1
|
Caredda C, Cohen JE, Mahieu-Williame L, Sablong R, Sdika M, Schneider FC, Picart T, Guyotat J, Montcel B. A priori free spectral unmixing with periodic absorbance changes: application for auto-calibrated intraoperative functional brain mapping. BIOMEDICAL OPTICS EXPRESS 2024; 15:387-412. [PMID: 38223192 PMCID: PMC10783910 DOI: 10.1364/boe.491292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 01/16/2024]
Abstract
Spectral unmixing designates techniques that allow to decompose measured spectra into linear or non-linear combination of spectra of all targets (endmembers). This technique was initially developed for satellite applications, but it is now also widely used in biomedical applications. However, several drawbacks limit the use of these techniques with standard optical devices like RGB cameras. The devices need to be calibrated and a a priori on the observed scene is often necessary. We propose a new method for estimating endmembers and their proportion automatically and without calibration of the acquisition device based on near separable non-negative matrix factorization. This method estimates the endmembers on spectra of absorbance changes presenting periodic events. This is very common in in vivo biomedical and medical optical imaging where hemodynamics dominate the absorbance fluctuations. We applied the method for identifying functional brain areas during neurosurgery using four different RGB cameras (an industrial camera, a smartphone and two surgical microscopes). Results obtained with the auto-calibration method were consistent with the intraoperative gold standards. Endmembers estimated with the auto-calibration method were similar to the calibrated endmembers used in the modified Beer-Lambert law. The similarity was particularly strong when both cardiac and respiratory periodic events were considered. This work can allow a widespread use of spectral imaging in the industrial or medical field.
Collapse
Affiliation(s)
- Charly Caredda
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Jérémy E. Cohen
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Laurent Mahieu-Williame
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Raphaël Sablong
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Michaël Sdika
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Fabien C. Schneider
- Service de Radiologie, Centre
Hospitalier Universitaire de Saint Etienne, TAPE EA7423,
Université de Lyon, UJM Saint Etienne, F42023, France
| | - Thiébaud Picart
- Service de Neurochirurgie
D, Hospices Civils de Lyon, Bron, France
| | - Jacques Guyotat
- Service de Neurochirurgie
D, Hospices Civils de Lyon, Bron, France
| | - Bruno Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| |
Collapse
|
2
|
Chong KC, Pramanik M. Physics-guided neural network for tissue optical properties estimation. BIOMEDICAL OPTICS EXPRESS 2023; 14:2576-2590. [PMID: 37342718 PMCID: PMC10278626 DOI: 10.1364/boe.487179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 06/23/2023]
Abstract
Finding the optical properties of tissue is essential for various biomedical diagnostic/therapeutic applications such as monitoring of blood oxygenation, tissue metabolism, skin imaging, photodynamic therapy, low-level laser therapy, and photo-thermal therapy. Hence, the research for more accurate and versatile optical properties estimation techniques has always been a primary interest of researchers, especially in the field of bioimaging and bio-optics. In the past, most of the prediction methods were based on physics-based models such as the pronounced diffusion approximation method. In more recent years, with the advancement and growing popularity of machine learning techniques, most of the prediction methods are data-driven. While both methods have been proven to be useful, each of them suffers from several shortcomings that could be complemented by their counterparts. Thus, there is a need to bring the two domains together to obtain superior prediction accuracy and generalizability. In this work, we proposed a physics-guided neural network (PGNN) for tissue optical properties regression which integrates physics prior and constraint into the artificial neural network (ANN) model. With this method, we have demonstrated superior generalizability of PGNN compared to its pure ANN counterpart. The prediction accuracy and generalizability of the network were evaluated on single-layered tissue samples simulated with Monte Carlo simulation. Two different test datasets, the in-domain test dataset and out-domain dataset were used to evaluate in-domain generalizability and out-domain generalizability, respectively. The physics-guided neural network (PGNN) showed superior generalizability for both in-domain and out-domain prediction compared to pure ANN.
Collapse
Affiliation(s)
- Kian Chee Chong
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Zou Y, Amidi E, Luo H, Zhu Q. Ultrasound-enhanced Unet model for quantitative photoacoustic tomography of ovarian lesions. PHOTOACOUSTICS 2022; 28:100420. [PMID: 36325304 PMCID: PMC9619170 DOI: 10.1016/j.pacs.2022.100420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 05/17/2023]
Abstract
Quantitative photoacoustic tomography (QPAT) is a valuable tool in characterizing ovarian lesions for accurate diagnosis. However, accurately reconstructing a lesion's optical absorption distributions from photoacoustic signals measured with multiple wavelengths is challenging because it involves an ill-posed inverse problem with three unknowns: the Grüneisen parameter ( Γ ) , the absorption distribution, and the optical fluence ( ϕ ) . Here, we propose a novel ultrasound-enhanced Unet model (US-Unet) that reconstructs optical absorption distribution from PAT data. A pre-trained ResNet-18 extracts the US features typically identified as morphologies of suspicious ovarian lesions, and a Unet is implemented to reconstruct optical absorption coefficient maps, using the initial pressure and US features extracted by ResNet-18. To test this US-Unet model, we calculated the blood oxygenation saturation values and total hemoglobin concentrations from 655 regions of interest (ROIs) (421 benign, 200 malignant, and 34 borderline ROIs) obtained from clinical images of 35 patients with ovarian/adnexal lesions. A logistic regression model was used to compute the ROC, the area under the ROC curve (AUC) was 0.94, and the accuracy was 0.89. To the best of our knowledge, this is the first study to reconstruct quantitative PAT with PA signals and US-based structural features.
Collapse
Affiliation(s)
- Yun Zou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongbo Luo
- Department of Electrical and System Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Månefjord H, Li M, Brackmann C, Reistad N, Runemark A, Rota J, Anderson B, Zoueu JT, Merdasa A, Brydegaard M. A biophotonic platform for quantitative analysis in the spatial, spectral, polarimetric, and goniometric domains. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113709. [PMID: 36461456 DOI: 10.1063/5.0095133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instruments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular composition, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tissue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and the ability to solve local problems with applied physics. We have designed, prototyped, and evaluated the low-cost Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and Compact Equipment (BIOSPACE) for high-quality quantitative analysis. BIOSPACE uses multiplexed light-emitting diodes with emission wavelengths from ultraviolet to near-infrared, captured by a synchronized camera. The angles of the light source, the target, and the polarization filters are automated by low-cost mechanics and a microcomputer. This enables multi-dimensional scatter analysis of centimeter-sized biological targets. We present the construction, calibration, and evaluation of BIOSPACE. The diverse functions of BIOSPACE include small animal spectral imaging, measuring the nanometer thickness of a bark-beetle wing, acquiring the scattering phase function of a blood smear and estimating the anisotropic scattering and the extinction coefficients, and contrasting muscle fibers using polarization. We provide blueprints, component list, and software for replication by enthusiasts and educators to simplify the hands-on investigation of fundamental optical properties in biological samples.
Collapse
Affiliation(s)
- Hampus Månefjord
- Department of Physics, Lund University, Sölvegatan 14, SE-223 62 Lund, Sweden
| | - Meng Li
- Department of Physics, Lund University, Sölvegatan 14, SE-223 62 Lund, Sweden
| | - Christian Brackmann
- Department of Physics, Lund University, Sölvegatan 14, SE-223 62 Lund, Sweden
| | - Nina Reistad
- Department of Physics, Lund University, Sölvegatan 14, SE-223 62 Lund, Sweden
| | - Anna Runemark
- Department of Biology, Lund University, Sölvegatan 35, SE-223 63 Lund, Sweden
| | - Jadranka Rota
- Biological Museum, Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | | | - Jeremie T Zoueu
- Laboratoire d'Instrumentation, Image et Spectroscopie, INP-HB, BP 1093 Yamoussoukro, Côte d'Ivoire
| | - Aboma Merdasa
- Department of Physics, Lund University, Sölvegatan 14, SE-223 62 Lund, Sweden
| | - Mikkel Brydegaard
- Department of Physics, Lund University, Sölvegatan 14, SE-223 62 Lund, Sweden
| |
Collapse
|
5
|
Zhao M, Huang C, Mazdeyasna S, Yu G. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:5894-5908. [PMID: 34692223 PMCID: PMC8515985 DOI: 10.1364/boe.429890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting both μ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge of μ a not only improved the accuracy in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues.
Collapse
|
6
|
Mosca S, Dey P, Salimi M, Gardner B, Palombo F, Stone N, Matousek P. Spatially Offset Raman Spectroscopy-How Deep? Anal Chem 2021; 93:6755-6762. [PMID: 33886282 DOI: 10.1021/acs.analchem.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spatially offset Raman spectroscopy (SORS) is a technique for interrogating the subsurface composition of turbid samples noninvasively. This study generically addresses a fundamental question relevant to a wide range of SORS studies, which is how deep SORS probes for any specific spatial offset when analyzing a turbid sample or, in turn, what magnitude of spatial offset one should select to probe a specific depth. This issue is addressed by using Monte Carlo simulations, under the assumption of negligible absorption, which establishes that the key parameter governing the extent of the probed zone for a point-like illumination and point-like collection SORS geometry is the reduced scattering coefficient of the medium. This can either be deduced from literature data or directly estimated from a SORS measurement by evaluating the Raman intensity profile from multiple spatial offsets. Once this is known, the extent of the probed zone can be determined for any specific SORS spatial offset using the Monte Carlo simulation results presented here. The proposed method was tested using experimental data on stratified samples by analyzing the signal detected from a thin layer that was moved through a stack of layers using both non-absorbing and absorbing samples. The proposed simple methodology provides important additional information on SORS measurements with direct relevance to a wide range of SORS applications including biomedical, pharmaceutical, security, forensics, and cultural heritage.
Collapse
Affiliation(s)
- Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Priyanka Dey
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Marzieh Salimi
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Benjamin Gardner
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
7
|
Noah JA, Zhang X, Dravida S, DiCocco C, Suzuki T, Aslin RN, Tachtsidis I, Hirsch J. Comparison of short-channel separation and spatial domain filtering for removal of non-neural components in functional near-infrared spectroscopy signals. NEUROPHOTONICS 2021; 8:015004. [PMID: 33598505 PMCID: PMC7881368 DOI: 10.1117/1.nph.8.1.015004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/19/2021] [Indexed: 05/03/2023]
Abstract
Significance: With the increasing popularity of functional near-infrared spectroscopy (fNIRS), the need to determine localization of the source and nature of the signals has grown. Aim: We compare strategies for removal of non-neural signals for a finger-thumb tapping task, which shows responses in contralateral motor cortex and a visual checkerboard viewing task that produces activity within the occipital lobe. Approach: We compare temporal regression strategies using short-channel separation to a spatial principal component (PC) filter that removes global signals present in all channels. For short-channel temporal regression, we compare non-neural signal removal using first and combined first and second PCs from a broad distribution of short channels to limited distribution on the forehead. Results: Temporal regression of non-neural information from broadly distributed short channels did not differ from forehead-only distribution. Spatial PC filtering provides results similar to short-channel separation using the temporal domain. Utilizing both first and second PCs from short channels removes additional non-neural information. Conclusions: We conclude that short-channel information in the temporal domain and spatial domain regression filtering methods remove similar non-neural components represented in scalp hemodynamics from fNIRS signals and that either technique is sufficient to remove non-neural components.
Collapse
Affiliation(s)
- J. Adam Noah
- Yale School of Medicine, Department of Psychiatry, Brain Function Laboratory, New Haven, Connecticut, United States
| | - Xian Zhang
- Yale School of Medicine, Department of Psychiatry, Brain Function Laboratory, New Haven, Connecticut, United States
| | - Swethasri Dravida
- Yale School of Medicine, Interdepartmental Neuroscience Program New Haven, Connecticut, United States
| | - Courtney DiCocco
- Yale School of Medicine, Brain Function Laboratory, New Haven, Connecticut, United States
| | - Tatsuya Suzuki
- Meiji University, Graduate School of Science and Technology, Electrical Engineering Program, Kawasaki, Japan
- Meiji University, School of Science and Technology, Department of Electronics and Bioinformatics, Kawasaki, Japan
| | - Richard N. Aslin
- Haskins Laboratories, New Haven, Connecticut, United States
- Yale University, Department of Psychology, New Haven, Connecticut, United States
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Brain Function Laboratory, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Yale School of Medicine, Department of Neuroscience, New Haven, Connecticut, United States
- Yale School of Medicine, Department of Comparative Medicine, New Haven, Connecticut, United States
- Address all correspondence to Joy Hirsch,
| |
Collapse
|
8
|
Takegawa R, Hayashida K, Rolston DM, Li T, Miyara SJ, Ohnishi M, Shiozaki T, Becker LB. Near-Infrared Spectroscopy Assessments of Regional Cerebral Oxygen Saturation for the Prediction of Clinical Outcomes in Patients With Cardiac Arrest: A Review of Clinical Impact, Evolution, and Future Directions. Front Med (Lausanne) 2020; 7:587930. [PMID: 33251235 PMCID: PMC7673454 DOI: 10.3389/fmed.2020.587930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Despite three decades of advancements in cardiopulmonary resuscitation (CPR) methods and post-resuscitation care, neurological prognosis remains poor among survivors of out-of-hospital cardiac arrest, and there are no reliable methods for predicting neurological outcomes in patients with cardiac arrest (CA). Adopting more effective methods of neurological monitoring may aid in improving neurological outcomes and optimizing therapeutic interventions for each patient. In the present review, we summarize the development, evolution, and potential application of near-infrared spectroscopy (NIRS) in adults with CA, highlighting the clinical relevance of NIRS brain monitoring as a predictive tool in both pre-hospital and in-hospital settings. Several clinical studies have reported an association between various NIRS oximetry measurements and CA outcomes, suggesting that NIRS monitoring can be integrated into standardized CPR protocols, which may improve outcomes among patients with CA. However, no studies have established acceptable regional cerebral oxygen saturation cut-off values for differentiating patient groups based on return of spontaneous circulation status and neurological outcomes. Furthermore, the point at which resuscitation efforts can be considered futile remains to be determined. Further large-scale randomized controlled trials are required to evaluate the impact of NIRS monitoring on survival and neurological recovery following CA.
Collapse
Affiliation(s)
- Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Daniel M Rolston
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Timmy Li
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Acute Medicine and Critical Care Medical Center, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Tadahiko Shiozaki
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
9
|
Bai J, Zhu Q, Liu Y, Zhou Y, Shi T, Gui Z, Shang Y. PV-MBLL algorithm for extraction of absolute tissue oxygenation information by diffuse optical spectroscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105456. [PMID: 32305645 DOI: 10.1016/j.cmpb.2020.105456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Tissue blood oxygenation contains critical information for biomedical studies and healthcare. The primary approach to extract the absolute value of tissue blood oxygenation (e.g., oxygen saturation) is spatial-resolved algorithm for near-infrared diffuse optical spectroscopy with continues-wave (CW) light, which require acquisition of the optical signals from multiple pairs of sources and detectors (S-D). This study reports the first attempt for absolute oxygenation measurement with single S-D pair of optical signals. METHODS A novel algorithm, namely, phantom-validation modified Beer-Lambert law (PV-MBLL), was created to fully utilize the optical signals from single S-D pair. This algorithm is combined with two-step phantom measurement to extract the absolute value of tissue oxygenation in CW system. The proposed PV-MBLL algorithm was compared with the conventional spatial-resolved algorithm on both step-varied liquid phantom and human experiment of cuff occlusion on arms. The one-way ANOVA analysis was performed to investigate the difference between the two algorithms. RESULTS By using the PV-MBLL algorithm, the reconstructed tissue absorption coefficient is highly accurate (not larger than 5.35% in error) over a wide range (0.02-0.20 cm-1). By contrast, the spatial-resolved algorithm leads to much larger errors (up to 37.57% in error). Moreover, the responses of oxygen saturation to cuff occlusion differ significantly (p < 0.005) with the two algorithms. CONCLUSIONS The proposed PV-MBLL algorithm has promising potential for accurate acquisition of oxygenation information. Additionally, the single S-D pair greatly reduces the size of optical probe and instrument cost, thus it is highly appropriate for the tissues with small size and large curvature.
Collapse
Affiliation(s)
- Jing Bai
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Qisen Zhu
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Yinqiu Liu
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Yihang Zhou
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Tianlei Shi
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Yu Shang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China.
| |
Collapse
|
10
|
Nitzan M, Nitzan I, Arieli Y. The Various Oximetric Techniques Used for the Evaluation of Blood Oxygenation. SENSORS 2020; 20:s20174844. [PMID: 32867184 PMCID: PMC7506757 DOI: 10.3390/s20174844] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Adequate oxygen delivery to a tissue depends on sufficient oxygen content in arterial blood and blood flow to the tissue. Oximetry is a technique for the assessment of blood oxygenation by measurements of light transmission through the blood, which is based on the different absorption spectra of oxygenated and deoxygenated hemoglobin. Oxygen saturation in arterial blood provides information on the adequacy of respiration and is routinely measured in clinical settings, utilizing pulse oximetry. Oxygen saturation, in venous blood (SvO2) and in the entire blood in a tissue (StO2), is related to the blood supply to the tissue, and several oximetric techniques have been developed for their assessment. SvO2 can be measured non-invasively in the fingers, making use of modified pulse oximetry, and in the retina, using the modified Beer–Lambert Law. StO2 is measured in peripheral muscle and cerebral tissue by means of various modes of near infrared spectroscopy (NIRS), utilizing the relative transparency of infrared light in muscle and cerebral tissue. The primary problem of oximetry is the discrimination between absorption by hemoglobin and scattering by tissue elements in the attenuation measurement, and the various techniques developed for isolating the absorption effect are presented in the current review, with their limitations.
Collapse
Affiliation(s)
- Meir Nitzan
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem 91160, Israel;
- Correspondence:
| | - Itamar Nitzan
- Monash Newborn, Monash Children’s Hospital, Melbourne 3168, Australia;
- Department of Neonatology, Shaare Zedek Medical Center, Shmuel Bait St 12, Jerusalem 9103102, Israel
| | - Yoel Arieli
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem 91160, Israel;
| |
Collapse
|
11
|
Qiao Y, Gou G, Wu F, Jian J, Li X, Hirtz T, Zhao Y, Zhi Y, Wang F, Tian H, Yang Y, Ren TL. Graphene-Based Thermoacoustic Sound Source. ACS NANO 2020; 14:3779-3804. [PMID: 32186849 DOI: 10.1021/acsnano.9b10020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermoacoustic (TA) effect has been discovered for more than 130 years. However, limited by the material characteristics, the performance of a TA sound source could not be compared with magnetoelectric and piezoelectric loudspeakers. Recently, graphene, a two-dimensional material with the lowest heat capacity per unit area, was discovered to have a good TA performance. Compared with a traditional sound source, graphene TA sound sources (GTASSs) have many advantages, such as small volume, no diaphragm vibration, wide frequency range, high transparency, good flexibility, and high sound pressure level (SPL). Therefore, graphene has a great potential as a next-generation sound source. Photoacoustic (PA) imaging can also be applied to the diagnosis and treatment of diseases using the photothermo-acoustic (PTA) effect. Therefore, in this review, we will introduce the history of TA devices. Then, the theory and simulation model of TA will be analyzed in detail. After that, we will talk about the graphene synthesis method. To improve the performance of GTASSs, many strategies such as lowering the thickness and using porous or suspended structures will be introduced. With a good PTA effect and large specific area, graphene PA imaging and drug delivery is a promising prospect in cancer treatment. Finally, the challenges and prospects of GTASSs will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Guangyang Gou
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Fan Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfei Zhao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yao Zhi
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Fangwei Wang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Mosca S, Lanka P, Stone N, Konugolu Venkata Sekar S, Matousek P, Valentini G, Pifferi A. Optical characterization of porcine tissues from various organs in the 650-1100 nm range using time-domain diffuse spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1697-1706. [PMID: 32206436 PMCID: PMC7075607 DOI: 10.1364/boe.386349] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 05/10/2023]
Abstract
We present a systematic characterization of the optical properties (µa and µs') of nine representative ex vivo porcine tissues over a broadband spectrum (650-1100 nm). We applied time-resolved diffuse optical spectroscopy measurements for recovering the optical properties of porcine tissues depicting a realistic representation of the tissue heterogeneity and morphology likely to be found in different ex vivo tissues. The results demonstrate a large spectral and inter-tissue variation of optical properties. The data can be exploited for planning or simulating ex vivo experiments with various biophotonics techniques, or even to construct artificial structures mimicking specific pathologies exploiting the wide assortment in optical properties.
Collapse
Affiliation(s)
- Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, OX11 0QX, United Kingdom
- These authors contributed equally to this research
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- These authors contributed equally to this research
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | | | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, OX11 0QX, United Kingdom
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milano, Italy
| |
Collapse
|
13
|
Almajidy RK, Rackebrandt K, Gehring H, Hofmann UG. Dual Layered Models of Light Scattering in the Near Infrared A: Optical Measurements and Simulation .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4770-4774. [PMID: 31946928 DOI: 10.1109/embc.2019.8857449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intralipid emulsion is often used as optical model substance to mimick living tissue's strong scattering properties. As such it is of considerable importance to utilize realistic parameters for any type of simulation or calculation in context of Near Infrared Spectroscopy. We determined optical properties of diluted Intralipid solutions at often used, realistic volume concentrations ρil and at two NIRS wavelengths (780nm and 850nm) in a double integrating Ulbricht-sphere setup. The results were used in Monte Carlo (MC) simulations of an experiment, described in our companion paper. Both, phantom experiments and MC simulation showed qualitatively similar results and demonstrated the effects of changing the three major NIRS factors, namely the penetrated layer depth (d), the Intralipid concentration ρil and the source-detector separation (SDS). The results demonstrated that light reaching the detectors was inversely proportional to ρil and d. It also showed that very low Intralipid concentrations do not follow the optical properties documented for Intralipid 20%.
Collapse
|
14
|
Almajidy RK, Rackebrandt K, Gehring H, Hofmann UG. Dual Layered Models of Light Scattering in the Near Infrared B: Experimental Results with a Phantom .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4775-4778. [PMID: 31946929 DOI: 10.1109/embc.2019.8857788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intralipid emulsion is often used as optical model substance to mimic living tissue's strong scattering properties. As such it is of considerable importance to utilize realistic parameters for any type of simulation or calculation in context of Near Infrared Spectroscopy. We determined optical characteristics of diluted Intralipid solutions at often used, realistic volume concentrations ρil and at two wavelengths (780nm and 850nm) in a simple phantom setup featuring multiple sensors with different source-detector-separation (SDS) and penetration depths d. Both, phantom experiments and MC simulation showed qualitatively similar results and demonstrated the influence of the three major NIRS factors, namely the penetrated layer depth (d), the Intralipid concentration ρil and the source-detector separation (SDS). The results demonstrated that light reaching the detectors is inversely proportional to ρil and d. It corroborates the need for differential measurements with at least two SDS to account for superficial large angle scattering.
Collapse
|
15
|
Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents recent developments and a wide overview of broadband time domain diffuse optical spectroscopy (TD-DOS). Various topics including physics of photon migration, advanced instrumentation, methods of analysis, applications covering multiple domains (tissue chromophore, in vivo studies, food, wood, pharmaceutical industry) are elaborated. The key role of standardization and recent studies in that direction are discussed. Towards the end, a brief outlook is presented on the current status and future trends in broadband TD-DOS.
Collapse
|
16
|
Mahmoodkalayeh S, Ansari MA, Tuchin VV. Head model based on the shape of the subject's head for optical brain imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:2795-2808. [PMID: 31259052 PMCID: PMC6583357 DOI: 10.1364/boe.10.002795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Optical imaging methods such as near-infrared spectroscopy and diffuse optical tomography rely on models to solve the inverse problem. Imaging an adult human head also requires a head model. Using a model, which makes describing the structure of the head better, leads to acquiring a more accurate absorption map. Here, by combining the key features of layered slab models and head atlases, we introduce a new two-layered head model that is based on the surface geometry of the subject's head with variable thickness of the superficial layer. Using the Monte Carlo approach, we assess the performance of our model for fitting the optical properties from simulated time-resolved data of the adult head in a null distance source-detector configuration. Using our model, we observed improved results at 70 percent of the locations on the head and an overall 20 percent reduction in relative error compared to layered slab model.
Collapse
Affiliation(s)
- Sadreddin Mahmoodkalayeh
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
17
|
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3750495. [PMID: 30891170 PMCID: PMC6390246 DOI: 10.1155/2019/3750495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
Collapse
|
18
|
Zhang P, Gui Z, Guo G, Shang Y. Approaches to denoise the diffuse optical signals for tissue blood flow measurement. BIOMEDICAL OPTICS EXPRESS 2018; 9:6170-6185. [PMID: 31065421 PMCID: PMC6490982 DOI: 10.1364/boe.9.006170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
Various diseases are relevant to the abnormal blood flow in tissue. Diffuse correlation spectroscopy (DCS) is an emerging technology to extract the blood flow index (BFI) from light electric field temporal autocorrelation data. To account for tissue heterogeneity and irregular geometry, we developed an innovative DCS algorithm (i.e., the Nth order linear algorithm, or simply the NL algorithm) previously, in which the DCS signals are fully utilized through iterative linear regressions. Under the framework of NL algorithm, the BFI to be extracted is significantly influenced by the linear regression approach adopted. In this study, three approaches were proposed and evaluated for performing the iterative linear regressions, in order to understand what are the appropriate regression methods for BFI estimation. The three methods are least-squared minimization (L2 norm), least-absolute minimization (L1 norm) and support vector regression (SVR), where L2 norm is a conventional approach to perform linear regression. L1 norm and SVR are the approaches newly introduced here to process the DCS data. Computer simulations and the autocorrelation data collected from liquid phantom and human tissues are utilized to evaluate the three approaches. The results show that the best performance is achieved by the SVR approach in extracting the BFI values, with an error rate of 2.23% at 3.0 cm source-detector separation. The L1 norm method gives a medium error of 2.81%. In contrast, the L2 norm method leads to the largest error (3.93%) in extracting the BFI values. The outcomes derived from this study will be very helpful for the tissue blood flow measurements, which is critical for translating the DCS technology to the clinic.
Collapse
Affiliation(s)
- Peng Zhang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - GuoDong Guo
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV26506, USA
| | - Yu Shang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| |
Collapse
|
19
|
Carlson ML, McClatchy DM, Gunn JR, Elliott JT, Paulsen KD, Kanick SC, Pogue BW. Wide-field color imaging of scatter-based tissue contrast using both high spatial frequency illumination and cross-polarization gating. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28800205 DOI: 10.1002/jbio.201700104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
This study characterizes the scatter-specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross-polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi-illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide-field imaging. Measurements in tissue-simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter-only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter-based contrast achieved with HSF, CP and HSF-CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter-based contrast within images of tissue. The results suggest that visible CP-HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality.
Collapse
Affiliation(s)
| | - David M McClatchy
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jonathan T Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Stephen C Kanick
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
- Profusa, Inc., South San Francisco, California
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
20
|
Lin CY, Chen F, Hariri A, Chen CJ, Wilder-Smith P, Takesh T, Jokerst JV. Photoacoustic Imaging for Noninvasive Periodontal Probing Depth Measurements. J Dent Res 2017; 97:23-30. [PMID: 28880116 DOI: 10.1177/0022034517729820] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The periodontal probe is the gold standard tool for periodontal examinations, including probing depth measurements, but is limited by systematic and random errors. Here, we used photoacoustic ultrasound for high-spatial resolution imaging of probing depths. Specific contrast from dental pockets was achieved with food-grade cuttlefish ink as a contrast medium. Here, 39 porcine teeth (12 teeth with artificially deeper pockets) were treated with the contrast agent, and the probing depths were measured with novel photoacoustic imaging and a Williams periodontal probe. There were statistically significant differences between the 2 measurement approaches for distal, lingual, and buccal sites but not mesial. Bland-Altman analysis revealed that all bias values were < ±0.25 mm, and the coefficients of variation for 5 replicates were <11%. The photoacoustic imaging approach also offered 0.01-mm precision and could cover the entire pocket, as opposed to the probe-based approach, which is limited to only a few sites. This report is the first to use photoacoustic imaging for probing depth measurements with potential implications to the dental field, including tools for automated dental examinations or noninvasive examinations.
Collapse
Affiliation(s)
- C Y Lin
- 1 Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
| | - F Chen
- 1 Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.,2 Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - A Hariri
- 1 Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
| | - C J Chen
- 1 Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA
| | - P Wilder-Smith
- 3 Beckman Laser Institute, University of California, Irvine, CA, USA
| | - T Takesh
- 3 Beckman Laser Institute, University of California, Irvine, CA, USA
| | - J V Jokerst
- 1 Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.,2 Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA.,4 Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Scarapicchia V, Brown C, Mayo C, Gawryluk JR. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Front Hum Neurosci 2017; 11:419. [PMID: 28867998 PMCID: PMC5563305 DOI: 10.3389/fnhum.2017.00419] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function.
Collapse
Affiliation(s)
| | - Cassandra Brown
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Chantel Mayo
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| |
Collapse
|
22
|
Shang Y, Li T, Yu G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol Meas 2017; 38:R1-R26. [PMID: 28199219 PMCID: PMC5726862 DOI: 10.1088/1361-6579/aa60b7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. APPROACH Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). MAIN RESULTS This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. SIGNIFICANCE Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring.
Collapse
Affiliation(s)
- Yu Shang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China
| | - Ting Li
- State Key Lab Elect Thin Film & Integrated Device, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, 514C RMB, 143 Graham Avenue, Lexington, KY 40506-0108, USA
| |
Collapse
|
23
|
Alderliesten T, De Vis JB, Lemmers PMA, Hendrikse J, Groenendaal F, van Bel F, Benders MJNL, Petersen ET. Brain oxygen saturation assessment in neonates using T 2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy. J Cereb Blood Flow Metab 2017; 37:902-913. [PMID: 27151900 PMCID: PMC5363470 DOI: 10.1177/0271678x16647737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R2 = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R2 = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T2-prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R2 = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.
Collapse
Affiliation(s)
- Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Thomas Alderliesten, Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE Ut, The Netherlands.
| | - Jill B De Vis
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra MA Lemmers
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon JNL Benders
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
24
|
Wijeakumar S, Huppert TJ, Magnotta VA, Buss AT, Spencer JP. Validating an image-based fNIRS approach with fMRI and a working memory task. Neuroimage 2017; 147:204-218. [DOI: 10.1016/j.neuroimage.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 11/15/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022] Open
|
25
|
Pifferi A, Contini D, Mora AD, Farina A, Spinelli L, Torricelli A. New frontiers in time-domain diffuse optics, a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091310. [PMID: 27311627 DOI: 10.1117/1.jbo.21.9.091310] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity.
Collapse
Affiliation(s)
- Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, ItalybIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, ItalybIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| |
Collapse
|
26
|
Bok TH, Hysi E, Kolios MC. Simultaneous assessment of red blood cell aggregation and oxygen saturation under pulsatile flow using high-frequency photoacoustics. BIOMEDICAL OPTICS EXPRESS 2016; 7:2769-80. [PMID: 27446705 PMCID: PMC4948629 DOI: 10.1364/boe.7.002769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/08/2023]
Abstract
We investigate the feasibility of photoacoustic (PA) imaging for assessing the correlation between red blood cell (RBC) aggregation and the oxygen saturation (sO2) in a simulated pulsatile blood flow system. For the 750 and 850 nm illuminations, the PA amplitude (PAA) increased and decreased as the mean blood flow velocity decreased and increased, respectively, at all beat rates (60, 120 and 180 bpm). The sO2 also cyclically varied, in phase with the PAA for all beat rates. However, the linear correlation between the sO2 and the PAA at 850 nm was stronger than that at 750 nm. These results suggest that the sO2 can be correlated with RBC aggregation induced by decreased mean shear rate in pulsatile flow, and that the correlation is dependent on the optical wavelength. The hemodynamic properties of blood flow assessed by PA imaging may be used to provide a new biomarker for simultaneous monitoring blood viscosity related to RBC aggregation, oxygen delivery related to the sO2 and their clinical correlation.
Collapse
|
27
|
Abstract
Near infrared spectroscopy (NIRS) utilizes intrinsic optical absorption signals of blood, water, and lipid concentration available in the NIR window (600–1000 nm) as well as a developing array of extrinsic organic compounds to detect and localize cancer. This paper reviews optical cancer detection made possible through high tumor-tissue signal-to-noise ratio (SNR) and providing biochemical and physiological data in addition to those obtained via other methods. NIRS detects cancers in vivo through a combination of blood volume and oxygenation from measurements of oxy- and deoxy-hemoglobin giving signals of tumor angiogenesis and hypermetabolism. The Chance lab tends towards CW breast cancer systems using manually scannable detectors with calibrated low pressure tissue contact. These systems calculate angiogenesis and hypermetabolism by using a pair of wavelengths and referencing the mirror image position of the contralateral breast to achieve high ROC/AUC. Time domain and frequency domain spectroscopy were also used to study similar intrinsic breast tumor characteristics such as high blood volume. Other NIRS metrics are water-fat ratio and the optical scattering coefficient. An extrinsic FDA approved dye, ICG, has been used to measure blood pooling with extravasation, similar to Gadolinium in MRI. A key future development in NIRS will be new Molecular Beacons targeting cancers and fluorescing in the NIR window to enhance in vivo tumor-tissue ratios and to afford biochemical specificity with the potential for effective photodynamic anti-cancer therapies.
Collapse
Affiliation(s)
- S Nioka
- University of Pennsylvania, Department of Biochemistry and Biophysics, 250 Anatomy-Chemistry Bldg., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
28
|
Alderliesten T, De Vis JB, Lemmers PMA, van Bel F, Benders MJNL, Hendrikse J, Petersen ET. T 2-prepared velocity selective labelling: A novel idea for full-brain mapping of oxygen saturation. Neuroimage 2016; 139:65-73. [PMID: 27291495 DOI: 10.1016/j.neuroimage.2016.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM Disturbances in cerebral oxygenation saturation (SO2) have been linked to adverse outcome in adults, children, and neonates. In intensive care, the cerebral SO2 is increasingly being monitored by Near-InfraRed Spectroscopy (NIRS). Unfortunately NIRS has a limited penetration depth. The "modified T2-prepared Blood Imaging of Oxygen Saturation" (T2-BIOS) MR sequence provides a step towards full brain SO2 measurement. MATERIALS AND METHODS Tissue SO2, and venous SO2 (SvO2) were obtained simultaneously by T2-BIOS during a respiratory challenge in ten healthy volunteers. These two measures were compared to SO2 that was obtained by a single probe MR-compatible NIRS setup, and to cerebral blood flow and venous SO2 that were obtained by arterial spin labelling and T2-TRIR, respectively. RESULTS SO2-T2-BIOS and SO2-NIRS had a mean bias of -4.0% (95% CI -21.3% to 13.3%). SvO2-T2-BIOS correlated with SO2-NIRS (R2=0.41, p=0.002) and SvO2-T2-TRIR (R2=0.87, p=0.002). In addition, SO2-NIRS correlated with SvO2-T2-TRIR (R2=0.85, p=0.003) Frontal cerebral blood flow correlated with SO2-T2-BIOS (R2=0.21, p=0.04), but was not significant in relation to SO2-NIRS. DISCUSSION/CONCLUSION Full brain SO2 assessment by any technique may help validating NIRS and may prove useful in guiding the clinical management of patient populations with cerebral injury following hypoxic-ischaemic events. The agreement between NIRS and T2-BIOS provides confidence in measuring cerebral SO2 by either technique. As it stands now, the T2-BIOS represents a novel idea and future work will focus on improvements to make it a reliable tool for SO2 assessment.
Collapse
Affiliation(s)
- Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE, Utrecht, The Netherlands.
| | - Jill B De Vis
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE, Utrecht, The Netherlands.
| | - Petra M A Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE, Utrecht, The Netherlands.
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE, Utrecht, The Netherlands.
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE, Utrecht, The Netherlands.
| | - Jeroen Hendrikse
- Department of Radiology,University Medical Center Utrecht, Room: E.01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Esben T Petersen
- Department of Radiology,University Medical Center Utrecht, Room: E.01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark.
| |
Collapse
|
29
|
Martelli F, Del Bianco S, Spinelli L, Cavalieri S, Di Ninni P, Binzoni T, Jelzow A, Macdonald R, Wabnitz H. Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115001. [PMID: 26524677 DOI: 10.1117/1.jbo.20.11.115001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 05/02/2023]
Abstract
In this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg–Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain. The absorption coefficient of the layers was varied in a range of values typical for biological tissues. The reconstructions performed demonstrate the substantial improvements achievable with the OE provided a priori information is available. We note the extreme reliability, robustness, and accuracy of the retrieved absorption coefficient of the second layer obtained with the OE that was found for up to six fit parameters, with an error in the retrieved values of less than 10%. A priori information on fit parameters and fixed forward model parameters clearly improves robustness and accuracy of the inversion procedure.
Collapse
Affiliation(s)
- Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Sesto Fiorentino 50019, Firenze, Italy
| | - Samuele Del Bianco
- Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Stefano Cavalieri
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Sesto Fiorentino 50019, Firenze, Italy
| | - Paola Di Ninni
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Sesto Fiorentino 50019, Firenze, Italy
| | - Tiziano Binzoni
- University of Geneva, Département de Neurosciences Fondamentales, 1, rue Michel-Servet 1211 Genève 4, SwitzerlandeUniversity Hospital, Département de l'Imagerie et des Sciences de l'Information Médicale, 1, 4 rue Gabrielle-Perret-Gentil, 1211 Geneva 14, S
| | - Alexander Jelzow
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Rainer Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
30
|
Li T, Duan M, Li K, Yu G, Ruan Z. Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:3431-6. [PMID: 26417512 PMCID: PMC4574668 DOI: 10.1364/boe.6.003431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 05/06/2023]
Abstract
Clinical monitoring of shock mainly depends on blood-oxygen-indices obtained from invasive blood sample tests. The central internal jugular central vein oxygenation level (ScvO2) has been considered as a gold standard indicator for shock prediction. We developed a noninvasive spatially-resolved near-infrared spectroscopy (SR-NIRS) to measure tissue blood oxygen saturation (StO2) surrounding the region of taking blood sample for the ScvO2 test in 25 patients with shock. StO2 values were found to be highly correlated (r = 0.84, p < 0.001) with ScvO2 levels and the concordance coefficient of 0.80 is high. The results suggest the potential of noninvasive SR-NIRS for bedside shock monitoring.
Collapse
Affiliation(s)
- Ting Li
- State Key Lab Elect Thin Film & Integrated Device and Department of Biomedical Engineering, University of Electronic Science & Technology of China, Chengdu 610054, China
- These authors contributed equally to this work
| | - Meixue Duan
- State Key Lab Elect Thin Film & Integrated Device and Department of Biomedical Engineering, University of Electronic Science & Technology of China, Chengdu 610054, China
- These authors contributed equally to this work
| | - Kai Li
- State Key Lab Elect Thin Film & Integrated Device and Department of Biomedical Engineering, University of Electronic Science & Technology of China, Chengdu 610054, China
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0108, USA
| | - Zhengshang Ruan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai 200092, China
| |
Collapse
|
31
|
Yuan G, Alqasemi U, Chen A, Yang Y, Zhu Q. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:126003. [PMID: 25473884 PMCID: PMC4255433 DOI: 10.1117/1.jbo.19.12.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions.
Collapse
Affiliation(s)
- Guangqian Yuan
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
| | - Umar Alqasemi
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
| | - Aaron Chen
- University of Pennsylvania, College of Art and Sciences, 249 South 36th Street, Philadelphia 19104-6304, United States
| | - Yi Yang
- University of Connecticut, Departments of Electrical and Computer Engineering, 371 Fairfield Way; U-4157, Storrs, Connecticut 06269-4157, United States
| | - Quing Zhu
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
- University of Pennsylvania, College of Art and Sciences, 249 South 36th Street, Philadelphia 19104-6304, United States
| |
Collapse
|
32
|
Kim O, McMurdy J, Jay G, Lines C, Crawford G, Alber M. Combined reflectance spectroscopy and stochastic modeling approach for noninvasive hemoglobin determination via palpebral conjunctiva. Physiol Rep 2014; 2:e00192. [PMID: 24744871 PMCID: PMC3967675 DOI: 10.1002/phy2.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 11/09/2022] Open
Abstract
A combination of stochastic photon propagation model in a multilayered human eyelid tissue and reflectance spectroscopy was used to study palpebral conjunctiva spectral reflectance for hemoglobin (Hgb) determination. The developed model is the first biologically relevant model of eyelid tissue, which was shown to provide very good approximation to the measured spectra. Tissue optical parameters were defined using previous histological and microscopy studies of a human eyelid. After calibration of the model parameters the responses of reflectance spectra to Hgb level and blood oxygenation variations were calculated. The stimulated reflectance spectra in adults with normal and low Hgb levels agreed well with experimental data for Hgb concentrations from 8.1 to 16.7 g/dL. The extracted Hgb levels were compared with in vitro Hgb measurements. The root mean square error of cross-validation was 1.64 g/dL. The method was shown to provide 86% sensitivity estimates for clinically diagnosed anemia cases. A combination of the model with spectroscopy measurements provides a new tool for noninvasive study of human conjunctiva to aid in diagnosing blood disorders such as anemia.
Collapse
Affiliation(s)
- Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, 46556, Indiana
| | - John McMurdy
- Division of Engineering, Brown University, Providence, 02912, Rhode Island
| | - Gregory Jay
- Department of Emergency Medicine and Division of Engineering, Brown University, Providence, 02912, Rhode Island
| | - Collin Lines
- Department of Physics, University of Notre Dame, Notre Dame, 46556, Indiana
| | - Gregory Crawford
- Department of Physics, University of Notre Dame, Notre Dame, 46556, Indiana
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, 46556, Indiana ; Department of Physics, University of Notre Dame, Notre Dame, 46556, Indiana ; Department of Medicine, Indiana University School of Medicince, Indianapolis, 46202, Indiana
| |
Collapse
|
33
|
Alderliesten T, De Vis J, Lemmers P, van Bel F, Benders M, Hendrikse J, Petersen E. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults. Neuroimage 2014; 85 Pt 1:255-63. [DOI: 10.1016/j.neuroimage.2013.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022] Open
|
34
|
Morales Cruzado B, y Montiel SV, Atencio JAD. Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media. BIOMEDICAL OPTICS EXPRESS 2013; 4:433-46. [PMID: 23504404 PMCID: PMC3595087 DOI: 10.1364/boe.4.000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/22/2012] [Indexed: 05/02/2023]
Abstract
In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation.
Collapse
|
35
|
Vermeij A, van Beek AHEA, Olde Rikkert MGM, Claassen JAHR, Kessels RPC. Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study. PLoS One 2012; 7:e46210. [PMID: 23029437 PMCID: PMC3460859 DOI: 10.1371/journal.pone.0046210] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during working-memory performance using functional Near-Infrared Spectroscopy (fNIRS), a noninvasive neuroimaging technique. Seventeen healthy young (21–32 years) and 17 healthy older adults (64–81 years) performed a verbal working-memory task (n-back). Oxygenated and deoxygenated hemoglobin concentration changes were registered by two fNIRS channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition in older adults, but not in young participants. In both young and older adults, prefrontal activation increased with rising working-memory load. Young adults showed slight right-hemispheric dominance at low levels of working-memory load, while no hemispheric differences were apparent in older adults. Analysis of the time-activation curve during the high working-memory load condition revealed a continuous increase of the hemodynamic response in the young. In contrast to that, a quadratic pattern of activation was found in the older participants. Based on these results it could be hypothesized that young adults were better able to keep the prefrontal cortex recruited over a prolonged period of time. To conclude, already at low levels of working-memory load do older adults recruit both hemispheres, possibly in an attempt to compensate for the observed aging-related decline in performance. Also, our study shows that aging effects on the time course of the hemodynamic response must be taken into account in the interpretation of the results of neuroimaging studies that rely on blood oxygen levels, such as fMRI.
Collapse
Affiliation(s)
- Anouk Vermeij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Martelli F, Bianco SD, Zaccanti G. Retrieval procedure for time-resolved near-infrared tissue spectroscopy based on the optimal estimation method. Phys Med Biol 2012; 57:2915-29. [DOI: 10.1088/0031-9155/57/10/2915] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Sandell JL, Zhu TC. A review of in-vivo optical properties of human tissues and its impact on PDT. JOURNAL OF BIOPHOTONICS 2011; 4:773-87. [PMID: 22167862 PMCID: PMC3321368 DOI: 10.1002/jbio.201100062] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A thorough understanding of optical properties of biological tissues is critical to effective treatment planning for therapies such as photodynamic therapy (PDT). In the last two decades, new technologies, such as broadband diffuse spectroscopy, have been developed to obtain in vivo data in humans that was not possible before. We found that the in vivo optical properties generally vary in the ranges μ(a) = 0.03-1.6 cm⁻¹ and μ'(s) = 1.2-40 cm⁻¹, although the actual range is tissue-type dependent. We have also examined the overall trend of the absorption spectra (for μ(a) and μ'(s)) as a function of wavelength within a 95% confidence interval for various tissues in vivo. The impact of optical properties on light fluence rate is also discussed for various light application geometries including superficial, interstitial, and within a cavity.
Collapse
Affiliation(s)
- Julia L. Sandell
- Department of Radiation Oncology. University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy C. Zhu
- Department of Radiation Oncology. University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
38
|
Aksel EB, Turkoglu AN, Ercan AE, Akin A. Localization of an absorber in a turbid semi-infinite medium by spatially resolved continuous-wave diffuse reflectance measurements. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:086010. [PMID: 21895322 DOI: 10.1117/1.3615238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A method to locate an absorber embedded in a semi-infinite turbid medium by spatially-resolved continuous-wave (SRCW) diffuse reflectance measurements is introduced. The depth of the absorber is assessed by single wavelength SRCW diffuse reflectance measurements by two detectors in a radial row. The ratio of perturbations introduced by the defect at two detectors is used to be matched with the ratio-versus-depth curve, which are generated by approximate formulas of continuous wave diffuse reflectance. The error due to approximation and the error in depth assessment are studied for different cases revealing favorable source-detector placements with respect to planar position of the defect. The effect of lateral displacement of the source with respect to defect is studied. A strategy to overcome errors introduced by erroneous prediction of background medium optical properties is suggested. Theoretical results indicate that the depth of the absorber can be obtained with 0.1 mm precision independent of its absorption coefficient and its size for the values chosen in the study. The approach is tested experimentally and it is observed that theoretical results fit with experimental data.
Collapse
|
39
|
Tichauer KM, Migueis M, Leblond F, Elliott JT, Diop M, St Lawrence K, Lee TY. Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data. APPLIED OPTICS 2011; 50:3962-3972. [PMID: 21772380 DOI: 10.1364/ao.50.003962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Time-domain fluorescence imaging is a powerful new technique that adds a rich amount of information to conventional fluorescence imaging. Specifically, time-domain fluorescence can be used to remove autofluorescence from signals, resolve multiple fluorophore concentrations, provide information about tissue microenvironments, and, for reflectance-based imaging systems, resolve inclusion depth. The present study provides the theory behind an improved method of analyzing reflectance-based time-domain data that is capable of accurately recovering mixed concentration ratios of multiple fluorescent agents while also recovering the depth of the inclusion. The utility of the approach was demonstrated in a number of simulations and in tissuelike phantom experiments using a short source-detector separation system. The major findings of this study were (1) both depth of an inclusion and accurate ratios of two-fluorophore concentrations can be recovered accurately up to depths of approximately 1 cm with only the optical properties of the medium as prior knowledge, (2) resolving the depth and accounting for the dispersion effects on fluorescent lifetimes is crucial to the accuracy of recovered ratios, and (3) ratios of three-fluorophore concentrations can be resolved at depth but only if the lifetimes of the three fluorophores are used as prior knowledge. By accurately resolving the concentration ratios of two to three fluorophores, it may be possible to remove autofluorescence or carry out quantitative techniques, such as reference tracer kinetic modeling or ratiometric approaches, to determine receptor binding or microenvironment parameters in point-based time-domain fluorescence applications.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Wavelength selection method with standard deviation: application to pulse oximetry. Ann Biomed Eng 2011; 39:1994-2009. [PMID: 21461782 DOI: 10.1007/s10439-011-0304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.
Collapse
|
41
|
Characterizing near-infrared spectroscopy responses to forearm post-occlusive reactive hyperemia in healthy subjects. Eur J Appl Physiol 2011; 111:2753-61. [DOI: 10.1007/s00421-011-1898-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
42
|
Garcia-Uribe A, Smith EB, Zou J, Duvic M, Prieto V, Wang LV. In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:020501. [PMID: 21361657 PMCID: PMC3061328 DOI: 10.1117/1.3536509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this letter, we report the first use of oblique incidence diffuse reflectance spectrometry to conduct in-vivo measurements of optical properties of three different types of pigmented skin lesions, including melanoma, dysplastic, and common nevi. Both absorption and reduced scattering coefficient spectra were estimated from the spatially resolved diffuse reflectance within the wavelength range of 455-765 nm for 144 pigmented skin lesions including 16 melanomas. The absorption and reduced scattering spectra were found to change with the malignancy of the skin lesions, which were generally higher for the malignant cases than the benign ones. Based on the measurement results, the physiological origin leading to the change of the absorption and scattering properties is also discussed.
Collapse
|
43
|
Tak S, Yoon SJ, Jang J, Yoo K, Jeong Y, Ye JC. Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. Neuroimage 2010; 55:176-84. [PMID: 21094685 DOI: 10.1016/j.neuroimage.2010.11.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/25/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022] Open
Abstract
Subcortical vascular dementia (SVD) is a form of vascular dementia from small vessel disease with white matter lesions and lacunes. We hypothesized that hemodynamic and metabolic changes in the cortex during a simple motor task may reflect the impaired neurovascular coupling in SVD. We used fMRI and near-infrared spectroscopy (NIRS) simultaneously, which together provided multiple hemodynamic responses as well as a robust estimation of the cerebral metabolic rate of oxygen (CMRO(2)). During the task periods, the oxy-hemoglobin, total-hemoglobin, blood oxygenation level-dependent (BOLD) response, cerebral blood flow (CBF), and CMRO(2) decreased statistically significantly in the primary motor and somatosensory cortices of SVD patients, whereas the oxygen extraction fraction increased when compared with controls. Notably, the flow-metabolism coupling ratio, n representing the ratio of oxygen supply to its utilization, showed a robust reduction in the SVD patient group (n(Control)=1.99 ± 0.23; n(SVD)=1.08 ± 0.24), which implies a loss of metabolic reserve. These results support the pathological small vessel compromise, including an increased vessel stiffness, impaired vascular reactivity, and impaired neurovascular coupling in SVD. In conclusion, simultaneous measurement by NIRS and fMRI can reveal various hemodynamic and metabolic changes and may be used for as an early detection or monitoring of SVD.
Collapse
Affiliation(s)
- Sungho Tak
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Re R, Contini D, Caffini M, Cubeddu R, Spinelli L, Torricelli A. A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:113101. [PMID: 21133455 DOI: 10.1063/1.3495957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We designed and developed a compact dual-wavelength and dual-channel time-resolved system for near-infrared spectroscopy studies of muscle and brain. The system employs pulsed diode lasers as sources, compact photomultipliers, and time-correlated single photon counting boards for detection. To exploit the full temporal and dynamic range of the acquisition technique, we implemented an approach based on wavelength space multiplexing: laser pulses at the two wavelengths are alternatively injected into the two channels by means of an optical 2×2 switch. In each detection line (i.e., in each temporal window), the distribution of photon time-of-flights at one wavelength is acquired. The proposed approach increases the signal-to-noise ratio and avoids wavelength cross-talk with respect to the typical approach based on time multiplexing. The instrument was characterized on tissue phantoms to assess its properties in terms of linearity, stability, noise, and reproducibility. Finally, it was successfully tested in preliminary in vivo measurements on muscle during standard cuff occlusion and on the brain during a motor cortex response due to hand movements.
Collapse
Affiliation(s)
- Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Zou F, Jin C, Ross RR, Soller B. Investigation of spectral interferences on the accuracy of broadband CW-NIRS tissue SO(2) determination. BIOMEDICAL OPTICS EXPRESS 2010; 1:748-761. [PMID: 21258506 PMCID: PMC3018045 DOI: 10.1364/boe.1.000748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/21/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
An accurate SO(2) prediction method for using broadband continuous-wave diffuse reflectance near infrared (NIR) spectroscopy is proposed. The method fitted the NIR spectra to a Taylor expansion attenuation model, and used the simulated annealing method to initialize the nonlinear least squares fit. This paper investigated the effect of potential spectral interferences that are likely to be encountered in clinical use, on SO(2) prediction accuracy. The factors include the concentration of hemoglobin in blood, the volume of blood and volume of water in the tissue under the sensor, reduced scattering coefficient, µ(s)', of the muscle, fat thickness and the source-detector spacing. The SO(2) prediction method was evaluated on simulated muscle spectra as well as on dual-dye phantoms which simulate the absorbance of oxygenated and deoxygenated hemoglobin.
Collapse
Affiliation(s)
- Fengmei Zou
- Department of Anesthesiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Chunguang Jin
- Department of Anesthesiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Randy R. Ross
- Department of Physics, College of the Holy Cross, Worcester, MA, 01610, USA
| | - Babs Soller
- Department of Anesthesiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Reflectance Medical Inc., Northboro, MA 01532, USA
| |
Collapse
|
46
|
Liu Q, Vo-Dinh T. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms. Med Phys 2010; 36:4819-29. [PMID: 19928112 DOI: 10.1118/1.3218763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Hemoglobin concentration and oxygenation in tissue are important biomarkers that are useful in both research and clinical diagnostics of a wide variety of diseases such as cancer. The authors aim to develop simple ratiometric method based on the spectral filtering modulation (SFM) of fluorescence spectra to estimate the total hemoglobin concentration and oxygenation in tissue using only a single fluorescence emission spectrum, which will eliminate the need of diffuse reflectance measurements and prolonged data processing as required by most current methods, thus enabling rapid clinical measurements. METHODS The proposed method consists of two steps. In the first step, the total hemoglobin concentration is determined by comparing a ratio of fluorescence intensities at two emission wavelengths to a calibration curve. The second step is to estimate oxygen saturation by comparing a double ratio that involves three emission wavelengths to another calibration curve that is a function of oxygen saturation for known total hemoglobin concentration. Theoretical derivation shows that the ratio in the first step is linearly proportional to the total hemoglobin concentrations and the double ratio in the second step is related to both total hemoglobin concentration and hemoglobin oxygenation for the chosen fiber-optic probe geometry. Experiments on synthetic fluorescent tissue phantoms, which included hemoglobin with both constant and varying oxygenation as the absorber, polystyrene spheres as scatterers, and flavin adenine dinucleotide as the fluorophore, were carried out to validate the theoretical prediction. RESULTS Tissue phantom experiments confirm that the ratio in the first step is linearly proportional to the total hemoglobin concentration and the double ratio in the second step is related to both total hemoglobin concentrations and hemoglobin oxygenation. Furthermore, the relations between the two ratios and the total hemoglobin concentration and hemoglobin oxygenation are insensitive to the scattering property of the tissue model for the chosen probe geometry. CONCLUSIONS A simple two-step ratiometric method based on the SFM of fluorescence spectra is proposed to estimate the total hemoglobin concentration and oxygenation in a tissue model using only a single fluorescence emission spectrum. This method is immune to the variation in system throughput caused by inconsistent optical coupling because of its ratiometric nature. Calibration curves are insensitive to the scattering coefficient for the chosen probe geometry. Moreover, since only fluorescence intensities at a few wavelengths in a single fluorescence emission spectrum are needed in this method, the SFM method minimizes the amount of required data and reduces the data acquisition time. Finally, since this method does not use nonlinear regression, it can dramatically save computation time in data processing. The high sensitivity of the proposed method to superficial tissue volumes makes it ideal for fluorescence based oximetry and medical diagnostics in applications such as early epithelial cancer diagnosis or wherever the measured tissue volume is exposed to the outside such as in open surgery.
Collapse
Affiliation(s)
- Quan Liu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
| | | |
Collapse
|
47
|
Yang X, Maurudis A, Gamelin J, Aguirre A, Zhu Q, Wang LV. Photoacoustic tomography of small animal brain with a curved array transducer. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:054007. [PMID: 19895109 PMCID: PMC2917457 DOI: 10.1117/1.3227035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present the application of a curved array photoacoustic tomographic imaging system that can provide rapid, high-resolution photoacoustic imaging of small animal brains. The system is optimized to produce a B-mode, 90-deg field-of-view image at sub-200-microm resolution at a frame rate of approximately 1 frame/second when a 10-Hz pulse repetition rate laser is employed. By rotating samples, a complete 360-deg scan can be achieved within 15 s. In previous work, two-dimensional (2-D) ex vivo mouse brain cortex imaging has been reported. We report three-dimensional (3-D) small animal brain imaging obtained with the curved array system. The results are presented as a series of 2-D cross-sectional images. Besides structural imaging, the blood oxygen saturation of the animal brain cortex is also measured in vivo. In addition, the system can measure the time-resolved relative changes in blood oxygen saturation level in the small animal brain cortex. Last, ultrasonic gel coupling, instead of the previously adopted water coupling, is conveniently used in near-real-time 2-D imaging.
Collapse
Affiliation(s)
- Xinmai Yang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
48
|
Prior P, Roth BJ. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment. Phys Med Biol 2009; 54:3015-30. [PMID: 19387101 DOI: 10.1088/0031-9155/54/10/004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Optical mapping is a commonly used technique to visualize the electrical activity in the heart. Recently, several groups have attempted to use the signals acquired in optical mapping to image the transmembrane potential in the heart, which would be particularly advantageous when studying the effects of defibrillation-type shocks throughout the wall of the heart. Our work presents an alternative imaging method that makes use of data obtained using multiple wavelengths and therefore multiple optical decay constants. A modified form of the diffusion equation Green's function for a semi-infinite slab of tissue is derived and used to relate the detected optical signals to the source of emission photons. Images using the optical signals are reconstructed using Gaussian quadrature and matrix inversion. Our results show that images can be obtained for source terms located below the tissue surface. Furthermore, we demonstrate that our reconstruction method's susceptibility to noise can be alleviated using sophisticated matrix inverse techniques, such as singular value decomposition. Sources that rapidly decay with depth or are highly localized in the image plane require more sophisticated techniques (e.g., regularization methods) to image the electrical activity in the heart. The work presented here demonstrates the feasibility of a new imaging technique of cardiac electrical activity using optical mapping.
Collapse
Affiliation(s)
- Phillip Prior
- Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | | |
Collapse
|
49
|
Wang X, Chamberland DL, Xi G. Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains. J Neurosci Methods 2007; 168:412-21. [PMID: 18155298 DOI: 10.1016/j.jneumeth.2007.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022]
Abstract
The feasibility of functional imaging of neonatal brains was studied in a noninvasive transcranial manner by using reflection mode photoacoustic technique for the first time. Experiments were conducted to examine the quality of photoacoustic signals and consequent images across a newborn infant skull. With the designed system, photoacoustic imaging of blood vessels through the infant skull has been achieved with an axial resolution up to 50mum and a lateral resolution up to 420mum. Experimental results also indicate that photoacoustic imaging of neonatal brain with a depth of 21mm or more beneath the skull is feasible when working with near-infrared light. Moreover, the performance of this technique for measuring and monitoring the changes in blood oxygenation level through the newborn infant skull has also been explored. This study suggests that reflection mode photoacoustic imaging holds promise to become a novel and powerful tool for noninvasive diagnosis, monitoring and prognosis of disorders in neonatal brains.
Collapse
Affiliation(s)
- Xueding Wang
- Department of Radiology, University of Michigan School of Medicine, 200 Zina Pitcher Pl, 3485 Kresge III, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
50
|
Billet C, Sablong R. Differential optical spectroscopy for absorption characterization of mono & two-layered scattering media. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:2622-2625. [PMID: 18002533 DOI: 10.1109/iembs.2007.4352867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Diffuse reflectance techniques are commonly used to characterize the optical properties of various biological tissues in the visible and NIR spectral ranges. Nevertheless a sharp determination of local chromophores concentration in turbid media is usually difficult to obtain because of the nonlinear dependence of the reflected light intensity as a function of scattering and absorption coefficients. The proposed technique of this paper allows to determine absorbent compounds concentration ratios in a turbid medium from three reflectance spectra, measured for source-detector distances inferior to 1 cm. This method is validated in the visible range in case of typical biological absorption and reduced scattering coefficients. Two-layered scattering media are also investigated.
Collapse
Affiliation(s)
- Cyril Billet
- CREATIS-LRMN, CNRS UMR 5220, Université de Lyon, France.
| | | |
Collapse
|