1
|
Zeder K, Siew ED, Kovacs G, Brittain EL, Maron BA. Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes. Nat Rev Nephrol 2024; 20:742-754. [PMID: 38890546 DOI: 10.1038/s41581-024-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Pulmonary hypertension (PH) is common in patients with chronic kidney disease (CKD) or kidney failure, with an estimated prevalence of up to 78% in those referred for right-heart catheterization. PH is independently associated with adverse outcomes in CKD, raising the possibility that early detection and appropriate management of PH might improve outcomes in at-risk patients. Among patients with PH, the prevalence of CKD stages 3 and 4 is estimated to be as high as 36%, and CKD is also independently associated with adverse outcomes. However, the complex, heterogenous pathophysiology and clinical profile of CKD-PH requires further characterization. CKD is often associated with elevated left ventricular filling pressure and volume overload, which presumably leads to pulmonary vascular stiffening and post-capillary PH. By contrast, a distinct subgroup of patients at high risk is characterized by elevated pulmonary vascular resistance and right ventricular dysfunction in the absence of pulmonary venous hypertension, which may represent a right-sided cardiorenal syndrome defined in principle by hypervolaemia, salt avidity, low cardiac output and normal left ventricular function. Current understanding of CKD-PH is limited, despite its potentially important ramifications for clinical decision making. In particular, whether PH should be considered when determining the suitability and timing of kidney replacement therapy or kidney transplantation is unclear. More research is urgently needed to address these knowledge gaps and improve the outcomes of patients with or at risk of CKD-PH.
Collapse
Affiliation(s)
- Katarina Zeder
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury, Nashville, TN, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Evan L Brittain
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA.
| |
Collapse
|
2
|
Lehman ML, Domenig O, Ames MK, Morgan JM. Effect of furosemide on comprehensive renin-angiotensin-aldosterone system activity of Thoroughbred horses. J Vet Intern Med 2024. [PMID: 39434560 DOI: 10.1111/jvim.17208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Furosemide, a commonly used diuretic, activates the renin-angiotensin-aldosterone system (RAAS) in other species. Little is known about RAAS peptide activation in horses. HYPOTHESIS/OBJECTIVES To evaluate equilibrium analysis as a practical method for RAAS quantification in horses and describe the RAAS response to a single dose of furosemide. We hypothesize that furosemide would cause transient increase in RAAS peptides in horses. ANIMALS 14 healthy adult thoroughbreds from a university teaching herd. METHODS Horses received either furosemide (1 mg/kg IV) or saline IV in a crossover study design. Protease-inhibited samples were compared with equilibrium analysis samples with Deming regression analysis. Renin-angiotensin-aldosterone system hormones were evaluated at 0, 0.25, 0.5, 4, and 24 hours postadministration, via equilibrium analysis. Values were compared with a mixed effects model. RESULTS Correlation between protease inhibition and equilibrium analysis was high for angiotensin I peptide (AngI) and angiotensin II peptide (AngII) (r = .92 and .95, respectively). Baseline RAAS peptide concentrations were below the limit of detection except AngII (median, 7.5 [range, 3.5-14.0] pmol/L). Furosemide administration resulted in an increase in AngI (8.0 [0.5-15.5] pmol/L, P = .03), AngII (33.7 [9.6-57.9] pmol/L, P = .0008), angiotensin III peptide (AngIII) (2.9 [0.9-4.9] pmol/L, P = .0005), angiotensin IV peptide (AngIV) (2.0 [0.6-3.4] pmol/L, P = .0005), and angiotensin 1-5 peptide (Ang1-5) (5.6 [1.2-5.9] pmol/L, P = .003) at 4 hours. Differences are reported as difference in the mean (95% confidence interval [CI]). CONCLUSIONS AND CLINICAL IMPORTANCE Furosemide produced an increase in hormones associated with both the classical and alternative RAAS pathways. Serum equilibrium analysis is practical for RAAS analysis in horses.
Collapse
Affiliation(s)
- Mallory L Lehman
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | | | - Marisa K Ames
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Jessica M Morgan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
3
|
McMaster MW, Shah A, Hassid Y, Garg J, Frishman WH, Aronow WS. Pulmonary Artery Denervation: An Emerging Treatment for Pulmonary Hypertension. Cardiol Rev 2024:00045415-990000000-00346. [PMID: 39470806 DOI: 10.1097/crd.0000000000000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Pulmonary hypertension (PH) is a debilitating disease with a poor overall prognosis. Pulmonary artery denervation (PADN) has emerged as a promising new treatment which has been shown to improve hemodynamics, functionality, and REVEAL scores for patients with PH. This article reviews notable updates in the management of PH since the 6th World Symposium on PH, the pathophysiology of PH, how PADN may work given the pathophysiology of PH, and focuses on evidence from the eleven studies supporting the use of PADN from trials that include human participants.
Collapse
Affiliation(s)
- Matthew W McMaster
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Avisha Shah
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Yosef Hassid
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Jasmine Garg
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
Imano H, Hayashi T, Nomura A, Tanaka S, Kohda Y, Yamaguchi T, Izumi Y, Yoshiyama M, Hirose Y, Ohta-Ogo K, Ishibashi-Ueda H, Kato R. Suppressing the expression of steroidogenic acute regulatory protein (StAR) in the myocardium by spironolactone contributes to the improvement of right ventricular remodeling in pulmonary arterial hypertension. Hypertens Res 2024:10.1038/s41440-024-01908-z. [PMID: 39367269 DOI: 10.1038/s41440-024-01908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 10/06/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition that frequently leads to right ventricular (RV) remodeling. Aldosterone promotes vascular and RV remodeling. The upregulation of steroidogenic acute regulatory protein (StAR) stimulates aldosterone synthesis. However, the expression of StAR in the myocardium under PAH conditions remains unknown. To investigate the expression of StAR in the myocardium and its association with RV remodeling in PAH, utilizing spironolactone as a treatment. A PAH model was created using male Sprague-Dawley rats, which received a subcutaneous injection of Sugen5416 (20 mg/kg) and were exposed to hypoxia (10% O2) for 2 weeks, followed by 2 weeks of normoxia. The animals were then divided into two groups, with one group receiving spironolactone (25 mg/kg/day) for an additional 4 weeks, while the other group did not. H9c2 cells were cultured under hypoxic conditions (37 °C, 1% O2, 5% CO2) with or without spironolactone treatment. In the model rats, RV systolic pressure and the Fulton index, both of which increased upon exposure to Sugen5416 and hypoxia, significantly decreased with spironolactone treatment. In H9c2 cells, hypoxic exposure elevated aldosterone levels, while spironolactone treatment significantly suppressed aldosterone production. Suppression of StAR expression in the myocardium via spironolactone contributes to the improvement of RV remodeling in PAH. Spironolactone may offer a valuable therapeutic strategy for RV remodeling in patients with PAH.
Collapse
Affiliation(s)
- Hideki Imano
- Department of Pharmacotherapeutics and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tetsuya Hayashi
- Department of Pharmacotherapeutics and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Atsuo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Saori Tanaka
- Department of Pharmacotherapeutics and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yuka Kohda
- Department of Pharmacotherapeutics and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasukatsu Izumi
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Diagnostic Pathology, Hokusetsu General Hospital, Osaka, Japan
| | - Ryuji Kato
- Department of Pharmacotherapeutics and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
5
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
6
|
Jiang Q, Yang Q, Zhang C, Hou C, Hong W, Du M, Shan X, Li X, Zhou D, Wen D, Xiong Y, Yang K, Lin Z, Song J, Mo Z, Feng H, Xing Y, Fu X, Liu C, Peng F, Wu L, Li B, Lu W, Yuan JXJ, Wang J, Chen Y. Nephrectomy and high-salt diet inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in rats. Respir Res 2024; 25:288. [PMID: 39080603 PMCID: PMC11290206 DOI: 10.1186/s12931-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.
Collapse
Grants
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- National Key Research and Development Program of China
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Min Du
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xuanyi Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dongmei Wen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanhui Xiong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jingjing Song
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhanjie Mo
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fang Peng
- Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Bing Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510320, Guangdong, China.
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
7
|
Armaly Z, Saffouri A, Kordahji H, Hamzeh M, Bishouty E, Matar N, Zaher M, Jabbour A, Qarawani D. Sacubitril/Valsartan Improves Cardiac Function in Dialysis Patients. Cureus 2024; 16:e63360. [PMID: 39070454 PMCID: PMC11283675 DOI: 10.7759/cureus.63360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
Heart failure (HF) is characterized by the activation of adverse neurohormonal systems and a high mortality rate. Noteworthy, HF is a well-known complication of chronic kidney disease (CKD), especially in end-stage kidney disease (ESKD), where dialysis patients are seven to eight times more likely to encounter cardiac arrest than the general population. Therefore, it is important to develop efficient treatments to improve cardiac function in dialysis patients and eventually reduce the cardiovascular death toll. Sacubitril/valsartan (Sac/Val) is a dual inhibitor/blocker of the neprilysin and angiotensin II receptors, which exert cardioprotective effects among patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved EF (HFpEF). Unfortunately, the drug is not approved for subjects with advanced CKD or dialysis patients due to safety concerns. The current study examined the cardiac effects of Sac/Val in HD patients. Administration of Sac/Val (100-400 mg/day) to 12 hemodialysis (HD) patients with HFrEF for six months gradually improved ejection fraction (EF) independently of morphological changes in cardiac geometry, as assessed by echocardiography (ECHO), and hemodynamic alterations. Interestingly, the Cardiomyopathy Questionnaire (Kansas City KCCQ-12) revealed that quality of life significantly improved after Sac/Val treatment. No major adverse effects were reported in the present study, supporting the safety of Sac/Val at least in these patients and for the applied follow-up period. Collectively, these findings support the use of Sac/Val as a cardioprotective agent in both HD and peritoneal dialysis (PD) patients. Yet, a more comprehensive study is required to establish these findings and to extend the follow-up period for 12 months in order to solidify these encouraging results.
Collapse
Affiliation(s)
- Zaher Armaly
- Nephrology, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| | - Amer Saffouri
- Internal Medicine, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| | | | - Munir Hamzeh
- Nephrology, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| | | | - Narmin Matar
- Nephrology, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| | - Maha Zaher
- Nephrology, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| | - Adel Jabbour
- Biomedical Laboratory, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| | - Dahud Qarawani
- Cardiology, Edinburgh Medical Missionary Society (EMMS) Nazareth Hospital, Nazareth, ISR
| |
Collapse
|
8
|
Xueyuan L, Yanping X, Jiaoqiong G, Yuehui Y. Autonomic nervous modulation: early treatment for pulmonary artery hypertension. ESC Heart Fail 2024; 11:619-627. [PMID: 38108098 DOI: 10.1002/ehf2.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is a chronic vascular disease defined by the elevation of pulmonary vascular resistance and mean pulmonary artery pressure, which arises due to pulmonary vascular remodelling. Prior research has already established a link between the autonomic nervous system (ANS) and PAH. Therefore, the rebalancing of the ANS offers a promising approach for the treatment of PAH. The process of rebalancing involves two key aspects: inhibiting an overactive sympathetic nervous system and fortifying the impaired parasympathetic nervous system through pharmacological or interventional procedures. However, the understanding of the precise mechanisms involved in neuromodulation, whether achieved through medication or intervention, remains insufficient. This limited understanding hinders our ability to determine the appropriate timing and scope of such treatment. This review aims to integrate the findings from clinical and mechanistic studies on ANS rebalancing as a treatment approach for PAH, with the ultimate goal of identifying a path to enhance the safety and efficacy of neuromodulation therapy and improve the prognosis of PAH.
Collapse
Affiliation(s)
- Liu Xueyuan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Yanping
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guan Jiaoqiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Yuehui
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Xu Y, Yang B, Hui J, Zhang C, Bian X, Tao M, Lu Y, Wang W, Qian H, Shang Z. The emerging role of sacubitril/valsartan in pulmonary hypertension with heart failure. Front Cardiovasc Med 2023; 10:1125014. [PMID: 37273885 PMCID: PMC10233066 DOI: 10.3389/fcvm.2023.1125014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) represents approximately 65%-80% of all patients with PH. The progression, prognosis, and mortality of individuals with left heart failure (LHF) are significantly influenced by PH and right ventricular (RV) dysfunction. Consequently, cardiologists should devote ample attention to the interplay between HF and PH. Patients with PH and HF may not receive optimal benefits from the therapeutic effects of prostaglandins, endothelin receptor antagonists, or phosphodiesterase inhibitors, which are specific drugs for pulmonary arterial hypertension (PAH). Sacubitril/valsartan, the angiotensin receptor II blocker-neprilysin inhibitor (ARNI), was recommended as the first-line therapy for patients with heart failure with reduced ejection fraction (HFrEF) by the 2021 European Society of Cardiology Guidelines. Although ARNI is effective in treating left ventricular (LV) enlargement and lower ejection fraction, its efficacy in treating individuals with PH and HF remains underexplored. Considering its vasodilatory effect at the pre-capillary level and a natriuretic drainage role at the post-capillary level, ARNI is believed to have a broad range of potential applications in treating PH-LHD. This review discusses the fundamental pathophysiological connections between PH and HF, emphasizing the latest research and potential benefits of ARNI in PH with various types of LHF and RV dysfunction.
Collapse
|
10
|
Tornling G, Batta R, Salvail D, Raud J, Denton CP. Effects of the Oral Angiotensin II Type 2 Receptor Agonist C21 in Sugen-Hypoxia Induced Pulmonary Hypertension in Rats. Int J Mol Sci 2023; 24:7478. [PMID: 37108643 PMCID: PMC10139154 DOI: 10.3390/ijms24087478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Substantial evidence supports the involvement of the renin-angiotensin system in pulmonary hypertension (PH), and the angiotensin II type 2 receptor (AT2R) is known to exert tissue protective actions. The effect of the selective AT2R agonist C21 (also known as Compound 21 or buloxibutid) was evaluated in the rat Sugen-hypoxia PH model. After a single injection of Sugen 5416 and hypoxia for 21 days, C21 (2 or 20 mg/kg) or vehicle was administered perorally twice daily from Day 21 to Day 55. On Day 56, hemodynamic assessments were performed, and lung and heart tissue were prepared for quantification of cardiac and vascular remodeling and fibrosis. Treatment with C21 20 mg/kg improved cardiac output and stroke volume and decreased right ventricular hypertrophy (all p < 0.05). Treatment with C21 2 mg/kg significantly decreased vessel wall and muscular layer thickness and increased the luminal opening in vessels >100 μm (all p < 0.05). There were no significant differences between the two C21 doses on any parameter, and post hoc analyses comparing the merged C21 groups with the vehicle group showed that C21 treatment reduced vascular remodeling (reduced endothelial proliferation and thickening of the vascular wall) in vessels of all sizes; moreover, the diastolic pulmonary artery pressure and right ventricular pressure were reduced along with reduction of right ventricular hypertrophy. Sugen 5416 and hypoxia increased pulmonary collagen deposition, which was counteracted by C21 20 mg/kg. In conclusion, the effects of C21 on vascular remodeling, hemodynamic alterations, and fibrosis suggest that AT2R agonists may have a role in Group 1 and 3 PH treatment.
Collapse
Affiliation(s)
- Göran Tornling
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Dan Salvail
- IPS Therapeutique Inc., Sherbrooke, QC J1L 2T9, Canada
| | - Johan Raud
- Vicore Pharma AB, 11127 Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christopher P. Denton
- Centre for Rheumatology, Royal Free Hospital, University College Medical School, London NW3 2PS, UK
| |
Collapse
|
11
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
12
|
Alipour Symakani RS, van Genuchten WJ, Zandbergen LM, Henry S, Taverne YJHJ, Merkus D, Helbing WA, Bartelds B. The right ventricle in tetralogy of Fallot: adaptation to sequential loading. Front Pediatr 2023; 11:1098248. [PMID: 37009270 PMCID: PMC10061113 DOI: 10.3389/fped.2023.1098248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Right ventricular dysfunction is a major determinant of outcome in patients with complex congenital heart disease, as in tetralogy of Fallot. In these patients, right ventricular dysfunction emerges after initial pressure overload and hypoxemia, which is followed by chronic volume overload due to pulmonary regurgitation after corrective surgery. Myocardial adaptation and the transition to right ventricular failure remain poorly understood. Combining insights from clinical and experimental physiology and myocardial (tissue) data has identified a disease phenotype with important distinctions from other types of heart failure. This phenotype of the right ventricle in tetralogy of Fallot can be described as a syndrome of dysfunctional characteristics affecting both contraction and filling. These characteristics are the end result of several adaptation pathways of the cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the long-term outcome of surgical correction of tetralogy of Fallot remains suboptimal, other treatment strategies need to be explored. Novel insights in failure of adaptation and the role of cardiomyocyte proliferation might provide targets for treatment of the (dysfunctional) right ventricle under stress.
Collapse
Affiliation(s)
- Rahi S. Alipour Symakani
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wouter J. van Genuchten
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Lotte M. Zandbergen
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, Munich, Germany
| | - Surya Henry
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Daphne Merkus
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Willem A. Helbing
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Beatrijs Bartelds
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
13
|
Vilstrup F, Heerfordt CK, Kamstrup P, Hedsund C, Biering-Sørensen T, Sørensen R, Kolekar S, Hilberg O, Pedersen L, Lund TK, Klausen TW, Skaarup KG, Eklöf J, Sivapalan P, Jensen JUS. Renin-angiotensin-system inhibitors and the risk of exacerbations in chronic obstructive pulmonary disease: a nationwide registry study. BMJ Open Respir Res 2023; 10:10/1/e001428. [PMID: 36882221 PMCID: PMC10008458 DOI: 10.1136/bmjresp-2022-001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/04/2023] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE The renin-angiotensin system (RAS) has been shown to play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD) because of the inflammatory properties of the system. Many patients with COPD use RAS-inhibiting (RASi) treatment. The aim was to determine the association between treatment with RASi and the risk of acute exacerbations and mortality in patients with severe COPD. METHODS Active comparator analysis by propensity-score matching. Data were collected in Danish national registries, containing complete information on health data, prescriptions, hospital admissions and outpatient clinic visits. Patients with COPD (n=38 862) were matched by propensity score on known predictors of the outcome. One group was exposed to RASi treatment (cases) and the other was exposed to bendroflumethiazide as an active comparator in the primary analysis. RESULTS The use of RASi was associated with a reduced risk of exacerbations or death in the active comparator analysis at 12 months follow-up (HR 0.86, 95% CI 0.78 to 0.95). Similar results were evident in a sensitivity analysis of the propensity-score-matched population (HR 0.89, 95% CI 0.83 to 0.94) and in an adjusted Cox proportional hazards model (HR 0.93, 95% CI 0.89 to 0.98). CONCLUSION In the current study, we found that the use of RASi treatment was associated with a consistently lower risk of acute exacerbations and death in patients with COPD. Explanations to these findings include real effect, uncontrolled biases, and-less likely-chance findings.
Collapse
Affiliation(s)
- Frida Vilstrup
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Christian Kjer Heerfordt
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Peter Kamstrup
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Caroline Hedsund
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Tor Biering-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Kobenhavn, Denmark.,Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Rikke Sørensen
- Department of Cardiology, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Shailesh Kolekar
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark.,Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Ole Hilberg
- Department of Medicine, Sygehus Lillebalt Vejle Sygehus, Vejle, Denmark
| | - Lars Pedersen
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen, Denmark
| | - Thomas Kromann Lund
- Section for Lung Transplantation, Dept. of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | - Josefin Eklöf
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Pradeesh Sivapalan
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark.,Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Jens-Ulrik Stæhr Jensen
- Department of Medicine, Section of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark .,Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
14
|
Wolter NL, Jaffe IZ. Emerging vascular cell-specific roles for mineralocorticoid receptor: implications for understanding sex differences in cardiovascular disease. Am J Physiol Cell Physiol 2023; 324:C193-C204. [PMID: 36440858 PMCID: PMC9902217 DOI: 10.1152/ajpcell.00372.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
As growing evidence implicates extrarenal mineralocorticoid receptor (MR) in cardiovascular disease (CVD), recent studies have defined both cell- and sex-specific roles. MR is expressed in vascular smooth muscle (SMC) and endothelial cells (ECs). This review integrates published data from the past 5 years to identify novel roles for vascular MR in CVD, with a focus on understanding sex differences. Four areas are reviewed in which there is recently expanded understanding of the cell type- or sex-specific role of MR in 1) obesity-induced microvascular endothelial dysfunction, 2) vascular inflammation in atherosclerosis, 3) pulmonary hypertension, and 4) chronic kidney disease (CKD)-related CVD. The review focuses on preclinical data on each topic describing new mechanistic paradigms, cell type-specific mechanisms, sexual dimorphism if addressed, and clinical implications are then considered. New data support that MR drives vascular dysfunction induced by cardiovascular risk factors via sexually dimorphic mechanisms. In females, EC-MR contributes to obesity-induced endothelial dysfunction by regulating epithelial sodium channel expression and by inhibiting estrogen-induced nitric oxide production. In males with hyperlipidemia, EC-MR promotes large vessel inflammation by genomic regulation of leukocyte adhesion molecules, which is inhibited by the estrogen receptor. In pulmonary hypertension models, MRs in EC and SMC contribute to distinct components of disease pathologies including pulmonary vessel remodeling and RV dysfunction. Despite a female predominance in pulmonary hypertension, sex-specific roles for MR have not been explored. Vascular MR has also been directly implicated in CKD-related vascular dysfunction, independent of blood pressure. Despite these advances, sex differences in MR function remain understudied.
Collapse
Affiliation(s)
- Nicole L Wolter
- Molecular Cardiology Research Institute, https://ror.org/002hsbm82Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, https://ror.org/002hsbm82Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
15
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Zhao C, Guo Y, Wang Y, Wang L, Yu L, Liang Y, Zhai Z, Tang L. The efficacy and safety of Sacubitril/Valsartan on pulmonary hypertension in hemodialysis patients. Front Med (Lausanne) 2022; 9:1055330. [PMID: 36523777 PMCID: PMC9745023 DOI: 10.3389/fmed.2022.1055330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of end-stage renal disease which is associated with adverse outcomes including all-cause mortality and cardiovascular events. Recent studies have demonstrated that Sacubitril/Valsartan (Sac/Val) as an enkephalinase inhibitor and angiotensin II receptor blocker could reduce pulmonary artery systolic pressure (PASP) and improve the prognosis of patients with heart failure. However, whether Sac/Val is effective in hemodialysis (HD) patients with PH is essentially unknown. In this retrospective study, we aimed to evaluate the efficacy and safety of Sac/Val in the treatment of PH in HD patients. METHODS A total of 122 HD patients with PH were divided into Sac/Val group (n = 71) and ARBs group (n = 51) based on the treatment regimen. The PASP, other cardiac parameters measured by echocardiography, and cardiac biomarkers including N-terminal fragment of BNP (NT-proBNP) and cardiac troponin I (cTnI) were observed at baseline and 3 months after treatment. RESULTS There were no significant differences in the baseline characteristics between the two groups. PASP decreased significantly from 45(38, 54) to 28(21, 40) mmHg in Sac/Val group (p < 0.001). PASP reduced from 41(37, 51) to 34(27, 44) mmHg in ARBs group (p < 0.001), and the decrease was more pronounced in the Sac/Val group (p < 0.001). In addition, improvements in the right atrial diameter (RAD), left ventricular diameter (LVD), left ventricular posterior wall thickness (LVPWT), left atrial diameter (LAD), pulmonary artery diameter (PAD), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were found in Sac/Val group (ps < 0.05). After 3 months, LVD, LAD, LVEDV, LVESV, LVEF, SV, and PASP were significantly improved in Sac/Val group compared with ARBs group (ps <0.05). Significant reduction in NT-proBNP [35,000 (15,000, 70,000) pg/ml vs. 7,042 (3,126, 29,060) pg/ml, p < 0.001] and cTnI [0.056(0.031, 0.085) ng/ml vs. 0.036 (0.012, 0.056) ng/ml, p < 0.001) were observed in Sac/Val group. No significant differences were observed in adverse events between the two groups (ps > 0.05). CONCLUSION Sac/Val seems to be an efficacious regimen in PH with favorable safety and has huge prospects for treating PH in HD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Tang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
18
|
Study to Explore the Association of the Renin-Angiotensin System and Right Ventricular Function in Mechanically Ventilated Patients. J Clin Med 2022; 11:jcm11154362. [PMID: 35955981 PMCID: PMC9369375 DOI: 10.3390/jcm11154362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Right ventricular (RV) dysfunction is associated with pulmonary vasoconstriction in mechanically ventilated patients. Enhancing the activity of angiotensin-converting enzyme 2 (ACE2), a key enzyme of the renin-angiotensin system (RAS), using recombinant human ACE2 (rhACE2) could alleviate RAS-mediated vasoconstriction and vascular remodeling. Methods: This prospective observational study investigated the association between concentrations of RAS peptides (Ang II or Ang(1–7)) and markers of RV function, as assessed by echocardiography (ratio of RV to left ventricular end-diastolic area, interventricular septal motion, and pulmonary arterial systolic pressure (PASP)). Results: Fifty-seven mechanically ventilated patients were enrolled. Incidence rates of acute cor pulmonale (ACP) and pulmonary circulatory dysfunction (PCD) were consistent with previous studies. In the 45 evaluable participants, no notable or consistent changes in RAS peptides concentration were observed over the observation period, and there was no correlation between Ang II concentration and either PASP or RV size. The model of the predicted posterior distributions for the pre- and post-dose values of Ang II demonstrated no change in the likelihood of PCD after hypothetical dosing with rhACE2, thus meeting the futility criteria. Similar results were observed with the other RAS peptides evaluated. Conclusions: Pre-defined success criteria for an association between PCD and the plasma RAS peptides were not met in the mechanically ventilated unselected patients.
Collapse
|
19
|
Mahalanobish S, Saha S, Dutta S, Ghosh S, Sil PC. Melatonin counteracts necroptosis and pulmonary edema in cadmium-induced chronic lung injury through the inhibition of angiotensin II. J Biochem Mol Toxicol 2022; 36:e23163. [PMID: 35844137 DOI: 10.1002/jbt.23163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
The renin-angiotensin system (RAS) is an important regulator in pulmonary physiology. In our study, we identified the efficacy of melatonin to control the RAS in cadmium (Cd) induced chronic lung injury in a mouse model. Swiss albino mice exposed to CdCl2 intraperitoneally (I.P.) (1 mg/kg b.w.; 12 weeks) showed increased release of lactate dehydrogenase in bronchoalveolar lavage fluid, generating reactive oxygen species, impaired antioxidant enzymes function, and disrupted alveolar structure along with increased expression of Angiotensin-II (Ang-II) in lung tissue. Cd-induced angiotensin-converting enzyme-2-Ang-II axis imbalance triggered the onset of Ang-II induced tumour necrosis factor alpha (TNF-α) mediated necroptosis by upregulating the signalling molecules RIP-1, RIP-3, and p-mixed lineage kinase domain-like. In an in vitro study, colocalization of Ang-II-RIP-3 molecule in Cd intoxicated L-132 cells (human alveolar epithelial cell line), as well as pretreatment of Cd exposed cells with the inhibitor's captopril (10 μM), necrostatin-1 (50 μM), and etanercept (5 μg/ml) indicated TNF-α induced necroptotic cell death via activation of the key molecule, Ang-II. Moreover, Ang-II disrupted the alveolar-capillary barrier by decreasing tight junctional proteins (zonula occludens-1 and occludin) and endothelial VE-cadherin expression. The use of human umbilical vein endothelial cells as a model of junctional protein-expressing cells showed that captopril pretreatment (25 μM) restored VE-cadherin expression in Cd-treated human umbilical vein endothelial cells. In CdCl2 intoxicated mice, melatonin pretreatment (10 mg/kg b.w.; 12 weeks, I.P.) inhibited inflammatory mediators (TNF-α, interleukin [IL]-1β, and IL-6) release and effectively suppressed (Cd-induced) Ang-II mediated necroptotic cell death and alveolar-capillary breaching due to Cd toxicity.
Collapse
Affiliation(s)
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Hochuli J, Jain S, Melo-Filho C, Sessions ZL, Bobrowski T, Choe J, Zheng J, Eastman R, Talley DC, Rai G, Simeonov A, Tropsha A, Muratov EN, Baljinnyam B, Zakharov AV. Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents. ACS Pharmacol Transl Sci 2022; 5:468-478. [PMID: 35821746 PMCID: PMC9236207 DOI: 10.1021/acsptsci.2c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for acute treatment of the disease. We investigate whether compounds that bind the human angiotensin-converting enzyme 2 (ACE2) protein can decrease SARS-CoV-2 replication without impacting ACE2's natural enzymatic function. Initial screening of a diversity library resulted in hit compounds active in an ACE2-binding assay, which showed little inhibition of ACE2 enzymatic activity (116 actives, success rate ∼4%), suggesting they were allosteric binders. Subsequent application of in silico techniques boosted success rates to ∼14% and resulted in 73 novel confirmed ACE2 binders with K d values as low as 6 nM. A subsequent SARS-CoV-2 assay revealed that five of these compounds inhibit the viral life cycle in human cells. Further effort is required to completely elucidate the antiviral mechanism of these ACE2-binders, but they present a valuable starting point for both the development of acute treatments for COVID-19 and research into the host-directed therapy.
Collapse
Affiliation(s)
- Joshua
E. Hochuli
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Curriculum
in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sankalp Jain
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Cleber Melo-Filho
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zoe L. Sessions
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Tesia Bobrowski
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jun Choe
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Johnny Zheng
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Richard Eastman
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel C. Talley
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexander Tropsha
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Eugene N. Muratov
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Bolormaa Baljinnyam
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
21
|
Shen J, Li Y, Li M, Li Z, Deng H, Xie X, Liu J. Restoration of Cullin3 gene expression enhances the improved effects of sonic hedgehog signaling activation for hypertension and attenuates the dysfunction of vascular smooth muscle cells. Biomed Eng Online 2022; 21:39. [PMID: 35715796 PMCID: PMC9206298 DOI: 10.1186/s12938-022-01002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertension is known as a major factor for global mortality. We aimed to investigate the role of Cullin3 (CUL3) in the regulation of hypertension. MATERIAL AND METHODS Human vascular smooth muscle cells (VSMCs) were treated with Angiotensin II (Ang II) to establish a hypertension in vitro model. Cell viability was detected by a cell counting kit-8 (CCK-8) assay. The content of reactive oxygen species (ROS) was evaluated by kit. Transwell assay and TUNEL staining were, respectively, used to assess cell migration and apoptosis. Additionally, the expression of sonic hedgehog (SHH) signaling-related proteins (SHH, smoothened homolog (Smo) and glioblastoma (Gli)) and CUL3 was tested with western blotting. Following treatment with Cyclopamine (Cycl), an inhibitor of SHH signaling, in Ang II-induced VSMCs, cell viability, migration, apoptosis and ROS content were determined again. Then, VSMCs were transfected with CUL3 plasmid or/and treated with sonic hedgehog signaling agonist (SAG) to explore the impacts on Ang II-induced VSMCs damage. In vivo, a hypertensive mouse model was established. Systolic blood pressure and diastolic blood pressure were determined. The histopathologic changes of abdominal aortic tissues were examined using H&E staining. The expression of SHH, Smo, Gli and CUL3 was tested with western blotting. RESULTS Significantly increased proliferation, migration and apoptosis of VSMCs were observed after Ang II exposure. Moreover, Ang II induced upregulated SHH, Smo and Gli expression, whereas limited increase in CUL3 expression was observed. The content of ROS in Ang II-stimulated VSMCs presented the same results. Following Cycl treatment, the high levels of proliferation and migration in Ang II-treated VSMCs were notably remedied while the apoptosis and ROS concentration were further increased. Moreover, Cycl downregulated SHH, Smo, Gli and CUL3 expression. Above-mentioned changes caused by Ang II were reversed following SAG addition. Indeed, SAG treatment combined with restoration of CUL3 expression inhibited proliferation, migration, apoptosis and ROS level in Ang II-stimulated VSMCs. In vivo, SAG aggravated the histopathological changes of the aorta and with a worse tendency after both SAG intervention and CUL3 silencing. By contrast, SAG treatment and rebound in CUL3 expression alleviated the vascular damage. CONCLUSIONS Collectively, restoration of CUL3 gene expression protected against hypertension through enhancing the effects of SHH activation in inhibition of apoptosis and oxidative stress for hypertension and alleviating the dysfunction of VSMCs.
Collapse
Affiliation(s)
- Jian Shen
- Department of Cardiology, Huizhou Municipal Central Hospital, 41 Eling North Road, Huizhou, 516001, Guangdong, China.
| | - Youqi Li
- Department of Nephrology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Menghao Li
- Department of Cardiology, Huizhou Municipal Central Hospital, 41 Eling North Road, Huizhou, 516001, Guangdong, China
| | - Zhiming Li
- Department of Cardiology, Huizhou Municipal Central Hospital, 41 Eling North Road, Huizhou, 516001, Guangdong, China
| | - Huantang Deng
- Department of Cardiology, Huizhou Municipal Central Hospital, 41 Eling North Road, Huizhou, 516001, Guangdong, China
| | - Xiongwei Xie
- Department of Cardiology, Huizhou Municipal Central Hospital, 41 Eling North Road, Huizhou, 516001, Guangdong, China
| | - Jinguang Liu
- Department of Cardiology, Huizhou Municipal Central Hospital, 41 Eling North Road, Huizhou, 516001, Guangdong, China
| |
Collapse
|
22
|
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2022; 322:L625-L640. [PMID: 35272496 DOI: 10.1152/ajplung.00152.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
25
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin–angiotensin–aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Hochuli JE, Jain S, Melo-filho C, Sessions ZL, Bobrowski T, Choe J, Zheng J, Eastman R, Talley DC, Rai G, Simeonov A, Tropsha A, Muratov EN, Baljinnyam B, Zakharov AV. Allosteric binders of ACE2 are promising anti-SARS-CoV-2 agents.. [PMID: 35313579 PMCID: PMC8936107 DOI: 10.1101/2022.03.15.484484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractThe COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for an acute treatment for the disease. We investigate whether compounds that bind the human ACE2 protein can interrupt SARS-CoV-2 replication without damaging ACE2’s natural enzymatic function. Initial compounds were screened for binding to ACE2 but little interruption of ACE2 enzymatic activity. This set of compounds was extended by application of quantitative structure-activity analysis, which resulted in 512 virtual hits for further confirmatory screening. A subsequent SARS-CoV-2 replication assay revealed that five of these compounds inhibit SARS-CoV-2 replication in human cells. Further effort is required to completely determine the antiviral mechanism of these compounds, but they serve as a strong starting point for both development of acute treatments for COVID-19 and research into the mechanism of infection.Abstract FigureTOC Graphic: Overall study design.
Collapse
|
27
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
28
|
Simon MA, Hanrott K, Budd DC, Torres F, Grünig E, Escribano‐Subias P, Meseguer ML, Halank M, Opitz C, Hall DA, Hewens D, Powley WM, Siederer S, Bayliffe A, Lazaar AL, Cahn A, Rosenkranz S. An open‐label, dose‐escalation study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of GSK2586881 in participants with pulmonary arterial hypertension. Pulm Circ 2022; 12:e12024. [PMID: 35506108 PMCID: PMC9053011 DOI: 10.1002/pul2.12024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/13/2023] Open
Abstract
Preclinical and early clinical studies suggest that angiotensin‐converting enzyme type 2 activity may be impaired in patients with pulmonary arterial hypertension (PAH); therefore, administration of exogenous angiotensin‐converting enzyme type 2 (ACE2) may be beneficial. This Phase IIa, multi‐center, open‐label, exploratory, single‐dose, dose‐escalation study (NCT03177603) assessed the potential vasodilatory effects of single doses of GSK2586881 (a recombinant human ACE2) on acute cardiopulmonary hemodynamics in hemodynamically stable adults with documented PAH who were receiving background PAH therapy. Successive cohorts of participants were administered a single intravenous dose of GSK2586881 of 0.1, 0.2, 0.4, or 0.8 mg/kg. Dose escalation occurred after four or more participants per cohort were dosed and a review of safety, tolerability, pharmacokinetics, and hemodynamic data up to 24 h postdose was undertaken. The primary endpoint was a change in cardiopulmonary hemodynamics (pulmonary vascular resistance, cardiac index, and mean pulmonary artery pressure) from baseline. Secondary/exploratory objectives included safety and tolerability, effect on renin‐angiotensin system peptides, and pharmacokinetics. GSK2586881 demonstrated no consistent or sustained effect on acute cardiopulmonary hemodynamics in participants with PAH receiving background PAH therapy (N = 23). All doses of GSK2586881 were well tolerated. GSK2586881 was quantifiable in plasma for up to 4 h poststart of infusion in all participants and caused a consistent and sustained reduction in angiotensin II and a corresponding increase in angiotensin (1–7) and angiotensin (1–5). While there does not appear to be a consistent acute vasodilatory response to single doses of GSK2586881 in participants with PAH, the potential benefits in terms of chronic vascular remodeling remain to be determined.
Collapse
Affiliation(s)
- Marc A. Simon
- Division of Cardiology, Department of Medicine University of California San Francisco California USA
| | - Kate Hanrott
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - David C. Budd
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | | | - Ekkehard Grünig
- Centre for Pulmonary Hypertension Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital Heidelberg Germany
| | - Pilar Escribano‐Subias
- CIBER‐CV Cardiology Department, Pulmonary Hypertension Unit Hospital Universitario 12 de Octubre Madrid Spain
| | - Manuel L. Meseguer
- Lung Transplant and Pulmonary Vascular Diseases Department Hospital Universitari Vall d'Hebron Barcelona Spain
| | - Michael Halank
- Department of Internal Medicine I University Hospital Carl Gustav Carus Dresden Germany
| | - Christian Opitz
- Department of Cardiology DRK Kliniken Berlin Germany
- Department of Cardiology, University Heart Center Berlin Charité University Medicine Berlin Germany
| | - David A. Hall
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Deborah Hewens
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - William M. Powley
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Sarah Siederer
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Andrew Bayliffe
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
- Marengo Therapeutics and Apple Tree Partners Cambridge Massachusetts USA
| | - Aili L. Lazaar
- Discovery Medicine, Clinical Pharmacology and Experimental Medicine GlaxoSmithKline plc. Collegeville Pennsylvania USA
| | - Anthony Cahn
- Research and Development, Medicines Research Centre GlaxoSmithKline plc. Stevenage UK
| | - Stephan Rosenkranz
- Department III of Internal Medicine, Cologne Cardiovascular Research Center (CCRC) Cologne University Heart Center Cologne Germany
| |
Collapse
|
29
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Immunomodulatory Potential of Diuretics. BIOLOGY 2021; 10:biology10121315. [PMID: 34943230 PMCID: PMC8698805 DOI: 10.3390/biology10121315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
In this review, diuretics and their immunomodulatory functions are described. The effects on the immune response of this group of drugs are reported in patients suffering from hypertension and under experimental conditions involving animal models and cell line studies. The pathogenesis of hypertension is strongly connected to chronic inflammation. The vast majority of diuretics modulate the immune response, changing it in favor of the anti-inflammatory response, but depending on the drug, these effects may differ. This topic is significantly important in medical practice regarding the treatment of patients who have coexisting diseases with chronic inflammatory pathogenesis, including hypertension or chronic heart failure. In patients with metabolic syndrome, allergies, or autoimmune disorders, the anti-inflammatory effect is favorable, because of the overstimulation of their immune system. Otherwise, in the geriatric population, it is important to find the proper anti- and pro-inflammatory balance to avoid an enhancement of immune response suppression, which can result in reducing the risk of serious infections that can occur due to the age-diminished function of the immune system. This article is intended to facilitate the selection of an antihypertensive drug that depends on the patient's immune situation.
Collapse
|
31
|
Pulmonary and Systemic Hemodynamics following Multielectrode Radiofrequency Catheter Renal Denervation in Acutely Induced Pulmonary Arterial Hypertension in Swine. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4248111. [PMID: 34765677 PMCID: PMC8577935 DOI: 10.1155/2021/4248111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Objective We aimed to assess the effects of renal denervation (RDN) on systemic and pulmonary hemodynamics in a swine model of thromboxane A2- (TXA2-) induced pulmonary arterial hypertension (PAH). Methods The study protocol comprised two PAH inductions with a target mean pulmonary artery pressure (PAP) of 40 mmHg at baseline and following either the RDN or sham procedure. Ten Landrace pigs underwent the first PAH induction; then, nine animals were randomly allocated in 1 : 1 ratio to RDN or sham procedure; the second PAH induction was performed in eight animals (one animal died of pulmonary embolism during the first PAH induction, and one animal died after RDN). In the RDN group, ablation was performed in all available renal arteries, and balloon inflation within artery branches was performed in controls. An autopsy study of the renal arteries was performed. Results At baseline, the target mean PAP was achieved in all animals with 25.0 [20.1; 25.2] mcg of TXA2. The second PAH induction required the same mean TXA2 dose and infusion time. There was no statistically significant difference in the mean PAP at second PAH induction between the groups (39.0 ± 5.3 vs. 39.75 ± 0.5 mmHg, P > 0.05). In the RDN group, the second PAH induction resulted in a numerical but insignificant trend toward a decrease in the mean systemic blood pressure and systemic vascular resistance, when compared with the baseline induction (74 ± 18.7 vs. 90.25 ± 28.1 mmHg and 1995.3 ± 494.3 vs. 2433.7 ± 1176.7 dyn∗sec∗cm−5, P > 0.05, respectively). No difference in hemodynamic parameters was noted in the sham group between the first and second PAH induction. Autopsy demonstrated artery damage in both groups, but RDN resulted in more severe lesions. Conclusions According to our results, RDN does not result in significant acute pulmonary or systemic hemodynamic changes in the TXA2-induced PAH model. The potential chronic effects of RDN on PAH require further research.
Collapse
|
32
|
Ma Z, Viswanathan G, Sellig M, Jassal C, Choi I, Garikipati A, Xiong X, Nazo N, Rajagopal S. β-Arrestin–Mediated Angiotensin II Type 1 Receptor Activation Promotes Pulmonary Vascular Remodeling in Pulmonary Hypertension. JACC Basic Transl Sci 2021; 6:854-869. [PMID: 34869949 PMCID: PMC8617598 DOI: 10.1016/j.jacbts.2021.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/05/2022]
Abstract
We tested the effects of a β-arrestin–biased agonist (TRV023) of the angiotensin II (AngII) type 1 receptor (AT1R), which acts as a vasodilator while not blocking cellular proliferation, compared to a balanced agonist, AngII, and an antagonist, losartan, in PAH. In acute infusion, AngII increased right ventricular pressures while TRV023 and losartan did not. However, in chronic infusion in monocrotaline PAH rats, both TRV023 and AngII had significantly worse survival than losartan. Both TRV023 and AngII enhanced proliferation and migration of pulmonary artery smooth muscle cells from patients with PAH. β-arrestin-mediated AT1R signaling promotes vascular remodeling and worsens PAH, and suggests that the benefit of current PAH therapies is primarily through pulmonary vascular reverse remodeling.
Pulmonary arterial hypertension (PAH) is a disease of abnormal pulmonary vascular remodeling whose medical therapies are thought to primarily act as vasodilators but also may have effects on pulmonary vascular remodeling. The angiotensin II type 1 receptor (AT1R) is a G protein–coupled receptor that promotes vasoconstriction through heterotrimeric G proteins but also signals via β-arrestins, which promote cardioprotective effects and vasodilation through promoting cell survival. We found that an AT1R β-arrestin-biased agonist promoted vascular remodeling and worsened PAH, suggesting that the primary benefit of current PAH therapies is through pulmonary vascular reverse remodeling in addition to their vasodilation.
Collapse
|
33
|
Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168297. [PMID: 34444046 PMCID: PMC8391744 DOI: 10.3390/ijerph18168297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Right ventricular (RV) function is the main determinant of the outcome of patients with pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the treatment of left ventricular failure are not established for the RV. Furthermore, the direct effects of specific vasoactive drugs for treatment of pulmonary arterial hypertension (PAH, Group 1 of PH) on RV are not fully investigated. Pulmonary artery banding (PAB) allows to study the pathogenesis of RV failure solely, thereby testing potential therapies independently of pulmonary vascular changes. This review aims to discuss recent studies of the mechanisms of RV remodeling and RV-directed therapies based on the PAB model.
Collapse
|
34
|
Zhu J, Wang H, Chen H. Effects of Estrogen on Cardiac mRNA and LncRNA Expression Profiles in Hypertensive Mice. J Cardiovasc Transl Res 2021; 14:706-727. [PMID: 32236843 DOI: 10.1007/s12265-020-09990-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 11/25/2022]
Abstract
Estrogen is a vascular protection factor and plays a protective role in the pathogenesis of gender differences in cardiovascular diseases. This study was to address the possible mechanisms that may explain the relationship between estradiol configuration-17β-estradiol (E2) and ventricular remodeling. Here, we show that a total of 1499 LncRNAs and 680 mRNAs significantly differently expressed were identified. This result indicates that estradiol has a global role in regulating heart gene expression profiles in female mice. Go and Pathway functional cluster analysis showed that the antagonism of E2 on cardiac remodeling and AngII-induced pathological changes in female mice may be related to physiological processes such as circadian rhythm disorder and ion channel dysfunction. Graphical Abstract.
Collapse
Affiliation(s)
- Jingkang Zhu
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Hui Chen
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China.
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
35
|
Angiotensin-Converting Enzyme 2 (ACE2) as a Potential Diagnostic and Prognostic Biomarker for Chronic Inflammatory Lung Diseases. Genes (Basel) 2021; 12:genes12071054. [PMID: 34356070 PMCID: PMC8306334 DOI: 10.3390/genes12071054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammatory lung diseases are characterized by uncontrolled immune response in the airways as their main pathophysiological manifestation. The lack of specific diagnostic and therapeutic biomarkers for many pulmonary diseases represents a major challenge for pulmonologists. The majority of the currently approved therapeutic approaches are focused on achieving disease remission, although there is no guarantee of complete recovery. It is known that angiotensin-converting enzyme 2 (ACE2), an important counter-regulatory component of the renin–angiotensin–aldosterone system (RAAS), is expressed in the airways. It has been shown that ACE2 plays a role in systemic regulation of the cardiovascular and renal systems, lungs and liver by acting on blood pressure, electrolyte balance control mechanisms and inflammation. Its protective role in the lungs has also been presented, but the exact pathophysiological mechanism of action is still elusive. The aim of this study is to review and discuss recent findings about ACE2, including its potential role in the pathophysiology of chronic inflammatory lung diseases:, i.e., chronic obstructive pulmonary disease, asthma, and pulmonary hypertension. Additionally, in the light of the coronavirus 2019 disease (COVID-19), we will discuss the role of ACE2 in the pathophysiology of this disease, mainly represented by different grades of pulmonary problems. We believe that these insights will open up new perspectives for the future use of ACE2 as a potential biomarker for early diagnosis and monitoring of chronic inflammatory lung diseases.
Collapse
|
36
|
Menon DP, Qi G, Kim SK, Moss ME, Penumatsa KC, Warburton RR, Toksoz D, Wilson J, Hill NS, Jaffe IZ, Preston IR. Vascular cell-specific roles of mineralocorticoid receptors in pulmonary hypertension. Pulm Circ 2021; 11:20458940211025240. [PMID: 34211700 PMCID: PMC8216367 DOI: 10.1177/20458940211025240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormalities that characterize pulmonary arterial hypertension include impairment in the structure and function of pulmonary vascular endothelial and smooth muscle cells. Aldosterone levels are elevated in human pulmonary arterial hypertension and in experimental pulmonary hypertension, while inhibition of the aldosterone-binding mineralocorticoid receptor attenuates pulmonary hypertension in multiple animal models. We explored the role of mineralocorticoid receptor in endothelial and smooth muscle cells in using cell-specific mineralocorticoid receptor knockout mice exposed to sugen/hypoxia-induced pulmonary hypertension. Treatment with the mineralocorticoid receptor inhibitor spironolactone significantly reduced right ventricular systolic pressure. However, this is not reproduced by selective mineralocorticoid receptor deletion in smooth muscle cells or endothelial cells. Similarly, spironolactone attenuated the increase in right ventricular cardiomyocyte area independent of vascular mineralocorticoid receptor with no effect on right ventricular weight or interstitial fibrosis. Right ventricular perivascular fibrosis was significantly decreased by spironolactone and this was reproduced by specific deletion of mineralocorticoid receptor from endothelial cells. Endothelial cell-mineralocorticoid receptor deletion attenuated the sugen/hypoxia-induced increase in the leukocyte-adhesion molecule, E-selectin, and collagen IIIA1 in the right ventricle. Spironolactone also significantly reduced pulmonary arteriolar muscularization, independent of endothelial cell-mineralocorticoid receptor or smooth muscle cell-mineralocorticoid receptor. Finally, the degree of pulmonary perivascular inflammation was attenuated by mineralocorticoid receptor antagonism and was fully reproduced by smooth muscle cell-specific mineralocorticoid receptor deletion. These studies demonstrate that in the sugen/hypoxia pulmonary hypertension model, systemic-mineralocorticoid receptor blockade significantly attenuates the disease and that mineralocorticoid receptor has cell-specific effects, with endothelial cell-mineralocorticoid receptor contributing to right ventricular perivascular fibrosis and smooth muscle cell-mineralocorticoid receptor participating in pulmonary vascular inflammation. As mineralocorticoid receptor antagonists are being investigated to treat pulmonary arterial hypertension, these findings support novel mechanisms and potential mineralocorticoid receptor targets that mediate therapeutic benefits in patients.
Collapse
Affiliation(s)
- Divya P. Menon
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Guanming Qi
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Seung K. Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Krishna C. Penumatsa
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Rod R. Warburton
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Deniz Toksoz
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Jamie Wilson
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Nicholas S. Hill
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
37
|
Tejwani V, Fawzy A, Putcha N, Castaldi P, Cho MH, Pratte KA, Bhatt SP, Lynch DA, Humphries SM, Kinney GL, D'Alessio FR, Hansel NN. Emphysema Progression and Lung Function Decline Among Angiotensin Converting Enzyme Inhibitors and Angiotensin-Receptor Blockade Users in the COPDGene Cohort. Chest 2021; 160:1245-1254. [PMID: 34029566 DOI: 10.1016/j.chest.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Attenuation of transforming growth factor β by blocking angiotensin II has been shown to reduce emphysema in a murine model. General population studies have demonstrated that the use of angiotensin converting enzyme inhibitors (ACEis) and angiotensin-receptor blockers (ARBs) is associated with reduction of emphysema progression in former smokers and that the use of ACEis is associated with reduction of FEV1 progression in current smokers. RESEARCH QUESTION Is use of ACEi and ARB associated with less progression of emphysema and FEV1 decline among individuals with COPD or baseline emphysema? METHODS Former and current smokers from the Genetic Epidemiology of COPD Study who attended baseline and 5-year follow-up visits, did not change smoking status, and underwent chest CT imaging were included. Adjusted linear mixed models were used to evaluate progression of adjusted lung density (ALD), percent emphysema (%total lung volume <-950 Hounsfield units [HU]), 15th percentile of the attenuation histogram (attenuation [in HU] below which 15% of voxels are situated plus 1,000 HU), and lung function decline over 5 years between ACEi and ARB users and nonusers in those with spirometry-confirmed COPD, as well as all participants and those with baseline emphysema. Effect modification by smoking status also was investigated. RESULTS Over 5 years of follow-up, compared with nonusers, ACEi and ARB users with COPD showed slower ALD progression (adjusted mean difference [aMD], 1.6; 95% CI, 0.34-2.9). Slowed lung function decline was not observed based on phase 1 medication (aMD of FEV1 % predicted, 0.83; 95% CI, -0.62 to 2.3), but was when analysis was limited to consistent ACEi and ARB users (aMD of FEV1 % predicted, 1.9; 95% CI, 0.14-3.6). No effect modification by smoking status was found for radiographic outcomes, and the lung function effect was more pronounced in former smokers. Results were similar among participants with baseline emphysema. INTERPRETATION Among participants with spirometry-confirmed COPD or baseline emphysema, ACEi and ARB use was associated with slower progression of emphysema and lung function decline. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Vickram Tejwani
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD.
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | | | - Michael H Cho
- Division of Pulmonary and Critical Care Medicine, Boston, MA; Harvard Medical School, Boston, MA
| | | | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | | | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
38
|
Fried ND, Morris TM, Whitehead A, Lazartigues E, Yue X, Gardner JD. Angiotensin II type 1 receptor mediates pulmonary hypertension and right ventricular remodeling induced by inhaled nicotine. Am J Physiol Heart Circ Physiol 2021; 320:H1526-H1534. [PMID: 33577434 PMCID: PMC8260386 DOI: 10.1152/ajpheart.00883.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/07/2023]
Abstract
Use of electronic cigarettes is rapidly increasing among youth and young adults, but little is known regarding the long-term cardiopulmonary health impacts of these nicotine-containing devices. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension (PH) and right ventricular (RV) remodeling in mice. These changes were associated with upregulated RV angiotensin-converting enzyme (ACE). Angiotensin II receptor blockers (ARBs) have been shown to reverse cigarette smoking-induced PH in rats. ACE inhibitor and ARB use in a large retrospective cohort of patients with PH is associated with improved survival. Here, we utilized losartan (an ARB specific for angiotensin II type 1 receptor) to further explore nicotine-induced PH. Male C57BL/6 mice received nicotine vapor for 12 h/day, and exposure was assessed using serum cotinine to achieve levels comparable to human smokers or electronic cigarette users. Mice were exposed to nicotine for 8 wk and a subset was treated with losartan via an osmotic minipump. Cardiac function was assessed using echocardiography and catheterization. Although nicotine exposure increased angiotensin II in the RV and lung, this finding was nonsignificant. Chronic, inhaled nicotine significantly increased RV systolic pressure and RV free wall thickness versus air control. These parameters were significantly lower in mice receiving both nicotine and losartan. Nicotine significantly increased RV internal diameter, with no differences seen between the nicotine and nicotine-losartan group. Neither nicotine nor losartan affected left ventricular structure or function. These findings provide the first evidence that antagonism of the angiotensin II type 1 receptor can ameliorate chronic, inhaled nicotine-induced PH and RV remodeling.NEW & NOTEWORTHY Chronic, inhaled nicotine causes pulmonary hypertension and right ventricular remodeling in mice. Treatment with losartan, an angiotensin II type 1 receptor antagonist, ameliorates nicotine-induced pulmonary hypertension and right ventricular remodeling. This novel finding provides preclinical evidence for the use of renin-angiotensin system-based therapies in the treatment of pulmonary hypertension, particularly in patients with a history of tobacco-product use.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Arterial Pressure/drug effects
- Disease Models, Animal
- E-Cigarette Vapor
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/prevention & control
- Inhalation Exposure
- Losartan/pharmacology
- Male
- Mice, Inbred C57BL
- Nicotine
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Time Factors
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Nicholas D Fried
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tamara M Morris
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Southeast Louisiana Veterans Health Care Systems, New Orleans, Louisiana
| | - Anna Whitehead
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Southeast Louisiana Veterans Health Care Systems, New Orleans, Louisiana
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
39
|
Mardani R, Alamdary A, Mousavi Nasab SD, Gholami R, Ahmadi N, Gholami A. Association of vitamin D with the modulation of the disease severity in COVID-19. Virus Res 2020; 289:198148. [PMID: 32866536 PMCID: PMC7455115 DOI: 10.1016/j.virusres.2020.198148] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
Abstract
In late 2019, SARS-CoV-2 started to spread throughout the world causing the COVID-19 that has taken a considerable number of lives. Results obtained from several investigations have explained the virus origin, pathogenicity, and transmission. Similar to SARS coronavirus, the pulmonary angiotensin converting enzyme (ACE) 2 was introduced as the virus receptor for entering the cell. An increased body of epidemiological and clinical evidences has shown modulating effects of vitamin D in lung injuries through several mechanisms. Several clinical symptoms as well as molecular factors have shown to be related to the disease transmission and severity. In this study, vitamin D, ACE concentrations, and neutrophil to lymphocyte ratio (NLR) were measured in patients with confirmed COVID-19 in comparison with control group. Results demonstrated significant alterations in vitamin D and ACE levels as well as NLR in the patients' group. Contribution of those factors with the prognosis and severity of the disease has been shown.
Collapse
Affiliation(s)
- R Mardani
- Viral Vaccines Production Unit, Pasteur Institute of Iran Production Complex, Tehran, Iran
| | - A Alamdary
- Viral Vaccines Production Unit, Pasteur Institute of Iran Production Complex, Tehran, Iran
| | - S D Mousavi Nasab
- Rotavaccine Research Lab, Pasteur Institute of Iran Production Complex, Tehran, Iran
| | - R Gholami
- Shoushtar University of Medical Sciences, Shoushtar, Iran
| | - N Ahmadi
- Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - A Gholami
- Viral Vaccines Production Unit, Pasteur Institute of Iran Production Complex, Tehran, Iran.
| |
Collapse
|
40
|
Lahm T, Hess E, Barón AE, Maddox TM, Plomondon ME, Choudhary G, Maron BA, Zamanian RT, Leary PJ. Renin-Angiotensin-Aldosterone System Inhibitor Use and Mortality in Pulmonary Hypertension: Insights From the Veterans Affairs Clinical Assessment Reporting and Tracking Database. Chest 2020; 159:1586-1597. [PMID: 33031831 DOI: 10.1016/j.chest.2020.09.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) contributes to pulmonary hypertension (PH) pathogenesis. Although animal data suggest that RAAS inhibition attenuates PH, it is unknown if RAAS inhibition is beneficial in PH patients. RESEARCH QUESTION Is RAAS inhibitor use associated with lower mortality in a large cohort of patients with hemodynamically confirmed PH? STUDY DESIGN AND METHODS We used the Department of Veterans Affairs Clinical Assessment Reporting and Tracking Database to study retrospectively relationships between RAAS inhibitors (angiotensin converting enzyme inhibitors [ACEIs], angiotensin receptor blockers [ARBs], and aldosterone antagonists [AAs]) and mortality in 24,221 patients with hemodynamically confirmed PH. We evaluated relationships in the full and in propensity-matched cohorts. Analyses were adjusted for demographics, socioeconomic status, comorbidities, disease severity, and comedication use in staged models. RESULTS ACEI and ARB use was associated with improved survival in unadjusted Kaplan-Meier survival analyses in the full cohort and the propensity-matched cohort. This relationship was insensitive to adjustment, independent of pulmonary artery wedge pressure, and also was observed in a cohort restricted to individuals with precapillary PH. AA use was associated with worse survival in unadjusted Kaplan-Meier survival analyses in the full cohort; however, AA use was associated less robustly with mortality in the propensity-matched cohort and was not associated with worse survival after adjustment for disease severity, indicating that AAs in real-world practice are used preferentially in sicker patients and that the unadjusted association with increased mortality may be an artifice of confounding by indication of severity. INTERPRETATION ACEI and ARB use is associated with lower mortality in veterans with PH. AA use is a marker of disease severity in PH. ACEIs and ARBs may represent a novel treatment strategy for diverse PH phenotypes.
Collapse
Affiliation(s)
- Tim Lahm
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN; Indiana University School of Medicine, Indianapolis, IN.
| | - Edward Hess
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Anna E Barón
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO; Colorado School of Public Health, Denver, CO
| | - Thomas M Maddox
- Washington University School of Medicine Division of Cardiology and Healthcare Innovation Lab, St. Louis, MO
| | - Mary E Plomondon
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Gaurav Choudhary
- Providence Veterans Affairs Medical Center, Providence, RI; Alpert Medical School of Brown University, Providence, RI
| | - Bradley A Maron
- Veterans Affairs Boston Healthcare System, Boston, MA; Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Roham T Zamanian
- Stanford University Division of Pulmonary, Allergy, and Critical Care Medicine and Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA
| | | |
Collapse
|
41
|
Linking ACE2 and angiotensin II to pulmonary immunovascular dysregulation in SARS-CoV-2 infection. Int J Infect Dis 2020; 101:42-45. [PMID: 32950735 PMCID: PMC7497736 DOI: 10.1016/j.ijid.2020.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. ACE2 has been shown to be down-regulated during coronaviral infection, with implications for circulatory homeostasis. In COVID-19, pulmonary vascular dysregulation has been observed resulting in ventilation perfusion mismatches in lung tissue, causing profound hypoxemia. Despite the loss of ACE2 and raised circulating vasoconstrictor angiotensin II (AngII), COVID-19 patients experience a vasodilative vasculopathy. This article discusses the interplay between the immune system and pulmonary vasculature and how SARS-CoV-2-mediated ACE2 disruption and AngII may contribute to the novel vascular pathophysiology of COVID-19.
Collapse
|
42
|
Sandoval J, Del Valle-Mondragón L, Masso F, Zayas N, Pulido T, Teijeiro R, Gonzalez-Pacheco H, Olmedo-Ocampo R, Sisniega C, Paez-Arenas A, Pastelin-Hernandez G, Gomez-Arroyo J, Voelkel NF. Angiotensin converting enzyme 2 and angiotensin (1-7) axis in pulmonary arterial hypertension. Eur Respir J 2020; 56:13993003.02416-2019. [PMID: 32241831 DOI: 10.1183/13993003.02416-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND In animal models of pulmonary arterial hypertension (PAH), angiotensin-converting enzyme (ACE)2 and angiotensin (Ang)-(1-7) have been shown to have vasodilatory, antiproliferative, antifibrotic and antihypertrophic properties. However, the status and role of the ACE2-Ang(1-7) axis in human PAH is incompletely understood. METHODS We studied 85 patients with a diagnosis of PAH of distinct aetiologies. 55 healthy blood donors paired for age and sex served as controls. Blood samples were obtained from the pulmonary artery in patients with PAH during right heart catheterisation. Peripheral blood was obtained for both groups. Ang(1-7) and -II were measured using zone capillary electrophoresis. Aldosterone, Ang(1-9), AngA and ACE2 were measured using ELISA, and ACE2 activity was determined enzymatically. RESULTS Of the 85 patients, 47 had idiopathic PAH, 25 had PAH associated with congenital heart disease and 13 had PAH associated with collagen vascular disease. Compared to controls, patients with PAH had a higher concentration of AngII (median 1.03, interquartile range 0.72-1.88 pmol·mL-1 versus 0.19, 0.10-0.37 pmol·mL-1; p<0.001) and of aldosterone (88.7, 58.7-132 ng·dL-1 versus 12.9, 9.55-19.9 ng·dL-1; p<0.001). Conversely, PAH patients had a lower concentration of Ang(1-7) than controls (0.69, 0.474-0.91 pmol·mL-1 versus 4.07, 2.82-6.73 pmol·mL-1; p<0.001), and a lower concentration of Ang(1-9) and AngA. Similarly, the ACE2 concentration was higher than in controls (8.7, 5.35-13.2 ng·mL-1 versus 4.53, 1.47-14.3 ng·mL-1; p=0.011), whereas the ACE2 activity was significantly reduced (1.88, 1.08-2.81 nmol·mL-1 versus 5.97, 3.1-17.8 nmol·mL-1; p<0.001). No significant differences were found among the three different aetiological forms of PAH. CONCLUSIONS The AngII-ACE2-Ang(1-7) axis appears to be altered in human PAH and we propose that this imbalance, in favour of AngII, plays a role in the pathogenesis of the severe PAH. Further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Julio Sandoval
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | | | - Felipe Masso
- Physiology and Molecular Biology Dept of the "Ignacio Chávez", National Institute of Cardiology, Mexico City, Mexico
| | - Nayeli Zayas
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Tomás Pulido
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Ricardo Teijeiro
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | | | | | - Carlos Sisniega
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Araceli Paez-Arenas
- Physiology and Molecular Biology Dept of the "Ignacio Chávez", National Institute of Cardiology, Mexico City, Mexico
| | | | - Jose Gomez-Arroyo
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico.,Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Norbert F Voelkel
- Dept of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
43
|
A speckle tracking echocardiographic study on right ventricular function in primary aldosteronism. J Hypertens 2020; 38:2261-2269. [PMID: 32618893 DOI: 10.1097/hjh.0000000000002527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated right ventricular function using speckle tracking echocardiography (STE) in patients with primary aldosteronism. METHODS Our study included 51 primary aldosteronism patients and 50 age and sex-matched primary hypertensive patients. We performed two-dimensional echocardiography to measure cardiac structure and function. We performed STE offline analysis on right ventricular four-chamber (RV4CLS) and free wall longitudinal strains (RVFWLS). RESULTS Primary aldosteronism patients, compared with primary hypertensive patients, had a significantly (P ≤ 0.045) greater left ventricular mass index (112.0 ± 22.6 vs. 95.8 ± 18.5 g/m) and left atrial volume index (26.9 ± 6.0 vs. 24.7 ± 5.6 ml/m) and higher prevalence of left ventricular concentric hypertrophy (35.3 vs. 12.0%), although they had similarly normal left ventricular ejection fraction (55-77%). Primary aldosteronism patients also had a significantly (P ≤ 0.047) larger right atrium and ventricle, lower tricuspid annular plane systolic excursion, and higher E/E't (the peak early filling velocity of trans-tricuspid flow to the peak early filling velocity of lateral tricuspid annulus ratio), estimated pulmonary arterial systolic pressure and right ventricular index of myocardial performance. On the right ventricular strain analysis, primary aldosteronism patients had a significantly (P < 0.001) lower RV4CLS (-18.1 ± 2.5 vs. -23.3 ± 3.4%) and RVFWLS (-21.7 ± 3.7 vs. -27.9 ± 4.5%) than primary hypertensive patients. Overall, RV4CLS and RVFWLS were significantly (r = -0.58 to -0.41, P < 0.001) correlated with plasma aldosterone concentration and 24-h urinary aldosterone excretion. After adjustment for confounding factors, the associations for RV4CLS and RVFWLS with 24-h urinary aldosterone excretion remained significant (P < 0.001), with a standardized coefficient of -0.48 and -0.55, respectively. CONCLUSION In addition to left ventricular abnormalities, primary aldosteronism patients also show impaired right ventricular function, probably because of hyperaldosteronism.
Collapse
|
44
|
Lutz C, Maher L, Lee C, Kang W. COVID-19 preclinical models: human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics 2020; 14:20. [PMID: 32498696 PMCID: PMC7269898 DOI: 10.1186/s40246-020-00272-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a declared pandemic that is spreading all over the world at a dreadfully fast rate. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the pathogen of COVID-19, infects the human body using angiotensin-converting enzyme 2 (ACE2) as a receptor identical to the severe acute respiratory syndrome (SARS) pandemic that occurred in 2002-2003. SARS-CoV-2 has a higher binding affinity to human ACE2 than to that of other species. Animal models that mimic the human disease are highly essential to develop therapeutics and vaccines against COVID-19. Here, we review transgenic mice that express human ACE2 in the airway and other epithelia and have shown to develop a rapidly lethal infection after intranasal inoculation with SARS-CoV, the pathogen of SARS. This literature review aims to present the importance of utilizing the human ACE2 transgenic mouse model to better understand the pathogenesis of COVID-19 and develop both therapeutics and vaccines.
Collapse
Affiliation(s)
- Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609 USA
| | - Leigh Maher
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Rd., Xi’an, 710061 Shaanxi, People’s Republic of China
| | - Wonyoung Kang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| |
Collapse
|
45
|
Segar JL. Rethinking furosemide use for infants with bronchopulmonary dysplasia. Pediatr Pulmonol 2020; 55:1100-1103. [PMID: 32176837 DOI: 10.1002/ppul.24722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/01/2020] [Indexed: 12/27/2022]
Abstract
Diuretics are commonly administered to infants with bronchopulmonary dysplasia (BPD) to improve respiratory function despite the absence of prospective data demonstrating long term benefits. While many potentially adverse effects of furosemide are known to clinicians, its direct and indirect impact on multiple pathophysiological processes need to be understood. While furosemide likely has a role in the management of infants with BPD, clinicians are encouraged to recognize these potential complications associated with furosemide administration. Specifically, a deeper understanding of the impact of diuretics on sodium metabolism neurohumoral regulation of cardiopulmonary physiology is required.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Division of Neonatology, Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Cai Z, Klein T, Geenen LW, Tu L, Tian S, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, Duncker DJ, Boomars KA, Guignabert C, Merkus D. Lower Plasma Melatonin Levels Predict Worse Long-Term Survival in Pulmonary Arterial Hypertension. J Clin Med 2020; 9:jcm9051248. [PMID: 32344923 PMCID: PMC7287676 DOI: 10.3390/jcm9051248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous melatonin has been reported to be beneficial in the treatment of pulmonary hypertension (PH) in animal models. Multiple mechanisms are involved, with melatonin exerting anti-oxidant and anti-inflammatory effects, as well as inducing vasodilation and cardio-protection. However, endogenous levels of melatonin in treatment-naïve patients with PH and their clinical significance are still unknown. Plasma levels of endogenous melatonin were measured by liquid chromatography-tandem mass spectrometry in PH patients (n = 64, 43 pulmonary arterial hypertension (PAH) and 21 chronic thromboembolic PH (CTEPH)) and healthy controls (n = 111). Melatonin levels were higher in PH, PAH, and CTEPH patients when compared with controls (Median 118.7 (IQR 108.2–139.9), 118.9 (109.3–147.7), 118.3 (106.8–130.1) versus 108.0 (102.3–115.2) pM, respectively, p all <0.001). The mortality was 26% (11/43) in the PAH subgroup during a long-term follow-up of 42 (IQR: 32–58) months. Kaplan–Meier analysis showed that, in the PAH subgroup, patients with melatonin levels in the 1st quartile (<109.3 pM) had a worse survival than those in quartile 2–4 (Mean survival times were 46 (95% CI: 30–65) versus 68 (58–77) months, Log-rank, p = 0.026) with an increased hazard ratio of 3.5 (95% CI: 1.1–11.6, p = 0.038). Endogenous melatonin was increased in treatment-naïve patients with PH, and lower levels of melatonin were associated with worse long-term survival in patient with PAH.
Collapse
Affiliation(s)
- Zongye Cai
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, 3000 CB Rotterdam, The Netherlands; (T.K.); (Y.B.d.R.)
| | - Laurie W. Geenen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, 92350 Paris, France; (L.T.); (C.G.)
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, 94270 Paris, France
| | - Siyu Tian
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Annemien E. van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Yolanda B. de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, 3000 CB Rotterdam, The Netherlands; (T.K.); (Y.B.d.R.)
| | - Irwin K. M. Reiss
- Department of Pediatrics/Neonatology, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CB Rotterdam, The Netherlands;
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
- Department of Clinical Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Karin A. Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, 92350 Paris, France; (L.T.); (C.G.)
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, 94270 Paris, France
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
- Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
- Correspondence: ; Tel.: +31-10-7030955
| |
Collapse
|
47
|
Gonzalez-Jaramillo N, Low N, Franco OH. The double burden of disease of COVID-19 in cardiovascular patients: overlapping conditions could lead to overlapping treatments. Eur J Epidemiol 2020; 35:335-337. [PMID: 32296994 PMCID: PMC7158753 DOI: 10.1007/s10654-020-00628-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Nathalia Gonzalez-Jaramillo
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Oscar H. Franco
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| |
Collapse
|
48
|
Oakes JM, Xu J, Morris TM, Fried ND, Pearson CS, Lobell TD, Gilpin NW, Lazartigues E, Gardner JD, Yue X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension 2020; 75:1305-1314. [PMID: 32172623 DOI: 10.1161/hypertensionaha.119.14608] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases; however, the role of nicotine in the pathogenesis of these diseases is incompletely understood. The purpose of this study was to examine the effects of chronic nicotine inhalation on the development of cardiovascular and pulmonary disease with a focus on blood pressure and cardiac remodeling. Male C57BL6/J mice were exposed to air (control) or nicotine vapor (daily, 12 hour on/12 hour off) for 8 weeks. Systemic blood pressure was recorded weekly by radio-telemetry, and cardiac remodeling was monitored by echocardiography. At the end of the 8 weeks, mice were subjected to right heart catheterization to measure right ventricular systolic pressure. Nicotine-exposed mice exhibited elevated systemic blood pressure from weeks 1 to 3, which then returned to baseline from weeks 4 to 8, indicating development of tolerance to nicotine. At 8 weeks, significantly increased right ventricular systolic pressure was detected in nicotine-exposed mice compared with the air controls. Echocardiography showed that 8-week nicotine inhalation resulted in right ventricular (RV) hypertrophy with increased RV free wall thickness and a trend of increase in RV internal diameter. In contrast, there were no significant structural or functional changes in the left ventricle following nicotine exposure. Mechanistically, we observed increased expression of angiotensin-converting enzyme and enhanced activation of mitogen-activated protein kinase pathways in the RV but not in the left ventricle. We conclude that chronic nicotine inhalation alters both systemic and pulmonary blood pressure with the latter accompanied by RV remodeling, possibly leading to progressive and persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Joshua M Oakes
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Tamara M Morris
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Nicholas D Fried
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Charlotte S Pearson
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Thomas D Lobell
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Nicholas W Gilpin
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (E.L., J.D.G.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Jason D Gardner
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (E.L., J.D.G.), Louisiana State University Health Sciences Center, New Orleans
| | - Xinping Yue
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
49
|
González‐Tajuelo R, de la Fuente‐Fernández M, Morales‐Cano D, Muñoz‐Callejas A, González‐Sánchez E, Silván J, Serrador JM, Cadenas S, Barreira B, Espartero‐Santos M, Gamallo C, Vicente‐Rabaneda EF, Castañeda S, Pérez‐Vizcaíno F, Cogolludo Á, Jiménez‐Borreguero LJ, Urzainqui A. Spontaneous Pulmonary Hypertension Associated With Systemic Sclerosis in P-Selectin Glycoprotein Ligand 1-Deficient Mice. Arthritis Rheumatol 2020; 72:477-487. [PMID: 31509349 PMCID: PMC7065124 DOI: 10.1002/art.41100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH), one of the major complications of systemic sclerosis (SSc), is a rare disease with unknown etiopathogenesis and noncurative treatments. As mice deficient in P-selectin glycoprotein ligand 1 (PSGL-1) develop a spontaneous SSc-like syndrome, we undertook this study to analyze whether they develop PAH and to examine the molecular mechanisms involved. METHODS Doppler echocardiography was used to estimate pulmonary pressure, immunohistochemistry was used to assess vascular remodeling, and myography of dissected pulmonary artery rings was used to analyze vascular reactivity. Angiotensin II (Ang II) levels were quantified by enzyme-linked immunosorbent assay, and Western blotting was used to measure Ang II type 1 receptor (AT1 R), AT2 R, endothelial cell nitric oxide synthase (eNOS), and phosphorylated eNOS expression in lung lysates. Flow cytometry allowed us to determine cytokine production by immune cells and NO production by endothelial cells. In all cases, there were 4-8 mice per experimental group. RESULTS PSGL-1-/- mice showed lung vessel wall remodeling and a reduced mean ± SD expression of pulmonary AT2 R (expression ratio [relative to β-actin] in female mice age >18 months: wild-type mice 0.799 ± 0.508 versus knockout mice 0.346 ± 0.229). With aging, female PSGL-1-/- mice had impaired up-regulation of estrogen receptor α (ERα) and developed lung vascular endothelial dysfunction coinciding with an increase in mean ± SEM pulmonary Ang II levels (wild-type 48.70 ± 5.13 pg/gm lung tissue versus knockout 78.02 ± 28.09 pg/gm lung tissue) and a decrease in eNOS phosphorylation, leading to reduced endothelial NO production. These events led to a reduction in the pulmonary artery acceleration time:ejection time ratio in 33% of aged female PSGL-1-/- mice, indicating pulmonary hypertension. Importantly, we found expanded populations of interferon-γ-producing PSGL-1-/- T cells and B cells and a reduced presence of regulatory T cells. CONCLUSION The absence of PSGL-1 induces a reduction in Treg cells, NO production, and ERα expression and causes an increase in Ang II in the lungs of female mice, favoring the development of PAH.
Collapse
Affiliation(s)
- Rafael González‐Tajuelo
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | | | - Daniel Morales‐Cano
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | - Antonio Muñoz‐Callejas
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Elena González‐Sánchez
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Javier Silván
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Juan Manuel Serrador
- Centro de Biología Molecular Severo Ochoa (CBMSO) and Instituto de Física Teórica CSIC/Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Susana Cadenas
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, and CBMSO, CSIC‐UAMMadridSpain
| | - Bianca Barreira
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | - Marina Espartero‐Santos
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Carlos Gamallo
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Esther F. Vicente‐Rabaneda
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Santos Castañeda
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, and Catedra UAM‐ROCHEMadridSpain
| | - Francisco Pérez‐Vizcaíno
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | - Ángel Cogolludo
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | | | - Ana Urzainqui
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| |
Collapse
|
50
|
Tian L, Cai D, Zhuang D, Wang W, Wang X, Bian X, Xu R, Wu G. miR-96-5p Regulates Proliferation, Migration, and Apoptosis of Vascular Smooth Muscle Cell Induced by Angiotensin II via Targeting NFAT5. J Vasc Res 2020; 57:86-96. [PMID: 32045906 DOI: 10.1159/000505457] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aberrant proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs) are major pathological phenomenon in hypertension. MicroRNAs (miRNAs/miRs) serve crucial roles in the progression of hypertension. We aimed to determine the role of miR-96-5p in the proliferation, migration, and apoptosis of VSMCs and its underlying mechanisms. METHODS Angiotensin II (Ang II) was employed to treat VSMCs, and the expression of miR-96-5p was detected by RT-qPCR. Then, miR-96-5p mimic was transfected into VSMCs. Cell Counting Kit-8 assay, flow cytometry, transwell assay, and wound healing assay were applied to measure proliferation, cell cycle, and migration of VSMCs. The expression of proteins associated with proliferation, migration, and apoptosis was assessed. A luciferase reporter assay was applied to confirm the target binding between miR-96-5p and nuclear factors of activated T-cells 5 (NFAT5). Subsequently, siRNA was used to silence NFAT5, and cell proliferation, migration, and apoptosis were assessed. RESULTS The results revealed that the expression of miR-96-5p was downregulated in Ang II-induced VSMCs. MiR-96-5p overexpression inhibited cell proliferation and migration but promoted cell apoptosis, enhanced the percentages of cells in the G1 and G2 phases, and reduced those in the S phase, accompanied by changes in the expression associated proteins. NFAT5 was confirmed as a direct target of miR-96-5p. NFAT5 silencing had the same results with miR-96-5p overexpression on VSMC proliferation, migration, and apoptosis, whereas miR-96-5p inhibitor reversed these effects. CONCLUSIONS Our findings concluded that miR-96-5p could regulate proliferation, migration, and apoptosis of VSMCs induced by Ang II via targeting NFAT5.
Collapse
Affiliation(s)
- Long Tian
- Department of Cardiology, Jiangdu People's Hospital, Yangzhou, China
| | - Dinghua Cai
- Department of Cardiology, Jiangdu People's Hospital, Yangzhou, China
| | - Derong Zhuang
- Department of Cardiology, Jiangdu People's Hospital, Yangzhou, China
| | - Wenyuan Wang
- Department of Cardiology, Jiangdu People's Hospital, Yangzhou, China
| | - Xuan Wang
- Department of Cardiology, Jiangdu People's Hospital, Yangzhou, China
| | - Xiaoli Bian
- Department of Cardiology, Jiangdu People's Hospital, Yangzhou, China
| | - Rui Xu
- Department of Nephrology, Jiangdu People's Hospital, Yangzhou, China
| | - Guanji Wu
- Department of Cardiology, Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|