1
|
Salgado-Roa FC, Stuart-Fox D, White TE, Medina I. Colour polymorphism is prevalent on islands but shows no association with range size in web-building spiders. J Evol Biol 2024; 37:1345-1355. [PMID: 39291872 DOI: 10.1093/jeb/voae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
One of the most evident sources of phenotypic diversity within a population is colouration, as exemplified by colour polymorphism. This is relevant to a greater extent in animals with visually biased sensory systems. There is substantial evidence suggesting that different colour morphs can access a broader range of habitats or niches, leading to larger geographic range sizes. However, this hypothesis has been tested in few lineages, comprising species where colour is likely to be involved in sexual selection. Furthermore, some available evidence considers geographical variation as polymorphism, thus limiting our comprehension of how sympatric colour polymorphism can influence a species' geographic range. Through an extensive systematic literature review and a comparative analysis, we examined the relationship between colour polymorphism and range size or niche breadth in web-building spiders. We identified 140 colour polymorphic spider species, belonging mainly to the families Araneidae and Theridiidae. We found no evidence that colour polymorphic species differ significantly from non-polymorphic species in terms of range size and niche breadth, after accounting for phylogenetic relationships and other covariates. However, we did observe that colour polymorphic species were more likely to be found on islands compared to non-polymorphic species. Overall, our results indicate that the association between colour polymorphism and geographic range size may not exist among web-building spiders, or be as pronounced as in other lineages. This suggests that the strength of the association between colour polymorphism and ecological success might depend on the ecological role that colouration plays in each clade.
Collapse
Affiliation(s)
- Fabian C Salgado-Roa
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Devi Stuart-Fox
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Iliana Medina
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Escuer P, Guirao-Rico S, Arnedo MA, Sánchez-Gracia A, Rozas J. Population Genomics of Adaptive Radiations: Exceptionally High Levels of Genetic Diversity and Recombination in an Endemic Spider From the Canary Islands. Mol Ecol 2024:e17547. [PMID: 39400446 DOI: 10.1111/mec.17547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The spider genus Dysdera has undergone a remarkable diversification in the oceanic archipelago of the Canary Islands, with ~60 endemic species having originated during the 20 million years since the origin of the archipelago. This evolutionary radiation has been accompanied by substantial dietary shifts, often characterised by phenotypic modifications encompassing morphological, metabolic and behavioural changes. Hence, these endemic spiders represent an excellent model for understanding the evolutionary drivers and to pinpoint the genomic determinants underlying adaptive radiations. Recently, we achieved the first chromosome-level genome assembly of one of the endemic species, D. silvatica, providing a high-quality reference sequence for evolutionary genomics studies. Here, we conducted a low coverage-based resequencing study of a natural population of D. silvatica from La Gomera island. Taking advantage of the new high-quality genome, we characterised genome-wide levels of nucleotide polymorphism, divergence and linkage disequilibrium, and inferred the demographic history of this population. We also performed comprehensive genome-wide scans for recent positive selection. Our findings uncovered exceptionally high levels of nucleotide diversity and recombination in this geographically restricted endemic species, indicative of large historical effective population sizes. We also identified several candidate genomic regions that are potentially under positive selection, highlighting relevant biological processes, such as vision and nitrogen extraction as potential adaptation targets. These processes may ultimately drive species diversification in this genus. This pioneering study of spiders that are endemic to an oceanic archipelago lays the groundwork for broader population genomics analyses aimed at understanding the genetic mechanisms driving adaptive radiation in island ecosystems.
Collapse
Affiliation(s)
- Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sara Guirao-Rico
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Medina-Jiménez BI, Budd GE, Pechmann M, Posnien N, Janssen R. Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development. EvoDevo 2024; 15:11. [PMID: 39327634 PMCID: PMC11428483 DOI: 10.1186/s13227-024-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Spiders evolved different types of eyes, a pair of primary eyes that are usually forward pointing, and three pairs of secondary eyes that are typically situated more posterior and lateral on the spider's head. The best understanding of arthropod eye development comes from the vinegar fly Drosophila melanogaster, the main arthropod model organism, that also evolved different types of eyes, the larval eyes and the ocelli and compound eyes of the imago. The gene regulatory networks that underlie eye development in this species are well investigated revealing a conserved core network, but also show several differences between the different types of eyes. Recent candidate gene approaches identified a number of conserved genes in arthropod eye development, but also revealed crucial differences including the apparent lack of some key factors in some groups of arthropods, including spiders. RESULTS Here, we re-analysed our published scRNA sequencing data and found potential key regulators of spider eye development that were previously overlooked. Unlike earlier research on this topic, our new data suggest that Hedgehog (Hh)-signalling is involved in eye development in the spider Parasteatoda tepidariorum. By investigating embryonic gene expression in representatives of all main groups of spiders, we demonstrate that this involvement is conserved in spiders. Additionally, we identified genes that are expressed in the developing eyes of spiders, but that have not been studied in this context before. CONCLUSION Our data show that single-cell sequencing represents a powerful method to gain deeper insight into gene regulatory networks that underlie the development of lineage-specific organs such as the derived set of eyes in spiders. Overall, we gained deeper insight into spider eye development, as well as the evolution of arthropod visual system formation.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Matthias Pechmann
- Institute for Zoology, Department of Developmental Biology, University of Cologne, Biocenter, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
4
|
Chong KL, Grahn A, Perl CD, Sumner-Rooney L. Allometry and ecology shape eye size evolution in spiders. Curr Biol 2024; 34:3178-3188.e5. [PMID: 38959880 DOI: 10.1016/j.cub.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Eye size affects many aspects of visual function, but eyes are costly to grow and maintain. The allometry of eyes can provide insight into this trade-off, but this has mainly been explored in species that have two eyes of equal size. By contrast, animals possessing larger visual systems can exhibit variable eye sizes within individuals. Spiders have up to four pairs of eyes whose sizes vary dramatically, but their ontogenetic, static, and evolutionary allometry has not yet been studied in a comparative context. We report variable dynamics in eye size across 1,098 individuals in 39 species and 8 families, indicating selective pressures and constraints driving the evolution of different eye pairs and lineages. Supplementing our sampling with a recently published phylogenetically comprehensive dataset, we confirmed these findings across more than 400 species; found that ecological factors such as visual hunting, web building, and circadian activity correlate with eye diameter; and identified significant allometric shifts across spider phylogeny using an unbiased approach, many of which coincide with visual hunting strategies. The modular nature of the spider visual system provides additional degrees of freedom and is apparent in the strong correlations between maximum/minimum investment and interocular variance and three key ecological factors. Our analyses suggest an antagonistic relationship between the anterior and posterior eye pairs. These findings shed light on the relationship between spider visual systems and their diverse ecologies and how spiders exploit their modular visual systems to balance selective pressures and optical and energetic constraints.
Collapse
Affiliation(s)
- Kaylin L Chong
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| | - Angelique Grahn
- Institut für Biologie, Humboldt Universität, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Craig D Perl
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| |
Collapse
|
5
|
De Agrò M, Rößler DC, Shamble PS. Eye-specific detection and a multi-eye integration model of biological motion perception. J Exp Biol 2024; 227:jeb247061. [PMID: 38752337 PMCID: PMC11418026 DOI: 10.1242/jeb.247061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
'Biological motion' refers to the distinctive kinematics observed in many living organisms, where visually perceivable points on the animal move at fixed distances from each other. Across the animal kingdom, many species have developed specialized visual circuitry to recognize such biological motion and to discriminate it from other patterns. Recently, this ability has been observed in the distributed visual system of jumping spiders. These eight-eyed animals use six eyes to perceive motion, while the remaining two (the principal anterior medial eyes) are shifted across the visual scene to further inspect detected objects. When presented with a biologically moving stimulus and a random one, jumping spiders turn to face the latter, clearly demonstrating the ability to discriminate between them. However, it remains unclear whether the principal eyes are necessary for this behavior, whether all secondary eyes can perform this discrimination, or whether a single eye-pair is specialized for this task. Here, we systematically tested the ability of jumping spiders to discriminate between biological and random visual stimuli by testing each eye-pair alone. Spiders were able to discriminate stimuli only when the anterior lateral eyes were unblocked, and performed at chance levels in other configurations. Interestingly, spiders showed a preference for biological motion over random stimuli - unlike in past work. We therefore propose a new model describing how specialization of the anterior lateral eyes for detecting biological motion contributes to multi-eye integration in this system. This integration generates more complex behavior through the combination of simple, single-eye responses. We posit that this in-built modularity may be a solution to the limited resources of these invertebrates' brains, constituting a novel approach to visual processing.
Collapse
Affiliation(s)
- Massimo De Agrò
- Faculty of Biology, University of Regensburg, 93053 Regensburg, Germany
- Department of Biology, University of Florence, 50121 Firenze, Italy
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Daniela C. Rößler
- Zukunftskolleg, Konstanz University, 78464 Konstanz, Germany
- Department of Biology, Konstanz University, 78464 Konstanz, Germany
- Department of Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Paul S. Shamble
- Kavli Institute for Neuroscience, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Steck M, Hanscom SJ, Iwanicki T, Sung JY, Outomuro D, Morehouse NI, Porter ML. Secondary not subordinate: Opsin localization suggests possibility for color sensitivity in salticid secondary eyes. Vision Res 2024; 217:108367. [PMID: 38428375 DOI: 10.1016/j.visres.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
The principal eyes of jumping spiders (Salticidae) integrate a dual-lens system, a tiered retinal matrix with multiple photoreceptor classes and muscular control of retinal movements to form high resolution images, extract color information, and dynamically evaluate visual scenes. While much work has been done to characterize these more complex principal anterior eyes, little work has investigated the three other pairs of simpler secondary eyes: the anterior lateral eye pair and two posterior (lateral and median) pairs of eyes. We investigated the opsin protein component of visual pigments in the eyes of three species of salticid using transcriptomics and immunohistochemistry. Based on characterization and localization of a set of three conserved opsins (Rh1 - green sensitive, Rh2 - blue sensitive, and Rh3 - ultraviolet sensitive) we have identified potential photoreceptors for blue light detection in the eyes of two out of three species: Menemerus bivittatus (Chrysillini) and Habrocestum africanum (Hasarinii). Additionally, the photoreceptor diversity of the secondary eyes exhibits more variation than previous estimates, particularly for the small, posterior median eyes previously considered vestigial in some species. In all three species investigated the lateral eyes were dominated by green-sensitive visual pigments (RH1 opsins), while the posterior median retinas were dominated by opsins forming short-wavelength sensitive visual pigments (e.g. RH2 and/or RH3/RH4). There was also variation among secondary eye types and among species in the distribution of opsins in retinal photoreceptors, particularly for the putatively blue-sensitive visual pigment formed from RH2. Our findings suggest secondary eyes have the potential for color vision, with observed differences between species likely associated with different ecologies and visual tasks.
Collapse
Affiliation(s)
| | | | - Tom Iwanicki
- University of Hawai'i at Mānoa, Honolulu HI 96822 USA; The Earth Commons Institute, Georgetown University, Washington DC 20057 USA
| | | | - David Outomuro
- University of Cincinnati, Cincinnati OH 45221; University of Pittsburgh, Pittsburgh PA 15260 USA
| | | | | |
Collapse
|
7
|
Gainett G, Klementz BC, Blaszczyk P, Setton EVW, Murayama GP, Willemart R, Gavish-Regev E, Sharma PP. Vestigial organs alter fossil placements in an ancient group of terrestrial chelicerates. Curr Biol 2024; 34:1258-1270.e5. [PMID: 38401545 DOI: 10.1016/j.cub.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Vestigial organs provide a link between ancient and modern traits and therefore have great potential to resolve the phylogeny of contentious fossils that bear features not seen in extant species. Here we show that extant daddy-longlegs (Arachnida, Opiliones), a group once thought to possess only one pair of eyes, in fact additionally retain a pair of vestigial median eyes and a pair of vestigial lateral eyes. Neuroanatomical gene expression surveys of eye-patterning transcription factors, opsins, and other structural proteins in the daddy-longlegs Phalangium opilio show that the vestigial median and lateral eyes innervate regions of the brain positionally homologous to the median and lateral eye neuropils, respectively, of chelicerate groups like spiders and horseshoe crabs. Gene silencing of eyes absent shows that the vestigial eyes are under the control of the retinal determination gene network. Gene silencing of dachshund disrupts the lateral eyes, but not the median eyes, paralleling loss-of-function phenotypes in insect models. The existence of lateral eyes in extant daddy-longlegs bears upon the placement of the oldest harvestmen fossils, a putative stem group that possessed both a pair of median eyes and a pair of lateral eyes. Phylogenetic analysis of harvestman relationships with an updated understanding of lateral eye incidence resolved the four-eyed fossil group as a member of the extant daddy-longlegs suborder, which in turn resulted in older estimated ages of harvestman diversification. This work underscores that developmental vestiges in extant taxa can influence our understanding of character evolution, placement of fossils, and inference of divergence times.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pola Blaszczyk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabriel P Murayama
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | - Rodrigo Willemart
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | - Efrat Gavish-Regev
- The National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Jing X, Li S, Zhu R, Ning X, Lin J. Miniature bioinspired artificial compound eyes: microfabrication technologies, photodetection and applications. Front Bioeng Biotechnol 2024; 12:1342120. [PMID: 38433824 PMCID: PMC10905626 DOI: 10.3389/fbioe.2024.1342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
As an outstanding visual system for insects and crustaceans to cope with the challenges of survival, compound eye has many unique advantages, such as wide field of view, rapid response, infinite depth of field, low aberration and fast motion capture. However, the complex composition of their optical systems also presents significant challenges for manufacturing. With the continuous development of advanced materials, complex 3D manufacturing technologies and flexible electronic detectors, various ingenious and sophisticated compound eye imaging systems have been developed. This paper provides a comprehensive review on the microfabrication technologies, photoelectric detection and functional applications of miniature artificial compound eyes. Firstly, a brief introduction to the types and structural composition of compound eyes in the natural world is provided. Secondly, the 3D forming manufacturing techniques for miniature compound eyes are discussed. Subsequently, some photodetection technologies for miniature curved compound eye imaging are introduced. Lastly, with reference to the existing prototypes of functional applications for miniature compound eyes, the future development of compound eyes is prospected.
Collapse
Affiliation(s)
- Xian Jing
- College of Electronic Science and Engineering, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Shitao Li
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Rongxin Zhu
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Xiaochen Ning
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Jieqiong Lin
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
9
|
Wang K, Wang J, Liang B, Chang J, Zhu Y, Chen J, Agnarsson I, Li D, Peng Y, Liu J. Eyeless cave-dwelling Leptonetela spiders still rely on light. SCIENCE ADVANCES 2023; 9:eadj0348. [PMID: 38117895 PMCID: PMC10732526 DOI: 10.1126/sciadv.adj0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Subterranean animals living in perpetual darkness may maintain photoresponse. However, the evolutionary processes behind the conflict between eye loss and maintenance of the photoresponse remain largely unknown. We used Leptonetela spiders to investigate the driving forces behind the maintenance of the photoresponse in cave-dwelling spiders. Our behavioral experiments showed that all eyeless/reduced-eyed cave-dwelling species retained photophobic response and that they had substantially decreased survival at cave entrances due to weak drought resistance. The transcriptomic analysis demonstrated that nearly all phototransduction pathway genes were present and that all tested phototransduction pathway genes were subjected to strong functional constraints in cave-dwelling species. Our results suggest that cave-dwelling eyeless spiders still use light and that light detection likely plays a role in avoiding the cave entrance habitat. This study confirms that some eyeless subterranean animals have retained their photosensitivity due to natural selection and provides a case of mismatch between phenotype and genotype or physiological function in a long-term evolutionary process.
Collapse
Affiliation(s)
- Kai Wang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jinhui Wang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Bing Liang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jian Chang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jian Chen
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ingi Agnarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland
| | - Daiqin Li
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Liu
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| |
Collapse
|
10
|
Goedeker SJ, Eigel NA, Mann MR, DiBiasio SL, Gall BG. Land Ho! Polarized light serves as a visual signal for landward orientation in displaced spiders. ZOOLOGY 2023; 161:126130. [PMID: 37913717 DOI: 10.1016/j.zool.2023.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
An organism's ability to identify goals within their environment, orient towards those goals, and successfully navigate to them are critical to all aspects of survival. Long-jawed orb weavers (Tetragnatha elongata) occupy riparian zones and perform orientation behaviors when displaced from this habitat onto the water. Spiders prefer to move toward the closest shoreline, regardless of release location, likely to avoid predation from fish. In this study, we conducted a series of investigations to determine the mechanism by which these spiders rapidly achieve zonal recovery. Occlusion experiments indicate that spiders use visual information to identify characteristics of the riparian habitat and navigate to shelter. While environmental characteristics such as color, contrast, and the sun's position do not appear to factor into this orientation behavior, the polarization of light appears critical. We propose that the polarization of light reflecting off the water's surface acts as a water detector and the absence of such at the edges of the pond (or via experimental induction) serves as a visual reference for the closest suitable habitat.
Collapse
Affiliation(s)
| | - Nettie A Eigel
- Department of Biology, Hanover College, Hanover, IN, USA
| | | | | | - Brian G Gall
- Department of Biology, Hanover College, Hanover, IN, USA.
| |
Collapse
|
11
|
Abstract
More than a century of research, of which JEB has published a substantial selection, has highlighted the rich diversity of animal eyes. From these studies have emerged numerous examples of visual systems that depart from our own familiar blueprint, a single pair of lateral cephalic eyes. It is now clear that such departures are common, widespread and highly diverse, reflecting a variety of different eye types, visual abilities and architectures. Many of these examples have been described as 'distributed' visual systems, but this includes several fundamentally different systems. Here, I re-examine this term, suggest a new framework within which to evaluate visual system distribution in both spatial and functional senses, and propose a roadmap for future work. The various architectures covered by this term reflect three broad strategies that offer different opportunities and require different approaches for study: the duplication of functionally identical eyes, the expression of multiple, functionally distinct eye types in parallel and the use of dispersed photoreceptors to mediate visual behaviour without eyes. Within this context, I explore some of the possible implications of visual system architecture for how visual information is collected and integrated, which has remained conceptually challenging in systems with a large degree of spatial and/or functional distribution. I highlight two areas that should be prioritised in future investigations: the whole-organism approach to behaviour and signal integration, and the evolution of visual system architecture across Metazoa. Recent advances have been made in both areas, through well-designed ethological experiments and the deployment of molecular tools.
Collapse
Affiliation(s)
- Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz Institute for Biodiversity and Evolution, Invalidenstrasse 43, 10115 Berlin, Germany
| |
Collapse
|
12
|
Steinhoff POM, Harzsch S, Uhl G. Comparative neuroanatomy of the central nervous system in web-building and cursorial hunting spiders. J Comp Neurol 2023; 532:e25554. [PMID: 37948052 DOI: 10.1002/cne.25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Spiders (Araneae) include cursorial species that stalk their prey and more stationary species that use webs for prey capture. While many cursorial hunting spiders rely on visual cues, web-building spiders use vibratory cues (mechanosensation) for prey capture. We predicted that the differences in primary sensory input between the species are mirrored by differences in the morphology/architecture of the central nervous system (CNS). Here, we investigated the CNS anatomy of four spider species, two cursorial hunters Pardosa amentata (Lycosidae) and Marpissa muscosa (Salticidae), and two web-building hunters Argiope bruennichi (Araneidae) and Parasteatoda tepidariorum (Theridiidae). Their CNS was analyzed using Bodian silver impregnations, immunohistochemistry, and microCT analysis. We found that there are major differences between species in the secondary eye pathway of the brain that pertain to first-order, second-order, and higher order brain centers (mushroom bodies [MB]). While P. amentata and M. muscosa have prominent visual neuropils and MB, these are much reduced in the two web-building species. Argiope bruennichi lacks second-order visual neuropils but has specialized photoreceptors that project into two distinct visual neuropils, and P. tepidariorum lacks MB, suggesting that motion vision might be absent in this species. Interestingly, the differences in the ventral nerve cord are much less pronounced, but the web-building spiders have proportionally larger leg neuropils than the cursorial spiders. Our findings suggest that the importance of visual information is much reduced in web-building spiders, compared to cursorial spiders, while processing of mechanosensory information requires the same major circuits in both web-building and cursorial hunting spiders.
Collapse
Affiliation(s)
- Philip O M Steinhoff
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Rathore S, Meece M, Charlton-Perkins M, Cook TA, Buschbeck EK. Probing the conserved roles of cut in the development and function of optically different insect compound eyes. Front Cell Dev Biol 2023; 11:1104620. [PMID: 37065850 PMCID: PMC10102356 DOI: 10.3389/fcell.2023.1104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut, we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus. In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Charlton-Perkins
- Division of Developmental Biology and Department of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genetics, Department of Ophthalmological, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| |
Collapse
|
14
|
Morehouse NI, Lents NH. Spiders possess tapeta lucida to enhance photodetection in their inverse secondary retinas but not in their everse primary retinas. Bioessays 2023; 45:e2300009. [PMID: 36866439 DOI: 10.1002/bies.202300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Affiliation(s)
- Nathan I Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan H Lents
- Department of Sciences, John Jay College, The City University of New York, New York, New York, USA
| |
Collapse
|
15
|
Nutrition-induced macular-degeneration-like photoreceptor damage in jumping spider eyes. Vision Res 2023; 206:108185. [PMID: 36758462 DOI: 10.1016/j.visres.2023.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in humans. Despite its prevalence and medical significance, many aspects of AMD remain elusive and treatment options are limited. Here, we present data that suggest jumping spiders offer a unique opportunity for understanding the fundamentals underlying retinal degeneration, thereby shedding light on a process that impacts millions of people globally. Using a micro-ophthalmoscope and histological evidence, we demonstrate that significant photoreceptor damage can occur during development in the image-forming anterior lateral eyes of the jumping spider Phidippus audax. Furthermore, we find that this photoreceptor degeneration is exacerbated by inadequate nutrition and is most prevalent in the high-density region of the retina, like AMD in humans. This suggests that similar to those in vertebrates, the retinas in P. audax are challenged to meet high-energy cellular demands.
Collapse
|
16
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
17
|
Friedrich M. Coming into clear sight at last: Ancestral and derived events during chelicerate visual system development. Bioessays 2022; 44:e2200163. [DOI: 10.1002/bies.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences Wayne State University Detroit Michigan USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
18
|
Yilmaz A, Hempel de Ibarra N, Kelber A. High diversity of arthropod colour vision: from genes to ecology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210273. [PMID: 36058249 PMCID: PMC9441235 DOI: 10.1098/rstb.2021.0273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Colour vision allows animals to use the information contained in the spectrum of light to control important behavioural decisions such as selection of habitats, food or mates. Among arthropods, the largest animal phylum, we find completely colour-blind species as well as species with up to 40 different opsin genes or more than 10 spectral types of photoreceptors, we find a large diversity of optical methods shaping spectral sensitivity, we find eyes with different colour vision systems looking into the dorsal and ventral hemisphere, and species in which males and females see the world in different colours. The behavioural use of colour vision shows an equally astonishing diversity. Only the neural mechanisms underlying this sensory ability seems surprisingly conserved-not only within the phylum, but even between arthropods and the other well-studied phylum, chordates. The papers in this special issue allow a glimpse into the colourful world of arthropod colour vision, and besides giving an overview this introduction highlights how much more research is needed to fill in the many missing pieces of this large puzzle. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology - Functional Zoology, Lund University, Lund 22362, Sweden
| | | | - Almut Kelber
- Department of Biology - Functional Zoology, Lund University, Lund 22362, Sweden
| |
Collapse
|
19
|
Chamberland L, Agnarsson I, Quayle IL, Ruddy T, Starrett J, Bond JE. Biogeography and eye size evolution of the ogre-faced spiders. Sci Rep 2022; 12:17769. [PMID: 36273015 PMCID: PMC9588044 DOI: 10.1038/s41598-022-22157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
Net-casting spiders (Deinopidae) comprise a charismatic family with an enigmatic evolutionary history. There are 67 described species of deinopids, placed among three genera, Deinopis, Menneus, and Asianopis, that are distributed globally throughout the tropics and subtropics. Deinopis and Asianopis, the ogre-faced spiders, are best known for their giant light-capturing posterior median eyes (PME), whereas Menneus does not have enlarged PMEs. Molecular phylogenetic studies have revealed discordance between morphology and molecular data. We employed a character-rich ultra-conserved element (UCE) dataset and a taxon-rich cytochrome-oxidase I (COI) dataset to reconstruct a genus-level phylogeny of Deinopidae, aiming to investigate the group's historical biogeography, and examine PME size evolution. Although the phylogenetic results support the monophyly of Menneus and the single reduction of PME size in deinopids, these data also show that Deinopis is not monophyletic. Consequently, we formally transfer 24 Deinopis species to Asianopis; the transfers comprise all of the African, Australian, South Pacific, and a subset of Central American and Mexican species. Following the divergence of Eastern and Western deinopids in the Cretaceous, Deinopis/Asianopis dispersed from Africa, through Asia and into Australia with its biogeographic history reflecting separation of Western Gondwana as well as long-distance dispersal events.
Collapse
Affiliation(s)
- Lisa Chamberland
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Ingi Agnarsson
- grid.14013.370000 0004 0640 0021Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland
| | - Iris L. Quayle
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Tess Ruddy
- grid.267778.b0000 0001 2290 5183Vassar College, Poughkeepsie, NY 12604 USA
| | - James Starrett
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Jason E. Bond
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
20
|
Lavin R, Rathore S, Bauer B, Disalvo J, Mosley N, Shearer E, Elia Z, Cook TA, Buschbeck EK. EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification. Front Cell Dev Biol 2022; 10:964746. [PMID: 36092740 PMCID: PMC9459020 DOI: 10.3389/fcell.2022.964746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.
Collapse
Affiliation(s)
- Ryan Lavin
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Shubham Rathore
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Bauer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joe Disalvo
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nick Mosley
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Evan Shearer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Zachary Elia
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elke K. Buschbeck
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Elke K. Buschbeck,
| |
Collapse
|
21
|
Janssen R, Eriksson BJ. Embryonic expression patterns of Wnt genes in the RTA-clade spider Cupiennius salei. Gene Expr Patterns 2022; 44:119247. [PMID: 35472494 DOI: 10.1016/j.gep.2022.119247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Spiders represent widely used model organisms for chelicerate and even arthropod development and evolution. Wnt genes are important and evolutionary conserved factors that control and regulate numerous developmental processes. Recent studies comprehensively investigated the complement and expression of spider Wnt genes revealing conserved as well as diverged aspects of their expression and thus (likely) function among different groups of spiders representing Mygalomorphae (tarantulas), and both main groups of Araneae (true spiders) (Haplogynae/Synspermiata and Entelegynae). The allegedly most modern/derived group of entelegyne spiders is represented by the RTA-clade of which no comprehensive data on Wnt expression were available prior to this study. Here, we investigated the embryonic expression of all Wnt genes of the RTA-clade spider Cupiennius salei. We found that most of the Wnt expression patterns are conserved between Cupiennius and other spiders, especially more basally branching species. Surprisingly, most differences in Wnt gene expression are seen in the common model spider Parasteatoda tepidariorum (a non-RTA clade entelegyne species). These results show that data and conclusions drawn from research on one member of a group of animals (or any other organism) cannot necessarily be extrapolated to the group as a whole, and instead highlight the need for comprehensive taxon sampling.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236, Uppsala, Sweden.
| | - Bo Joakim Eriksson
- Department für Neurowissenschaften und Entwicklungsbiologie, Universität Wien, Djerassiplatz 1, A-1030, Vienna, Austria
| |
Collapse
|
22
|
Janeschik M, Schacht MI, Platten F, Turetzek N. It takes Two: Discovery of Spider Pax2 Duplicates Indicates Prominent Role in Chelicerate Central Nervous System, Eye, as Well as External Sense Organ Precursor Formation and Diversification After Neo- and Subfunctionalization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.810077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Paired box genes are conserved across animals and encode transcription factors playing key roles in development, especially neurogenesis. Pax6 is a chief example for functional conservation required for eye development in most bilaterian lineages except chelicerates. Pax6 is ancestrally linked and was shown to have interchangeable functions with Pax2. Drosophila melanogaster Pax2 plays an important role in the development of sensory hairs across the whole body. In addition, it is required for the differentiation of compound eyes, making it a prime candidate to study the genetic basis of arthropod sense organ development and diversification, as well as the role of Pax genes in eye development. Interestingly, in previous studies identification of chelicerate Pax2 was either neglected or failed. Here we report the expression of two Pax2 orthologs in the common house spider Parasteatoda tepidariorum, a model organism for chelicerate development. The two Pax2 orthologs most likely arose as a consequence of a whole genome duplication in the last common ancestor of spiders and scorpions. Pax2.1 is expressed in the peripheral nervous system, including developing lateral eyes and external sensilla, as well as the ventral neuroectoderm of P. tepidariorum embryos. This not only hints at a conserved dual role of Pax2/5/8 orthologs in arthropod sense organ development but suggests that in chelicerates, Pax2 could have acquired the role usually played by Pax6. For the other paralog, Pt-Pax2.2, expression was detected in the brain, but not in the lateral eyes and the expression pattern associated with sensory hairs differs in timing, pattern, and strength. To achieve a broader phylogenetic sampling, we also studied the expression of both Pax2 genes in the haplogyne cellar spider Pholcus phalangioides. We found that the expression difference between paralogs is even more extreme in this species, since Pp-Pax2.2 shows an interesting expression pattern in the ventral neuroectoderm while the expression in the prosomal appendages is strictly mesodermal. This expression divergence indicates both sub- and neofunctionalization after Pax2 duplication in spiders and thus presents an opportunity to study the evolution of functional divergence after gene duplication and its impact on sense organ diversification.
Collapse
|
23
|
Regulation of Eye Determination and Regionalization in the Spider Parasteatoda tepidariorum. Cells 2022; 11:cells11040631. [PMID: 35203282 PMCID: PMC8870698 DOI: 10.3390/cells11040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Animal visual systems are enormously diverse, but their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Spiders are particular masters of visual system innovation, and offer an excellent opportunity to study the evolution of animal eyes. Several RDGs have been identified in spider eye primordia, but their interactions and regulation remain unclear. From our knowledge of RDG network regulation in Drosophila melanogaster, we hypothesize that orthologs of Pax6, eyegone, Wnt genes, hh, dpp, and atonal could play important roles in controlling eye development in spiders. We analyzed the expression of these genes in developing embryos of the spider Parasteatodatepidariorum, both independently and in relation to the eye primordia, marked using probes for the RDG sine oculis. Our results support conserved roles for Wnt genes in restricting the size and position of the eye field, as well as for atonal initiating photoreceptor differentiation. However, we found no strong evidence for an upstream role of Pax6 in eye development, despite its label as a master regulator of animal eye development; nor do eyg, hh or dpp compensate for the absence of Pax6. Conversely, our results indicate that hh may work with Wnt signaling to restrict eye growth, a role similar to that of Sonichedgehog (Shh) in vertebrates.
Collapse
|
24
|
Dal Poggetto VF, Bosia F, Greco G, Pugno NM. Prey Impact Localization Enabled by Material and Structural Interaction in Spider Orb Webs. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vinícius F. Dal Poggetto
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
| | | | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
25
|
Glenszczyk M, Outomuro D, Gregorič M, Kralj-Fišer S, Schneider JM, Nilsson DE, Morehouse NI, Tedore C. The jumping spider Saitis barbipes lacks a red photoreceptor to see its own sexually dimorphic red coloration. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2021; 109:6. [PMID: 34894274 PMCID: PMC8665921 DOI: 10.1007/s00114-021-01774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022]
Abstract
Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter "spider-greens" to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.
Collapse
Affiliation(s)
- Mateusz Glenszczyk
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.,Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - David Outomuro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Matjaž Gregorič
- Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Novi trg 2, Ljubljana, Slovenia
| | - Simona Kralj-Fišer
- Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Novi trg 2, Ljubljana, Slovenia
| | - Jutta M Schneider
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
| | - Dan-Eric Nilsson
- Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Cynthia Tedore
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| |
Collapse
|
26
|
Abstract
Morehouse provides an overview of spider vision, with an emphasis on the two main eye types found in spiders. Commonalities of form and function among spiders are discussed but also the huge diversity of eyes that are adapted to various ecological niches.
Collapse
Affiliation(s)
- Nathan Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
27
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
28
|
Echeverri SA, Miller AE, Chen J, McQueen EW, Plakke M, Spicer M, Hoke KL, Stoddard MC, Morehouse NI. How signaling geometry shapes the efficacy and evolution of animal communication systems. Integr Comp Biol 2021; 61:787-813. [PMID: 34021338 DOI: 10.1093/icb/icab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animal communication is inherently spatial. Both signal transmission and signal reception have spatial biases-involving direction, distance and position-that interact to determine signaling efficacy. Signals, be they visual, acoustic, or chemical, are often highly directional. Likewise, receivers may only be able to detect signals if they arrive from certain directions. Alignment between these directional biases is therefore critical for effective communication, with even slight misalignments disrupting perception of signaled information. In addition, signals often degrade as they travel from signaler to receiver, and environmental conditions that impact transmission can vary over even small spatiotemporal scales. Thus, how animals position themselves during communication is likely to be under strong selection. Despite this, our knowledge regarding the spatial arrangements of signalers and receivers during communication remains surprisingly coarse for most systems. We know even less about how signaler and receiver behaviors contribute to effective signaling alignment over time, or how signals themselves may have evolved to influence and/or respond to these aspects of animal communication. Here, we first describe why researchers should adopt a more explicitly geometric view of animal signaling, including issues of location, direction, and distance. We then describe how environmental and social influences introduce further complexities to the geometry of signaling. We discuss how multimodality offers new challenges and opportunities for signalers and receivers. We conclude with recommendations and future directions made visible by attention to the geometry of signaling.
Collapse
Affiliation(s)
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Jason Chen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biology, Emory University, Atlanta, GA
| | - Eden W McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Melissa Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Michelle Spicer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Biology Department, University of Puget Sound, Tacoma, WA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
29
|
Bruce M, Daye D, Long SM, Winsor AM, Menda G, Hoy RR, Jakob EM. Attention and distraction in the modular visual system of a jumping spider. J Exp Biol 2021; 224:239722. [PMID: 33914032 DOI: 10.1242/jeb.231035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022]
Abstract
Animals must selectively attend to relevant stimuli and avoid being distracted by unimportant stimuli. Jumping spiders (Salticidae) do this by coordinating eyes with different capabilities. Objects are examined by a pair of high-acuity principal eyes, whose narrow field of view is compensated for by retinal movements. The principal eyes overlap in field of view with motion-sensitive anterior-lateral eyes (ALEs), which direct their gaze to new stimuli. Using a salticid-specific eyetracker, we monitored the gaze direction of the principal eyes as they examined a primary stimulus. We then presented a distractor stimulus visible only to the ALEs and observed whether the principal eyes reflexively shifted their gaze to it or whether this response was flexible. Whether spiders redirected their gaze to the distractor depended on properties of both the primary and distractor stimuli. This flexibility suggests that higher-order processing occurs in the management of the attention of the principal eyes.
Collapse
Affiliation(s)
- Margaret Bruce
- Graduate Program in Organismic and Evolutionary Biology, French Hall, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Daniel Daye
- Biology Department, 220 Morrill 3, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Skye M Long
- Biology Department, 220 Morrill 3, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alex M Winsor
- Graduate Program in Organismic and Evolutionary Biology, French Hall, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gil Menda
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ronald R Hoy
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth M Jakob
- Biology Department, 220 Morrill 3, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
30
|
Schoenemann B. An overview on trilobite eyes and their functioning. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101032. [PMID: 33711677 DOI: 10.1016/j.asd.2021.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Great progress has been made during the last decades in understanding visual systems of arthropods living today. Thus it seems worthwhile to review what is known about structure and function of the eyes of trilobites, the most important group of marine arthropods during the Paleozoic. There are three types of compound eyes in trilobites. The oldest and most abundant is the so-called holochroal eye. The sensory system represents a typical apposition eye, and all units are covered by one cornea in common. The so-called abathochroal eye (only in eodiscid trilobites) consists of small lenses, each individually covered by a thin cuticular cornea. The schizochroal eye is represented just in the suborder Phacopina, and probably is a highly specialized visual system. We discuss the calcitic character of trilobite lenses, the phylogenetic relevance of the existence of crystalline cones in trilobites, and consider adaptations of trilobite's compound eyes to different ecological constraints. The aim of this article is to give a resumé of what is known so far about trilobite vision, and to open perspectives to what still might be done.
Collapse
Affiliation(s)
- Brigitte Schoenemann
- University of Cologne, Zoology Department (Neurobiology/Animal Physiology and Biology Education), Herbert-Lewin-Straße 10, D-50931, Cologne, Germany.
| |
Collapse
|
31
|
Goedeker SJ, Wrynn TE, Gall BG. Orientation behavior of riparian long-jawed orb weavers ( Tetragnatha elongata) after displacement over water. Ecol Evol 2021; 11:2899-2906. [PMID: 33767845 PMCID: PMC7981236 DOI: 10.1002/ece3.7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
Many organisms possess remarkable abilities to orient and navigate within their environment to achieve goals. We examined the orientation behavior of a riparian spider, the Long-Jawed Orb Weaver (Tetragnatha elongata), when displaced onto the surface of the water. When displaced, spiders move with alternating movements of the first three leg pairs while dragging the most posterior pair of legs behind them. In addition, spiders often perform a series of orientation behaviors consisting of concentric circles before ultimately choosing a path of travel directly toward the nearest point to land. While the number of orientation behaviors increased with increasing distance from shore, distance from shore had no effect on the direction of travel, which was significantly oriented toward the closest shoreline. These results indicate a complex ability to orient toward land when displaced onto water, possibly to decrease the amount of time on the surface of the water and thus decrease predation risk.
Collapse
|
32
|
Gainett G, Ballesteros JA, Kanzler CR, Zehms JT, Zern JM, Aharon S, Gavish-Regev E, Sharma PP. Systemic paralogy and function of retinal determination network homologs in arachnids. BMC Genomics 2020; 21:811. [PMID: 33225889 PMCID: PMC7681978 DOI: 10.1186/s12864-020-07149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Arachnids are important components of cave ecosystems and display many examples of troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is known about how the eyes of arachnids are specified genetically, let alone the mechanisms for eye reduction and loss in troglomorphic arachnids. Additionally, duplication of Retinal Determination Gene Network (RDGN) homologs in spiders has convoluted functional inferences extrapolated from single-copy homologs in pancrustacean models. RESULTS We investigated a sister species pair of Israeli cave whip spiders, Charinus ioanniticus and C. israelensis (Arachnopulmonata, Amblypygi), of which one species has reduced eyes. We generated embryonic transcriptomes for both Amblypygi species, and discovered that several RDGN homologs exhibit duplications. We show that duplication of RDGN homologs is systemic across arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific phenomenon. A differential gene expression (DGE) analysis comparing the expression of RDGN genes in field-collected embryos of both species identified candidate RDGN genes involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic inference of expression patterns with functional experiments, we interrogated the function of three candidate RDGN genes identified from DGE using RNAi in the spider Parasteatoda tepidariorum. We provide functional evidence that one of these paralogs, sine oculis/Six1 A (soA), is necessary for the development of all arachnid eye types. CONCLUSIONS Our work establishes a foundation to investigate the genetics of troglomorphic adaptations in cave arachnids, and links differential gene expression to an arthropod eye phenotype for the first time outside of Pancrustacea. Our results support the conservation of at least one RDGN component across Arthropoda and provide a framework for identifying the role of gene duplications in generating arachnid eye diversity.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Charlotte R Kanzler
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John M Zern
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
33
|
Mitchell S, Sole C, Lyle R. Teratological cases of the ocular patterns in the South African endemic trapdoor spider genus Stasimopus Simon (1892) (Araneae, Mygalomorphae, Stasimopidae). AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2020.1842241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shannon Mitchell
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Catherine Sole
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Robin Lyle
- Agricultural Research Council – Plant Health and Protection, Biosystematics, Pretoria, South Africa
| |
Collapse
|
34
|
Abstract
For centuries, the eye has fascinated scientists and philosophers alike, and as a result the visual system has always been at the forefront of integrating cutting-edge technology in research. We are again at a turning point at which technical advances have expanded the range of organisms we can study developmentally and deepened what we can learn. In this new era, we are finally able to understand eye development in animals across the phylogenetic tree. In this Review, we highlight six areas in comparative visual system development that address questions that are important for understanding the developmental basis of evolutionary change. We focus on the opportunities now available to biologists to study the developmental genetics, cell biology and morphogenesis that underlie the incredible variation of visual organs found across the Metazoa. Although decades of important work focused on gene expression has suggested homologies and potential evolutionary relationships between the eyes of diverse animals, it is time for developmental biologists to move away from this reductive approach. We now have the opportunity to celebrate the differences and diversity in visual organs found across animal development, and to learn what it can teach us about the fundamental principles of biological systems and how they are built.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
Foley S, Saranathan V, Piel WH. The evolution of coloration and opsins in tarantulas. Proc Biol Sci 2020; 287:20201688. [PMID: 32962546 DOI: 10.1098/rspb.2020.1688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tarantulas paradoxically exhibit a diverse palette of vivid coloration despite their crepuscular to nocturnal habits. The evolutionary origin and maintenance of these colours remains mysterious. In this study, we reconstructed the ancestral states of both blue and green coloration in tarantula setae, and tested how these colours correlate with presence of stridulation, urtication and arboreality. Green coloration has probably evolved at least eight times, and blue coloration is probably an ancestral condition that appears to be lost more frequently than gained. While our results indicate that neither colour correlates with the presence of stridulation or urtication, the evolution of green coloration appears to depend upon the presence of arboreality, suggesting that it ptobably originated for and functions in crypsis through substrate matching among leaves. We also constructed a network of opsin homologues across tarantula transcriptomes. Despite their crepuscular tendencies, tarantulas express a considerable diversity of opsin genes-a finding that contradicts current consensus that tarantulas have poor colour vision on the basis of low opsin diversity. Overall, our findings raise the possibility that blue coloration could have ultimately evolved via sexual selection and perhaps proximately be used in mate choice or predation avoidance due to possible sex differences in mate-searching.
Collapse
Affiliation(s)
- Saoirse Foley
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore.,Division of Science, Yale-NUS College, 10 College Avenue West, Singapore 138609, Republic of Singapore
| | - Vinodkumar Saranathan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore.,Division of Science, Yale-NUS College, 10 College Avenue West, Singapore 138609, Republic of Singapore.,Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Republic of Singapore.,NUS Nanoscience and Nanotechnology Initiative (NUSNNI-NanoCore), National University of Singapore, Singapore 117581, Republic of Singapore
| | - William H Piel
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore.,Division of Science, Yale-NUS College, 10 College Avenue West, Singapore 138609, Republic of Singapore.,Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Republic of Singapore
| |
Collapse
|
36
|
Long SM. Variations on a theme: Morphological variation in the secondary eye visual pathway across the order of Araneae. J Comp Neurol 2020; 529:259-280. [DOI: 10.1002/cne.24945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Skye M. Long
- Biology Department University Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
37
|
Wilts BD, Otto J, Stavenga DG. Ultra-dense, curved, grating optics determines peacock spider coloration. NANOSCALE ADVANCES 2020; 2:1122-1127. [PMID: 36133071 PMCID: PMC9416901 DOI: 10.1039/c9na00494g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/20/2020] [Indexed: 05/23/2023]
Abstract
Controlling light through photonic nanostructures is important for everyday optical components, from spectrometers to data storage and readout. In nature, nanostructured materials produce wavelength-dependent colors that are key for visual communication across animals. Here, we investigate two Australian peacock spiders, which court females in complex dances with either iridescent color patterns (Maratus robinsoni) or an approximately angle-independent blue coloration (M. nigromaculatus). Using light microscopy, FIB-SEM imaging, imaging scatterometry, and optical modeling, we show that both color displays originate from nanogratings on structured 3D surfaces. The difference in angle-dependency of the coloration results from a combination of the local scale shape and the nanograting period. The iridescence of M. robinsoni arises from ordered gratings on locally flat substrates, while the more stable blue colors of M. nigromaculatus originate from ultra-dense, curved gratings with multiscale disorder. Our results shed light on the design principle of the peacock spiders' scales and could inspire novel dispersive components, e.g. used in spectroscopic applications.
Collapse
Affiliation(s)
- Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 CH-1700 Fribourg Switzerland
| | - Jürgen Otto
- Grevillea Court 19 Grevillea Avenue St. Ives New South Wales 2075 Australia
| | - Doekele G Stavenga
- Zernike Institute for Advanced Materials, University of Groningen NL-9747AG Groningen The Netherlands
| |
Collapse
|
38
|
Steinhoff POM, Uhl G, Harzsch S, Sombke A. Visual pathways in the brain of the jumping spider Marpissa muscosa. J Comp Neurol 2020; 528:1883-1902. [PMID: 31960432 DOI: 10.1002/cne.24861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/29/2023]
Abstract
Some animals have evolved task differentiation among their eyes. A particular example is spiders, where most species have eight eyes, of which two (the principal eyes) are used for object discrimination, whereas the other three pairs (secondary eyes) detect movement. In the ctenid spider Cupiennius salei, these two eye types correspond to two visual pathways in the brain. Each eye is associated with its own first- and second-order visual neuropil. The second-order neuropils of the principal eyes are connected to the arcuate body, whereas the second-order neuropils of the secondary eyes are linked to the mushroom body. We explored the principal- and secondary eye visual pathways of the jumping spider Marpissa muscosa, in which size and visual fields of the two eye types are considerably different. We found that the connectivity of the principal eye pathway is the same as in C. salei, while there are differences in the secondary eye pathways. In M. muscosa, all secondary eyes are connected to their own first-order visual neuropils. The first-order visual neuropils of the anterior lateral and posterior lateral eyes are connected with a second-order visual neuropil each and an additional shared one (L2). In the posterior median eyes, the axons of their first-order visual neuropils project directly to the arcuate body, suggesting that the posterior median eyes do not detect movement. The L2 might function as an upstream integration center enabling faster movement decisions.
Collapse
Affiliation(s)
- Philip O M Steinhoff
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Gabriele Uhl
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Andy Sombke
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Tapia F, Olivares J, Schmachtenberg O. The visual spectral sensitivity of the Chilean recluse spider Loxosceles laeta. ACTA ACUST UNITED AC 2020; 223:jeb.217133. [PMID: 31852757 DOI: 10.1242/jeb.217133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 11/20/2022]
Abstract
Spiders are a large group of arthropods and nearly omnipresent in warm and temperate climates. They rely on tactile and visual information to hunt and breed, but compared with their mechanical senses, little is known about their visual systems. In this study, we analyzed the visual spectral sensitivity of the Chilean recluse spider Loxosceles laeta, a synanthropic species posing a significant threat to humans, using electroretinogram recordings of its three eye types and open field tests with localized chromatic illumination for behavioral analysis. The electroretinogram displayed two sensitivity peaks in the ultraviolet and green ranges, and no differences were observed between the three eye types and between male and female specimens. Selective chromatic adaptation reduced overall light sensitivity, but did not support the expression of more than one type of rhodopsin in photoreceptors. The open field tests revealed a preference for corners over side areas, and an increased exploration of open field areas illuminated by shorter wavelength (violet to green) light compared with non-illuminated areas, while no behavioral responses to red and near-infrared light were observed. These data suggest that L. laeta has monochromatic vision without spectral specializations in its three secondary eye pairs.
Collapse
Affiliation(s)
- Felipe Tapia
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile.,PhD Program in Neuroscience, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Jesús Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| |
Collapse
|
40
|
Schoenemann B, Poschmann M, Clarkson ENK. Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Sci Rep 2019; 9:17797. [PMID: 31780700 PMCID: PMC6882788 DOI: 10.1038/s41598-019-53590-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Sea scorpions (Eurypterida, Chelicerata) of the Lower Devonian (~400 Mya) lived as large, aquatic predators. The structure of modern chelicerate eyes is very different from that of mandibulate compound eyes [Mandibulata: Crustacea and Tracheata (Hexapoda, such as insects, and Myriapoda)]. Here we show that the visual system of Lower Devonian (~400 Mya) eurypterids closely matches that of xiphosurans (Xiphosura, Chelicerata). Modern representatives of this group, the horseshoe crabs (Limulidae), have cuticular lens cylinders and usually also an eccentric cell in their sensory apparatus. This strongly suggests that the xiphosuran/eurypterid compound eye is a plesiomorphic structure with respect to the Chelicerata, and probably ancestral to that of Euchelicerata, including Eurypterida, Arachnida and Xiphosura. This is supported by the fact that some Palaeozoic scorpions also possessed compound eyes similar to those of eurypterids. Accordingly, edge enhancement (lateral inhibition), organised by the eccentric cell, most useful in scattered light-conditions, may be a very old mechanism, while the single-lens system of arachnids is possibly an adaptation to a terrestrial life-style.
Collapse
Affiliation(s)
- Brigitte Schoenemann
- University of Cologne, Zoology Department/ Neurobiology/Animal Physiology/Institute of Biology Education, Herbert-Lewin-Straße 10, D-50931, Cologne, Germany.
| | - Markus Poschmann
- Generaldirektion Kulturelles Erbe RLP, Direktion Landesarchäologie/Erdgeschichte, Niederberger Höhe 1, D-56077, Koblenz, Germany
| | - Euan N K Clarkson
- University of Edinburgh, Grant Institute, School of Geosciences, West Mains Road, Edinburgh, EH9 3JW, Scotland
| |
Collapse
|
41
|
Tyagi K, Kumar V, Kundu S, Pakrashi A, Prasad P, Caleb JTD, Chandra K. Identification of Indian Spiders through DNA barcoding: Cryptic species and species complex. Sci Rep 2019; 9:14033. [PMID: 31575965 PMCID: PMC6773733 DOI: 10.1038/s41598-019-50510-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Spiders are mega diverse arthropods and play an important role in the ecosystem. Identification of this group is challenging due to their cryptic behavior, sexual dimorphism, and unavailability of taxonomic keys for juveniles. To overcome these obstacles, DNA barcoding plays a pivotal role in spider identification throughout the globe. This study is the first large scale attempt on DNA barcoding of spiders from India with 101 morphospecies of 72 genera under 21 families, including five endemic species and holotypes of three species. A total of 489 barcodes was generated and analyzed, among them 85 novel barcodes of 22 morphospecies were contributed to the global database. The estimated delimitation threshold of the Indian spiders was 2.6% to 3.7% K2P corrected pairwise distance. The multiple species delimitation methods (BIN, ABGD, GMYC and PTP) revealed a total of 107 molecular operational taxonomic units (MOTUs) for 101 morphospecies. We detected more than one MOTU in 11 morphospecies with discrepancies in genetic distances and tree topologies. Cryptic diversity was detected in Pardosa pusiola, Cyclosa spirifera, and Heteropoda venatoria. The intraspecies distances which were as large as our proposed delimitation threshold were observed in Pardosa sumatrana, Thiania bhamoensis, and Cheiracanthium triviale. Further, shallow genetic distances were detected in Cyrtophora cicatrosa, Hersilia savignyi, Argiope versicolor, Phintella vittata, and Oxyopes birmanicus. Two morphologically distinguished species (Plexippus paykulli and Plexippus petersi) showed intra-individual variation within their DNA barcode data. Additionally, we reinstate the original combination for Linyphia sikkimensis based on both morphology and DNA barcoding. These data show that DNA barcoding is a valuable tool for specimen identification and species discovery of Indian spiders.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Priya Prasad
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - John T D Caleb
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
42
|
Growing tiny eyes: How juvenile jumping spiders retain high visual performance in the face of size limitations and developmental constraints. Vision Res 2019; 160:24-36. [DOI: 10.1016/j.visres.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
|
43
|
Nagata T, Arikawa K, Kinoshita M. Photoreceptor projection from a four‐tiered retina to four distinct regions of the first optic ganglion in a jumping spider. J Comp Neurol 2019; 527:1348-1361. [DOI: 10.1002/cne.24584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Takashi Nagata
- Laboratory of NeuroethologySchool of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village Hayama Japan
| | - Kentaro Arikawa
- Laboratory of NeuroethologySchool of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village Hayama Japan
| | - Michiyo Kinoshita
- Laboratory of NeuroethologySchool of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village Hayama Japan
| |
Collapse
|
44
|
Girard MB, Kasumovic MM, Elias DO. The role of red coloration and song in peacock spider courtship: insights into complex signaling systems. Behav Ecol 2018. [DOI: 10.1093/beheco/ary128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Madeline B Girard
- Department of Environmental Science, Policy and Management, University of California, Mulford Hall, Berkeley, CA, USA
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Biological Sciences Building (D26) University of New South Wales, Kensington, Sydney, Australia
| | - Damian O Elias
- Department of Environmental Science, Policy and Management, University of California, Mulford Hall, Berkeley, CA, USA
| |
Collapse
|