1
|
Märkle H, John S, Metzger L, Ansari MA, Pedergnana V, Tellier A. Inference of Host-Pathogen Interaction Matrices from Genome-Wide Polymorphism Data. Mol Biol Evol 2024; 41:msae176. [PMID: 39172738 DOI: 10.1093/molbev/msae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Host-pathogen coevolution is defined as the reciprocal evolutionary changes in both species due to genotype × genotype (G×G) interactions at the genetic level determining the outcome and severity of infection. While co-analyses of hosts and pathogen genomes (co-genome-wide association studies) allow us to pinpoint the interacting genes, these do not reveal which host genotype(s) is/are resistant to which pathogen genotype(s). The knowledge of this so-called infection matrix is important for agriculture and medicine. Building on established theories of host-pathogen interactions, we here derive four novel indices capturing the characteristics of the infection matrix. These indices can be computed from full genome polymorphism data of randomly sampled uninfected hosts, as well as infected hosts and their pathogen strains. We use these indices in an approximate Bayesian computation method to pinpoint loci with relevant G×G interactions and to infer their underlying interaction matrix. In a combined single nucleotide polymorphism dataset of 451 European humans and their infecting hepatitis C virus (HCV) strains and 503 uninfected individuals, we reveal a new human candidate gene for resistance to HCV and new virus mutations matching human genes. For two groups of significant human-HCV (G×G) associations, we infer a gene-for-gene infection matrix, which is commonly assumed to be typical of plant-pathogen interactions. Our model-based inference framework bridges theoretical models of G×G interactions with host and pathogen genomic data. It, therefore, paves the way for understanding the evolution of key G×G interactions underpinning HCV adaptation to the European human population after a recent expansion.
Collapse
Affiliation(s)
- Hanna Märkle
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sona John
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| | - Lukas Metzger
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Vincent Pedergnana
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), Montpellier, France
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany
| |
Collapse
|
2
|
Dziuba MK, McIntire KM, Seto K, Davenport ES, Rogalski MA, Gowler CD, Baird E, Vaandrager M, Huerta C, Jaye R, Corcoran FE, Withrow A, Ahrendt S, Salamov A, Nolan M, Tejomurthula S, Barry K, Grigoriev IV, James TY, Duffy MA. Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp. mBio 2024; 15:e0058224. [PMID: 38651867 PMCID: PMC11237803 DOI: 10.1128/mbio.00582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary A. Rogalski
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Camden D. Gowler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan Vaandrager
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona E. Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alicia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, Michigan, USA
| | - Steven Ahrendt
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Asaf Salamov
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matt Nolan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sravanthi Tejomurthula
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Buckingham LJ, Ashby B. Coevolution of Age-Structured Tolerance and Virulence. Bull Math Biol 2024; 86:62. [PMID: 38662120 PMCID: PMC11045647 DOI: 10.1007/s11538-024-01292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hosts can evolve a variety of defences against parasitism, including resistance (which prevents or reduces the spread of infection) and tolerance (which protects against virulence). Some organisms have evolved different levels of tolerance at different life-stages, which is likely to be the result of coevolution with pathogens, and yet it is currently unclear how coevolution drives patterns of age-specific tolerance. Here, we use a model of tolerance-virulence coevolution to investigate how age structure influences coevolutionary dynamics. Specifically, we explore how coevolution unfolds when tolerance and virulence (disease-induced mortality) are age-specific compared to when these traits are uniform across the host lifespan. We find that coevolutionary cycling is relatively common when host tolerance is age-specific, but cycling does not occur when tolerance is the same across all ages. We also find that age-structured tolerance can lead to selection for higher virulence in shorter-lived than in longer-lived hosts, whereas non-age-structured tolerance always leads virulence to increase with host lifespan. Our findings therefore suggest that age structure can have substantial qualitative impacts on host-pathogen coevolution.
Collapse
Affiliation(s)
- Lydia J Buckingham
- Department of Mathematical Sciences, University of Bath, Bath, UK.
- Milner Centre for Evolution, University of Bath, Bath, UK.
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
- Pacific Institute on Pathogens, Pandemics and Society, Burnaby, BC, Canada
| |
Collapse
|
4
|
Poulicard N, Pagán I, González-Jara P, Mora MÁ, Hily JM, Fraile A, Piñero D, García-Arenal F. Repeated loss of the ability of a wild pepper disease resistance gene to function at high temperatures suggests that thermoresistance is a costly trait. THE NEW PHYTOLOGIST 2024; 241:845-860. [PMID: 37920100 DOI: 10.1111/nph.19371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Specificity in plant-pathogen gene-for-gene (GFG) interactions is determined by the recognition of pathogen proteins by the products of plant resistance (R) genes. The evolutionary dynamics of R genes in plant-virus systems is poorly understood. We analyse the evolution of the L resistance locus to tobamoviruses in the wild pepper Capsicum annuum var. glabriusculum (chiltepin), a crop relative undergoing incipient domestication. The frequency, and the genetic and phenotypic diversity, of the L locus was analysed in 41 chiltepin populations under different levels of human management over its distribution range in Mexico. The frequency of resistance was lower in Cultivated than in Wild populations. L-locus genetic diversity showed a strong spatial structure with no isolation-by-distance pattern, suggesting environment-specific selection, possibly associated with infection by the highly virulent tobamoviruses found in the surveyed regions. L alleles differed in recognition specificity and in the expression of resistance at different temperatures, broad-spectrum recognition of P0 + P1 pathotypes and expression above 32°C being ancestral traits that were repeatedly lost along L-locus evolution. Overall, loss of resistance co-occurs with incipient domestication and broad-spectrum resistance expressed at high temperatures has apparent fitness costs. These findings contribute to understand the role of fitness trade-offs in plant-virus coevolution.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
5
|
Bruijning M, Metcalf CJE, Visser MD. Closing the gap in the Janzen-Connell hypothesis: What determines pathogen diversity? Ecol Lett 2024; 27:e14316. [PMID: 37787147 DOI: 10.1111/ele.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
The high tree diversity in tropical forests has long been a puzzle to ecologists. In the 1970s, Janzen and Connell proposed that tree species (hosts) coexist due to the stabilizing actions of specialized enemies. This Janzen-Connell hypothesis was subsequently supported by theoretical studies. Yet, such studies have taken the presence of specialized pathogens for granted, overlooking that pathogen coexistence also requires an explanation. Moreover, stable ecological coexistence does not necessarily imply evolutionary stability. What are the conditions that allow Janzen-Connell effects to evolve? We link theory from community ecology, evolutionary biology and epidemiology to tackle this question, structuring our approach around five theoretical frameworks. Phenomenological Lotka-Volterra competition models provide the most basic framework, which can be restructured to include (single- or multi-)pathogen dynamics. This ecological foundation can be extended to include pathogen evolution. Hosts, of course, may also evolve, and we introduce a coevolutionary model, showing that host-pathogen coevolution can lead to highly diverse systems. Our work unpacks the assumptions underpinning Janzen-Connell and places theoretical bounds on pathogen and host ecology and evolution. The five theoretical frameworks taken together provide a stronger theoretical basis for Janzen-Connell, delivering a wider lens that can yield important insights into the maintenance of diversity in these increasingly threatened systems.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Peters MAE, Mideo N, MacPherson A. The maintenance of genetic diversity under host-parasite coevolution in finite, structured populations. J Evol Biol 2023; 36:1328-1341. [PMID: 37610056 DOI: 10.1111/jeb.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 08/24/2023]
Abstract
As a corollary to the Red Queen hypothesis, host-parasite coevolution has been hypothesized to maintain genetic variation in both species. Recent theoretical work, however, suggests that reciprocal natural selection alone is insufficient to maintain variation at individual loci. As highlighted by our brief review of the theoretical literature, models of host-parasite coevolution often vary along multiple axes (e.g. inclusion of ecological feedbacks or abiotic selection mosaics), complicating a comprehensive understanding of the effects of interacting evolutionary processes on diversity. Here we develop a series of comparable models to explore the effect of interactions between spatial structures and antagonistic coevolution on genetic diversity. Using a matching alleles model in finite populations connected by migration, we find that, in contrast to panmictic populations, coevolution in a spatially structured environment can maintain genetic variation relative to neutral expectations with migration alone. These results demonstrate that geographic structure is essential for understanding the effect of coevolution on biological diversity.
Collapse
Affiliation(s)
- Madeline A E Peters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ailene MacPherson
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
7
|
Nandakumar M, Lundberg M, Carlsson F, Råberg L. Balancing selection on the complement system of a wild rodent. BMC Ecol Evol 2023; 23:21. [PMID: 37231383 DOI: 10.1186/s12862-023-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Selection pressure exerted by pathogens can influence patterns of genetic diversity in the host. In the immune system especially, numerous genes encode proteins involved in antagonistic interactions with pathogens, paving the way for coevolution that results in increased genetic diversity as a consequence of balancing selection. The complement system is a key component of innate immunity. Many complement proteins interact directly with pathogens, either by recognising pathogen molecules for complement activation, or by serving as targets of pathogen immune evasion mechanisms. Complement genes can therefore be expected to be important targets of pathogen-mediated balancing selection, but analyses of such selection on this part of the immune system have been limited. RESULTS Using a population sample of whole-genome resequencing data from wild bank voles (n = 31), we estimated the extent of genetic diversity and tested for signatures of balancing selection in multiple complement genes (n = 44). Complement genes showed higher values of standardised β (a statistic expected to be high under balancing selection) than the genome-wide average of protein coding genes. One complement gene, FCNA, a pattern recognition molecule that interacts directly with pathogens, was found to have a signature of balancing selection, as indicated by the Hudson-Kreitman-Aguadé test (HKA) test. Scans for localised signatures of balancing selection in this gene indicated that the target of balancing selection was found in exonic regions involved in ligand binding. CONCLUSION The present study adds to the growing evidence that balancing selection may be an important evolutionary force on components of the innate immune system. The identified target in the complement system typifies the expectation that balancing selection acts on genes encoding proteins involved in direct interactions with pathogens.
Collapse
Affiliation(s)
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Ameline C, Voegtli F, Andras J, Dexter E, Engelstädter J, Ebert D. Genetic slippage after sex maintains diversity for parasite resistance in a natural host population. SCIENCE ADVANCES 2022; 8:eabn0051. [PMID: 36399570 PMCID: PMC9674289 DOI: 10.1126/sciadv.abn0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although parasite-mediated selection is a major driver of host evolution, its influence on genetic variation for parasite resistance is not yet well understood. We monitored resistance in a large population of the planktonic crustacean Daphnia magna over 8 years, as it underwent yearly epidemics of the bacterial pathogen Pasteuria ramosa. We observed cyclic dynamics of resistance: Resistance increased throughout the epidemics, but susceptibility was restored each spring when hosts hatched from sexual resting stages. Host resting stages collected across the year showed that largely resistant host populations can produce susceptible sexual offspring. A genetic model of resistance developed for this host-parasite system, based on multiple loci and strong epistasis, is in partial agreement with our findings. Our results reveal that, despite strong selection for resistance in a natural host population, genetic slippage after sexual reproduction can be a strong factor for the maintenance of genetic diversity of host resistance.
Collapse
Affiliation(s)
- Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Felix Voegtli
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jason Andras
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eric Dexter
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
9
|
Råberg L, Clough D, Hagström Å, Scherman K, Andersson M, Drews A, Strandh M, Tschirren B, Westerdahl H. MHC class II genotype-by-pathogen genotype interaction for infection prevalence in a natural rodent-Borrelia system. Evolution 2022; 76:2067-2075. [PMID: 35909235 PMCID: PMC9541904 DOI: 10.1111/evo.14590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023]
Abstract
MHC genes are extraordinarily polymorphic in most taxa. Host-pathogen coevolution driven by negative frequency-dependent selection (NFDS) is one of the main hypotheses for the maintenance of such immunogenetic variation. Here, we test a critical but rarely tested assumption of this hypothesis-that MHC alleles affect resistance/susceptibility to a pathogen in a strain-specific way, that is, there is a host genotype-by-pathogen genotype interaction. In a field study of bank voles naturally infected with the tick-transmitted bacterium Borrelia afzelii, we tested for MHC class II (DQB) genotype-by-B. afzelii strain interactions for infection prevalence between 10 DQB alleles and seven strains. One allele (DQB*37) showed an interaction, such that voles carrying DQB*37 had higher prevalence of two strains and lower prevalence of one strain than individuals without the allele. These findings were corroborated by analyses of strain composition of infections, which revealed an effect of DQB*37 in the form of lower β diversity among infections in voles carrying the allele. Taken together, these results provide rare support at the molecular genetic level for a key assumption of models of antagonistic coevolution through NFDS.
Collapse
Affiliation(s)
- Lars Råberg
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Dagmar Clough
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Åsa Hagström
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | | | | | - Anna Drews
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Maria Strandh
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Barbara Tschirren
- Department of BiologyLund UniversityLundSE‐22362Sweden,Centre for Ecology and ConservationUniversity of ExeterPenrynTR10 9FEUnited Kingdom
| | | |
Collapse
|
10
|
Castledine M, Sierocinski P, Inglis M, Kay S, Hayward A, Buckling A, Padfield D. Greater Phage Genotypic Diversity Constrains Arms-Race Coevolution. Front Cell Infect Microbiol 2022; 12:834406. [PMID: 35310856 PMCID: PMC8931298 DOI: 10.3389/fcimb.2022.834406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Antagonistic coevolution between hosts and parasites, the reciprocal evolution of host resistance and parasite infectivity, has important implications in ecology and evolution. The dynamics of coevolution—notably whether host or parasite has an evolutionary advantage—is greatly affected by the relative amount of genetic variation in host resistance and parasite infectivity traits. While studies have manipulated genetic diversity during coevolution, such as by increasing mutation rates, it is unclear how starting genetic diversity affects host–parasite coevolution. Here, we (co)evolved the bacterium Pseudomonas fluorescens SBW25 and two bacteriophage genotypes of its lytic phage SBW25ɸ2 in isolation (one phage genotype) and together (two phage genotypes). Bacterial populations rapidly evolved phage resistance, and phage reciprocally increased their infectivity in response. When phage populations were evolved with bacteria in isolation, bacterial resistance and phage infectivity increased through time, indicative of arms-race coevolution. In contrast, when both phage genotypes were together, bacteria did not increase their resistance in response to increasing phage infectivity. This was likely due to bacteria being unable to evolve resistance to both phage via the same mutations. These results suggest that increasing initial parasite genotypic diversity can give parasites an evolutionary advantage that arrests long-term coevolution. This study has important implications for the applied use of phage in phage therapy and in understanding host–parasite dynamics in broader ecological and evolutionary theory.
Collapse
|
11
|
De Lisle SP, Bolnick DI, Brodie ED, Moore AJ, McGlothlin JW. Interacting phenotypes and the coevolutionary process: Interspecific indirect genetic effects alter coevolutionary dynamics. Evolution 2022; 76:429-444. [PMID: 34997942 PMCID: PMC9385155 DOI: 10.1111/evo.14427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.
Collapse
Affiliation(s)
- Stephen P. De Lisle
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut, USA 06269
- Present address: Evolutionary Ecology Unit, Department of Biology, Lund University, Solvegatan 37, Lund, Sweden
| | - Daniel I. Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut, USA 06269
| | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, 485 McCormick Road, Charlottesville, VA 22904 USA
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602 USA
| | - Joel W. McGlothlin
- Department of Biological Sciences, Virginia Tech, 2125 Derring Hall, 926 West Campus Drive, Blacksburg, Virginia, USA 24060
| |
Collapse
|
12
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
13
|
Saxenhofer M, Labutin A, White TA, Heckel G. Host genetic factors associated with the range limit of a European hantavirus. Mol Ecol 2021; 31:252-265. [PMID: 34614264 PMCID: PMC9298007 DOI: 10.1111/mec.16211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
The natural host ranges of many viruses are restricted to very specific taxa. Little is known about the molecular barriers between species that lead to the establishment of this restriction or generally prevent virus emergence in new hosts. Here, we identify genomic polymorphisms in a natural rodent host associated with a strong genetic barrier to the transmission of European Tula orthohantavirus (TULV). We analysed the very abrupt spatial transition between two major phylogenetic clades in TULV across the comparatively much wider natural hybrid zone between evolutionary lineages of their reservoir host, the common vole (Microtus arvalis). Genomic scans of 79,225 single nucleotide polymorphisms (SNPs) in 323 TULV‐infected host individuals detected 30 SNPs that were consistently associated with the TULV clades CEN.S or EST.S in two replicate sampling transects. Focusing the analysis on 199 voles with evidence of genomic admixture at the individual level (0.1–0.9) supported statistical significance for all 30 loci. Host genomic variation at these SNPs explained up to 37.6% of clade‐specific TULV infections. Genes in the vicinity of associated SNPs include SAHH, ITCH and two members of the Syngr gene family, which are involved in functions related to immune response or membrane transport. This study demonstrates the relevance of natural hybrid zones as systems not only for studying processes of evolutionary divergence and speciation, but also for the detection of evolving genetic barriers for specialized parasites.
Collapse
Affiliation(s)
- Moritz Saxenhofer
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Génopode, Lausanne, Switzerland
| | - Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Thomas A White
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Génopode, Lausanne, Switzerland
| |
Collapse
|
14
|
The Impact of Perceived Personal Discrimination on Problem Behavior of Left-Behind Children: A Moderated Mediating Effect Model. Child Psychiatry Hum Dev 2021; 52:709-718. [PMID: 32894384 DOI: 10.1007/s10578-020-01054-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to determine how pathological Internet use and emotional intelligence affect the relationship between perceived personal discrimination and problem behavior of left behind children. Data were collected from 406 left-behind students from 6 rural primary and secondary schools in Mainland China. Results indicated that perceived personal discrimination could be a predictor of left-behind children's pathological Internet use, and further cause their problem behavior. Pathological Internet use had a partial mediating effect on the relation between perceived personal discrimination and problem behavior. In addition, emotional intelligence played a moderating role in the relationship between perceived personal discrimination and problem behavior, as well as between pathological Internet use and problem behavior. Emotional intelligence could alleviate the negative impact of perceived personal discrimination on problem behavior, as well as the negative impact of pathological Internet use on problem behavior.
Collapse
|
15
|
MacPherson A, Keeling MJ, Otto SP. Coevolution fails to maintain genetic variation in a host-parasite model with constant finite population size. Theor Popul Biol 2020; 137:10-21. [PMID: 33340528 DOI: 10.1016/j.tpb.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
Abstract
Coevolutionary negative frequency-dependent selection has been hypothesized to maintain genetic variation in host and parasites. Despite the extensive literature pertaining to host-parasite coevolution, the temporal dynamics of genetic variation have not been examined in a matching-alleles model (MAM) with a finite population size relative to the expectation under neutral genetic drift alone. The dynamics of the MA coevolution in an infinite population, in fact, suggests that genetic variation in these coevolving populations behaves neutrally. By comparing host heterozygosity to the expectation in a single-species model of neutral genetic drift we find that while this is also largely true in finite populations two additional phenomena arise. First, reciprocal natural selection acting on stochastic perturbations in host and pathogen allele frequencies results in a slight increase or decrease in genetic variation depending on the parameter conditions. Second, following the fixation of an allele in the parasite, selection in the MAM becomes directional, which then rapidly erodes genetic variation in the host. Hence, rather than maintain it, we find that, on average, matching-alleles coevolution depletes genetic variation.
Collapse
Affiliation(s)
- Ailene MacPherson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.
| | - Matthew J Keeling
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Stump SM, Marden JH, Beckman NG, Mangan SA, Comita LS. Resistance Genes Affect How Pathogens Maintain Plant Abundance and Diversity. Am Nat 2020; 196:472-486. [PMID: 32970465 DOI: 10.1086/710486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSpecialized pathogens are thought to maintain plant community diversity; however, most ecological studies treat pathogens as a black box. Here we develop a theoretical model to test how the impact of specialized pathogens changes when plant resistance genes (R-genes) mediate susceptibility. This work synthesizes two major hypotheses: the gene-for-gene model of pathogen resistance and the Janzen-Connell hypothesis of pathogen-mediated coexistence. We examine three scenarios. First, R-genes do not affect seedling survival; in this case, pathogens promote diversity. Second, seedlings are protected from pathogens when their R-gene alleles and susceptibility differ from those of nearby conspecific adults, thereby reducing transmission. If resistance is not costly, pathogens are less able to promote diversity because populations with low R-gene diversity suffer higher mortality, putting those populations at a disadvantage and potentially causing their exclusion. R-gene diversity may also be reduced during population bottlenecks, creating a priority effect. Third, when R-genes affect survival but resistance is costly, populations can avoid extinction by losing resistance alleles, as they cease paying a cost that is unneeded. Thus, the impact pathogens can have on tree diversity depends on the mechanism of plant-pathogen interactions. Future empirical studies should examine which of these scenarios most closely reflects the real world.
Collapse
|
17
|
Lundberg M, Zhong X, Konrad A, Olsen RA, Råberg L. Balancing selection in Pattern Recognition Receptor signalling pathways is associated with gene function and pleiotropy in a wild rodent. Mol Ecol 2020; 29:1990-2003. [PMID: 32374503 DOI: 10.1111/mec.15459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Pathogen-mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole-genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.
Collapse
Affiliation(s)
- Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | - Xiuqin Zhong
- Department of Biology, Lund University, Lund, Sweden
| | - Anna Konrad
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol 2020; 35:539-550. [DOI: 10.1016/j.tree.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
|
19
|
Wang S, Zhang D. The impact of perceived social support on students’ pathological internet use: The mediating effect of perceived personal discrimination and moderating effect of emotional intelligence. COMPUTERS IN HUMAN BEHAVIOR 2020. [DOI: 10.1016/j.chb.2020.106247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Dheilly NM, Martínez Martínez J, Rosario K, Brindley PJ, Fichorova RN, Kaye JZ, Kohl KD, Knoll LJ, Lukeš J, Perkins SL, Poulin R, Schriml L, Thompson LR. Parasite microbiome project: Grand challenges. PLoS Pathog 2019; 15:e1008028. [PMID: 31600339 PMCID: PMC6786532 DOI: 10.1371/journal.ppat.1008028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (NMD); (JMM)
| | - Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- * E-mail: (NMD); (JMM)
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States of America
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Raina N. Fichorova
- Genital Tract Biology Division, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Z. Kaye
- Gordon and Betty Moore Foundation, Palo Alto, California, United States of America
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Lynn Schriml
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Luke R. Thompson
- Department of Biological Sciences and Northern Gulf Institute, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
| |
Collapse
|
21
|
Mathieu-Bégné E, Loot G, Blanchet S, Toulza E, Genthon C, Rey O. De novo transcriptome assembly for Tracheliastes polycolpus, an invasive ectoparasite of freshwater fish in western Europe. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Saxenhofer M, Schmidt S, Ulrich RG, Heckel G. Secondary contact between diverged host lineages entails ecological speciation in a European hantavirus. PLoS Biol 2019; 17:e3000142. [PMID: 30785873 PMCID: PMC6382107 DOI: 10.1371/journal.pbio.3000142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
The diversity of viruses probably exceeds biodiversity of eukaryotes, but little is known about the origin and emergence of novel virus species. Experimentation and disease outbreak investigations have allowed the characterization of rapid molecular virus adaptation. However, the processes leading to the establishment of functionally distinct virus taxa in nature remain obscure. Here, we demonstrate that incipient speciation in a natural host species has generated distinct ecological niches leading to adaptive isolation in an RNA virus. We found a very strong association between the distributions of two major phylogenetic clades in Tula orthohantavirus (TULV) and the rodent host lineages in a natural hybrid zone of the European common vole (Microtus arvalis). The spatial transition between the virus clades in replicated geographic clines is at least eight times narrower than between the hybridizing host lineages. This suggests a strong barrier for effective virus transmission despite frequent dispersal and gene flow among local host populations, and translates to a complete turnover of the adaptive background of TULV within a few hundred meters in the open, unobstructed landscape. Genetic differences between TULV clades are homogenously distributed in the genomes and mostly synonymous (93.1%), except for a cluster of nonsynonymous changes in the 5' region of the viral envelope glycoprotein gene, potentially involved in host-driven isolation. Evolutionary relationships between TULV clades indicate an emergence of these viruses through rapid differential adaptation to the previously diverged host lineages that resulted in levels of ecological isolation exceeding the progress of speciation in their vertebrate hosts.
Collapse
Affiliation(s)
- Moritz Saxenhofer
- Institute of Ecology and Evolution, University of Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, Lausanne, Switzerland
| | - Sabrina Schmidt
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Germany
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, Lausanne, Switzerland
| |
Collapse
|
23
|
Lenart P, Bienertová-Vašků J, Berec L. Evolution favours aging in populations with assortative mating and in sexually dimorphic populations. Sci Rep 2018; 8:16072. [PMID: 30375446 PMCID: PMC6207771 DOI: 10.1038/s41598-018-34391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/17/2018] [Indexed: 01/27/2023] Open
Abstract
Since aging seems omnipresent, many authors regard it as an inevitable consequence of the laws of physics. However, recent research has conclusively shown that some organisms do not age, or at least do not age on a scale comparable with other aging organisms. This begets the question why aging evolved in some organisms yet not in others. Here we present a simulation model of competition between aging and non-aging individuals in a sexually reproducing population. We find that the aging individuals may outcompete the non-aging ones if they have a sufficiently but not excessively higher initial fecundity or if individuals mate assortatively with respect to their own phenotype. Furthermore, the aging phenotype outcompetes the non-aging one or resists dominance of the latter for a longer period in populations composed of genuine males and females compared to populations of simultaneous hermaphrodites. Finally, whereas sterilizing parasites promote non-aging, the effect of mortality-enhancing parasites is to enable longer persistence of the aging phenotype relative to when parasites are absent. Since the aging individuals replace the non-aging ones in diverse scenarios commonly found in nature, our study provides important insights into why aging has evolved in most, but not all organisms.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| | - Luděk Berec
- Centre for Mathematical Biology, Institute of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Department of Ecology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
24
|
Glander S, He F, Schmitz G, Witten A, Telschow A, de Meaux J. Assortment of Flowering Time and Immunity Alleles in Natural Arabidopsis thaliana Populations Suggests Immunity and Vegetative Lifespan Strategies Coevolve. Genome Biol Evol 2018; 10:2278-2291. [PMID: 30215800 PMCID: PMC6133262 DOI: 10.1093/gbe/evy124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits of immunity, which arbitrates the evolution of host defenses. Their impact on the evolutionary dynamics of host immunity, however, has seldom been documented. Optimal investment into immunity is expected to decrease with shortening lifespan, because a shorter life decreases the probability to encounter pathogens or enemies. Here, we document that in natural populations of Arabidopsis thaliana, the expression levels of immunity genes correlate positively with flowering time, which in annual species is a proxy for lifespan. Using a novel genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from -independent immunity genes and could demonstrate that this positive covariation can be genetically separated. It is therefore not explained by the pleiotropic action of some major regulatory genes controlling both immunity and lifespan. Moreover, we find that immunity genes containing variants reported to impact fitness in natural field conditions are among the genes whose expression covaries most strongly with flowering time. Taken together, these analyses reveal that natural selection has likely assorted alleles promoting lower expression of immunity genes with alleles that decrease the duration of vegetative lifespan in A. thaliana and vice versa. This is the first study documenting a pattern of variation consistent with the impact that selection on flowering time is predicted to have on diversity in host immunity.
Collapse
Affiliation(s)
- Shirin Glander
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Fei He
- Institute of Botany, University of Cologne, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | |
Collapse
|
25
|
Melián CJ, Matthews B, de Andreazzi CS, Rodríguez JP, Harmon LJ, Fortuna MA. Deciphering the Interdependence between Ecological and Evolutionary Networks. Trends Ecol Evol 2018; 33:504-512. [DOI: 10.1016/j.tree.2018.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023]
|
26
|
McLeish MJ, Fraile A, García-Arenal F. Ecological Complexity in Plant Virus Host Range Evolution. Adv Virus Res 2018; 101:293-339. [PMID: 29908592 DOI: 10.1016/bs.aivir.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Verin M, Tellier A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 2018; 72:1362-1372. [PMID: 29676786 DOI: 10.1111/evo.13483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/23/2018] [Accepted: 03/11/2018] [Indexed: 01/17/2023]
Abstract
Seed (egg) banking is a common bet-hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene-for-gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching-allele interaction, both hosts' genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host-parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet-hedging strategy.
Collapse
Affiliation(s)
- Mélissa Verin
- Section of Population Genetics, Department of Plant Sciences, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Department of Plant Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
28
|
Mansfield MJ, Doxey AC. Genomic insights into the evolution and ecology of botulinum neurotoxins. Pathog Dis 2018; 76:4978416. [PMID: 29684130 DOI: 10.1093/femspd/fty040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/17/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael J Mansfield
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
29
|
Fairén AG, Parro V, Schulze-Makuch D, Whyte L. Is Searching for Martian Life a Priority for the Mars Community? ASTROBIOLOGY 2018; 18:101-107. [PMID: 29359967 PMCID: PMC5820680 DOI: 10.1089/ast.2017.1772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York, USA
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
30
|
Turko P, Tellenbach C, Keller E, Tardent N, Keller B, Spaak P, Wolinska J. Parasites driving host diversity: Incidence of disease correlated with Daphnia clonal turnover. Evolution 2018; 72:619-629. [PMID: 29238958 DOI: 10.1111/evo.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
According to the Red Queen hypothesis, clonal diversity in asexual populations could be maintained by negative frequency-dependant selection by coevolving parasites. If common clones are selected against and rare clones gain a concomitant advantage, we expect that clonal turnover should be faster during parasite epidemics than between them. We tested this hypothesis exploring field data of the Daphnia-Caullerya host-parasite system. The clonal make-up and turnover of the Daphnia host population was tracked with high temporal resolution from 1998 until 2013, using first allozyme and later microsatellite markers. Significant differences in the clonal composition between random and infected subsamples of Daphnia populations were detected on six of seven tested occasions, confirming genetic specificity of the host-parasite interaction in this system. We used time series analysis to compare the rates of host clonal turnover to the incidence of parasitism, and found that Caullerya prevalence was significantly associated with microsatellite-based clonal turnover. As alternate hypotheses, we further tested whether turnover was related to a variety of biotic, abiotic, and host demographic parameters. Other significant correlates of turnover were cyanobacterial biomass and (weakly) temperature. Overall, parasitism seems to be a strong driver of host clonal turnover, in support of the Red Queen hypothesis.
Collapse
Affiliation(s)
- Patrick Turko
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Christoph Tellenbach
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Esther Keller
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Nadine Tardent
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Barbara Keller
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany
| |
Collapse
|
31
|
Yoder JB, Tiffin P. Sanctions, Partner Recognition, and Variation in Mutualism. Am Nat 2017; 190:491-505. [DOI: 10.1086/693472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Nuismer SL. Rethinking Conventional Wisdom: Are Locally Adapted Parasites Ahead in the Coevolutionary Race? Am Nat 2017; 190:584-593. [PMID: 28937821 DOI: 10.1086/693455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The metaphors of the Red Queen and the arms race have inspired a large amount of research aimed at understanding the process of antagonistic coevolution between hosts and parasites. One approach that has been heavily used is to estimate the strength of parasite local adaptation using a reciprocal cross infection or transplant study. These studies frequently conclude that the locally adapted species is ahead in the coevolutionary race. Here, I use mathematical models to decompose parasite infectivity into components attributable to local versus global adaptation and to develop a robust index of which species is ahead in the coevolutionary race, which I term coevolutionary advantage. Computer simulations of coevolving host-parasite interactions demonstrate that because the magnitudes of local and global adaptation are largely independent, the link between the sign of local adaptation and coevolutionary advantage is tenuous. A consequence of the weak coupling between local adaptation and coevolutionary advantage is that the bulk of existing empirical studies do not sample enough populations for any reliable conclusions to be drawn. Together, these results suggest that the long-standing conventional wisdom holding that locally adapted parasites are ahead in the coevolutionary race should be reconsidered.
Collapse
|
33
|
Holding ML, Biardi JE, Gibbs HL. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc Biol Sci 2017; 283:rspb.2015.2841. [PMID: 27122552 DOI: 10.1098/rspb.2015.2841] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/05/2016] [Indexed: 11/12/2022] Open
Abstract
Measuring local adaptation can provide insights into how coevolution occurs between predators and prey. Specifically, theory predicts that local adaptation in functionally matched traits of predators and prey will not be detected when coevolution is governed by escalating arms races, whereas it will be present when coevolution occurs through an alternate mechanism of phenotype matching. Here, we analyse local adaptation in venom activity and prey resistance across 12 populations of Northern Pacific rattlesnakes and California ground squirrels, an interaction that has often been described as an arms race. Assays of venom function and squirrel resistance show substantial geographical variation (influenced by site elevation) in both venom metalloproteinase activity and resistance factor effectiveness. We demonstrate local adaptation in the effectiveness of rattlesnake venom to overcoming present squirrel resistance, suggesting that phenotype matching plays a role in the coevolution of these molecular traits. Further, the predator was the locally adapted antagonist in this interaction, arguing that rattlesnakes are evolutionarily ahead of their squirrel prey. Phenotype matching needs to be considered as an important mechanism influencing coevolution between venomous animals and resistant prey.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - James E Biardi
- Biology Department, Fairfield University, 1073 North Benson Road, Fairfield, CT 06824, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA Ohio Biodiversity Conservation Partnership, Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Greenspoon PB, Mideo N. Parasite transmission among relatives halts Red Queen dynamics. Evolution 2017; 71:747-755. [PMID: 27996079 DOI: 10.1111/evo.13157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
Abstract
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling.
Collapse
Affiliation(s)
- Philip B Greenspoon
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
35
|
Weber JN, Kalbe M, Shim KC, Erin NI, Steinel NC, Ma L, Bolnick DI. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite. Am Nat 2017; 189:43-57. [DOI: 10.1086/689597] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Moreno-Pérez MG, García-Luque I, Fraile A, García-Arenal F. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection. J Virol 2016; 90:9128-37. [PMID: 27489266 PMCID: PMC5044817 DOI: 10.1128/jvi.00737-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Overcoming host resistance in gene-for-gene host-virus interactions is an important instance of host range expansion, which can be hindered by across-host fitness trade-offs. Trade-offs are generated by negative effects of host range mutations on the virus fitness in the original host, i.e., by antagonistic pleiotropy. It has been reported that different mutations in Pepper mild mottle virus (PMMoV) coat protein result in overcoming L-gene resistance in pepper. To analyze if resistance-breaking mutations in PMMoV result in antagonistic pleiotropy, all reported mutations determining the overcoming of L(3) and L(4) alleles were introduced in biologically active cDNA clones. Then, the parental and mutant virus genotypes were assayed in susceptible pepper genotypes with an L(+), L(1), or L(2) allele, in single and in mixed infections. Resistance-breaking mutations had pleiotropic effects on the virus fitness that, according to the specific mutation, the host genotype, and the type of infection, single or mixed with other virus genotypes, were antagonistic or positive. Thus, resistance-breaking mutations can generate fitness trade-offs both across hosts and across types of infection, and the frequency of host range mutants will depend on the genetic structure of the host population and on the frequency of mixed infections by different virus genotypes. Also, resistance-breaking mutations variously affected virulence, which may further influence the evolution of host range expansion. IMPORTANCE A major cause of virus emergence is host range expansion, which may be hindered by across-host fitness trade-offs caused by negative pleiotropy of host range mutations. An important instance of host range expansion is overcoming host resistance in gene-for-gene plant-virus interactions. We analyze here if mutations in the coat protein of Pepper mild mottle virus determining L-gene resistance-breaking in pepper have associated fitness penalties in susceptible host genotypes. Results show that pleiotropic effects of resistance-breaking mutations on virus fitness depend on the specific mutation, the susceptible host genotype, and the type of infection, single or mixed, with other virus genotypes. Accordingly, resistance-breaking mutations can have negative, positive, or no pleiotropic effects on virus fitness. These results underscore the complexity of host range expansion evolution and, specifically, the difficulty of predicting the overcoming of resistance factors in crops.
Collapse
Affiliation(s)
- Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
37
|
Yoder JB. Understanding the coevolutionary dynamics of mutualism with population genomics. AMERICAN JOURNAL OF BOTANY 2016; 103:1742-1752. [PMID: 27756732 DOI: 10.3732/ajb.1600154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Decades of research on the evolution of mutualism has generated a wealth of possible ways whereby mutually beneficial interactions between species persist in spite of the apparent advantages to individuals that accept the benefits of mutualism without reciprocating - but identifying how any particular empirical system is stabilized against cheating remains challenging. Different hypothesized models of mutualism stability predict different forms of coevolutionary selection, and emerging high-throughput sequencing methods allow examination of the selective histories of mutualism genes and, thereby, the form of selection acting on those genes. Here, I review the evolutionary theory of mutualism stability and identify how differing models make contrasting predictions for the population genomic diversity and geographic differentiation of mutualism-related genes. As an example of the possibilities offered by genomic data, I analyze genes with roles in the symbiosis of Medicago truncatula and nitrogen-fixing rhizobial bacteria, the first classic mutualism in which extensive genomic resources have been developed for both partners. Medicago truncatula symbiosis genes, as a group, differ from the rest of the genome, but they vary in the form of selection indicated by their diversity and differentiation - some show signs of selection expected from roles in sanctioning noncooperative symbionts, while others show evidence of balancing selection expected from coevolution with symbiont signaling factors. I then assess the current state of development for similar resources in other mutualistic interactions and look ahead to identify ways in which modern sequencing technology can best inform our understanding of mutualists and mutualism.
Collapse
Affiliation(s)
- Jeremy B Yoder
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
38
|
Larose C, Schwander T. Nematode endoparasites do not codiversify with their stick insect hosts. Ecol Evol 2016; 6:5446-58. [PMID: 27551395 PMCID: PMC4984516 DOI: 10.1002/ece3.2264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
Host-parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host-related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro- versus macroevolutionary dynamics in host-parasite interactions.
Collapse
Affiliation(s)
- Chloé Larose
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Tanja Schwander
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
39
|
Poulicard N, Pacios LF, Gallois JL, Piñero D, García-Arenal F. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genet 2016; 12:e1006214. [PMID: 27490800 PMCID: PMC4973933 DOI: 10.1371/journal.pgen.1006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the diversity and the evolution of the resistance gene, resulting in the selection of resistance alleles.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) and Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jean-Luc Gallois
- Institut National de Recherche Agronomique (INRA), UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
40
|
Holding ML, Drabeck DH, Jansa SA, Gibbs HL. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integr Comp Biol 2016; 56:1032-1043. [PMID: 27444525 DOI: 10.1093/icb/icw082] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions.
Collapse
Affiliation(s)
- Matthew L Holding
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,*Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Danielle H Drabeck
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.,J. F. Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Sharon A Jansa
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.,J. F. Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - H Lisle Gibbs
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,Ohio Biodiversity Conservation Partnership, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
41
|
González-Tortuero E, Rusek J, Turko P, Petrusek A, Maayan I, Piálek L, Tellenbach C, Gießler S, Spaak P, Wolinska J. Daphnia parasite dynamics across multiple Caullerya epidemics indicate selection against common parasite genotypes. ZOOLOGY 2016; 119:314-21. [PMID: 27209316 DOI: 10.1016/j.zool.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/02/2016] [Accepted: 04/20/2016] [Indexed: 01/29/2023]
Abstract
Studies of parasite population dynamics in natural systems are crucial for our understanding of host-parasite coevolutionary processes. Some field studies have reported that host genotype frequencies in natural populations change over time according to parasite-driven negative frequency-dependent selection. However, the temporal patterns of parasite genotypes have rarely been investigated. Moreover, parasite-driven negative frequency-dependent selection is contingent on the existence of genetic specificity between hosts and parasites. In the present study, the population dynamics and host-genotype specificity of the ichthyosporean Caullerya mesnili, a common endoparasite of Daphnia water fleas, were analysed based on the observed sequence variation in the first internal transcribed spacer (ITS1) of the ribosomal DNA. The Daphnia population of lake Greifensee (Switzerland) was sampled and subjected to parasite screening and host genotyping during C. mesnili epidemics of four consecutive years. The ITS1 of wild-caught C. mesnili-infected Daphnia was sequenced using the 454 pyrosequencing platform. The relative frequencies of C. mesnili ITS1 sequences differed significantly among years: the most abundant C. mesnili ITS1 sequence decreased and rare sequences increased over the course of the study, a pattern consistent with negative frequency-dependent selection. However, only a weak signal of host-genotype specificity between C. mesnili and Daphnia genotypes was detected. Use of cutting edge genomic techniques will allow further investigation of the underlying micro-evolutionary relationships within the Daphnia-C. mesnili system.
Collapse
Affiliation(s)
- Enrique González-Tortuero
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany; Berlin Centre for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 6-8, D-14195 Berlin, Germany; Department of Biology II, Ludwig Maximilians University, Großhaderner Straße 2, D-82512 Planegg-Martinsried, Germany.
| | - Jakub Rusek
- Department of Biology II, Ludwig Maximilians University, Großhaderner Straße 2, D-82512 Planegg-Martinsried, Germany
| | - Patrick Turko
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844 Prague, Czech Republic
| | - Inbar Maayan
- Department of Biology II, Ludwig Maximilians University, Großhaderner Straße 2, D-82512 Planegg-Martinsried, Germany
| | - Lubomír Piálek
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844 Prague, Czech Republic; Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Christoph Tellenbach
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Sabine Gießler
- Department of Biology II, Ludwig Maximilians University, Großhaderner Straße 2, D-82512 Planegg-Martinsried, Germany
| | - Piet Spaak
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany; Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| |
Collapse
|
42
|
Nuismer SL, Dybdahl MF. Quantifying the coevolutionary potential of multistep immune defenses. Evolution 2016; 70:282-95. [DOI: 10.1111/evo.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Scott L. Nuismer
- Department of Biological Sciences; University of Idaho; Moscow Idaho 83844
| | - Mark F. Dybdahl
- School of Biological Sciences; Washington State University; Pullman Washington 99164
| |
Collapse
|
43
|
Thrall PH, Barrett LG, Dodds PN, Burdon JJ. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models. FRONTIERS IN PLANT SCIENCE 2016; 6:1084. [PMID: 26779200 PMCID: PMC4703789 DOI: 10.3389/fpls.2015.01084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/19/2015] [Indexed: 05/30/2023]
Abstract
Gene-for-gene (GFG) and matching-allele (MA) models are qualitatively different paradigms for describing the outcome of genetic interactions between hosts and pathogens. The GFG paradigm was largely built on the foundations of Flor's early work on the flax-flax rust interaction and is based on the concept of genetic recognition leading to incompatible disease outcomes, typical of host immune recognition. In contrast, the MA model is based on the assumption that genetic recognition leads to compatible interactions, which can result when pathogens require specific host factors to cause infection. Results from classical MA and GFG models have led to important predictions regarding various coevolutionary phenomena, including the role of fitness costs associated with resistance and infectivity, the distribution of resistance genes in wild populations, patterns of local adaptation and the evolution and maintenance of sexual reproduction. Empirical evidence (which we review briefly here), particularly from recent molecular advances in understanding of the mechanisms that determine the outcome of host-pathogen encounters, suggests considerable variation in specific details of the functioning of interactions between hosts and pathogens, which may contain elements of both models. In this regard, GFG and MA scenarios likely represent endpoints of a continuum of potentially more complex interactions that occur in nature. Increasingly, this has been recognized in theoretical studies of coevolutionary processes in plant host-pathogen and animal host-parasite associations (e.g., departures from strict GFG/MA assumptions, diploid genetics, multi-step infection processes). However, few studies have explored how different genetic assumptions about host resistance and pathogen infectivity might impact on disease epidemiology or pathogen persistence within and among populations. Here, we use spatially explicit simulations of the basic MA and GFG scenarios to highlight qualitative differences between these scenarios with regard to patterns of disease and impacts on host demography. Given that such impacts drive evolutionary trajectories, future theoretical advances that aim to capture more complex genetic scenarios should explicitly address the interaction between epidemiology and different models of host-pathogen interaction genetics.
Collapse
|
44
|
Ebert D, Duneau D, Hall MD, Luijckx P, Andras JP, Du Pasquier L, Ben-Ami F. A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen Pasteuria ramosa in Daphnia. ADVANCES IN PARASITOLOGY 2015; 91:265-310. [PMID: 27015951 DOI: 10.1016/bs.apar.2015.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The infection process of many diseases can be divided into series of steps, each one required to successfully complete the parasite's life and transmission cycle. This approach often reveals that the complex phenomenon of infection is composed of a series of more simple mechanisms. Here we demonstrate that a population biology approach, which takes into consideration the natural genetic and environmental variation at each step, can greatly aid our understanding of the evolutionary processes shaping disease traits. We focus in this review on the biology of the bacterial parasite Pasteuria ramosa and its aquatic crustacean host Daphnia, a model system for the evolutionary ecology of infectious disease. Our analysis reveals tremendous differences in the degree to which the environment, host genetics, parasite genetics and their interactions contribute to the expression of disease traits at each of seven different steps. This allows us to predict which steps may respond most readily to selection and which steps are evolutionarily constrained by an absence of variation. We show that the ability of Pasteuria to attach to the host's cuticle (attachment step) stands out as being strongly influenced by the interaction of host and parasite genotypes, but not by environmental factors, making it the prime candidate for coevolutionary interactions. Furthermore, the stepwise approach helps us understanding the evolution of resistance, virulence and host ranges. The population biological approach introduced here is a versatile tool that can be easily transferred to other systems of infectious disease.
Collapse
Affiliation(s)
- Dieter Ebert
- Zoological Institute, University of Basel, Basel, Switzerland
| | - David Duneau
- Zoological Institute, University of Basel, Basel, Switzerland; Department Ecologie et Diversité Biologique, University Paul Sabatier-Toulouse III, Toulouse, France
| | - Matthew D Hall
- Zoological Institute, University of Basel, Basel, Switzerland; Monash University, School of Biological Sciences, Clayton Campus, Melbourne, VIC, Australia
| | - Pepijn Luijckx
- Zoological Institute, University of Basel, Basel, Switzerland; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Jason P Andras
- Zoological Institute, University of Basel, Basel, Switzerland; Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Frida Ben-Ami
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Masri L, Branca A, Sheppard AE, Papkou A, Laehnemann D, Guenther PS, Prahl S, Saebelfeld M, Hollensteiner J, Liesegang H, Brzuszkiewicz E, Daniel R, Michiels NK, Schulte RD, Kurtz J, Rosenstiel P, Telschow A, Bornberg-Bauer E, Schulenburg H. Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes. PLoS Biol 2015; 13:e1002169. [PMID: 26042786 PMCID: PMC4456383 DOI: 10.1371/journal.pbio.1002169] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 05/07/2015] [Indexed: 01/11/2023] Open
Abstract
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.
Collapse
Affiliation(s)
- Leila Masri
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
| | - Antoine Branca
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Anna E. Sheppard
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Laehnemann
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
| | - Patrick S. Guenther
- Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
| | - Swantje Prahl
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Manja Saebelfeld
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jacqueline Hollensteiner
- Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany
| | - Heiko Liesegang
- Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany
| | - Elzbieta Brzuszkiewicz
- Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany
| | - Rolf Daniel
- Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Goettingen, Goettingen, Germany
| | - Nicolaas K. Michiels
- Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
| | - Rebecca D. Schulte
- Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
46
|
Lymbery AJ. Niche construction: evolutionary implications for parasites and hosts. Trends Parasitol 2015; 31:134-41. [DOI: 10.1016/j.pt.2015.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 11/17/2022]
|
47
|
Ricklefs RE. Intrinsic dynamics of the regional community. Ecol Lett 2015; 18:497-503. [DOI: 10.1111/ele.12431] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Robert E. Ricklefs
- Department of Biology; University of Missouri-St. Louis; One University Boulevard; St. Louis MO 63121-4499 USA
| |
Collapse
|
48
|
Engelstädter J. Host-parasite coevolutionary dynamics with generalized success/failure infection genetics. Am Nat 2015; 185:E117-29. [PMID: 25905512 DOI: 10.1086/680476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Host-parasite infection genetics can be more complex than envisioned by classic models such as the gene-for-gene or matching-allele models. By means of a mathematical model, I investigate the coevolutionary dynamics arising from a large set of generalized models of infection genetics in which hosts are either fully resistant or fully susceptible to a parasite, depending on the genotype of both individuals. With a single diploid interaction locus in the hosts, many of the infection genetic models produce stable or neutrally stable genotype polymorphisms. However, only a few models, which are all different versions of the matching-allele model, lead to sustained cycles of genotype frequency fluctuations in both interacting species ("Red Queen" dynamics). By contrast, with two diploid interaction loci in the hosts, many infection genetics models that cannot be classified as one of the standard infection genetics models produce Red Queen dynamics. Sexual versus asexual reproduction and, in the former case, the rate of recombination between the interaction loci have a large impact on whether Red Queen dynamics arise from a given infection genetics model. This may have interesting but as yet unexplored implications with respect to the Red Queen hypothesis for the evolution of sex.
Collapse
Affiliation(s)
- Jan Engelstädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
Cini A, Patalano S, Segonds-Pichon A, Busby GBJ, Cervo R, Sumner S. Social parasitism and the molecular basis of phenotypic evolution. Front Genet 2015; 6:32. [PMID: 25741361 PMCID: PMC4332356 DOI: 10.3389/fgene.2015.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/23/2015] [Indexed: 11/21/2022] Open
Abstract
Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.
Collapse
Affiliation(s)
- Alessandro Cini
- Dipartimento di Biologia, Università di FirenzeFirenze, Italy
| | - Solenn Patalano
- Institute of Zoology, Zoological Society of LondonLondon, UK
- The Babraham Institute, Babraham Research Campus – CambridgeCambridge, UK
| | | | - George B. J. Busby
- Institute of Zoology, Zoological Society of LondonLondon, UK
- Wellcome Trust Centre for Human GeneticsOxford, UK
| | - Rita Cervo
- Dipartimento di Biologia, Università di FirenzeFirenze, Italy
| | - Seirian Sumner
- Institute of Zoology, Zoological Society of LondonLondon, UK
- School of Biological Sciences, University of BristolBristol, UK
| |
Collapse
|
50
|
Obbard DJ, Dudas G. The genetics of host-virus coevolution in invertebrates. Curr Opin Virol 2014; 8:73-8. [PMID: 25063907 PMCID: PMC4199324 DOI: 10.1016/j.coviro.2014.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla-potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus 'arms-race' coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh, UK; Centre for Infection Immunity and Evolution, University of Edinburgh, Kings Buildings, Edinburgh, UK.
| | - Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh, UK
| |
Collapse
|