and health assessment of the species.
Collapse
Affiliation(s)
- Tzvetan Chaprazov
- Trakia University, Stara Zagora, BulgariaTrakia UniversityStara ZagoraBulgaria
| | - Rusko Petrov
- Trakia University, Stara Zagora, BulgariaTrakia UniversityStara ZagoraBulgaria
- Green Balkans - Stara Zagora NGO, Stara Zagora, BulgariaGreen Balkans - Stara Zagora NGOStara ZagoraBulgaria
| | - Dobri Yarkov
- Trakia University, Stara Zagora, BulgariaTrakia UniversityStara ZagoraBulgaria
| | - Yana Andonova
- Green Balkans - Stara Zagora NGO, Stara Zagora, BulgariaGreen Balkans - Stara Zagora NGOStara ZagoraBulgaria
| | - Ivanka Lazarova
- Trakia University, Stara Zagora, BulgariaTrakia UniversityStara ZagoraBulgaria
| |
Collapse
|
9
|
Furtado AP, Carvalho ITS, Lewis EL, Bleke CA, Pantoja DL, Colli GR, French SS, Paludo GR. Short-term impact of a wildfire on the homeostasis of Tropidurus oreadicus lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:423-436. [PMID: 36773015 DOI: 10.1002/jez.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Wildfires cause significant changes in natural habitats and can impact lizard populations. Through changes in the thermal environment, reduced prey availability, and increased exposure to parasite vectors, wildfires affect lizard physiology, immunity, and health. We sampled 56 Tropidurus oreadicus lizards from Cerrado savannas of Brazil living in two adjacent sites: one burned 14 days before the study, and the other unburned for 6 years. We logged the air temperatures of those sites throughout fieldwork. We assessed the short-term possible homeostatic imbalances caused by the fires via measuring body mass, circulating levels of corticosterone (CORT), leukocytes profile changes in heterophile-lymphocyte ratios (HLRs), innate immunity using the bacterial killing assay (BKA), and the diagnosis of hemoparasites using molecular techniques. The air temperature was significantly higher in the burned site. There was no difference in lizard body mass between the two sites, suggesting that prey availability was not affected by the wildfire. While parasite presence was seemingly not affected by fire, the timing of initial parasite infection for animals in the study was unknown, so we also evaluated parasitism as an independent variable relative to the other metrics. Our results showed that parasitic infections lead to reduced bactericidal capacity and body mass in lizards, suggesting clinical disease and depletion of innate immune resources. Moreover, we observed increased HLR with fire and parasitic infections and a strong negative correlation with BKA. These findings suggest that the increased environmental temperature following wildfires may lead to increased CORT and decreased BKA.
Collapse
Affiliation(s)
- Adriana P Furtado
- Departamento de Ciências Animais, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Izabelle T S Carvalho
- Departamento de Ciências Animais, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Erin L Lewis
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Cole A Bleke
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| | - Davi L Pantoja
- Departamento de Biologia, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Giane R Paludo
- Departamento de Ciências Animais, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
10
|
Ryan TA, Taff CC, Zimmer C, Vitousek MN. Cold temperatures induce priming of the glucose stress response in tree swallows. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111419. [PMID: 36965830 DOI: 10.1016/j.cbpa.2023.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Capricious environments often present wild animals with challenges that coincide or occur in sequence. Conceptual models of the stress response predict that one threat may prime or dampen the response to another. Although evidence has supported this for glucocorticoid responses, much less is known about the effects of previous challenges on energy mobilization. Food limitation may have a particularly important effect, by altering the ability to mobilize energy when faced with a subsequent challenge. We tested the prediction that challenging weather conditions, which reduce food availability, alter the energetic response to a subsequent acute challenge (capture and restraint). Using a three-year dataset from female tree swallows measured during three substages of breeding, we used a model comparison approach to test if weather (temperature, wind speed, and precipitation) over 3- or 72-hour timescales predicted baseline and post-restraint glucose levels, and if so which environmental factors were the strongest predictors. Contrary to our predictions, weather conditions did not affect baseline glucose; however, birds that had experienced lower temperatures over the preceding 72 h tended to have higher stress-induced glucose when faced with an acute stressor. We also saw some support for an effect of rainfall on stress-induced glucose: around the time that eggs hatched, birds that had experienced more rainfall over the preceding 72 h mounted lower responses. Overall, we find support in a wild animal for the idea that the glucose stress response may be primed by exposure to prior challenges.
Collapse
Affiliation(s)
- Thomas A Ryan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Cedric Zimmer
- Laboratory of Experimental and Comparative Ethology, University Sorbonne Paris Nord, Villetaneuse, France
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
11
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
12
|
Singh O, Singh D, Mitra S, Kumar A, Lechan RM, Singru PS. TRH and NPY Interact to Regulate Dynamic Changes in Energy Balance in the Male Zebra Finch. Endocrinology 2023; 164:6845693. [PMID: 36423209 DOI: 10.1210/endocr/bqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Devraj Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Anal Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
13
|
Integrating orientation mechanisms, adrenocortical activity, and endurance flight in vagrancy behaviour. Sci Rep 2022; 12:22104. [PMID: 36543804 PMCID: PMC9772197 DOI: 10.1038/s41598-022-26136-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Avian migratory processes are typically precisely oriented, yet vagrants are frequently recorded outside their normal range. Wind displaced vagrants often show corrective behaviour, and as an appropriate response is likely adaptive. We investigated the physiological response to vagrancy in passerines. Activation of the emergency life-history stage (ELHS), assessed by high baseline plasma corticosterone, is a potential mechanism to elicit compensatory behaviour in response to challenges resulting from navigational error, coupled with response to fuel load and flight. We compared circulating plasma corticosterone concentrations and body condition between three migratory groups in autumn: (1) wind displaced southwest (SW) vagrants and (2) long range southeast (SE) vagrants on the remote Faroe Islands, and (3) birds within the expected SW migratory route (controls) on the Falsterbo peninsula, Sweden. Vagrants were further grouped by those sampled immediately upon termination of over-water migratory flight and those already on the island. In all groups there was no indication of the activation of the ELHS in response to vagrancy. We found limited support for an increased rate of corticosterone elevation within our 3 min sample interval in a single species, but this was driven by an individual ELHS outlier. Fat scores were negatively correlated with circulating corticosterone; this relationship may suggest that ELHS activation depends upon an individual's energetic states. Interestingly, in individuals caught at the completion of an obligate long-distance flight, we found some evidence of corticosterone suppression. Although limited, data did support the induction of negative feedback mechanisms that suppress corticosterone during endurance exercise, even when fuel loads are low.
Collapse
|
14
|
Kou G, Wang Y, Dudley R, Wu Y, Li D. Coping with captivity: takeoff speed and load-lifting capacity are unaffected by substantial changes in body condition for a passerine bird. J Exp Biol 2022; 225:276048. [PMID: 35765864 DOI: 10.1242/jeb.244642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Captivity presumably challenges physiological equilibrium of birds and thus influences flight ability. However, the extent to which captive birds exhibit altered features underpinning maximum flight performance remains largely unknown. Here, we studied changes in physiological condition and load-lifting performance in the Eurasian tree sparrow (Passer montanus) over 15, 30, and 45 days of captivity. Sparrows showed body mass constancy over time but also an increased hematocrit at 15 days of captivity; both relative pectoralis mass and its fat content increased at 30 days. However, maximum takeoff speed and maximum lifted load remained largely unchanged until 45 days of captivity. Wingbeat frequency was independent of captivity duration and loading condition, whereas body angle and stroke plane angle varied only with maximum loading and not with duration of captivity. Overall, these results suggest that captive birds can maintain maximum flight performance when experiencing dramatic changes in both internal milieu and external environment.
Collapse
Affiliation(s)
- Guanqun Kou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuefeng Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
15
|
Beattie UK, Ysrael MC, Lok SE, Romero LM. The Effect of a Combined Fast and Chronic Stress on Body Mass, Blood Metabolites, Corticosterone, and Behavior in House Sparrows ( Passer domesticus). THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:19-31. [PMID: 35370496 PMCID: PMC8961712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
One aspect of the Reactive Scope Model is wear-and-tear, which describes a decrease in an animal's ability to cope with a stressor, typically because of a period of chronic or repeated stressors. We investigated whether wear-and-tear due to chronic stress would accelerate a transition from phase II to phase III of fasting. We exposed house sparrows (Passer domesticus) to three weeks of daily fasts combined with daily intermittent repeated acute stressors to create chronic stress, followed by two weeks of daily fasts without stressors. We measured circulating glucose, β-hydroxybutyrate (a ketone), and uric acid in both fasted and fed states. We expected birds to be in phase II (high fat breakdown) in a fasted state, but if wear-and-tear accumulated sufficiently, we hypothesized a shift to phase III (high protein breakdown). Throughout the experiment, the birds exhibited elevated β-hydroxybutyrate when fasting but no changes in circulating uric acid, indicating that a transition to phase III did not occur. In both a fasted and fed state, the birds increased glucose mobilization throughout the experiment, suggesting wear-and-tear occurred, but was not sufficient to induce a shift to phase III. Additionally, the birds exhibited a significant decrease in weight, no change in corticosterone, and a transient decrease in neophobia with chronic stress. In conclusion, the birds appear to have experienced wear-and-tear, but our protocol did not accelerate the transition from phase II to phase III of fasting.
Collapse
Affiliation(s)
- Ursula K. Beattie
- To whom all correspondence should be addressed:
Ursula Beattie, Department of Biology, Tufts University, 200 College Avenue,
Medford, MA 02155; ; ORCID iD:
https://orcid.org/0000-0002-7131-3712
| | | | | | | |
Collapse
|
16
|
Zhang VY, Buck CL. Seasonal patterns in behavior and glucocorticoid secretion of a specialist Holarctic tree squirrel (Sciurus aberti). J Comp Physiol B 2022; 192:541-559. [DOI: 10.1007/s00360-022-01429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
|
17
|
Kumar V, Sharma A, Tripathi V. Physiological effects of food availability times in higher vertebrates. J Exp Biol 2022; 225:274142. [PMID: 35089336 DOI: 10.1242/jeb.239004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Food availability is a crucial ecological determinant of population size and community structure, and controls various life-history traits in most, if not all, species. Food availability is not constant; there are daily and seasonal differences in food abundance. When coupled to appetite (urge to eat), this is expressed as the eating schedule of a species. Food availability times affect daily and seasonal physiology and behaviour of organisms both directly (by affecting metabolic homeostasis) and indirectly (by altering synchronization of endogenous rhythms). Restricted food availability times may, for example, constrain reproductive output by limiting the number or quality of offspring or the number of reproductive attempts, as has been observed for nesting frequency in birds. Consuming food at the wrong time of day reduces the reproductive ability of a seasonal breeder, and can result in quality-quantity trade-offs of offspring. The food availability pattern serves as a conditioning environment, and can shape the activity of the genome by influencing chromatin activation/silencing; however, the functional linkage of food availability times with epigenetic control of physiology is only beginning to emerge. This Review gives insights into how food availability times, affected by changes in eating schedules and/or by alterations in feeding environment or lifestyle, could have hitherto unknown consequences on the physiology and reproductive fitness of seasonally breeding vertebrates and those that reproduce year round.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi 110003, India
| |
Collapse
|
18
|
Castelblanco-Martínez DN, Slone DH, Landeo-Yauri SS, Ramos EA, Alvarez-Alemán A, Attademo FLN, Beck CA, Bonde RK, Butler SM, Cabrias-Contreras LJ, Caicedo-Herrera D, Galves J, Gómez-Camelo IV, González-Socoloske D, Jiménez-Domínguez D, Luna FO, Mona-Sanabria Y, Morales-Vela JB, Olivera-Gómez LD, Padilla-Saldívar JA, Powell J, Reid JP, Rieucau G, Mignucci-Giannoni AA. Analysis of body condition indices reveals different ecotypes of the Antillean manatee. Sci Rep 2021; 11:19451. [PMID: 34593916 PMCID: PMC8484672 DOI: 10.1038/s41598-021-98890-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Assessing the body condition of wild animals is necessary to monitor the health of the population and is critical to defining a framework for conservation actions. Body condition indices (BCIs) are a non-invasive and relatively simple means to assess the health of individual animals, useful for addressing a wide variety of ecological, behavioral, and management questions. The Antillean manatee (Trichechus manatus manatus) is an endangered subspecies of the West Indian manatee, facing a wide variety of threats from mostly human-related origins. Our objective was to define specific BCIs for the subspecies that, coupled with additional health, genetic and demographic information, can be valuable to guide management decisions. Biometric measurements of 380 wild Antillean manatees captured in seven different locations within their range of distribution were obtained. From this information, we developed three BCIs (BCI1 = UG/SL, BCI2 = W/SL3, BCI3 = W/(SL*UG2)). Linear models and two-way ANCOVA tests showed significant differences of the BCIs among sexes and locations. Although our three BCIs are suitable for Antillean manatees, BCI1 is more practical as it does not require information about weight, which can be a metric logistically difficult to collect under particular circumstances. BCI1 was significantly different among environments, revealing that the phenotypic plasticity of the subspecies have originated at least two ecotypes-coastal marine and riverine-of Antillean manatees.
Collapse
Affiliation(s)
- D N Castelblanco-Martínez
- Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico. .,Universidad de Quintana Roo, Chetumal, Mexico. .,Fundación Internacional Para la Naturaleza y la Sustentabilidad, Chetumal, Mexico.
| | - D H Slone
- U.S. Geological Survey, Sirenia Project, Wetland and Aquatic Research Center, Gainesville, USA
| | - S S Landeo-Yauri
- Fundación Internacional Para la Naturaleza y la Sustentabilidad, Chetumal, Mexico
| | - E A Ramos
- Fundación Internacional Para la Naturaleza y la Sustentabilidad, Chetumal, Mexico
| | - A Alvarez-Alemán
- Clearwater Marine Aquarium Research Institute, Clearwater, USA.,Centro de Investigaciones Marinas, Universidad de la Habana, Havana, Cuba
| | - F L N Attademo
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Pernambuco, Brazil
| | - C A Beck
- U.S. Geological Survey, Sirenia Project, Wetland and Aquatic Research Center, Gainesville, USA.,Clearwater Marine Aquarium Research Institute, Clearwater, USA
| | - R K Bonde
- Clearwater Marine Aquarium Research Institute, Clearwater, USA
| | - S M Butler
- U.S. Geological Survey, Sirenia Project, Wetland and Aquatic Research Center, Gainesville, USA
| | - L J Cabrias-Contreras
- Caribbean Manatee Conservation Center, Inter American University of Puerto Rico, Bayamon, Puerto Rico
| | | | - J Galves
- Clearwater Marine Aquarium Research Institute, Clearwater, USA
| | | | | | | | - F O Luna
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Pernambuco, Brazil
| | | | | | | | | | - J Powell
- Clearwater Marine Aquarium Research Institute, Clearwater, USA
| | - J P Reid
- U.S. Geological Survey, Sirenia Project, Wetland and Aquatic Research Center, Gainesville, USA
| | - G Rieucau
- Fundación Internacional Para la Naturaleza y la Sustentabilidad, Chetumal, Mexico.,Louisiana Universities Marine Consortium, Chauvin, USA
| | - A A Mignucci-Giannoni
- Caribbean Manatee Conservation Center, Inter American University of Puerto Rico, Bayamon, Puerto Rico.,Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Bassetterre, Saint Kitts and Nevis
| |
Collapse
|
19
|
Hudson SB, Virgin EE, Kepas ME, French SS. Energy expenditure across immune challenge severities in a lizard: consequences for innate immunity, locomotor performance and oxidative status. J Exp Biol 2021; 224:271845. [PMID: 34402514 DOI: 10.1242/jeb.242608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Reptiles, like other vertebrates, rely on immunity to defend themselves from infection. The energetic cost of an immune response is liable to scale with infection severity, prompting constraints on other self-maintenance traits if immune prioritization exceeds energy budget. In this study, adult male side-blotched lizards (Uta stansburiana) were injected with saline (control) or high (20 µg g-1 body mass) or low (10 µg g-1 body mass) concentrations of lipopolysaccharide (LPS) to simulate bacterial infections of discrete severities. The costs and consequences of the immune response were assessed through comparisons of change in resting metabolic rate (RMR), energy metabolites (glucose, glycerol, triglycerides), innate immunity (bactericidal ability), sprint speed and oxidative status (antioxidant capacity, reactive oxygen metabolites). High-LPS lizards had the lowest glucose levels and greatest sprint reductions, while their RMR and bactericidal ability were similar to those of control lizards. Low-LPS lizards had elevated RMR and bactericidal ability, but glucose levels and sprint speed changes between those of high-LPS and control lizards. Levels of glycerol, triglycerides, reactive oxygen metabolites and antioxidant capacity did not differ by treatment. Taken together, energy expenditure for the immune response varies in a non-linear fashion with challenge severity, posing consequences for performance and self-maintenance processes in a reptile.
Collapse
Affiliation(s)
- Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Megen E Kepas
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| |
Collapse
|
20
|
Ngcamphalala CA, Bouwer M, Nicolson SW, Ganswindt A, McKechnie AE. Experimental Manipulation of Air Temperature in Captivity Appears Unsuitable for Evaluating Fecal Glucocorticoid Metabolite Responses of Wild-Caught Birds to Heat Exposure. Physiol Biochem Zool 2021; 94:330-337. [PMID: 34292861 DOI: 10.1086/716043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNoninvasive measurement of stress-related alterations in fecal glucocorticoid metabolite (fGCM) concentrations has considerable potential for quantifying physiological responses to very hot weather in free-ranging birds, but practical considerations related to sampling will often make this method feasible only for habituated study populations. Here we evaluate an alternate approach, the use of experimentally manipulated thermal environments for evaluating stress responses to high environmental temperatures in wild-caught birds housed in captivity. Using an enzyme immunoassay utilizing antibodies against 5ß-pregnane-3α,11ß,21-triol-20-one-CMO∶BSA (tetrahydrocorticosterone), we quantified fGCMs in captive individuals of three southern African arid-zone species (southern pied babblers [Turdoides bicolor], white-browed sparrow-weavers [Plocepasser mahali], and southern yellow-billed hornbills [Tockus leucomelas]) experiencing daily air temperature maxima (Tmax) ranging from 30°-32°C to 42°-44°C. For none of the three species did Tmax emerge as a significant predictor of elevated fGCM concentrations, and no stress response to simulated hot weather was evident. The apparent lack of a stress response to Tmax = 42°C in captive southern pied babblers contrasts with linear increases in fGCMs at Tmax > 38°C in free-ranging conspecifics. The lack of an effect of Tmax on fGCM levels may potentially be explained by several factors, including differences in operative temperatures and the availability of water and food between free-ranging and captive settings or the stress effect of captivity itself. Our results suggest that experimental manipulations of thermal environments experienced by wild-caught captive birds have limited usefulness for testing hypotheses concerning the effects of hot weather events on fGCM (and, by extension, glucocorticoid) concentrations.
Collapse
|
21
|
Ferretti A, Maggini I, Fusani L. How to recover after sea crossing: the importance of small islands for passerines during spring migration. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1886181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Andrea Ferretti
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstr. 14, Vienna 1090, Austria
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstr. 1, Vienna 1160, Austria
| | - Ivan Maggini
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstr. 1, Vienna 1160, Austria
| | - Leonida Fusani
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstr. 14, Vienna 1090, Austria
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstr. 1, Vienna 1160, Austria
| |
Collapse
|
22
|
Vágási CI, Tóth Z, Pénzes J, Pap PL, Ouyang JQ, Lendvai ÁZ. The Relationship between Hormones, Glucose, and Oxidative Damage Is Condition and Stress Dependent in a Free-Living Passerine Bird. Physiol Biochem Zool 2021; 93:466-476. [PMID: 33164671 PMCID: PMC7982133 DOI: 10.1086/711957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractPhysiological state is an emergent property of the interactions among physiological systems within an intricate network. Understanding the connections within this network is one of the goals in physiological ecology. Here, we studied the relationship between body condition, two neuroendocrine hormones (corticosterone and insulin-like growth factor 1 [IGF-1]) as physiological regulators, and two physiological systems related to resource metabolism (glucose) and oxidative balance (malondialdehyde). We measured these traits under baseline and stress-induced conditions in free-living house sparrows (Passer domesticus). We used path analysis to analyze different scenarios about the structure of the physiological network. Our data were most consistent with a model in which corticosterone was the major regulator under baseline conditions. This model shows that individuals in better condition have lower corticosterone levels; corticosterone and IGF-1 levels are positively associated; and oxidative damage is higher when levels of corticosterone, IGF-1, and glucose are elevated. After exposure to acute stress, these relationships were considerably reorganized. In response to acute stress, birds increased their corticosterone and glucose levels and decreased their IGF-1 levels. However, individuals in better condition increased their corticosterone levels more and better maintained their IGF-1 levels in response to acute stress. The acute stress-induced changes in corticosterone and IGF-1 levels were associated with an increase in glucose levels, which in turn was associated with a decrease in oxidative damage. We urge ecophysiologists to focus more on physiological networks, as the relationships between physiological traits are complex and dynamic during the organismal stress response.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Péter L. Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | | | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Spence AR, French SS, Hopkins GR, Durso AM, Hudson SB, Smith GD, Neuman‐Lee LA. Long‐term monitoring of two snake species reveals immune–endocrine interactions and the importance of ecological context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:744-755. [DOI: 10.1002/jez.2442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Austin R. Spence
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Susannah S. French
- Department of Biology, Ecology Center Utah State University Logan Utah USA
| | | | - Andrew M. Durso
- Department of Biological Sciences Florida Gulf Coast University Fort Myers Florida USA
| | - Spencer B. Hudson
- Department of Biology, Ecology Center Utah State University Logan Utah USA
| | - Geoffrey D. Smith
- Department of Biological Sciences Dixie State University St. George Utah USA
| | - Lorin A. Neuman‐Lee
- Department of Biological Sciences Arkansas State University Jonesboro Arkansas USA
| |
Collapse
|
24
|
Feng Y, Shi H, Gun S. Effects of environmental enrichment on growth performance, carcass traits, meat quality, and hair follicle development of Rex rabbits. Anim Biosci 2020; 34:1544-1551. [PMID: 33152207 PMCID: PMC8495335 DOI: 10.5713/ajas.20.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate growth performance, carcass traits, meat quality and hair follicle development of growing Rex rabbits as affected by different environmental enrichment materials. METHODS A total of one hundred and twenty Rex rabbits were randomly assigned to four groups; reared in conventional cages (not enriched) and in enriched cages with either willow stick (WS), rubber duck, or a can containing beans (CB), for 44 days. RESULTS The average daily gain of the CB group was the highest and had a significant difference from that of the other groups (p<0.05). The spleen and cecum weight of the CB group was greater than those of the WS and control groups (p<0.05). The redness (Commission Internationale de l'Eclairage a*) of the meat sample of the control group was lower than those of the enriched cage groups (p<0.05). Moreover, the hue value of the CB group was significantly lower than that of the other groups (p<0.05). The tenderest meat belonged to the CB group. In addition, more secondary (p<0.05) and primary follicles were found in the CB group than in the control group. CONCLUSION Environmental enrichment increased the average daily gain and improved some carcass traits, meat quality, and hair follicle density. Among the three environmental enrichment materials, CB could be recommended for rabbit husbandry.
Collapse
Affiliation(s)
- Yang Feng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hao Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
25
|
Iglesias-Carrasco M, Aich U, Jennions MD, Head ML. Stress in the city: meta-analysis indicates no overall evidence for stress in urban vertebrates. Proc Biol Sci 2020; 287:20201754. [PMID: 33023414 PMCID: PMC7657868 DOI: 10.1098/rspb.2020.1754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
As cities continue to grow it is increasingly important to understand the long-term responses of wildlife to urban environments. There have been increased efforts to determine whether urbanization imposes chronic stress on wild animals, but empirical evidence is mixed. Here, we conduct a meta-analysis to test whether there is, on average, a detrimental effect of urbanization based on baseline and stress-induced glucocorticoid levels of wild vertebrates. We found no effect of urbanization on glucocorticoid levels, and none of sex, season, life stage, taxon, size of the city nor methodology accounted for variation in the observed effect sizes. At face value, our results suggest that urban areas are no more stressful for wildlife than rural or non-urban areas, but we offer a few reasons why this conclusion could be premature. We propose that refining methods of data collection will improve our understanding of how urbanization affects the health and survival of wildlife.
Collapse
Affiliation(s)
- Maider Iglesias-Carrasco
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
26
|
DuRant S, Love AC, Belin B, Tamayo-Sanchez D, Santos Pacheco M, Dickens MJ, Calisi RM. Captivity alters neuroendocrine regulators of stress and reproduction in the hypothalamus in response to acute stress. Gen Comp Endocrinol 2020; 295:113519. [PMID: 32470473 DOI: 10.1016/j.ygcen.2020.113519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 01/19/2023]
Abstract
Wild animals are brought into captivity for many reasons. However, unlike laboratory-bred animals, wild caught animals often respond to the dramatic shift in their environment with physiological changes in the stress and reproductive pathways. Using wild-caught male and female house sparrows (Passer domesticus) we examined how time in captivity affects the expression of reproductive and stress-associated genes in the brain, specifically, the hypothalamus. We quantified relative mRNA expression of a neurohormone involved in the stress response (corticotropin releasing hormone [CRH]), a hypothalamic inhibitor of reproduction (gonadotropin inhibitory hormone [GnIH]), and the glucocorticoid receptor (GR), which is important in terminating the stress response. To understand potential shifts at the cellular level, we also examined the presence of hypothalamic GnIH (GnIH-ir) using immunohistochemistry. We hypothesized that expression of these genes and the abundance of cells immunoreactive for GnIH would change in response to time in captivity as compared to free-living individuals. We found that GR mRNA expression and GnIH-ir cell abundance increased after 24 and 45 days in captivity, as compared to wild-caught birds. At 66 days in captivity, GR expression and GnIH cell abundance did not differ from wild-caught birds, suggesting birds had acclimated to captivity. Evaluation of CRH and GnIH mRNA expression yielded similar trends, though they were not statistically significant. In addition, although neuroendocrine factors appeared to acclimate to captivity, a previous study indicated that corticosterone release and immune responses of these same birds did not acclimate to captivity, suggesting that neuroendocrine endpoints may adapt more rapidly to captivity than downstream physiological measures. These data expand our understanding of the physiological shifts occurring when wild animals are brought into captivity.
Collapse
Affiliation(s)
- Sarah DuRant
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Ashley C Love
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74074, United States
| | - Bryana Belin
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States
| | - Doris Tamayo-Sanchez
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States
| | - Michelle Santos Pacheco
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States
| | - Molly J Dickens
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - Rebecca M Calisi
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States; Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| |
Collapse
|
27
|
Prabhat A, Batra T, Kumar V. Effects of timed food availability on reproduction and metabolism in zebra finches: Molecular insights into homeostatic adaptation to food-restriction in diurnal vertebrates. Horm Behav 2020; 125:104820. [PMID: 32710887 DOI: 10.1016/j.yhbeh.2020.104820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023]
Abstract
Food availability affects metabolism and reproduction in higher vertebrates including birds. This study tested the idea of adaptive homeostasis to time-restricted feeding (TRF) in diurnal zebra finches by using multiple (behavioral, physiological and molecular) assays. Adult birds were subjected for 1 week or 3 weeks to food restriction for 4 h in the evening (hour 8-12) of the 12 h light-on period, with controls on ad lib feeding. Birds on TRF showed enhanced exploratory behavior and plasma triglycerides levels, but did not show differences from ad lib birds in the overall food intake, body mass, and plasma corticosterone and thyroxine levels. As compared to ad lib feeding, testis size and circulation testosterone were reduced after first but not after third week of TRF. The concomitant change in the mRNA expression of metabolic and reproductive genes was also found after week 1 of TRF. Particularly, TRF birds showed increased expression of genes coding for gonadotropin releasing hormone (GnRH) in hypothalamus, and for receptors of androgen (AR) and estrogen (ER-alpha) in both hypothalamus and testes. However, genes coding for the deiodinases (Dio2, Dio3) and gonadotropin inhibiting hormone (GnIH) showed no difference between feeding conditions in both hypothalamus and testes. Further, increased Sirt1, Fgf10 and Ppar-alpha, and decreased Egr1 expression in the liver suggested TRF-effects on the overall metabolism. Importantly, TRF-effects on gene expressions by week 1 seemed alleviated to a considerable extent by week 3. These results on TRF-induced reproductive and metabolic effects suggest homeostatic adaptation to food-restriction in diurnal vertebrates.
Collapse
Affiliation(s)
- Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
28
|
Zhang VY, Williams CT, Palme R, Buck CL. Glucocorticoids and activity in free-living arctic ground squirrels: Interrelationships between weather, body condition, and reproduction. Horm Behav 2020; 125:104818. [PMID: 32698015 DOI: 10.1016/j.yhbeh.2020.104818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023]
Abstract
The dynamic relationship between glucocorticoids and behavior are not well understood in wild mammals. We investigated how weather, body condition, and reproduction interact to affect cortisol levels and activity patterns in a free-living population of arctic ground squirrels (Urocitellus parryii). As a proxy for foraging and escape behaviors, collar-mounted accelerometers and light loggers were used to measure above-ground activity levels and the amount of time squirrels spent below the surface, respectively. Fecal cortisol metabolites (FCMs) were quantified to assess glucocorticoid secretion in squirrels. Male and female squirrels differed in above-ground activity levels and time spent below-ground across the active season, with males being most active during mating and females most active during lactation. We also found that female, but not male, squirrels exhibited seasonal variation in FCM levels, with concentrations highest during mid-lactation and lowest after the lactation period. In female squirrels, the seasonal relationships between breeding stage, activity, and FCM levels were also consistent with changes in maternal investment and the preparative role that glucocorticoids are hypothesized to play in energy mobilization. Body condition was not associated with FCM levels in squirrels. As predicted, deteriorating weather also influenced FCM levels and activity patterns in squirrels. FCM concentrations were affected by an interaction between temperature and wind speed when seasonal temperatures were lowest. In addition, above-ground activity, but not time spent below-ground, positively correlated with FCM levels. These results suggest that, although ground squirrels avoid inclement weather by remaining below-ground, activation of the stress axis may stimulate foraging activity.
Collapse
Affiliation(s)
- Victor Y Zhang
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Cory T Williams
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| |
Collapse
|
29
|
Breuner CW, Beyl HE, Malisch JL. Corticosteroid-binding globulins: Lessons from biomedical research. Mol Cell Endocrinol 2020; 514:110857. [PMID: 32437784 DOI: 10.1016/j.mce.2020.110857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) circulate in the plasma bound to corticosteroid-binding globulin (CBG). Plasma CBG may limit access of glucocorticoids to tissues (acting as a sponge: the free hormone hypothesis), or may solely serve as a transport molecule, releasing GCs to tissues as the plasma moves through capillaries (the total hormone hypothesis). Both biomedical (focused on human health) and comparative (focused on ecological and evolutionary relevance) studies have worked to incorporate CBG in glucocorticoid physiology, and to understand whether free or total hormone is the biologically active plasma fraction. The biomedical field, however, has been well ahead of the comparative physiologists, and have produced results that can inform comparative research when considering the import of total vs. free plasma hormone. In fact, biomedical studies have made impressive strides regarding the function of CBG in tissues as well as plasma; we, however, focus solely on the plasma functions in this review as this is the primary area of disagreement amongst comparative physiologists. Here we present 5 sets of biomedical studies across genomics, pharmacology, cell culture, whole animal research, and human medicine that strongly support a role for CBG limiting hormone access to tissue. We also discuss three areas of concern across comparative researchers. In contrast to former publications, we are not suggesting that all comparative studies in glucocorticoid physiology must measure CBG, or that only free corticosterone levels are valid. However, we propose that comparative physiologists be aware of biomedical results as they investigate glucocorticoids and interpret how total hormone may or may not impact behavior and physiology of free-living vertebrates.
Collapse
Affiliation(s)
- Creagh W Breuner
- Organismal Biology, Ecology, and Evolution, The University of Montana. 32 Campus Drive, HS 104, Missoula, MT, 59801, USA; The Wildlife Biology Program, The University of Montana. 32 Campus Drive, HS 104, Missoula, MT, 59801, USA.
| | - Hannah E Beyl
- The Wildlife Biology Program, The University of Montana. 32 Campus Drive, HS 104, Missoula, MT, 59801, USA
| | - Jessica L Malisch
- Department of Biology, Schaeffer Hall 236, St. Mary's College of Maryland, St. Mary's City, MD, 20686, USA
| |
Collapse
|
30
|
Disruption of energy homeostasis by food restriction or high ambient temperature exposure affects gonadal function in male house finches (Haemorhous mexicanus). J Comp Physiol B 2020; 190:611-628. [PMID: 32712710 DOI: 10.1007/s00360-020-01295-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Reproductive success requires that individuals acquire sufficient energy resources. Restricting food availability or increasing energy expenditure (e.g., thermoregulation) inhibits reproductive development in multiple avian species, but the nature of the energy-related signal mediating this effect is unclear. To investigate this question, we examined reproductive and metabolic physiology in male house finches that either underwent moderate food restriction (FR) or were exposed to high temperature (HT), in which birds were held at a high, but not locally atypical, ambient temperature cycle (37.8 °C day, 29.4 °C night) compared to a control group (CT; 29.4 °C day, 21.1 °C night). We hypothesized that FR and HT inhibit reproductive development by lowering available metabolic fuel, in particular plasma glucose (GLU) and free fatty acids (FFA). Following FR for 4 weeks, finches lost body mass, had marginally higher plasma FFA, and experienced a 90% reduction in testis mass compared to CT birds. Four weeks of HT exposure resulted in reduced voluntary food consumption and muscle mass, as well as an 80% reduction in testis mass relative to CT birds. Both FR and HT birds expressed less testicular 17β-hydroxysteroid dehydrogenase (17β-HSD) mRNA than controls but the expression of other testicular genes measured was unaffected by either treatment. Neither treatment significantly influenced plasma GLU. This study is among the first to demonstrate a negative effect of HT on reproductive development in a wild bird. Further studies are needed to clarify the role of metabolic mediators and their involvement under various conditions of energy availability and demand.
Collapse
|
31
|
Hudson SB, Kluever BM, Webb AC, French SS. Steroid hormones, energetic state, and immunocompetence vary across reproductive contexts in a parthenogenetic lizard. Gen Comp Endocrinol 2020; 288:113372. [PMID: 31866306 DOI: 10.1016/j.ygcen.2019.113372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/22/2023]
Abstract
Reproduction is energetically expensive and investing in this life history trait is likely accompanied by significant changes in physiological activity. Investment strategy necessary for achieving reproductive success in reptiles can vary with reproductive form and pattern, potentiating different consequences for competing fitness-related traits such as those key to survival. The goal of this study was to assess if and how energetic state (i.e., energy metabolites) and self-maintenance (i.e., immunocompetence) are hormonally modulated across reproductive contexts in an oviparous, parthenogenetic lizard, the Colorado Checkered Whiptail Aspidoscelis neotesselata. Here blood plasma samples were collected from lizards within the US Army Fort Carson Military Installation near Colorado Springs, CO, USA, during seasons of reproductive activity (i.e., June) and inactivity (i.e., August). Measures of reproductive (i.e., estradiol) and energy-mobilizing (i.e., corticosterone) hormones, energy metabolites (i.e., glucose, triglycerides, and free glycerol), and innate immunity (i.e., bactericidal ability) were compared by season and reproductive stage. Levels of energy metabolites and bactericidal ability were compared to levels of E2 and CORT. Bactericidal ability was also compared to levels of energy metabolites. Corticosterone and glucose levels were lower during the reproductive season while triglyceride levels and bactericidal ability were higher, but both estradiol and free glycerol levels did not differ between seasons. Throughout vitellogenesis, corticosterone and glucose levels as well as bactericidal ability did not differ, but estradiol levels were higher during early and mid-stage and both triglyceride and free glycerol levels were lower during gravidity. Corticosterone levels were negatively associated with circulating triglycerides and bactericidal ability, but were not related to glucose nor free glycerol levels. Estradiol levels were positively associated with free glycerol levels and bactericidal ability, but were not related to glucose nor triglyceride levels. Finally, bactericidal ability was negatively associated with glucose, but positively associated with triglycerides. Differences in energetic state and immunocompetence are thus reflected by shifts in hormone secretion across reproductive investment. These findings provide partial support for the hypothesis that energetic state is differentially regulated by steroid hormones to afford reproduction, potentially at the cost of future survival.
Collapse
Affiliation(s)
- S B Hudson
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA; Ecology Center, Utah State University, Logan, UT 84322‑5205, USA.
| | - B M Kluever
- United States Department of Defense, Department of the Army, Directorate of Public Works, Environmental Division, Conservation Branch, Fort Carson, CO 80913, USA; United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL 32641-6033, USA
| | - A C Webb
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA; Ecology Center, Utah State University, Logan, UT 84322‑5205, USA
| | - S S French
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA; Ecology Center, Utah State University, Logan, UT 84322‑5205, USA
| |
Collapse
|
32
|
Effects of stress-induced increases of corticosterone on circulating triglyceride levels, biliverdin concentration, and heme oxygenase expression. Comp Biochem Physiol A Mol Integr Physiol 2020; 240:110608. [DOI: 10.1016/j.cbpa.2019.110608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
|
33
|
Ferretti A, Maggini I, Lupi S, Cardinale M, Fusani L. The amount of available food affects diurnal locomotor activity in migratory songbirds during stopover. Sci Rep 2019; 9:19027. [PMID: 31836848 PMCID: PMC6910983 DOI: 10.1038/s41598-019-55404-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022] Open
Abstract
Migratory passerine birds fly long distances twice a year alternating nocturnal flights with stopovers to rest and replenish energy stores. The duration of each stopover depends on several factors including internal clocks, meteorological conditions, and environmental factors such as availability of food. Foraging entails energetic costs, and if birds need to refuel efficiently, they should modulate their activity in relation to food availability. We investigated how food availability influences locomotor activity in migrating birds of six passerine species at a spring stopover site in the central Mediterranean Sea. We selected birds with low fat scores which we expected to be strongly motivated to refuel. We simulated stopover sites of different quality by providing temporarily caged birds with different amounts of food to simulate scarce to abundant food. We analysed the diurnal locomotory activity as a proxy for food searching effort. Low food availability resulted in an increased diurnal locomotor activity in almost all species, while all birds showed low intensity of nocturnal migratory restlessness. In conclusion, our study shows that food availability in an important determinant of behaviour of migratory birds at stopover sites.
Collapse
Affiliation(s)
- Andrea Ferretti
- Department of Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. .,Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| | - Ivan Maggini
- 0000 0000 9686 6466grid.6583.8Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Sara Lupi
- 0000 0000 9686 6466grid.6583.8Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Massimiliano Cardinale
- 0000 0000 8578 2742grid.6341.0Department of Aquatic Resources, Marine Research Institute, Swedish University of Agricultural Sciences, Turistgatan 5, 45330 Lysekil, Sweden
| | - Leonida Fusani
- Department of Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. .,Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
34
|
Eikenaar C, Hessler S, Fischer S, Bairlein F. An exception to the rule: Captivity does not stress wild migrating northern wheatears. Gen Comp Endocrinol 2019; 275:25-29. [PMID: 30753841 DOI: 10.1016/j.ygcen.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
Wild animals typically suffer from stress when brought into captivity. This stress is characterized by elevated circulating glucocorticoid levels and weight loss. We here describe for the first time a case where a wild animal, the long-distance migrating northern wheatear, does not show signs of stress when caged. We captured these birds on a stopover site during their spring migration and caged them individually with ad libitum access to food and water. The birds were divided into four groups and were blood-sampled immediately in the field, a few hours after caging, one day after caging, or three days after caging, respectively. From these blood-samples we determined circulating corticosterone level. Food intake and body mass were also monitored. We found that, with very few exceptions, corticosterone levels were low and did not differ among the groups. Accordingly, almost all birds consumed huge quantities of food and substantially increased their body mass. Together these results clearly show that caging does not result in indications of stress in wild migrating northern wheatears. Confinement-specific conditions such as restricted movement normally stress animals. We suggest migratory birds may not perceive such conditions as stressors due to their hyperphagic state, a notion that requires further testing.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sandra Fischer
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
35
|
Baylor JL, Butler MW. Immune challenge-induced oxidative damage may be mitigated by biliverdin. ACTA ACUST UNITED AC 2019; 222:jeb.200055. [PMID: 30770399 DOI: 10.1242/jeb.200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
An effective immune response results in the elimination of pathogens, but this immunological benefit may be accompanied by increased levels of oxidative damage. However, organisms have evolved mechanisms to mitigate the extent of such oxidative damage, including the production and mobilization of antioxidants. One potential mechanism of mitigating immune challenge-induced changes in oxidative physiology is increasing biliverdin production. Biliverdin is chemically an antioxidant, but within-tissue correlations between biliverdin concentration and oxidative damage have never been directly examined. To test how biliverdin tissue concentrations are associated with physiological responses to an immune challenge, we exposed northern bobwhite quail (Colinus virginianus) to one of four treatments: injection of a non-pathogenic antigen - either lipopolysaccharide or phytohemagglutinin, control injection of phosphate-buffered saline or a sham procedure with no injection. Twenty-four hours later, we quantified oxidative damage and triglyceride concentration in the plasma, and biliverdin concentration in the plasma, liver and spleen. We found that both types of immune challenge increased oxidative damage relative to both non-injected and vehicle-injected controls, but treatment had no effects on any other metric. However, across all birds, oxidative damage and biliverdin concentration in the plasma were negatively correlated, which is consistent with a localized antioxidant function of biliverdin. Additionally, we uncovered multiple links between biliverdin concentration, change in mass during the immune challenges and triglyceride levels, suggesting that pathways associated with biliverdin production may also be associated with aspects of nutrient mobilization. Future experiments that manipulate biliverdin levels or oxidative damage directly could establish a systemic antioxidant function or elucidate important physiological impacts on body mass maintenance and triglyceride storage, mobilization or transport.
Collapse
|
36
|
Fischer CP, Romero LM. Chronic captivity stress in wild animals is highly species-specific. CONSERVATION PHYSIOLOGY 2019; 7:coz093. [PMID: 31824674 PMCID: PMC6892464 DOI: 10.1093/conphys/coz093] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 05/05/2023]
Abstract
Wild animals are brought into captivity for many reasons-conservation, research, agriculture and the exotic pet trade. While the physical needs of animals are met in captivity, the conditions of confinement and exposure to humans can result in physiological stress. The stress response consists of the suite of hormonal and physiological reactions to help an animal survive potentially harmful stimuli. The adrenomedullary response results in increased heart rate and muscle tone (among other effects); elevated glucocorticoid (GC) hormones help to direct resources towards immediate survival. While these responses are adaptive, overexposure to stress can cause physiological problems, such as weight loss, changes to the immune system and decreased reproductive capacity. Many people who work with wild animals in captivity assume that they will eventually adjust to their new circumstances. However, captivity may have long-term or permanent impacts on physiology if the stress response is chronically activated. We reviewed the literature on the effects of introduction to captivity in wild-caught individuals on the physiological systems impacted by stress, particularly weight changes, GC regulation, adrenomedullary regulation and the immune and reproductive systems. This paper did not review studies on captive-born animals. Adjustment to captivity has been reported for some physiological systems in some species. However, for many species, permanent alterations to physiology may occur with captivity. For example, captive animals may have elevated GCs and/or reduced reproductive capacity compared to free-living animals even after months in captivity. Full adjustment to captivity may occur only in some species, and may be dependent on time of year or other variables. We discuss some of the methods that can be used to reduce chronic captivity stress.
Collapse
Affiliation(s)
| | - L Michael Romero
- Department of Biology, 200 College Ave. Tufts University, Medford, MA 02155 USA
- Corresponding author: Department of Biology, Medford, MA 02155, USA.
| |
Collapse
|
37
|
Iacchetta MG, Maloney KN, Gienger CM. Endocrine stress response of Eastern Fence Lizards in fire-disturbed landscapes. Curr Zool 2018; 65:643-650. [PMID: 31857811 PMCID: PMC6911847 DOI: 10.1093/cz/zoy092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/24/2018] [Indexed: 12/23/2022] Open
Abstract
Landscape disturbances can alter habitat structure and resource availability, often inducing physiological responses by organisms to cope with the changing conditions. Quantifying the endocrine stress response through measurement of glucocorticoids has become an increasingly common method for determining how organisms physiologically respond to challenges imposed by their environment. We tested the hypothesis that Eastern Fence Lizards cope with fire disturbance effects by modulating their secretion of corticosterone (CORT). We measured the baseline and stress-induced plasma CORT of male Eastern Fence Lizards in a chronosequence of fire-altered habitats (recently burned, recovering from burn, and unburned). Although habitat use by lizards differed among burn treatments, including differences in use of canopy cover, leaf litter, and vegetation composition, we did not detect a significant effect of fire-induced habitat alteration on plasma CORT concentration or on body condition. In addition, we found no effect of blood draw treatment (baseline or stress-induced), body temperature, body condition, or time taken to collect blood samples on concentration of plasma CORT. Low intensity burns, which are typical of prescribed fire, may not be a sufficient stressor to alter CORT secretion in Eastern Fence Lizards (at least during the breeding season). Instead, lizards may avoid allostatic overload using behavioral responses and by selecting microsites within their environment that permit thermoregulatory opportunities necessary for optimal performance and energy assimilation.
Collapse
Affiliation(s)
- Michael G Iacchetta
- Department of Biology and Center of Excellence for Field Biology, Austin Peay State University Clarksville, TN, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - K Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center Nashville, TN, USA
| | - C M Gienger
- Department of Biology and Center of Excellence for Field Biology, Austin Peay State University Clarksville, TN, USA
| |
Collapse
|
38
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
39
|
Titon SCM, Titon Junior B, Assis VR, Kinker GS, Fernandes PACM, Gomes FR. Interplay among steroids, body condition and immunity in response to long-term captivity in toads. Sci Rep 2018; 8:17168. [PMID: 30464319 PMCID: PMC6249311 DOI: 10.1038/s41598-018-35495-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Stressful experiences can promote harmful effects on physiology and fitness. However, stress-mediated hormonal and immune changes are complex and may be highly dependent on body condition. Here, we investigated captivity-associated stress effects, over 7, 30, 60, and 90 days on plasma corticosterone (CORT) and testosterone (T) levels, body index, and innate immunity (bacterial killing ability and phagocytosis of peritoneal cells) in toads (Rhinella icterica). Toads in captivity exhibited elevated CORT and decreased T and immunity, without changes in body index. The inter-relationships between these variables were additionally contrasted with those obtained previously for R. schneideri, a related species that exhibited extreme loss of body mass under the same captive conditions. While T and phagocytosis were positively associated in both species, the relationship between CORT and bacterial killing ability was dependent on body index alterations. While CORT and bacterial killing ability were positively associated for toads that maintained body index, CORT was negatively associated with body index in toads that lost body mass over time in captivity. In these same toads, body index was positively associated with bacterial killing ability. These results demonstrate that steroids-immunity inter-relationships arising from prolonged exposure to a stressor in toads are highly dependent on body condition.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriela Sarti Kinker
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Malisch JL, Bennett DJ, Davidson BA, Wenker EE, Suzich RN, Johnson EE. Stress-Induced Hyperglycemia in White-Throated and White-Crowned Sparrows: A New Technique for Rapid Glucose Measurement in the Field. Physiol Biochem Zool 2018; 91:943-949. [PMID: 29847208 DOI: 10.1086/698536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Organisms experience stressors, and the physiological response to these stressors is highly conserved. Acute stress activates both the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, increasing epinephrine, norepinephrine, and glucocorticoids, collectively promoting glucose mobilization. While this is well characterized in mammals, the hyperglycemic response to stress in avian and nonavian reptiles has received less attention. A number of factors, ranging from time of day to blood loss, are reported to influence the extent to which acute stress leads to hyperglycemia in birds. Here we characterized the glycemic response to acute handling stress in two species of free-living sparrows: white-throated sparrows (WTSPs: Zonotrichia albicollis) in St. Mary's County, Maryland, and white-crowned sparrows (WCSPs: Zonotrichia leucophrys) in Tioga Pass Meadow, California. We validated a novel technique for rapid field measurement of glucose using a human blood glucose meter, FreeStyle Lite. As expected, acute handling stress elevated blood glucose at both 15 and 30 min postcapture as compared to baseline for both WTSPs and WCSPs. In addition, handling for 30 min without bleeding had the same hyperglycemic effect as handling with serial bleeds in WCSPs. Finally, body condition that was measured as abdominal fat score predicted stress-induced blood glucose in WTSPs but not in WCSPs. Our results are consistent with the mammalian literature on acute stress and energy mobilization, and we introduce a new field technique for avian field biologists.
Collapse
|
41
|
Fokidis HB, Ma C, Radin B, Prior NH, Adomat HH, Guns ES, Soma KK. Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. J Comp Neurol 2018; 527:347-361. [DOI: 10.1002/cne.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chunqi Ma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| | - Benjamin Radin
- Department of Biology; Rollins College; Winter Park Florida
| | - Nora H. Prior
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Program in Neuroscience and Cognitive Neuroscience; University of Maryland; College Park Maryland
| | - Hans H. Adomat
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
| | - Emma S. Guns
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
- Department of Urological Sciences; University of British Columbia; Vancouver British Columbia Canada
| | - Kiran K. Soma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Graduate Program in Neuroscience; University of British Columbia; Vancouver British Columbia Canada
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
42
|
Gastón MS, Pereyra LC, Vaira M. Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:93-102. [PMID: 30320969 DOI: 10.1002/jez.2240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
Light pollution or artificial lighting at night (ALAN) is an emerging threat to biodiversity that can disrupt physiological processes and behaviors. Because ALAN stressful effects are little studied in diurnal amphibian species, we investigated if chronic ALAN exposure affects the leukocyte profile, body condition, and blood cell sizes of a diurnal toad. We hand-captured male toads of Melanophryniscus rubriventris in Angosto de Jaire (Jujuy, Argentina). We prepared blood smears from three groups of toads: "field" (toads processed in the field immediately after capture), "natural light" (toads kept in the laboratory under captivity with natural photoperiod), and "constant light" (toads kept in the laboratory under captivity with constant photoperiod/ALAN). We significantly observed higher neutrophil proportions and neutrophils to lymphocytes ratio in toads under constant light treatment. In addition, we observed significantly better body condition and higher erythrocyte size in field toads compared with captive toads. In summary, ALAN can trigger a leukocyte response to stress in males of the diurnal toad M. rubriventris. In addition, captivity can affect the body condition and erythrocyte size of these toads.
Collapse
Affiliation(s)
- María S Gastón
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| | - Laura C Pereyra
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| | - Marcos Vaira
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| |
Collapse
|
43
|
Sepp T, McGraw KJ, Kaasik A, Giraudeau M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life? GLOBAL CHANGE BIOLOGY 2018; 24:1452-1469. [PMID: 29168281 DOI: 10.1111/gcb.13969] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The concept of a pace-of-life syndrome describes inter- and intraspecific variation in several life-history traits along a slow-to-fast pace-of-life continuum, with long lifespans, low reproductive and metabolic rates, and elevated somatic defences at the slow end of the continuum and the opposite traits at the fast end. Pace-of-life can vary in relation to local environmental conditions (e.g. latitude, altitude), and here we propose that this variation may also occur along an anthropogenically modified environmental gradient. Based on a body of literature supporting the idea that city birds have longer lifespans, we predict that urban birds have a slower pace-of-life compared to rural birds and thus invest more in self maintenance and less in annual reproduction. Our statistical meta-analysis of two key traits related to pace-of-life, survival and breeding investment (clutch size), indicated that urban birds generally have higher survival, but smaller clutch sizes. The latter finding (smaller clutches in urban habitats) seemed to be mainly a characteristic of smaller passerines. We also reviewed urbanization studies on other traits that can be associated with pace-of-life and are related to either reproductive investment or self-maintenance. Though sample sizes were generally too small to conduct formal meta-analyses, published literature suggests that urban birds tend to produce lower-quality sexual signals and invest more in offspring care. The latter finding is in agreement with the adult survival hypothesis, proposing that higher adult survival prospects favour investment in fewer offspring per year. According to our hypothesis, differences in age structure should arise between urban and rural populations, providing a novel alternative explanation for physiological differences and earlier breeding. We encourage more research investigating how telomere dynamics, immune defences, antioxidants and oxidative damage in different tissues vary along the urbanization gradient, and suggest that applying pace-of-life framework to studies of variation in physiological traits along the urbanization gradient might be the next direction to improve our understanding of urbanization as an evolutionary process.
Collapse
Affiliation(s)
- Tuul Sepp
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
44
|
Fischer CP, Wright-Lichter J, Romero LM. Chronic stress and the introduction to captivity: How wild house sparrows (Passer domesticus) adjust to laboratory conditions. Gen Comp Endocrinol 2018; 259:85-92. [PMID: 29170021 DOI: 10.1016/j.ygcen.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
The conditions of captivity can cause chronic stress in wild animals. Newly-captured animals may experience weight loss, elevated glucocorticoid hormones, increased heart rate, increased resting adrenomedullary activation, and an altered heart rate response to acute stressors. As captivity conditions persist, chronic stress may decrease as animals adjust to the stressors of captivity. In this study, house sparrows (Passer domesticus) were captured from the wild, fitted with heart rate transmitters in a minor surgical process, and individually housed in an indoor bird facility. Mass, baseline corticosterone, resting heart rate, resting adrenomedullary activation, and the acute heart rate response to a sudden noise were measured over the course of the first 6 weeks of captivity. Birds lost weight during the first weeks of captivity, which was regained by week 5. Baseline corticosterone peaked at day 7, decreased sharply by day 11, and continued to decrease throughout the 6 weeks. Although heart rate in the first 24 h could not be collected, daytime heart rate decreased from day 1 through day 20, where it reached a stable plateau. Daytime heart rate variability decreased through the entire 6 weeks, which may indicate a gradual shift from sympathetic to parasympathetic nervous system regulation of heart rate. The acute heart rate response to a sudden noise lasted longer at day 6 than earlier or later in captivity. In conclusion, the data indicate that the different physiological systems associated with chronic stress adjust to captivity over different timelines.
Collapse
Affiliation(s)
- Clare Parker Fischer
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States.
| | - Jessica Wright-Lichter
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States
| | - L Michael Romero
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States
| |
Collapse
|
45
|
Cornelius JM, Perreau G, Bishop VR, Krause JS, Smith R, Hahn TP, Meddle SL. Social information changes stress hormone receptor expression in the songbird brain. Horm Behav 2018; 97:31-38. [PMID: 29030109 PMCID: PMC5780353 DOI: 10.1016/j.yhbeh.2017.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 11/06/2022]
Abstract
Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes.
Collapse
Affiliation(s)
- Jamie M Cornelius
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.
| | - Gillian Perreau
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK
| | - Valerie R Bishop
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK.
| | - Jesse S Krause
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Rachael Smith
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Thomas P Hahn
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK.
| |
Collapse
|
46
|
Habitat quality affects stress responses and survival in a bird wintering under extremely low ambient temperatures. Naturwissenschaften 2017; 104:99. [DOI: 10.1007/s00114-017-1519-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 01/18/2023]
|
47
|
Durso AM, French SS. Stable isotope tracers reveal a trade‐off between reproduction and immunity in a reptile with competing needs. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew M. Durso
- Department of Biology & The Ecology Center Utah State University Logan UT USA
| | - Susannah S. French
- Department of Biology & The Ecology Center Utah State University Logan UT USA
| |
Collapse
|
48
|
Currylow AFT, Mandimbihasina A, Gibbons P, Bekarany E, Stanford CB, Louis EE, Crocker DE. Comparative ecophysiology of a critically endangered (CR) ectotherm: Implications for conservation management. PLoS One 2017; 12:e0182004. [PMID: 28813439 PMCID: PMC5558934 DOI: 10.1371/journal.pone.0182004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Captive breeding is a vital conservation tool for many endangered species programs. It is often a last resort when wild animal population numbers drop to below critical minimums for natural reproduction. However, critical ecophysiological information of wild counterparts may not be well documented or understood, leading to years of minimal breeding successes. We collected endocrine and associated ecological data on a critically endangered ectotherm concurrently in the wild and in captivity over several years. We tracked plasma concentrations of steroid stress and reproductive hormones, body condition, activity, and environmental parameters in three populations (one wild and two geographically distinct captive) of ploughshare tortoise (Astrochelys yniphora). Hormone profiles along with environmental and behavioral data are presented and compared. We show that animals have particular seasonal environmental requirements that can affect annual reproduction, captivity affects reproductive state, and sociality may be required at certain times of the year for breeding to be successful. Our data suggest that changes in climatic conditions experienced by individuals, either due to decades-long shifts or hemispheric differences when translocated from their native range, can stifle breeding success for several years while the animals physiologically acclimatize. We also found that captivity affects stress (plasma corticosterone) and body condition of adults and juveniles differently and seasonally. Our results indicate that phenotypic plasticity in reproduction and behavior is related to environmental cues in long-lived ectotherms, and detailed ecophysiological data should be used when establishing and improving captive husbandry conditions for conservation breeding programs. Further, considering the recent revelation of this tortoises’ possible extirpation from the wild, these data are critically opportune and may be key to the survival of this species.
Collapse
Affiliation(s)
- Andrea F. T. Currylow
- Integrative and Evolutionary Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | | | - Paul Gibbons
- Turtle Conservancy, Ojai, California, United States of America
| | - Ernest Bekarany
- Durrell Wildlife Conservation Trust, Antananarivo, Madagascar
| | - Craig B. Stanford
- Integrative and Evolutionary Biology, University of Southern California, Los Angeles, California, United States of America
- Turtle Conservancy, Ojai, California, United States of America
- Herpetology Section, Los Angeles County Natural History Museum, Los Angeles, California, United States of America
| | - Edward E. Louis
- Madagascar Biodiversity Partnership, Conservation Genetics Department, Omaha’s Henry Doorly Zoo and Aquarium, Omaha, Nebraska, United States of America
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, United States of America
| |
Collapse
|
49
|
Krause JS, Pérez JH, Meddle SL, Wingfield JC. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows. Physiol Behav 2017; 177:282-290. [DOI: 10.1016/j.physbeh.2017.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 02/03/2023]
|
50
|
Pistone J, Heatley J, Campbell T, Voelker G. Assessing Passeriformes health in South Texas via select venous analytes. Comp Biochem Physiol B Biochem Mol Biol 2017. [DOI: 10.1016/j.cbpb.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|