1
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
2
|
Feng Z, Liu N, Bu Y, Zhang G, Wang B, Gong Y. Promoter of Vegetable Pea PsPIP2-4 Responds to Abiotic Stresses in Transgenic Tobacco. Int J Mol Sci 2024; 25:13574. [PMID: 39769337 PMCID: PMC11676869 DOI: 10.3390/ijms252413574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the PIP promoter in vegetable pea. In the present study, one novel promoter of PsPIP2-4 which shared high similarity to the PIP2-type AQPs from other plants, was isolated. Quantitative real-time PCR (qRT-PCR) assays suggested that PsPIP2-4 was predominantly expressed in leaves and abundantly induced by abiotic stress treatments (polyethylene glycol (PEG) 6000, NaCl, and methyl jasmonate (MeJA)). Further, the promoter activity of PsPIP2-4 was verified in transgenic tobacco plants. Beta-glucuronidase (GUS) staining driven by the PsPIP2-4 promoter confirmed that it was mainly detected in the leaves of transgenic seedlings, especially in the guard cells. Exposure of transgenic seedlings to various environmental stimuli proved that the promoter activity of PsPIP2-4 was abundantly strengthened by osmotic, salt, and MeJA stresses. This research provides one stress-inducible promoter enabling targeted gene expression under abiotic stresses and demonstrates its usefulness in the genetic improvement of plant stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaming Gong
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.F.); (N.L.); (Y.B.); (G.Z.); (B.W.)
| |
Collapse
|
3
|
Rajput S, Gautam D, Vats A, Roshan M, Goyal P, Rana C, S M P, Ludri A, De S. Aquaporin (AQP) gene family in Buffalo and Goat: Molecular characterization and their expression analysis. Int J Biol Macromol 2024; 280:136145. [PMID: 39353522 DOI: 10.1016/j.ijbiomac.2024.136145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Aquaporins (AQPs) are essential membrane proteins facilitating water and small solute transport across cell membranes. Mammals have approximately 13 paralogs of AQPs that may have evolved through gene duplication events. These genes are present in two separate clusters within the genome. In the present study, comprehensive 13 AQP genes (AQP0-12) were cloned and characterized in buffalo and goat. The protein coding region of AQPs in both species ranged from 729 to 990 bps, corresponding to 263-330 amino acid residues. Two important residues including NPA motifs and ar/R selectivity filter were found conserved in all AQPs, except for AQP7, 11 and 12. AQP0, 2, 4, 5, 7, 9, 12 showed tissue-restricted expression, whereas AQP1, 3, 8, and 11 exhibited ubiquitous expression across several tissues. AQP10 was identified as a pseudogene in all artiodactyls. Transcript variants were identified in buffalo and goat, where some variants of goat AQP5 and 6 lacked important motifs. Evolutionary analysis indicated positive selection at or near the NPA motifs and ar/R selectivity filter of AQP0, 3, 6, 7, and 10 that may alter its structure and function. This study is crucial for future investigations aiming to study the molecular mechanisms of AQPs in response to various physiological conditions.
Collapse
Affiliation(s)
- Shiveeli Rajput
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Ashutosh Vats
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Priyanka Goyal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Chanchal Rana
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Payal S M
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Ashutosh Ludri
- Department of Physiology, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Sachinandan De
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India.
| |
Collapse
|
4
|
Cai Y, Hou B, Fabrick JA, Yang Y, Wu Y. The role of aquaporins in osmotic cell lysis induced by Bacillus thuringiensis Cry1Ac toxin in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106068. [PMID: 39277415 DOI: 10.1016/j.pestbp.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/17/2024]
Abstract
The insecticidal crystalline (Cry) and vegetative insecticidal (Vip) proteins derived from Bacillus thuringiensis (Bt) are used globally to manage insect pests, including the cotton bollworm, Helicoverpa armigera, one of the world's most damaging agricultural pests. Cry proteins bind to the ATP-binding cassette transporter C2 (ABCC2) receptor on the membrane surface of larval midgut cells, resulting in Cry toxin pores, and ultimately leading to cell swelling and/or lysis. Insect aquaporin (AQP) proteins within the membranes of larval midgut cells are proposed to allow the rapid influx of water into enterocytes following the osmotic imbalance triggered by the formation of Cry toxin pores. Here, we examined the involvement of H. armigera AQPs in Cry1Ac-induced osmotic cell swelling. We identified and characterized eight H. armigera AQPs and demonstrated that five are functional water channel proteins. Three of these (HaDrip1, HaPrip, and HaEglp1) were found to be expressed in the larval midgut. Xenopus laevis oocytes co-expressing the known Cry1Ac receptor HaABCC2 and each of the three HaAQPs displayed abnormal morphology and were lysed following exposure to Cry1Ac, suggesting a rapid influx of water was induced after Cry1Ac pore formation. In contrast, oocytes producing either HaABCC2 or HaAQP alone failed to swell or lyse after treatment with Cry1Ac, implying that both Cry1Ac pore formation and HaAQP function are needed for osmotic cell swelling. However, CRISPR/Cas9-mediated knockout of any one of the three HaAQP genes failed to cause significant changes in susceptibility to the Bt toxins Cry1Ac, Cry2Ab, or Vip3Aa. Our findings suggest that the multiple HaAQPs produced in larval midgut cells compensate for each other in allowing for the rapid influx of water in H. armigera midgut cells following Cry toxin pore formation, and that mutations affecting a single HaAQP are unlikely to confer resistance to Bt proteins.
Collapse
Affiliation(s)
- Yanjun Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Bofeng Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Irisarri I, Lorente-Martínez H, Strassert JFH, Agorreta A, Zardoya R, San Mauro D, de Vries J. Early Diversification of Membrane Intrinsic Proteins (MIPs) in Eukaryotes. Genome Biol Evol 2024; 16:evae164. [PMID: 39058319 PMCID: PMC11316224 DOI: 10.1093/gbe/evae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, 20146 Hamburg, Germany
| | - Héctor Lorente-Martínez
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jürgen F H Strassert
- Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ainhoa Agorreta
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| | - Diego San Mauro
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Yepes-Molina L, Teruel JA, Johanson U, Carvajal M. Brassica oleracea L. var. italica Aquaporin Reconstituted Proteoliposomes as Nanosystems for Resveratrol Encapsulation. Int J Mol Sci 2024; 25:1987. [PMID: 38396666 PMCID: PMC10888208 DOI: 10.3390/ijms25041987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Aquaporins (AQPs), membrane proteins responsible for facilitating water transport, found in plant membrane vesicles (MV), have been related to the functionality and stability of MV. We focused on AQPs obtained from broccoli, as they show potential for biotechnological applications. To gain further insight into the role of AQPs in MV, we describe the heterologous overexpression of two broccoli AQPs (BoPIP1;2 and BoPIP2;2) in Pichia pastoris, resulting in their purification with high yield (0.14 and 0.99 mg per gram cells for BoPIP1;2 and BoPIP2;2). We reconstituted AQPs in liposomes to study their functionality, and the size of proteoliposomes did not change concerning liposomes. BoPIP2;2 facilitated water transport, which was preserved for seven days at 4 °C and at room temperature but not at 37 °C. BoPIP2;2 was incorporated into liposomes to encapsulate a resveratrol extract, resulting in increased entrapment efficiency (EE) compared to conventional liposomes. Molecular docking was utilized to identify binding sites in PIP2s for resveratrol, highlighting the role of aquaporins in the improved EE. Moreover, interactions between plant AQP and human integrin were shown, which may increase internalization by the human target cells. Our results suggest AQP-based alternative encapsulation systems can be used in specifically targeted biotechnological applications.
Collapse
Affiliation(s)
- Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), CSIC, Campus de Espinardo, E-30100 Murcia, Spain;
| | - José A. Teruel
- Department of Biochemistry and Molecular Biology, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain;
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), CSIC, Campus de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
7
|
Imaizumi G, Ushio K, Nishihara H, Braasch I, Watanabe E, Kumagai S, Furuta T, Matsuzaki K, Romero MF, Kato A, Nagashima A. Functional Divergence in Solute Permeability between Ray-Finned Fish-Specific Paralogs of aqp10. Genome Biol Evol 2024; 16:evad221. [PMID: 38039384 PMCID: PMC10769510 DOI: 10.1093/gbe/evad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Aquaporin (Aqp) 10 is a member of the aquaglyceroporin subfamily of water channels, and human Aqp10 is permeable to solutes such as glycerol, urea, and boric acid. Tetrapods have a single aqp10 gene, whereas ray-finned fishes have paralogs of this gene through tandem duplication, whole-genome duplication, and subsequent deletion. A previous study on Aqps in the Japanese pufferfish Takifugu rubripes showed that one pufferfish paralog, Aqp10.2b, was permeable to water and glycerol, but not to urea and boric acid. To understand the functional differences of Aqp10s between humans and pufferfish from an evolutionary perspective, we analyzed Aqp10s from an amphibian (Xenopus laevis) and a lobe-finned fish (Protopterus annectens) and Aqp10.1 and Aqp10.2 from several ray-finned fishes (Polypterus senegalus, Lepisosteus oculatus, Danio rerio, and Clupea pallasii). The expression of tetrapod and lobe-finned fish Aqp10s and Aqp10.1-derived Aqps in ray-finned fishes in Xenopus oocytes increased the membrane permeabilities to water, glycerol, urea, and boric acid. In contrast, Aqp10.2-derived Aqps in ray-finned fishes increased water and glycerol permeabilities, whereas those of urea and boric acid were much weaker than those of Aqp10.1-derived Aqps. These results indicate that water, glycerol, urea, and boric acid permeabilities are plesiomorphic activities of Aqp10s and that the ray-finned fish-specific Aqp10.2 paralogs have secondarily reduced or lost urea and boric acid permeability.
Collapse
Affiliation(s)
- Genki Imaizumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazutaka Ushio
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Erika Watanabe
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shiori Kumagai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koji Matsuzaki
- Marine Science Museum, Fukushima Prefecture (Aquamarine Fukushima, AMF), Iwaki, Japan
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, Minnesota, USA
- Department of Nephrology and Hypertension, Mayo Clinic College of Medicine & Science, Rochester, Minnesota, USA
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
8
|
Lin F, Tang R, Zhang C, Scholz N, Nagel G, Gao S. Combining different ion-selective channelrhodopsins to control water flux by light. Pflugers Arch 2023; 475:1375-1385. [PMID: 37670155 PMCID: PMC10730689 DOI: 10.1007/s00424-023-02853-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Water transport through water channels, aquaporins (AQPs), is vital for many physiological processes including epithelial fluid secretion, cell migration and adipocyte metabolism. Water flux through AQPs is driven by the osmotic gradient that results from concentration differences of solutes including ions. Here, we developed a novel optogenetic toolkit that combines the light-gated anion channel GtACR1 either with the light-gated K+ channel HcKCR1 or the new Na+ channelrhodopsin HcNCR1 with high Na+ permeability, to manipulate water transport in Xenopus oocytes non-invasively. Water efflux through AQP was achieved by light-activating K+ and Cl- efflux through HcKCR1 and GtACR1. Contrarily, when GtACR1 was co-expressed with HcNCR1, inward movement of Na+ and Cl- was light-triggered, and the resulting osmotic gradient led to water influx through AQP1. In sum, we demonstrate a novel optogenetic strategy to manipulate water movement into or out of Xenopus oocytes non-invasively. This approach provides a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.
Collapse
Affiliation(s)
- Fei Lin
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ruijing Tang
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Ramos E, Selleghin-Veiga G, Magpali L, Daros B, Silva F, Picorelli A, Freitas L, Nery MF. Molecular Footprints on Osmoregulation-Related Genes Associated with Freshwater Colonization by Cetaceans and Sirenians. J Mol Evol 2023; 91:865-881. [PMID: 38010516 DOI: 10.1007/s00239-023-10141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
The genetic basis underlying adaptive physiological mechanisms has been extensively explored in mammals after colonizing the seas. However, independent lineages of aquatic mammals exhibit complex patterns of secondary colonization in freshwater environments. This change in habitat represents new osmotic challenges, and additional changes in key systems, such as the osmoregulatory system, are expected. Here, we studied the selective regime on coding and regulatory regions of 20 genes related to the osmoregulation system in strict aquatic mammals from independent evolutionary lineages, cetaceans, and sirenians, with representatives in marine and freshwater aquatic environments. We identified positive selection signals in genes encoding the protein vasopressin (AVP) in mammalian lineages with secondary colonization in the fluvial environment and in aquaporins for lineages inhabiting the marine and fluvial environments. A greater number of sites with positive selection signals were found for the dolphin species compared to the Amazonian manatee. Only the AQP5 and AVP genes showed selection signals in more than one independent lineage of these mammals. Furthermore, the vasopressin gene tree indicates greater similarity in river dolphin sequences despite the independence of their lineages based on the species tree. Patterns of distribution and enrichment of Transcription Factors in the promoter regions of target genes were analyzed and appear to be phylogenetically conserved among sister species. We found accelerated evolution signs in genes ACE, AQP1, AQP5, AQP7, AVP, NPP4, and NPR1 for the fluvial mammals. Together, these results allow a greater understanding of the molecular bases of the evolution of genes responsible for osmotic control in aquatic mammals.
Collapse
Affiliation(s)
- Elisa Ramos
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Giovanna Selleghin-Veiga
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Letícia Magpali
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Beatriz Daros
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Felipe Silva
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Agnello Picorelli
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Lucas Freitas
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil.
| |
Collapse
|
10
|
Bailey AJ, Ukegbu CV, Giorgalli M, Besson TRB, Christophides GK, Vlachou D. Intracellular Plasmodium aquaporin 2 is important for sporozoite production in the mosquito vector and malaria transmission. Proc Natl Acad Sci U S A 2023; 120:e2304339120. [PMID: 37883438 PMCID: PMC10622946 DOI: 10.1073/pnas.2304339120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.
Collapse
Affiliation(s)
- Alexander J. Bailey
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | | | - Dina Vlachou
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Lorente-Martínez H, Agorreta A, Irisarri I, Zardoya R, Edwards SV, San Mauro D. Multiple Instances of Adaptive Evolution in Aquaporins of Amphibious Fishes. BIOLOGY 2023; 12:846. [PMID: 37372131 DOI: 10.3390/biology12060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP paralog members and classes; (2) determine the gene family birth and death process; (3) test for positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the tree branches and protein sites that were under positive selection were found in the AQP11 class. The detected sequence changes indicate modifications in molecular function and/or structure, which could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most promising candidates to have facilitated the processes of the water-to-land transition in amphibious fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the Gobiidae clade suggests a possible case of exaptation in this clade.
Collapse
Affiliation(s)
- Héctor Lorente-Martínez
- Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ainhoa Agorreta
- Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, 20146 Hamburg, Germany
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Wang W, Zhang XS, Wang ZN, Zhang DX. Evolution and phylogenetic diversity of the aquaporin gene family in arachnids. Int J Biol Macromol 2023; 240:124480. [PMID: 37068537 DOI: 10.1016/j.ijbiomac.2023.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Water flux across cells predominantly occurs through the pore formed by the aquaporin channels. Since water balance is one of the most important challenges to terrestrial animals, aquaporin evolution and diversity is known to play roles in animal terrestrialisation. Arachnids (Arthropoda: Chelicerata: Arachnida) are the second most diverse group and represent the pioneer land colonists in animals; however, there remains no thorough investigation on aquaporin evolution and diversity in this evolutionarily important lineage. Here we reported a phylogenetic study of aquaporin evolution and diversity using genomic data from 116 arachnid species covering almost all (15/16) extant orders. A previously unrecognised subfamily related to aquaporin-4 (i.e. Aqp4-like subfamily) via phylogenetic analysis was identified, suggesting certain underestimate of the arachnid aquaporin diversity in earlier studies probably due to limited taxonomic sampling. Further analysis indicates that this subfamily emerged deep within the life tree of arthropods. Gene tree of another Aqp4-like subfamily (PripL) shows an unexpected basal split between acariform mites (Acariformes) and other arachnids. A closer inspection demonstrated that the PripL evolved quickly and has been under differential selection pressure in acariform mites. Evidence is provided that the evolutionarily ancient Glp subfamily (i.e. aquaglyceroporin) is significantly expanded in terrestrial arachnids compared with their marine relatives. Finally, in spite of the phylogenetic diversity, there exists conservation of some exons in size, functional domain, and intron-insertion phase: an 81-bp and a 218-bp exon, respectively, in apq4-like and glp genes across Eumetazoa lineages including arachnids and human beings. Both exons encode the carboxyl-terminal NPA motif, implying the coding and splicing pressure during hundreds of million years of animal evolution. Hypotheses were tested to explore the possible link between these findings and arachnid terrestrialisation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xue-Shu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhen-Nan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
14
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Abbas MN, Jmel MA, Mekki I, Dijkgraaf I, Kotsyfakis M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int J Mol Sci 2023; 24:4969. [PMID: 36902400 PMCID: PMC10003026 DOI: 10.3390/ijms24054969] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ingrid Dijkgraaf
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
16
|
Kumagai S, Watanabe E, Hayashi N, Kimura Y, Kamiya T, Nagashima A, Ushio K, Imaizumi G, Kim J, Munakata K, Umezawa T, Hirose S, Kasai K, Fujiwara T, Romero MF, Kato A. Boric acid transport activity of marine teleost aquaporins expressed in Xenopus oocytes. Physiol Rep 2023; 11:e15655. [PMID: 36967473 PMCID: PMC10040401 DOI: 10.14814/phy2.15655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Marine teleosts ingest large amounts of seawater containing various ions, including 0.4 mM boric acid, which can accumulate at toxic levels in the body. However, the molecular mechanisms by which marine teleosts absorb and excrete boric acid are not well understood. Aquaporins (Aqps) are homologous to the nodulin-like intrinsic protein (NIP) family of plant boric acid channels. To investigate the potential roles of Aqps on boric acid transport across the plasma membrane in marine teleosts, we analyzed the function of Aqps of Japanese pufferfish (Takifugu rubripes) expressed in Xenopus laevis oocytes. Takifugu genome database contains 16 genes encoding the aquaporin family members (aqp0a, aqp0b, aqp1aa, aqp1ab, aqp3a, aqp4a, aqp7, aqp8bb, aqp9a, aqp9b, aqp10aa, aqp10bb, aqp11a, aqp11b, aqp12, and aqp14). When T. rubripes Aqps (TrAqps) were expressed in X. laevis oocytes, a swelling assay showed that boric acid permeability was significantly increased in oocytes expressing TrAqp3a, 7, 8bb, 9a, and 9b. The influx of boric acid into these oocytes was also confirmed by elemental quantification. Electrophysiological analysis using a pH microelectrode showed that these TrAqps increase B(OH)3 permeability. These results indicate that TrAqp3a, 7, 8bb, 9a, and 9b act as boric acid transport systems, likely as channels, in marine teleosts.
Collapse
Affiliation(s)
- Shiori Kumagai
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Erika Watanabe
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Naoko Hayashi
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuuri Kimura
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ayumi Nagashima
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kazutaka Ushio
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Genki Imaizumi
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Juhyun Kim
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Keijiro Munakata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takahiro Umezawa
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shigehisa Hirose
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Koji Kasai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Michael F. Romero
- Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMinnesotaUnited States
- Nephrology & HypertensionMayo Clinic College of MedicineRochesterMinnesotaUnited States
- O'Brien Urology Research CenterMayo Clinic College of MedicineRochesterMinnesotaUnited States
| | - Akira Kato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMinnesotaUnited States
- Center for Biological Resources and InformaticsTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
17
|
Aquaporins Display a Diversity in their Substrates. J Membr Biol 2023; 256:1-23. [PMID: 35986775 DOI: 10.1007/s00232-022-00257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Aquaporins constitute a family of transmembrane proteins that function to transport water and other small solutes across the cell membrane. Aquaporins family members are found in diverse life forms. Aquaporins share the common structural fold consisting of six transmembrane alpha helices with a central water-transporting channel. Four such monomers assemble together to form tetramers as their biological unit. Initially, aquaporins were discovered as water-transporting channels, but several studies supported their involvement in mediating the facilitated diffusion of different solutes. The so-called water channel is able to transport a variety of substrates ranging from a neutral molecule to a charged molecule or a small molecule to a bulky molecule or even a gas molecule. This article gives an overview of a diverse range of substrates conducted by aquaporin family members. Prime focus is on human aquaporins where aquaporins show a wide tissue distribution and substrate specificity leading to various physiological functions. This review also highlights the structural mechanisms leading to the transport of water and glycerol. More research is needed to understand how one common fold enables the aquaporins to transport an array of solutes.
Collapse
|
18
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
19
|
Balakrishnan S, Rahman RNZRA, Noor NDM, Latip W, Ali MSM. Molecular dynamics simulation and structural analysis of aquaporin Z from an Antarctic Pseudomonas sp. strain AMS3. J Biomol Struct Dyn 2023; 41:11498-11509. [PMID: 36598349 DOI: 10.1080/07391102.2022.2164519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Aquaporin is a water channel protein that facilitates the movement of water across the cell membrane. Aquaporin from the Antarctic region has been noted for its psychrophilic properties and its ability to perform at a lower temperature but there remains limited understanding of the water mechanism of Antarctic Pseudomonas sp. strain AMS3 However, studies regarding aquaporin isolated from psychrophilic Pseudomonas sp. are still scattered. Recently, the genome sequence of an Antarctic Pseudomonas sp. strain AMS3 revealed a gene sequence encoding for a putative aquaporin designated as AqpZ1 AMS3. In this study, structure analysis and a molecular dynamics (MD) simulation of a predicted model of a fully hydrated aquaporin tetramer embedded in a lipid bilayer was performed at different temperatures for structural flexibility and stability analysis. The MD simulation results revealed that the structures were able to remain stable at low to medium temperatures. The protein was observed to have high flexibility in the loop region as compared to the helices region throughout the simulated temperatures. The selectivity filter and NPA motifs play a major role in solute selectivity and the pore radius of the protein. The structural and functional characterization of this psychrophilic aquaporin provides new insights for the future applications of this protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Balakrishnan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R N Z R A Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N D M Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - W Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M S M Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Xu L, Guo X, Wang W, Li C. Classification and Gene Structure of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:1-13. [PMID: 36717483 DOI: 10.1007/978-981-19-7415-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, 13 AQPs, distributed widely in specific cell types in various organs and tissues, have been characterized in humans. A pair of NPA boxes forming a pore is highly conserved among all aquaporins and is also key residues for the classification of AQP superfamily into four groups according to primary sequences. AQPs may also be classified based on their transport properties. So far, chromosome localization and gene structure of 13 human AQPs have been identified, which is definitely helpful for studying phenotypes and potential targets in naturally occurring and synthetic mutations in human or cells.
Collapse
Affiliation(s)
- Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiangdong Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
21
|
Ishibashi K, Tanaka Y, Morishita Y. Evolutionary Overview of Aquaporin Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:81-98. [PMID: 36717488 DOI: 10.1007/978-981-19-7415-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are present not only in three domains of life, bacteria, eukaryotes, and archaea, but also in viruses. With the accumulating arrays of AQP superfamily, the evolutional relationship has attracted much attention with multiple publications on "the genome-wide identification and phylogenetic analysis" of AQP superfamily. A pair of NPA boxes forming a pore is highly conserved throughout the evolution and renders key residues for the classification of AQP superfamily into four groups: AQP1-like, AQP3-like, AQP8-like, and AQP11-like. The complexity of AQP family has mostly been achieved in nematodes and subsequent evolution has been directed toward increasing the number of AQPs through whole-genome duplications (WGDs) to extend the tissue specific expression and regulation. The discovery of the intracellular AQP (iAQP: AQP8-like and AQP11-like) and substrate transports by the plasma membrane AQP (pAQP: AQP1-like and AQP3-like) have accelerated the AQP research much more toward the transport of substrates with complex profiles. This evolutionary overview based on a simple classification of AQPs into four subfamilies will provide putative structural, functional, and localization information and insights into the role of AQP as well as clues to understand the complex diversity of AQP superfamily.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan.
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, Ohmiya, Saitama-City, Saitama, Japan
| |
Collapse
|
22
|
Jiao X, Yu X, Yuan Y, Li J. Effects of vapor pressure deficit combined with different N levels on tomato seedling anatomy, photosynthetic performance, and N uptake. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111448. [PMID: 36041564 DOI: 10.1016/j.plantsci.2022.111448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vapor pressure difference (VPD) is the main driving force of plant transpiration and the main factor of greenhouse environment regulation. Nitrogen is the main element of crop growth and development. It is significant to explore the regulation of VPD on nitrogen absorption and its effect on tomato photosynthesis. In this paper, using tomato as material, using an artificial climate chamber, the effect of VPD and nitrogen level coupling on nitrogen absorption and distribution, hydraulic characteristics, and photosynthetic characteristics of tomato was studied and analyzed. The optimal regulation of VPD and nitrogen was analyzed. Studies have shown that appropriately reducing the VPD can promote the absorption of nitrogen by plants. The increased surface area and volume of tomato roots and the increased activity of nitrogen assimilation-related enzymes were beneficial to nitrogen absorption and assimilation. Compared with high VPD (HVPD) plants, the leaf thickness and spongy tissue thickness of low VPD (LVPD) plants decreased, and the palisade/spongy tissue thickness ratio (P/S) increased; Leaf water conductance (Kleaf) increased with the increase of nitrogen level. The Kleaf at normal and high nitrogen plants increased by 4.00 % and 33.93 %, respectively, compared with HVPD plants of the same nitrogen level (significant difference at high nitrogen level) but significantly decreased at low nitrogen level. The decrease of spongy tissue thickness, the increase of palisade/sponge tissue, and the up-regulation of aquaporin expression were all beneficial to increasing Kleaf. Decreasing VPD and increasing nitrogen application under LVPD both increased specific leaf area (SLA). Compared with HVPD treatment, the photosynthetic rate of LVPD-treated plants increased by 7.06 % and 30.48 % at normal and high nitrogen levels, respectively.
Collapse
Affiliation(s)
- Xiaocong Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemei Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
24
|
Genome-wide identification and expression analysis of the aquaporin gene family reveals the role in the salinity adaptability in Nile tilapia (Oreochromis niloticus). Genes Genomics 2022; 44:1457-1469. [DOI: 10.1007/s13258-022-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
25
|
Saitoh Y, Suga M. Structure and function of a silicic acid channel Lsi1. FRONTIERS IN PLANT SCIENCE 2022; 13:982068. [PMID: 36172553 PMCID: PMC9510833 DOI: 10.3389/fpls.2022.982068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Silicon is a beneficial element for plant growth and production, especially in rice. Plant roots take up silicon in the form of silicic acid. Silicic acid channels, which belong to the NIP subfamily of aquaporins, are responsible for silicic acid uptake. Accumulated experimental results have deepened our understanding of the silicic acid channel for its uptake mechanism, physiological function, localization, and other aspects. However, how the silicic acid channel efficiently and selectively permeates silicic acid remains to be elucidated. Recently reported crystal structures of the silicic acid channel enabled us to discuss the mechanism of silicic acid uptake by plant roots at an atomic level. In this mini-review, we focus on the crystal structures of the silicic acid channel and provide a detailed description of the structural determinants of silicic acid permeation and its transport mechanism, which are crucial for the rational creation of secure and sustainable crops.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
26
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
27
|
Nash MT, Quijada-Rodriguez AR, Allen GJP, Wilson JM, Weihrauch D. Characterization of 3 different types of aquaporins in Carcinus maenas and their potential role in osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111281. [PMID: 35902004 DOI: 10.1016/j.cbpa.2022.111281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Intertidal crustaceans like Carcinus maenas shift between an osmoconforming and osmoregulating state when inhabiting full-strength seawater and dilute environments, respectively. While the bodily fluids and environment of marine osmoconformers are approximately isosmotic, osmoregulating crabs inhabiting dilute environments maintain their bodily fluid osmolality above that of their environment by actively absorbing and retaining osmolytes (e.g., Na+, Cl-, urea) while eliminating excess water. Few studies have investigated the role of aquaporins (AQPs) in the osmoregulatory organs of crustaceans, especially within brachyuran species. In the current study, three different aquaporins were identified within a transcriptome of C. maenas, including a classical AQP (CmAQP1), an aquaglyceroporin (CmGLP1), and a big-brain protein (CmBIB1), all of which are expressed in the gills and the antennal glands. Functional expression of these aquaporins confirmed water transport capabilities for CmAQP1, CmGLP1, but not for CmBIB1, while CmGLP1 also transported urea. Higher relative CmAQP1 mRNA expression within tissues of osmoconforming crabs suggests the apical/sub-apically localized channel attenuates osmotic gradients created by non-osmoregulatory processes while its downregulation in dilute media reduces the water permeability of tissues to facilitate osmoregulation. Although hemolymph urea concentrations rose upon exposure to brackish water, urea was not detected in the final urine. Due to its urea-transport capabilities, CmGLP1 is hypothesized to be involved in a urea retention mechanism believed to be involved in the production of diluted urine. Overall, these results suggest that AQPs are involved in osmoregulation and provide a basis for future mechanistic studies investigating the role of AQPs in volume regulation in crustaceans.
Collapse
Affiliation(s)
- M T Nash
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - G J P Allen
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - J M Wilson
- Biology, Wilfrid Laurier University, Waterloo, Canada
| | - D Weihrauch
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
28
|
Aquaporin 8ab is required in zebrafish embryonic intestine development. Acta Biochim Biophys Sin (Shanghai) 2022; 54:952-960. [PMID: 35880566 PMCID: PMC9828320 DOI: 10.3724/abbs.2022077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aquaporin 8 (AQP8) is a small integral membrane protein that selectively transports water and other small uncharged solutes across cell plasma membranes. It has been demonstrated that AQP8 is ubiquitously present in various tissues and organs of mammals, and participates in many physiological and pathological processes. Recent studies showed that AQP8 is highly expressed in the columnar epithelial cells of mammalian colonic mucosa facing lumen, indicating that AQP8 plays potential roles in the physiology and pathophysiology of gastrointestinal tract. However, the role of AQP8 during gastrointestinal tract development is unclear. In the present study, RT-PCR results reveal that the zebrafish genome encodes three kinds of aqp8s ( aqp8aa, aqp8ab, and aqp8b). We use whole mount in situ hybridization to describe aqp8 genes spatiotemporal expression pattern, and the results show that aqp8ab mRNA is detectable mainly in the zebrafish embryonic intestine. To reveal the details of aqp8ab distribution, histological sections are employed. Transverse sections indicate that aqp8ab mRNA expression is more intense in the layer lining the intestinal cavity. Knockout of aqp8ab using the CRISPR/Cas9 system induces intestine development defects and abnormal formation of intestinal lumen. In addition, aqp8ab mRNA significantly rescues the intestine defects in the aqp8ab mutant. These results indicate that aqp8ab is required in the intestine development of zebrafish.
Collapse
|
29
|
Drechsel V, Schneebauer G, Fiechtner B, Cutler CP, Pelster B. Aquaporin expression and cholesterol content in eel swimbladder tissue. JOURNAL OF FISH BIOLOGY 2022; 100:609-618. [PMID: 34882794 PMCID: PMC9302985 DOI: 10.1111/jfb.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Leakiness of the swimbladder wall of teleost fishes must be prevented to avoid diffusional loss of gases out of the swimbladder. Guanine incrustation as well as high concentrations of cholesterol in swimbladder membranes in midwater and deep-sea fish has been connected to a reduced gas permeability of the swimbladder wall. On the contrary, the swimbladder is filled by diffusion of gases, mainly oxygen and CO2 , from the blood and the gas gland cells into the swimbladder lumen. In swimbladder tissue of the zebrafish and the Japanese eel, aquaporin mRNA has been detected, and the aquaporin protein has been considered important for the diffusion of water, which may accidentally be gulped by physostome fish when taking an air breath. In the present study, the expression of two aquaporin 1 genes (Aqp1aa and Aqp1ab) in the swimbladder tissue of the European eel, a functional physoclist fish, was assessed using immunohistochemistry, and the expression of both genes was detected in endothelial cells of swimbladder capillaries as well as in basolateral membranes of gas gland cells. In addition, Aqp1ab was present in apical membranes of swimbladder gas gland cells. The authors also found high concentrations of cholesterol in these membranes, which were several fold higher than in muscle tissue membranes. In yellow eels the cholesterol concentration exceeded the concentration detected in silver eel swimbladder membranes. The authors suggest that aquaporin 1 in swimbladder gas gland cells and endothelial cells facilitates CO2 diffusion into the blood, enhancing the switch-on of the Root effect, which is essential for the secretion of oxygen into the swimbladder. It may also facilitate CO2 diffusion into the swimbladder lumen along the partial gradient established by CO2 production in gas gland cells. Cholesterol has been shown to reduce the gas permeability of membranes and thus could contribute to the gas tightness of swimbladder membranes, which is essential to avoid diffusional loss of gas out of the swimbladder.
Collapse
Affiliation(s)
- Victoria Drechsel
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Gabriel Schneebauer
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Birgit Fiechtner
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | | | - Bernd Pelster
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
30
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
31
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
32
|
Shivaraj SM, Mandlik R, Bhat JA, Raturi G, Elbaum R, Alexander L, Tripathi DK, Deshmukh R, Sonah H. Outstanding Questions on the Beneficial Role of Silicon in Crop Plants. PLANT & CELL PHYSIOLOGY 2022; 63:4-18. [PMID: 34558628 DOI: 10.1093/pcp/pcab145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability. In recent years, advances in our understanding of the role of Si-solubilizing bacteria and the efficacy of Si nanoparticles have been made. However, there are many unknown aspects associated with structural and functional features of Si transporters, Si loading into the xylem, and the role of specialized cells like silica cells and compounds preventing Si polymerization in plant tissues. In addition, despite several 1,000 reports showing the positive effects of Si in high as well as low Si-accumulating plant species, the exact roles of Si at the molecular level are yet to be understood. Some evidence suggests that Si regulates hormonal pathways and nutrient uptake, thereby explaining various observed benefits of Si uptake. However, how Si modulates hormonal pathways or improves nutrient uptake remains to be explained. Finally, we summarize the knowledge gaps that will provide a roadmap for further research on plant silicon biology, leading to an exploration of the benefits of Si uptake to enhance crop production.
Collapse
Affiliation(s)
- S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Lux Alexander
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh 201313, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
33
|
Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (Mytilus edulis): The Limits of Resilience. Genes (Basel) 2022; 13:genes13010155. [PMID: 35052494 PMCID: PMC8774603 DOI: 10.3390/genes13010155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‰) and low salinities (15‰) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‰, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‰, 15‰ and 5‰) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.
Collapse
|
34
|
Jia Y, Xu F, Liu X. Duplication and subsequent functional diversification of aquaporin family in Pacific abalone Haliotis discus hannai. Mol Phylogenet Evol 2022; 168:107392. [PMID: 35033672 DOI: 10.1016/j.ympev.2022.107392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023]
Abstract
Aquaporins (AQPs) are a group of proteins that evolved to mediate specific permeation of water and other small solutes, playing important roles in osmoregulation and nutrition, especially for aquatic animals. Genome-wide characterization of the AQP family in a typical mollusc, Pacific abalone, suggested that tandem duplication and retroduplication led to the dramatic expansion and diversification of AQP genes. Structural analysis indicated that tandem duplicated AQPs showed abnormal characteristics. The conserved amino acids in the key site of the Ar/R region were replaced by the others. These substitutions altered the pore diameter and properties of the inner surface and could accommodate the pass through of other molecules except water. Functional analysis indicated that abnormal Ar/R region of the tandemly adjacent members led to the different permeability, suggesting the neofunctionalization of tandemly duplicated genes. Mutation analysis indicated that at the key site of Ar/R region, just a single amino acid substitute could alter the permeability of HdAQPs, further explaining the mechanism of neofunctionalization between the tandem duplicated HdAQPs. Our observations provided strong evidence that duplication and subsequent neofunctionalization have led to structural and functional diversity of AQPs in Pacific abalone, providing insights into the evolution of AQPs in molluscs.
Collapse
Affiliation(s)
- Yanglei Jia
- Fishery College of Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xiao Liu
- Fishery College of Zhejiang Ocean University, Zhoushan, Zhejiang, China.
| |
Collapse
|
35
|
Ledo A, Fernandes E, Salvador A, Laranjinha J, Barbosa R. In vivo hydrogen peroxide diffusivity in brain tissue supports volume signaling activity. Redox Biol 2022; 50:102250. [PMID: 35101799 PMCID: PMC8804256 DOI: 10.1016/j.redox.2022.102250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen peroxide is a major redox signaling molecule underlying a novel paradigm of cell function and communication. A role for H2O2 as an intercellular signaling molecule and neuromodulator in the brain has become increasingly apparent, with evidence showing this biological oxidant to regulate neuronal polarity, connectivity, synaptic transmission and tuning of neuronal networks. This notion is supported by its ability to diffuse in the extracellular space, from source of production to target. It is, thus, crucial to understand extracellular H2O2 concentration dynamics in the living brain and the factors which shape its diffusion pattern and half-life. To address this issue, we have used a novel microsensor to measure H2O2 concentration dynamics in the brain extracellular matrix both in an ex vivo model using rodent brain slices and in vivo. We found that exogenously applied H2O2 is removed from the extracellular space with an average half-life of t1/2 = 2.2 s in vivo. We determined the in vivo effective diffusion coefficient of H2O2 to be D* = 2.5 × 10−5 cm2 s−1. This allows it to diffuse over 100 μm in the extracellular space within its half-life. Considering this, we can tentatively place H2O2 within the class of volume neurotransmitters, connecting all cell types within the complex network of brain tissue, regardless of whether they are physically connected. These quantitative details of H2O2 diffusion and half-life in the brain allow us to interpret the physiology of the redox signal and lay the pavement to then address dysregulation in redox homeostasis associated with disease processes.
Collapse
|
36
|
Mucciolo S, Desiderato A, Salonna M, Mamos T, Prodocimo V, Di Domenico M, Mastrototaro F, Lana P, Gissi C, Calamita G. Finding Aquaporins in Annelids: An Evolutionary Analysis and a Case Study. Cells 2021; 10:3562. [PMID: 34944070 PMCID: PMC8700629 DOI: 10.3390/cells10123562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane channels facilitating diffusion of water and small solutes into and out of cells. Despite their biological relevance in osmoregulation and ubiquitous distribution throughout metazoans, the presence of AQPs in annelids has been poorly investigated. Here, we searched and annotated Aqp sequences in public genomes and transcriptomes of annelids, inferred their evolutionary relationships through phylogenetic analyses and discussed their putative physiological relevance. We identified a total of 401 Aqp sequences in 27 annelid species, including 367 sequences previously unrecognized as Aqps. Similar to vertebrates, phylogenetic tree reconstructions clustered these annelid Aqps in four clades: AQP1-like, AQP3-like, AQP8-like and AQP11-like. We found no clear indication of the existence of paralogs exclusive to annelids; however, several gene duplications seem to have occurred in the ancestors of some Sedentaria annelid families, mainly in the AQP1-like clade. Three of the six Aqps annotated in Alitta succinea, an estuarine annelid showing high salinity tolerance, were validated by RT-PCR sequencing, and their similarity to human AQPs was investigated at the level of "key" conserved residues and predicted three-dimensional structure. Our results suggest a diversification of the structures and functions of AQPs in Annelida comparable to that observed in other taxa.
Collapse
Affiliation(s)
- Serena Mucciolo
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.D.); (T.M.)
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil; (M.D.D.); (P.L.)
| | - Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.D.); (T.M.)
| | - Marika Salonna
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (C.G.); (G.C.)
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.D.); (T.M.)
| | - Viviane Prodocimo
- Laboratório de Fisiologia Comparativa da Osmorregulação, Departamento de Fisiologia, Setor de Ciências Biológicas, Campus Politécnico, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba 81531-980, PR, Brazil;
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil; (M.D.D.); (P.L.)
| | - Francesco Mastrototaro
- CoNISMa LRU, 70124 Bari, Italy;
- Dipartimento di Biologia, Università degli Studi di Bari “A. Moro”, 70124 Bari, Italy
| | - Paulo Lana
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil; (M.D.D.); (P.L.)
| | - Carmela Gissi
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (C.G.); (G.C.)
- CoNISMa LRU, 70124 Bari, Italy;
- IBIOM, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Giuseppe Calamita
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (C.G.); (G.C.)
| |
Collapse
|
37
|
Desiderato A, Mamos T, Rewicz T, Burzynski A, Mucciolo S. First Glimpse at the Diverse Aquaporins of Amphipod Crustaceans. Cells 2021; 10:3417. [PMID: 34943925 PMCID: PMC8699810 DOI: 10.3390/cells10123417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
The importance of aquaporins (AQPs) in the transport of water and solutes through cell membranes is well recognized despite being relatively new. To date, despite their abundance, diversity, and presence in disparate environments, amphipods have only been mentioned in studies about the AQPs of other animals and have never been further investigated. In this work, we aimed to recover from public data available AQPs of these crustaceans and reconstruct phylogenetic affinities. We first performed BLAST searches with several queries of diverse taxa against different NCBI databases. Then, we selected the clades of AQPs retrieving the amphipod superfamily Gammaroidea as monophyletic and ran phylogenetic analyses to assess their performances. Our results show how most of the AQPs of amphipods are similar to those of other crustaceans, despite the Prip-like displayed different paralogs, and report for the first time a putative Aqp8-like for arthropods. We also found that the candidate genes of Prip-like, Bib-like, Aqp12-like, and Glp-like help solve deeper relationships in phylogenies of amphipods while leaving uncertainties in shallower parts. With our findings, we hope to increase attention to the study of amphipods as models for AQP functioning and evolution.
Collapse
Affiliation(s)
- Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Tomasz Rewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Artur Burzynski
- Department of Genetics and Marine Biotechnology, Polish Academy of Sciences, Institute of Oceanology, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Serena Mucciolo
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| |
Collapse
|
38
|
Varricchio A, Ramesh SA, Yool AJ. Novel Ion Channel Targets and Drug Delivery Tools for Controlling Glioblastoma Cell Invasiveness. Int J Mol Sci 2021; 22:ijms222111909. [PMID: 34769339 PMCID: PMC8584308 DOI: 10.3390/ijms222111909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Comprising more than half of all brain tumors, glioblastoma multiforme (GBM) is a leading cause of brain cancer-related deaths worldwide. A major clinical challenge is presented by the capacity of glioma cells to rapidly infiltrate healthy brain parenchyma, allowing the cancer to escape control by localized surgical resections and radiotherapies, and promoting recurrence in other brain regions. We propose that therapies which target cellular motility pathways could be used to slow tumor dispersal, providing a longer time window for administration of frontline treatments needed to directly eradicate the primary tumors. An array of signal transduction pathways are known to be involved in controlling cellular motility. Aquaporins (AQPs) and voltage-gated ion channels are prime candidates as pharmacological targets to restrain cell migration in glioblastoma. Published work has demonstrated AQPs 1, 4 and 9, as well as voltage-gated potassium, sodium and calcium channels, chloride channels, and acid-sensing ion channels are expressed in GBM and can influence processes of cell volume change, extracellular matrix degradation, cytoskeletal reorganization, lamellipodial and filopodial extension, and turnover of cell-cell adhesions and focal assembly sites. The current gap in knowledge is the identification of optimal combinations of targets, inhibitory agents, and drug delivery systems that will allow effective intervention with minimal side effects in the complex environment of the brain, without disrupting finely tuned activities of neuro-glial networks. Based on published literature, we propose that co-treatments using AQP inhibitors in addition to other therapies could increase effectiveness, overcoming some limitations inherent in current strategies that are focused on single mechanisms. An emerging interest in nanobodies as drug delivery systems could be instrumental for achieving the selective delivery of combinations of agents aimed at multiple key targets, which could enhance success in vivo.
Collapse
Affiliation(s)
- Alanah Varricchio
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
- Correspondence:
| |
Collapse
|
39
|
Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). INSECTS 2021; 12:insects12100931. [PMID: 34680700 PMCID: PMC8539622 DOI: 10.3390/insects12100931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The use of RNA interference has become increasingly popular for investigating insect physiology, testing the functionality of insect genes and as a potential control strategy. Hemiptera include many vectors for destructive plant diseases. A major characteristic of the order of Hemiptera is feeding on the phloem sap of their plant hosts. Phloem feeders face high osmotic stress between the gut lumen and hemolymph due to the high level of sucrose in phloem sap. Targeting the osmoregulation mechanisms in Diaphorina citri Kuwayama, which transmits ‘Candidatus Liberibacter asiaticus’, the putative causal agent of Huanglongbing in citrus may lead to an effective control strategy. Herein we downregulate the expression of aquaporin, representing a major mechanism of osmoregulation, by RNA interference. Abstract The Asian citrus psyllid, Diaphorina citri Kuwayama is devastating the citrus industry worldwide. It transmits ‘Candidatus Liberibacter asiaticus’, the pathogen of Huanglongbing in citrus. RNA interference is an excellent tool for functional genomics and for screening target genes for pest control. Herein, we silenced the aquaporin (AQP) gene (DcAQP) homologue in D. citri to study its functionality and whether it could be a good target for a control strategy. AQP is an integral membrane channel protein that aids in the rapid flux of water and other small solutes that move across the lipid membrane. In Hemiptera, it is well established that AQP plays important roles in adjusting to physiological challenges including (1) regulating osmotic stress between the gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; (2) avoiding or preventing dehydration and desiccation; and (3) surviving at elevated temperatures. The dsRNA-DcAQP was applied twice to nymphs of the 4th and 5th instars through a soaking technique. Silencing AQP caused a significant increase in nymph mortality. Emerged adults showed malformations and a shorter lifespan. Silencing DcAQP provoked alterations in some metabolites and increased the uric acid content in emerged adults. DcAQP could be a useful target to control D. citri.
Collapse
|
40
|
Onuh AF, Miwa K. Regulation, Diversity and Evolution of Boron Transporters in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:590-599. [PMID: 33570563 DOI: 10.1093/pcp/pcab025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential trace element in plants, and borate cross-linking of pectic polysaccharide rhamnogalacturonan-II (RG-II) in cell walls is required for normal cell growth. High concentrations of B are toxic to cells. Therefore, plants need to control B transport to respond to B conditions in the environment. Over the past two decades, genetic analyses of Arabidopsis thaliana have revealed that B transport is governed by two types of membrane transport molecules: NIPs (nodulin-26-like intrinsic proteins), which facilitate boric acid permeation, and BORs, which export borate from cells. In this article, we review recent findings on the (i) regulation at the cell level, (ii) diversity among plant species and (iii) evolution of these B transporters in plants. We first describe the systems regulating these B transporters at the cell level, focusing on the molecular mechanisms underlying the polar localization of proteins and B-dependent expression, as well as their physiological significance in A. thaliana. Then, we examine the presence of homologous genes and characterize the functions of NIPs and BORs in B homeostasis, in a wide range of plant species, including Brassica napus, Oryza sativa and Zea mays. Finally, we discuss the evolutionary aspects of NIPs and BORs as B transporters, and the possible relationship between the diversification of B transport and the occurrence of RG-II in plants. This review considers the sophisticated systems of B transport that are conserved among various plant species, which were established to meet mineral nutrient requirements.
Collapse
Affiliation(s)
- Amarachukwu Faith Onuh
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| | - Kyoko Miwa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
41
|
The degradation of intracrystalline mollusc shell proteins: A proteomics study of Spondylus gaederopus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140718. [PMID: 34506968 DOI: 10.1016/j.bbapap.2021.140718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Mollusc shells represent excellent systems for the preservation and retrieval of genuine biomolecules from archaeological or palaeontological samples. As a consequence, the post-mortem breakdown of intracrystalline mollusc shell proteins has been extensively investigated, particularly with regard to its potential use as a "molecular clock" for geochronological applications. But despite seventy years of ancient protein research, the fundamental aspects of diagenesis-induced changes to protein structures and sequences remain elusive. In this study we investigate the degradation of intracrystalline proteins by performing artificial degradation experiments on the shell of the thorny oyster, Spondylus gaederopus, which is particularly important for archaeological research. We used immunochemistry and tandem mass tag (TMT) quantitative proteomics to simultaneously track patterns of structural loss and of peptide bond hydrolysis. Powdered and bleached shell samples were heated in water at four different temperatures (80, 95, 110, 140 °C) for different time durations. The structural loss of carbohydrate and protein groups was investigated by immunochemical techniques (ELLA and ELISA) and peptide bond hydrolysis was studied by tracking the changes in protein/peptide relative abundances over time using TMT quantitative proteomics. We find that heating does not induce instant organic matrix decay, but first facilitates the uncoiling of cross-linked structures, thus improving matrix detection. We calculated apparent activation energies of structural loss: Ea (carbohydrate groups) = 104.7 kJ/mol, Ea (protein epitopes) = 104.4 kJ/mol, which suggests that secondary matrix structure degradation may proceed simultaneously with protein hydrolysis. While prolonged heating at 110 °C (10 days) results in complete loss of the structural signal, surviving peptide sequences were still observed. Eight hydrolysis-prone peptide bonds were identified in the top scoring shell sequence, the uncharacterised protein LOC117318053 from Pecten maximus. Interestingly, these were not the expected "weak" bonds based on published theoretical stabilities calculated for peptides in solution. This further confirms that intracrystalline protein degradation patterns are complex and that the overall microchemical environment plays an active role in protein stability. Our TMT approach represents a major stepping stone towards developing a model for studying protein diagenesis in biomineralised systems.
Collapse
|
42
|
The gate to metabolic crossroads. Sci Bull (Beijing) 2021; 66:1488-1490. [PMID: 36654273 DOI: 10.1016/j.scib.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
AQPX-cluster aquaporins and aquaglyceroporins are asymmetrically distributed in trypanosomes. Commun Biol 2021; 4:953. [PMID: 34376792 PMCID: PMC8355241 DOI: 10.1038/s42003-021-02472-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.
Collapse
|
44
|
Aquaporins: New markers for male (in)fertility in livestock and poultry? Anim Reprod Sci 2021; 231:106807. [PMID: 34303091 DOI: 10.1016/j.anireprosci.2021.106807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Improving the methods utilized to facilitate reproduction is associated with a constant need to search for new factors that not only significantly affect reproductive processes, but also create new possibilities when assessing male reproductive potential. Aquaporins (AQPs) belong to a family of small (28-30 kDa) proteins that facilitate the transport of water and other small molecules. There have been 13 AQPs (AQP0-AQP12) discovered in mammals, and these proteins are present in a wide range of cell types. Almost all AQPs, except AQP6 and AQP12 are present in the male reproductive organs and sperm of mammals and birds. Increasing evidence suggests that these proteins are involved in a number of processes responsible for the optimal functioning of the male reproductive system. This review presents the current state of knowledge regarding the abundance and distribution of AQPs in the male reproductive organs and sperm of various livestock and poultry species, including buffalo, cattle, sheep, horses, pigs, turkeys and goose. Furthermore, the possible physiological and pathophysiological significance of AQPs in male reproduction, as well as hormonal regulation of quantities are discussed. It can be concluded from the studies analyzed in this paper that abundance patterns of AQPs may be considered in the future as specific and universal biomarkers of male fertility and infertility in animal husbandry.
Collapse
|
45
|
van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines (Basel) 2021; 9:725. [PMID: 34358142 PMCID: PMC8310300 DOI: 10.3390/vaccines9070725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
The medical and veterinary public health importance of ticks and tick-borne pathogens is increasing due to the expansion of the geographic ranges of both ticks and pathogens, increasing tick populations, growing incidence of tick-borne diseases, emerging tick transmitted pathogens, and continued challenges of achieving effective and sustained tick control. The past decades show an increasing interest in the immune-mediated control of tick infestations and pathogen transmission through the use of vaccines. Bovine tick resistance induced by repeated infestations was reported over a century ago. This review addresses the phenomena and immunological underpinning of resistance to tick infestation by livestock and laboratory animals; the scope of tick countermeasures to host immune defenses; and the impact of genomics, functional genomics, and proteomics on dissecting complex tick-host-pathogen interactions. From early studies utilizing tick tissue extracts to salivary gland derived molecules and components of physiologically important pathways in tick gut and other tissues, an increased understanding of these relationships, over time, impacted the evolution of anti-tick vaccine antigen selection. Novel antigens continue to emerge, including increased interest in the tick microbiome. Anti-tick and transmission blocking vaccines targeting pathogen reservoirs have the potential to disrupt enzootic cycles and reduce human, companion, domestic animal, and wildlife exposure to infected ticks.
Collapse
Affiliation(s)
| | - Stephen K. Wikel
- US Biologic Inc., 20 Dudley Street, Memphis, TN 38103, USA;
- Department of Medical Sciences, School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
46
|
Identification and physiological function of CsPrip, a new aquaporin in Chilo suppressalis. Int J Biol Macromol 2021; 184:721-730. [PMID: 34174306 DOI: 10.1016/j.ijbiomac.2021.06.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Aquaporin (AQP) transport solutes across cell membranes in both unicellular and multicellular organisms. In this study, the aquaporin CsPrip was identified in Chilo suppressalis, an important pest of rice. CsPrip was comprised of two variants, CsPrip_v1 and CsPrip_v2; the former variant was <103 bp was shorter than the latter, although both exhibited the same open reading frame (ORF). Transmembrane topology and protein structure analyses showed that CsPrip retained the conserved features of water-selective insect AQPs, including six transmembrane domains, two conserved hydrophobic asparagine-proline-alanine motifs and the aromatic/arginine constriction region. Expression in Xenopus oocytes revealed that CsPrip preferentially transported water and urea instead of trehalose and glycerol. The CsPrip transcript was expressed in multiple organs and tissues of C. suppressalis larvae and was most abundant in the hindgut and Malpighian tubules. CsPrip transcription was highest in male adults and was relatively stable throughout development. CsPrip expression in larvae was significantly altered by thermal stress, and relative humidity levels impacted CsPrip transcription in 3rd and 5th instar larvae. This study confirms that the aquaporin CsPrip performs multiple critical functions in maintaining water equilibrium in C. suppressalis.
Collapse
|
47
|
Pellavio G, Laforenza U. Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie 2021; 188:45-51. [PMID: 34087390 DOI: 10.1016/j.biochi.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Aquaporins (AQPs) are transmembrane water channels and some of them are permeable in addition to water to other small solutes including hydrogen peroxide. The sperm cells of mammals and fishes express different AQPs, although there is no agreement in the literature on their localization. In humans, AQP3 and AQP11 are expressed mainly in the tail, AQP7 in the head and AQP8 in the midpiece. Thanks to the results of experiments with KO mice and to data obtained by comparing sub-fertile patients with normospermic subjects, the importance of AQPs for the normal functioning of sperms to ensure normal fertility emerged. AQP3, AQP7 and AQP11 appeared involved in the sperm volume regulation, a key role for fertility because osmoadaptation protect the sperm against a swelling and tail bending that could affect sperm motility. AQP8 seems to have a fundamental role in regulating the elimination of hydrogen peroxide, the most abundant reactive oxygen species (ROS), and therefore in the response to oxidative stress. In this review, the human AQPs expression, their localization and functions, as well as their relevance in normal fertility are discussed. To understand better the AQPs role in human sperm functionality, the results of studies obtained in other animal species were also considered.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy.
| |
Collapse
|
48
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
49
|
Catalán-García M, Chauvigné F, Stavang JA, Nilsen F, Cerdà J, Finn RN. Lineage-level divergence of copepod glycerol transporters and the emergence of isoform-specific trafficking regulation. Commun Biol 2021; 4:643. [PMID: 34059783 PMCID: PMC8167128 DOI: 10.1038/s42003-021-01921-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 02/04/2023] Open
Abstract
Transmembrane conductance of small uncharged solutes such as glycerol typically occurs through aquaglyceroporins (Glps), which are commonly encoded by multiple genes in metazoan organisms. To date, however, little is known concerning the evolution of Glps in Crustacea or what forces might underly such apparent gene redundancy. Here, we show that Glp evolution in Crustacea is highly divergent, ranging from single copy genes in species of pedunculate barnacles, tadpole shrimps, isopods, amphipods and decapods to up to 10 copies in diplostracan water fleas although with monophyletic origins in each lineage. By contrast the evolution of Glps in Copepoda appears to be polyphyletic, with surprisingly high rates of gene duplication occurring in a genera- and species-specific manner. Based upon functional experiments on the Glps from a parasitic copepod (Lepeophtheirus salmonis), we show that such lineage-level gene duplication and splice variation is coupled with a high rate of neofunctionalization. In the case of L. salmonis, splice variation of a given gene resulted in tissue- or sex-specific expression of the channels, with each variant evolving unique sites for protein kinase C (PKC)- or protein kinase A (PKA)-regulation of intracellular membrane trafficking. The combined data sets thus reveal that mutations favouring a high fidelity control of intracellular trafficking regulation can be a selection force for the evolution and retention of multiple Glps in copepods.
Collapse
Affiliation(s)
- Marc Catalán-García
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Jon Anders Stavang
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Roderick Nigel Finn
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway.
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
50
|
McGaughey SA, Tyerman SD, Byrt CS. An algal PIP-like aquaporin facilitates water transport and ionic conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183661. [PMID: 34058166 DOI: 10.1016/j.bbamem.2021.183661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Aquaporins are water and solute channel proteins found throughout the kingdoms of life. Ion-conducting aquaporins (icAQPs) have been identified in both plants and animals indicating that this function may be conserved through evolution. In higher plants icAQP function has been demonstrated for isoforms from two of five aquaporin subfamilies indicating that this function could have existed before the divergence of higher plants from green algae. Here a PIP-like aquaporin from the charophytic alga Klebsormidium nitens was functionally characterised in Xenopus laevis oocytes and its expression was found to induce water and ion conductance.
Collapse
Affiliation(s)
- Samantha A McGaughey
- Division of Plant Sciences, Research School of Biology, College of Science, Australian National University, Acton, Australian Capital Territory 2601, Australia.
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Caitlin S Byrt
- Division of Plant Sciences, Research School of Biology, College of Science, Australian National University, Acton, Australian Capital Territory 2601, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|