1
|
Khan R, Rahimi R, Fan J, Chen KL. Systematic characterization of new EBT4 radiochromic films in clinical x-ray beams. Biomed Phys Eng Express 2024; 11:015006. [PMID: 39504132 DOI: 10.1088/2057-1976/ad8c49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Objective. We aim to characterize kinetics of radiation-induced optical density in newly released EBT4 radiochromic films exposed to clinical x-rays. Several film models and batches were evaluated for the film sensitivity, optical signal increasing with time, relative film noise, and minimum detectable limits (MDL).Approach. Radiochromic film pieces from a single batch of EBT3 and three batches of EBT4 were exposed to doses of 77.38 cGy, 386.92 cGy, and 773.84 cGy using a 6 MV x-ray beam. The films were scanned with a flatbed scanner at specific time intervals up to 120 h. The time-series net optical density of red, green and blue colors was corrected for response of the scanner with time and studied to establish the saturation characteristics of film polymerization process. Dose-response from 3.86 cGy to 1935 cGy was also determined for each color. MDL of the films was quantitatively defined as the dose that would double the net optical density of red color above the standard deviation of the residual signal at zero dose. The relative noise characteristics of EBT3 versus EBT4 were studied as a function of time, dose and scanner resolution.Main Results. For doses ≥ 100 cGy, analysis revealed a stability of optical density beyond 48 h post-exposure for EBT3 and EBT4 films. EBT3 films attained 80%-90% of their net optical density at 48 h within minutes of irradiation, compared to 72%-88% for EBT4 films. The rate of growth was slowest for blue color, fastest for red, while green was in between the two. The MDL for EBT4 averaged 15 cGy for three batches, whereas EBT3 films reliably detected doses as low as 8.5 cGy.Significance. Several batches of the new EBT4 film showed slightly lower response compared to its predecessor over 3.86 cGy to 1935 Gy range. For all practical purposes, the post-irradiation growth of polymers ceases between 48 to 60 h for both EBT films. Overall, the EBT4 film exhibited noise characteristics similar to EBT3, except for lower doses where the noise was observed to be higher than its predecessor.
Collapse
Affiliation(s)
- Rao Khan
- Medical Physics Program, Department of Physics and Astronomy, Howard University, Washington, DC, United States of America
| | - Robabeh Rahimi
- School of Medicine, University of Maryland, Baltimore, MD, United States of America
| | - Jiajin Fan
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, VA, United States of America
| | - Kuan Ling Chen
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, VA, United States of America
| |
Collapse
|
2
|
Diaz-Martinez VD, Cyr M, Devic S, Tomic N, Lewis DF, Enger SA. Investigation of dosimetric characteristics of radiochromic film in response to alpha particles emitted from Americium-241. Med Phys 2024; 51:6305-6316. [PMID: 38767310 DOI: 10.1002/mp.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND In radiotherapy, it is essential to deliver prescribed doses to tumors while minimizing damage to surrounding healthy tissue. Accurate measurements of absorbed dose are required for this purpose. Gafchromic® external beam therapy (EBT) radiochromic films have been widely used in radiotherapy. While the dosimetric characteristics of the EBT3 model film have been extensively studied for photon and charged particle beams (protons, electrons, and carbon ions), little research has been done on α $\alpha$ -particle dosimetry. α $\alpha$ -emitting radionuclides have gained popularity in cancer treatment due to their high linear energy transfer, short range in tissue, and ability to spare surrounding organs at risk, thereby delivering a more localized dose distribution to the tumor. Therefore, a dose-calibration film protocol for α $\alpha$ -particles is required. PURPOSE This study aimed to develop a dose-calibration protocol for the α $\alpha$ -particle emitting radionuclide 241Am, using Monte Carlo (MC) simulations and measurements with unlaminated EBT3 films. METHODS In this study, a MC-based user code was developed using the Geant4 simulation toolkit to model and simulate an 241Am source and an unlaminated EBT3 film. Two simulations were performed: one with voxelized geometries of the EBT3 active volume composition and the other using water. The dose rate was calculated within a region of interest in the voxelized geometries. Unlaminated EBT3 film pieces were irradiated with the 241Am source at various exposure times inside a black box. Film irradiations were compared to a 6-MV photon beam from a Varian TrueBeam machine. The simulated dose rate was used to convert the exposure times into absorbed doses to water, describing a radiochromic-film-based reference dosimetry protocol for α $\alpha$ -particles. The irradiated films were scanned and through an in-house Python script, the normalized pixel values from the green-color channel of scanned film images were analyzed. RESULTS The 241Am energy spectra obtained from the simulations were in good agreement with IAEA and NIST databases, having differences < $<$ 0.516% for the emitted γ $\gamma$ -rays and produced characteristic x-rays and < $<$ 0.006% for the α $\alpha$ -particles. Due to the short range of α $\alpha$ -particles, there was no energy deposition in the voxels outside the active 241Am source region projected onto the film surface. Thus, the total dose rate within the voxels covering the source was 0.847 ± $\pm$ 0.003 Gy/min within the sensitive layer of the film (LiPCDA) and 0.847 ± $\pm$ 0.004 Gy/min in water, indicating that the active volume can be considered water equivalent for the 241Am beam quality. A novel approach was employed in α $\alpha$ -film dosimetry using an exponential fit for the green channel, which showed promising results by reducing the uncertainty in dose estimation within 5%. Although the statistical analysis did not reveal significant differences between the 6-MV photon beam and the α $\alpha$ calibration curves, the dose-response curves exhibited the expected behavior. CONCLUSIONS The developed MC user code simulated the experimental setup for α $\alpha$ -dosimetry using radiochromic film with acceptable uncertainty. Unlaminated EBT3 film is suitable for the dosimetry of α $\alpha$ -radiation at low doses and can be used in conjunction with other unlaminated GafChromic® films for quality assurance and research purposes.
Collapse
Affiliation(s)
- Victor D Diaz-Martinez
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Mélodie Cyr
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Slobodan Devic
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Nada Tomic
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | | | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
3
|
Gomà C, Henkner K, Jäkel O, Lorentini S, Magro G, Mirandola A, Placidi L, Togno M, Vidal M, Vilches-Freixas G, Wulff J, Safai S. ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data. Phys Imaging Radiat Oncol 2024; 31:100621. [PMID: 39220113 PMCID: PMC11364130 DOI: 10.1016/j.phro.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam-energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data-integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.
Collapse
Affiliation(s)
- Carles Gomà
- Institute of Cancer and Blood Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Catalan Health Service, Barcelona, Spain
| | - Katrin Henkner
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Lorentini
- Medical Physics Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marie Vidal
- Institut Méditerranéen de Protonthérapie - Centre Antoine Lacassagne, Nice, France
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- University Hospital Essen, Essen, Germany
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
4
|
Matias F, Silva TF, Koval NE, Pereira JJN, Antunes PCG, Siqueira PTD, Tabacniks MH, Yoriyaz H, Shorto JMB, Grande PL. Efficient computational modeling of electronic stopping power of organic polymers for proton therapy optimization. Sci Rep 2024; 14:9868. [PMID: 38684890 PMCID: PMC11058815 DOI: 10.1038/s41598-024-60651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
This comprehensive study delves into the intricate interplay between protons and organic polymers, offering insights into proton therapy in cancer treatment. Focusing on the influence of the spatial electron density distribution on stopping power estimates, we employed real-time time-dependent density functional theory coupled with the Penn method. Surprisingly, the assumption of electron density homogeneity in polymers is fundamentally flawed, resulting in an overestimation of stopping power values at energies below 2 MeV. Moreover, the Bragg rule application in specific compounds exhibited significant deviations from experimental data around the stopping maximum, challenging established norms.
Collapse
Affiliation(s)
- F Matias
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil.
| | - T F Silva
- Instituto de Física da Universidade de São Paulo, Rua do Matão, trav. R187, São Paulo, 05508-090, Brazil
| | - N E Koval
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, Donostia-San Sebastián, 20018, Spain
| | - J J N Pereira
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - P C G Antunes
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - P T D Siqueira
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - M H Tabacniks
- Instituto de Física da Universidade de São Paulo, Rua do Matão, trav. R187, São Paulo, 05508-090, Brazil
| | - H Yoriyaz
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - J M B Shorto
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - P L Grande
- Instituto de Física da Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, 9500, Brazil
| |
Collapse
|
5
|
Hrinivich WT, Li H, Tran A, Acharya S, Ladra MM, Sheikh K. Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation. Cancers (Basel) 2023; 15:cancers15112882. [PMID: 37296845 DOI: 10.3390/cancers15112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Purpose: To report our design, manufacturing, commissioning and initial clinical experience with a table-mounted range shifter board (RSB) intended to replace the machine-mounted range shifter (MRS) in a synchrotron-based pencil beam scanning (PBS) system to reduce penumbra and normal tissue dose for image-guided pediatric craniospinal irradiation (CSI). Methods: A custom RSB was designed and manufactured from a 3.5 cm thick slab of polymethyl methacrylate (PMMA) to be placed directly under patients, on top of our existing couch top. The relative linear stopping power (RLSP) of the RSB was measured using a multi-layer ionization chamber, and output constancy was measured using an ion chamber. End-to-end tests were performed using the MRS and RSB approaches using an anthropomorphic phantom and radiochromic film measurements. Cone beam CT (CBCT) and 2D planar kV X-ray image quality were compared with and without the RSB present using image quality phantoms. CSI plans were produced using MRS and RSB approaches for two retrospective pediatric patients, and the resultant normal tissue doses were compared. Results: The RLSP of the RSB was found to be 1.163 and provided computed penumbra of 6.9 mm in the phantom compared to 11.8 mm using the MRS. Phantom measurements using the RSB demonstrated errors in output constancy, range, and penumbra of 0.3%, -0.8%, and 0.6 mm, respectively. The RSB reduced mean kidney and lung dose compared to the MRS by 57.7% and 46.3%, respectively. The RSB decreased mean CBCT image intensities by 86.8 HU but did not significantly impact CBCT or kV spatial resolution providing acceptable image quality for patient setup. Conclusions: A custom RSB for pediatric proton CSI was designed, manufactured, modeled in our TPS, and found to significantly reduce lateral proton beam penumbra compared to a standard MRS while maintaining CBCT and kV image-quality and is in routine use at our center.
Collapse
Affiliation(s)
- William T Hrinivich
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Anh Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Matthew M Ladra
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| |
Collapse
|
6
|
Tashiro M, Kawashima M. Linear energy transfer-independent calibration of radiochromic film for carbon-ion beams. Phys Imaging Radiat Oncol 2022; 23:140-143. [PMID: 36035087 PMCID: PMC9399143 DOI: 10.1016/j.phro.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022] Open
Abstract
For carbon-ion beams, radiochromic film response depends on the dose and linear energy transfer (LET). For film dosimetry, we developed an LET-independent simple calibration method for a radiochromic film for specific therapeutic carbon-ion beams. The measured film doses were calibrated with a linear function within 5% error. The penumbra positions of the films were consistent with the differences from the planned ones within ~0.4 mm. The results indicated sufficient accuracy for use as a tool for the confirmation of the penumbra position of the fields.
Collapse
|
7
|
Diffenderfer ES, Sørensen BS, Mazal A, Carlson DJ. The current status of preclinical proton FLASH radiation and future directions. Med Phys 2021; 49:2039-2054. [PMID: 34644403 DOI: 10.1002/mp.15276] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems. Importantly, multiple studies suggest little or no difference in tumor growth delay for proton FLASH when compared to conventional dose rate proton radiation. A discussion follows on future areas of development with a focus on the determination of the optimal parameters for maximizing the therapeutic ratio between tumor and normal tissue response and ultimately clinical translation of proton FLASH radiation.
Collapse
Affiliation(s)
- Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Alejandro Mazal
- Department of Medical Physics, Centro de Protonterapia Quironsalud, Madrid, Spain
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Sanchez-Parcerisa D, Sanz-García I, Ibáñez P, España S, Espinosa A, Gutiérrez-Neira C, López A, Vera JA, Mazal A, Fraile LM, Udías JM. Radiochromic film dosimetry for protons up to 10 MeV with EBT2, EBT3 and unlaminated EBT3 films. Phys Med Biol 2021; 66. [PMID: 33910190 DOI: 10.1088/1361-6560/abfc8d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Passive dosimetry with radiochromic films is widely used in proton radiotherapy, both in clinical and scientific environments, thanks to its simplicity, high spatial resolution and dose-rate independence. However, film under-response for low-energy protons, the so-called linear-energy transfer (LET) quenching, must be accounted and corrected for. We perform a meta-analysis on existing film under-response data with EBT, EBT2 and EBT3 GAFchromic™ films and provide a common framework to integrate it, based on the calculation of dose-averaged LET in the active layer of the films. We also report on direct measurements with the 10 MeV proton beam at the Center for Microanalysis of Materials (CMAM) for EBT2, EBT3 and unlaminated EBT3 films, focusing on the 20-80 keVμm-1LET range, where previous data was scarce. Measured film relative efficiency (RE) values are in agreement with previously reported data from the literature. A model on film RE constructed with combined literature and own experimental values in the 5-80 keVμm-1LET range is presented, supporting the hypothesis of a linear decrease of RE with LET, with no remarkable differences between the three types of films analyzed.
Collapse
Affiliation(s)
- Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Sedecal Molecular Imaging, Algete, Madrid, Spain
| | - Irene Sanz-García
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Samuel España
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Espinosa
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carolina Gutiérrez-Neira
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Spain.,ALBA Synchrotron Light Source (CELLS-ALBA), Cerdanyola del Vallès, Barcelona, Spain
| | - Alfonso López
- Dept. de Radiofísica y Protección Radiológica, Hospital de Fuenlabrada, Madrid, Spain
| | - Juan Antonio Vera
- Centro de Protonterapia de Quirónsalud, Pozuelo de Alarcón, Madrid, Spain
| | - Alejandro Mazal
- Centro de Protonterapia de Quirónsalud, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
9
|
Guardiola C, Márquez A, Jiménez-Ramos MC, López JG, Baratto-Roldán A, Muñoz-Berbel X. Dosimetry with gafchromic films based on a new micro-opto-electro-mechanical system. Sci Rep 2021; 11:10414. [PMID: 34001941 PMCID: PMC8129144 DOI: 10.1038/s41598-021-89602-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022] Open
Abstract
This work presents the first tests performed with radiochromic films and a new Micro‒Opto‒Electro-Mechanical system (MOEMS) for in situ dosimetry evaluation in radiotherapy in real time. We present a new device and methodology that overcomes the traditional limitation of time-delay in radiochromic film analysis by turning a passive detector into an active sensor. The proposed system consists mainly of an optical sensor based on light emitting diodes and photodetectors controlled by both customized electronic circuit and graphical user interface, which enables optical measurements directly. We show the first trials performed in a low‒energy proton cyclotron with this MOEMS by using gafchromic EBT3 films. Results show the feasibility of using this system for in situ dose evaluations. Further adaptation is ongoing to develop a full real‒time active detector by integrating MOEM multi‒arrays and films in flexible printed circuits. Hence, we point to improve the clinical application of radiochromic films with the aim to optimize radiotherapy treatment verifications.
Collapse
Affiliation(s)
- C Guardiola
- Université Paris‒Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.
| | - A Márquez
- Instituto de Microelectrónica de Barcelona, (IMB-CNM, CSIC), 08193, Bellaterra, Spain
| | | | - J García López
- Centro Nacional de Aceleradores, 41092, Sevilla, Spain.,Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, 41012, Sevilla, Spain
| | - A Baratto-Roldán
- Centro Nacional de Aceleradores, 41092, Sevilla, Spain.,Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, 41012, Sevilla, Spain
| | - X Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona, (IMB-CNM, CSIC), 08193, Bellaterra, Spain
| |
Collapse
|
10
|
Bolsa-Ferruz M, Palmans H, Boersma D, Stock M, Grevillot L. Monte Carlo computation of 3D distributions of stopping power ratios in light ion beam therapy using GATE-RTion. Med Phys 2021; 48:2580-2591. [PMID: 33465819 DOI: 10.1002/mp.14726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This paper presents a novel method for the calculation of three-dimensional (3D) Bragg-Gray water-to-detector stopping power ratio (sw,det ) distributions for proton and carbon ion beams. METHODS Contrary to previously published fluence-based calculations of the stopping power ratio, the sw,det calculation method used in this work is based on the specific way GATE/Geant4 scores the energy deposition. It only requires the use of the so-called DoseActor, as available in GATE, for the calculation of the sw,det at any point of a 3D dose distribution. The simulations are performed using GATE-RTion v1.0, a dedicated GATE release that was validated for the clinical use in light ion beam therapy. RESULTS The Bragg-Gray water-to-air stopping power ratio (sw,air ) was calculated for monoenergetic proton and carbon ion beams with the default stopping power data in GATE-RTion v1.0 and the new ICRU90 recommendation. The sw,air differences between the use of the default and the ICRU90 configuration were 0.6% and 5.4% at the physical range (R80 - 80% dose level in the distal dose fall-off) for a 70 MeV proton beam and a 120 MeV/u carbon ion beam, respectively. For protons, the sw,det results for lithium fluoride, silicon, gadolinium oxysulfide, and the active layer material of EBT2 (radiochromic film) were compared with the literature and a reasonable agreement was found. For a real patient treatment plan, the 3D distributions of sw,det in proton beams were calculated. CONCLUSIONS Our method was validated by comparison with available literature data. Its equivalence with Bragg-Gray cavity theory was demonstrated mathematically. The capability of GATE-RTion v1.0 for the sw,det calculation at any point of a 3D dose distribution for simple and complex proton and carbon ion plans was presented.
Collapse
Affiliation(s)
- Marta Bolsa-Ferruz
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria
| | - Hugo Palmans
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria.,Medical Radiation Science, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - David Boersma
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria.,ACMIT Gmbh, Viktor-Kaplan-Straße 2/1, Wiener Neustadt, A-2700, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria
| | - Loïc Grevillot
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria
| |
Collapse
|
11
|
Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol 2020; 65:23TR03. [PMID: 32721941 DOI: 10.1088/1361-6560/abaa28] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrahigh dose-rate radiotherapy (RT), or 'FLASH' therapy, has gained significant momentum following various in vivo studies published since 2014 which have demonstrated a reduction in normal tissue toxicity and similar tumor control for FLASH-RT when compared with conventional dose-rate RT. Subsequent studies have sought to investigate the potential for FLASH normal tissue protection and the literature has been since been inundated with publications on FLASH therapies. Today, FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. The goal of this review article is to present the current state of this intriguing RT technique and to review existing publications on FLASH-RT in terms of its physical and biological aspects. In the physics section, the current landscape of ultrahigh dose-rate radiation delivery and dosimetry is presented. Specifically, electron, photon and proton radiation sources capable of delivering ultrahigh dose-rates along with their beam delivery parameters are thoroughly discussed. Additionally, the benefits and drawbacks of radiation detectors suitable for dosimetry in FLASH-RT are presented. The biology section comprises a summary of pioneering in vitro ultrahigh dose-rate studies performed in the 1960s and early 1970s and continues with a summary of the recent literature investigating normal and tumor tissue responses in electron, photon and proton beams. The section is concluded with possible mechanistic explanations of the FLASH normal-tissue protection effect (FLASH effect). Finally, challenges associated with clinical translation of FLASH-RT and its future prospects are critically discussed; specifically, proposed treatment machines and publications on treatment planning for FLASH-RT are reviewed.
Collapse
Affiliation(s)
- Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
12
|
Stanley FKT, Berger ND, Pearson DD, Danforth JM, Morrison H, Johnston JE, Warnock TS, Brenner DR, Chan JA, Pierce G, Cobb JA, Ploquin NP, Goodarzi AA. A high-throughput alpha particle irradiation system for monitoring DNA damage repair, genome instability and screening in human cell and yeast model systems. Nucleic Acids Res 2020; 48:e111. [PMID: 33010172 PMCID: PMC7641727 DOI: 10.1093/nar/gkaa782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) is environmentally prevalent and, depending on dose and linear energy transfer (LET), can elicit serious health effects by damaging DNA. Relative to low LET photon radiation (X-rays, gamma rays), higher LET particle radiation produces more disease causing, complex DNA damage that is substantially more challenging to resolve quickly or accurately. Despite the majority of human lifetime IR exposure involving long-term, repetitive, low doses of high LET alpha particles (e.g. radon gas inhalation), technological limitations to deliver alpha particles in the laboratory conveniently, repeatedly, over a prolonged period, in low doses and in an affordable, high-throughput manner have constrained DNA damage and repair research on this topic. To resolve this, we developed an inexpensive, high capacity, 96-well plate-compatible alpha particle irradiator capable of delivering adjustable, low mGy/s particle radiation doses in multiple model systems and on the benchtop of a standard laboratory. The system enables monitoring alpha particle effects on DNA damage repair and signalling, genome stability pathways, oxidative stress, cell cycle phase distribution, cell viability and clonogenic survival using numerous microscopy-based and physical techniques. Most importantly, this method is foundational for high-throughput genetic screening and small molecule testing in mammalian and yeast cells.
Collapse
Affiliation(s)
- Fintan K T Stanley
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - N Daniel Berger
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - John M Danforth
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hali Morrison
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - James E Johnston
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Tyler S Warnock
- Robson DNA Science Centre, Departments of Cancer Epidemiology and Prevention Research and Community Health Sciences, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Darren R Brenner
- Robson DNA Science Centre, Departments of Cancer Epidemiology and Prevention Research and Community Health Sciences, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Greg Pierce
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jennifer A Cobb
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Nicolas P Ploquin
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
13
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
14
|
Darafsheh A, Zhao T, Khan R. Spectroscopic analysis of irradiated radiochromic EBT-XD films in proton and photon beams. ACTA ACUST UNITED AC 2020; 65:205002. [DOI: 10.1088/1361-6560/aba28e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Moftah B, Aldelaijan S, Shehadeh M, Alzorkany F, Alrumayan F, Alsbeih G, Alshabanah M, Seuntjens J, Tomic N, Devic S. Calibration of MTT assay in proton beams using radiochromic films. Phys Med 2020; 77:146-153. [PMID: 32861190 DOI: 10.1016/j.ejmp.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE This study provides methodology of calibrating as well as controlling the output for an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay irradiated in a low energy proton beam using EBT3-model GAFCHROMICTM film, without correcting for quenching effect. METHODS A calibrated Markus ionization chamber was used to measure the depth dose and beam output for 26.5 MeV protons produced by a CS30 cyclotron. A time-controlled aluminum cylinder was added in front of the horizontal beam-exit serving as a radiation shutter. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water at a reference depth of 3 mm. EBT3 film was calibrated for doses up to 8 Gy at the same depth. To verify the dose distribution for each 96-well MTT assay plate, EBT3 film was placed at the reference depth during irradiation and cell doses were scaled by measured percent depth dose (PDD) data. RESULTS The radiochromic film dosimetry system in this study provides dose measurements with an uncertainty better than 3.3% for doses higher than 1 Gy. From a single exposure and utilizing the Gaussian shape of the beam, multiple dose points can be obtained within different wells of the same plate ranging from 6.9 Gy (sigma ∼4%) in the central well, and 2 Gy (sigma ∼8%) for wells positioned closer to the periphery. CONCLUSIONS We described a methodology for radiochromic film-based dose monitoring system, using low-energy protons, which can be used for the MTT assay in any proton beam, except within Bragg peak region.
Collapse
Affiliation(s)
- B Moftah
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia; Medical Physics Unit, McGill University, Montréal, Québec, Canada
| | - S Aldelaijan
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - M Shehadeh
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - F Alzorkany
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - F Alrumayan
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - G Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - M Alshabanah
- Oncology Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - J Seuntjens
- Medical Physics Unit, McGill University, Montréal, Québec, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - N Tomic
- Medical Physics Unit, McGill University, Montréal, Québec, Canada; Department of Radiation Oncology, Jewish General Hospital, Montréal, Québec, Canada
| | - S Devic
- Medical Physics Unit, McGill University, Montréal, Québec, Canada; Department of Radiation Oncology, Jewish General Hospital, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Resch AF, Heyes PD, Fuchs H, Bassler N, Georg D, Palmans H. Dose- rather than fluence-averaged LET should be used as a single-parameter descriptor of proton beam quality for radiochromic film dosimetry. Med Phys 2020; 47:2289-2299. [PMID: 32166764 PMCID: PMC7318138 DOI: 10.1002/mp.14097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The dose response of Gafchromic EBT3 films exposed to proton beams depends on the dose, and additionally on the beam quality, which is often quantified with the linear energy transfer (LET) and, hence, also referred to as LET quenching. Fundamentally different methods to determine correction factors for this LET quenching effect have been reported in literature and a new method using the local proton fluence distribution differential in LET is presented. This method was exploited to investigate whether a more practical correction based on the dose- or fluence-averaged LET is feasible in a variety of clinically possible beam arrangements. METHODS The relative effectiveness (RE) was characterized within a high LET spread-out Bragg peak (SOBP) in water made up by the six lowest available energies (62.4-67.5 MeV, configuration " b 1 ") resulting in one of the highest clinically feasible dose-averaged LET distributions. Additionally, two beams were measured where a low LET proton beam (252.7 MeV) was superimposed on " b 1 ", which contributed either 50% of the initial particle fluence or 50% of the dose in the SOBP, referred to as configuration " b 2 " and " b 3 ," respectively. The proton LET spectrum was simulated with GATE/Geant4 at all measurement positions. The net optical density change differential in LET was integrated over the local proton spectrum to calculate the net optical density and therefrom the beam quality correction factor. The LET dependence of the film response was accounted for by an LET dependence of one of the three parameters in the calibration function and was determined from inverse optimization using measurement " b 1 ." This method was then validated on the measurements of " b 2 " and " b 3 " and subsequently used to calculate the RE at 900 positions in nine clinically relevant beams. The extrapolated RE set was used to derive a simple linear correction function based on dose-averaged LET ( L d ) and verify the validity in all points of the comprehensive RE set. RESULTS The uncorrected film dose deviated up to 26% from the reference dose, whereas the corrected film dose agreed within 3% in all three beams in water (" b 1 ", " b 2 " and " b 3 "). The LET dependence of the calibration function started to strongly increase around 5 keV/μm and flatten out around 30 keV/μm. All REs calculated from the proton fluence in the nine simulated beams could be approximated with a linear function of dose-averaged LET (RE = 1.0258-0.0211 μm/keV L d ). However, no functional relationship of RE- and fluence-averaged LET could be found encompassing all beam energies and modulations. CONCLUSIONS The film quenching was found to be nonlinear as a function of proton LET as well as of the dose-averaged LET. However, the linear relation of RE on dose-averaged LET was a good approximation in all cases. In contrast to dose-averaged LET, fluence-averaged LET could not describe the RE when multiple beams were applied.
Collapse
Affiliation(s)
- Andreas Franz Resch
- Division Medical Radiation Physics, Department of Radiotherapy, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Paul David Heyes
- Division Medical Radiation Physics, Department of Radiotherapy, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Hermann Fuchs
- Division Medical Radiation Physics, Department of Radiotherapy, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden.,Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Dietmar Georg
- Division Medical Radiation Physics, Department of Radiotherapy, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Hugo Palmans
- MedAustron Ion Therapy Centre/EBG MedAustron, Marie-Curie-Straße 5, 2700, Wiener Neustadt, Austria.,Medical Radiation Science, National Physical Laboratory, Hampton Road, TW11 0LW, Teddington, United Kingdom
| |
Collapse
|
17
|
Track and dose-average LET dependence of Gafchromic EBT3 and MD-V3 films exposed to low-energy photons. Sci Rep 2020; 10:2361. [PMID: 32047227 PMCID: PMC7012855 DOI: 10.1038/s41598-020-59233-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022] Open
Abstract
Gafchromic films are widely used in radiotherapy using photons, electrons and protons. Dosimetric characteristics of the films in terms of beam-quality is of great importance for a better evaluation of the absorbed-dose in the clinic. In proton-therapy, film’s response has been reported in terms of track-average, LΔ,T, or dose-average, LΔ,D, linear energy transfer (LET), concluding that LΔ,D is a more reliable parameter than LΔ,T. Nonetheless, in photon-beams, the film’s response is generally scrutinised in terms of photon-energy. This work aimed at investigating, the total (TEF) and secondary (SE) electron fluence produced in EBT3 and MD-V3 films exposed to 20 kV-160 kV x-ray and 60Co beams and their corresponding LΔ,T and LΔ,D to determine their influence on the film’s relative-efficiency, REFilm. Regardless the film-model, at energies below 100 keV, LΔ,D for TEF are about 1.7 to 2.5 times those of LΔ,T while for SE they are relatively similar (8–29%). For 60Co-gamma, LΔ,D for TEF and SE are approximately 9 and 4 times LΔ,T, respectively, which implies that LΔ,D is more important for high-photon energies. Independent of the electron-fluence and film-model, REFilm is almost constant at low average-LET, rapidly increases and thereafter steadily rises with average-LET. The REFilm−LET curve indicated that LΔ,D is more sensitive to small change than LΔ,T and if it is evaluated for SE, it would even be more appropriate to better describing the dosimeter response induced by photons in terms of ionization-density instead of LΔ,T for TEF, as generally done. Based on these results, once can conclude that the effect of the average-LET on the film’s response should be considered when use for clinical-dosimetry using photons and not only the energy.
Collapse
|
18
|
Padilla-Cabal F, Alejandro Fragoso J, Franz Resch A, Georg D, Fuchs H. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields. Med Phys 2019; 47:223-233. [PMID: 31661559 PMCID: PMC7003833 DOI: 10.1002/mp.13883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Magnetic resonance guidance in proton therapy (MRPT) is expected to improve its current performance. The combination of magnetic fields with clinical proton beam lines poses several challenges for dosimetry, treatment planning and dose delivery. Proton beams are deflected by magnetic fields causing considerable changes in beam trajectories and also a retraction of the Bragg peak positions. A proper prediction and compensation of these effects is essential to ensure accurate dose calculations. This work aims to develop and benchmark a Monte Carlo (MC) beam model for dose calculation of MRPT for static magnetic fields up to 1 T. Methods Proton beam interactions with magnetic fields were simulated using the GATE/Geant4 toolkit. The transport of charged particle in custom 3D magnetic field maps was implemented for the first time in GATE. Validation experiments were done using a horizontal proton pencil beam scanning system with energies between 62.4 and 252.7 MeV and a large gap dipole magnet (B = 0–1 T), positioned at the isocenter and creating magnetic fields transverse to the beam direction. Dose was measured with Gafchromic EBT3 films within a homogeneous PMMA phantom without and with bone and tissue equivalent material slab inserts. Linear energy transfer (LET) quenching of EBT3 films was corrected using a linear model on dose‐averaged LET method to ensure a realistic dosimetric comparison between simulations and experiments. Planar dose distributions were measured with the films in two different configurations: parallel and transverse to the beam direction using single energy fields and spread‐out Bragg peaks. The MC model was benchmarked against lateral deflections and spot sizes in air of single beams measured with a Lynx PT detector, as well as dose distributions using EBT3 films. Experimental and calculated dose distributions were compared to test the accuracy of the model. Results Measured proton beam deflections in air at distances of 465, 665, and 1155 mm behind the isocenter after passing the magnetic field region agreed with MC‐predicted values within 4 mm. Differences between calculated and measured beam full width at half maximum (FWHM) were lower than 2 mm. For the homogeneous phantom, measured and simulated in‐depth dose profiles showed range and average dose differences below 0.2 mm and 1.2%, respectively. Simulated central beam positions and widths differed <1 mm to the measurements with films. For both heterogenous phantoms, differences within 1 mm between measured and simulated central beam positions and widths were obtained, confirming a good agreement of the MC model. Conclusions A GATE/Geant4 beam model for protons interacting with magnetic fields up to 1 T was developed and benchmarked to experimental data. For the first time, the GATE/Geant4 model was successfully validated not only for single energy beams, but for SOBP, in homogeneous and heterogeneous phantoms. EBT3 film dosimetry demonstrated to be a powerful dosimetric tool, once the film response function is LET corrected, for measurements in‐line and transverse to the beam direction in magnetic fields. The proposed MC beam model is foreseen to support treatment planning and quality assurance (QA) activities toward MRPT.
Collapse
Affiliation(s)
- Fatima Padilla-Cabal
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Jose Alejandro Fragoso
- Department of Nuclear Physics, Higher Institute of Technologies and Applied Science, Havana, Cuba
| | - Andreas Franz Resch
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Hermann Fuchs
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Clausen M, Khachonkham S, Gruber S, Kuess P, Seemann R, Knäusl B, Mara E, Palmans H, Dörr W, Georg D. Phantom design and dosimetric characterization for multiple simultaneous cell irradiations with active pencil beam scanning. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:563-573. [PMID: 31541343 PMCID: PMC6768893 DOI: 10.1007/s00411-019-00813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
A new phantom was designed for in vitro studies on cell lines in horizontal particle beams. The phantom enables simultaneous irradiation at multiple positions along the beam path. The main purpose of this study was the detailed dosimetric characterization of the phantom which consists of various heterogeneous structures. The dosimetric measurements described here were performed under non-reference conditions. The experiment involved a CT scan of the phantom, dose calculations performed with the treatment planning system (TPS) RayStation employing both the Pencil Beam (PB) and Monte Carlo (MC) algorithms, and proton beam delivery. Two treatment plans reflecting the typical target location for head and neck cancer and prostate cancer treatment were created. Absorbed dose to water and dose homogeneity were experimentally assessed within the phantom along the Bragg curve with ionization chambers (ICs) and EBT3 films. LETd distributions were obtained from the TPS. Measured depth dose distributions were in good agreement with the Monte Carlo-based TPS data. Absorbed dose calculated with the PB algorithm was 4% higher than the absorbed dose measured with ICs at the deepest measurement point along the spread-out Bragg peak. Results of experiments using melanoma (SKMel) cell line are also presented. The study suggested a pronounced correlation between the relative biological effectiveness (RBE) and LETd, where higher LETd leads to elevated cell death and cell inactivation. Obtained RBE values ranged from 1.4 to 1.8 at the survival level of 10% (RBE10). It is concluded that dosimetric characterization of a phantom before its use for RBE experiments is essential, since a high dosimetric accuracy contributes to reliable RBE data and allows for a clearer differentiation between physical and biological uncertainties.
Collapse
Affiliation(s)
- Monika Clausen
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| | - Suphalak Khachonkham
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | | | - Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- University of Applied Science, Wiener Neustadt, Austria
| | - Hugo Palmans
- EBG MedAustron GmbH, Wiener Neustadt, Austria
- National Physical Laboratory, Teddington, UK
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
20
|
Vallières S, Bienvenue C, Puyuelo-Valdes P, Salvadori M, d'Humières E, Schiettekatte F, Antici P. Low-energy proton calibration and energy-dependence linearization of EBT-XD radiochromic films. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:083301. [PMID: 31472601 DOI: 10.1063/1.5109644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
In this work, we calibrate the newly developed EBT-XD radiochromic films (RCFs) manufactured by Gafchromictm using protons in the energy range of 4-10 MeV. Irradiation was performed on the 2 × 6 MV tandem linear accelerator located at the Université de Montréal. The RCFs were digitized using an Epson Perfection V700 flatbed scanner using both the red-green-blue and grayscale channels. The proton fluences were measured with Faraday cups calibrated in absolute terms. The linear energy transfer function within the active layer of the films was calculated using the mass stopping power tables coming from the PSTAR database from the National Institute of Standards and Technology (NIST) to allow retrieval of the deposited dose. We find that the calibration curves for 7 and 10 MeV protons are nearly equivalent. The 4 MeV calibration curves exhibit a quenching effect due to the Bragg peak that falls close to the active layer. A linearization of this energy dependence was developed using a semiempirical parametric model to allow the generation of calibration curves for any incident proton energy within the present range. Excellent correspondence (<5% dose difference for the same netOD) of the 10 MeV calibration curves was noted when compared to existing high-energy proton (148.2 MeV) calibration curves reported in the literature. Our calibration extends the range of operation of EBT-XD films to low-energy proton beam dosimetry.
Collapse
Affiliation(s)
- S Vallières
- INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1P7, Canada
| | - C Bienvenue
- INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1P7, Canada
| | - P Puyuelo-Valdes
- INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1P7, Canada
| | - M Salvadori
- INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1P7, Canada
| | - E d'Humières
- CELIA, University of Bordeaux, 351 Cours de la Libération, Talence 33400, France
| | - F Schiettekatte
- University of Montreal, 2900 Boulevard Edouard-Montpetit, Montréal, Quebec H3T 1J4, Canada
| | - P Antici
- INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1P7, Canada
| |
Collapse
|
21
|
Nishio T, Tachibana H, Kase Y, Hotta K, Nakamura M, Tamura M, Terunuma T, Toshito T, Yamashita H, Ishikura S, Fuji H, Akimoto T, Nishimura Y. Liver phantom design and dosimetric verification in participating institutions for a proton beam therapy in patients with resectable hepatocellular carcinoma: Japan Clinical Oncology Group trial (JCOG1315C). Radiother Oncol 2019; 140:98-104. [PMID: 31265942 DOI: 10.1016/j.radonc.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE In Japan, the first domestic clinical trial of proton beam therapy for the liver was initiated as the Japan Clinical Oncology Group trial (JCOG1315C: Non-randomized controlled study comparing proton beam therapy and hepatectomy for resectable hepatocellular carcinoma). Purposes of this study were to develop a new dosimetric verification system and to carry out a credentialing for the JCOG1315C clinical trial. MATERIALS AND METHODS Accuracy and differences in doses in proton treatment planning among participating institutions were surveyed and investigated. We designed and developed a suitable water tank-type liver phantom for a dosimetric verification of proton beam therapy for liver. In a visiting survey of five institutions participating in the clinical trial, we performed the dosimetric verification using the liver phantom and an air-filled ionization chamber. RESULTS The shape of the dose distributions calculated in proton treatment planning was characteristic and dependent on the manufacturers of the proton beam therapy system, the proton treatment planning system and the setup at the participating institutions. Widths of the lateral penumbra were 5.8-12.7 mm among participating institutions. The accuracy between the calculated and the measured doses in the proton irradiation was within 3% at five measurement points including both points on the isocenter and off the isocenter. CONCLUSIONS These findings confirmed the accuracy of the delivery doses in the institutions participating in the clinical trial, and the clinical trial with integration of all institutions (five institutions) could be initiated.
Collapse
Affiliation(s)
- Teiji Nishio
- Department of Medical Physics, Graduate School of Medicine, Tokyo Women's Medical University, Japan.
| | - Hidenobu Tachibana
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yuki Kase
- Proton Therapy Division, Shizuoka Cancer Center Research Institute, Japan
| | - Kenji Hotta
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan
| | - Masaya Tamura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | | | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Japan
| | - Haruo Yamashita
- Proton Therapy Division, Shizuoka Cancer Center Research Institute, Japan
| | - Satoshi Ishikura
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Hiroshi Fuji
- Department of Radiation Oncology, National Center for Child Health and Development, Tokyo, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
22
|
Shi C, Chen CC, Mah D, Chan MF. Monte Carlo calculation of the mass stopping power of EBT3 and EBT-XD films for protons for energy ranges of 50-400 MeV. PRECISION RADIATION ONCOLOGY 2019; 2:106-113. [PMID: 31131334 PMCID: PMC6532660 DOI: 10.1002/pro6.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective The goal of the present study was to calculate the continuous slowing down approximation (CDSA) ranges and derive mass stopping power for EBT3 and EBT-XD films for therapeutic protons energy ranges of 50-400 MeV. Methods The MCNPX and TRansport of Ions in Matter (TRIM) Monte Carlo codes were used in this study. Utilizing the published International Commission on Radiation Units and Measurement 49 data for the water mass stopping power and CSDA ranges, the mass stopping powers of EBT3 and EBT-XD films were derived using the approximation proposed by Newhauser and Zhang in 2009. Results The calculated CSDA ranges by MCNPX and TRIM in water were first benchmarked to International Commission on Radiation Units and Measurement 49 published data for water, and found to be within 1% with a 1.4-mm maximum difference. The calculated CSDA values in EBT3 film, compared with the measured CSDA ranges in the EBT3 film, were within 2% of the calculated values with a 3-mm maximum difference. The MCNPX and TRIM results for CSDA ranges agreed with each other to within 2.7% for EBT3 film and 4.4% for EBT-XD film. The overall uncertainties of the MCNPX and TRIM-derived CSDA ranges were 3% and 1.3%, respectively. Conclusion The mass stopping powers for Gafchromic EBT3 and EBT-XD films were derived.
Collapse
Affiliation(s)
- Chengyu Shi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Basking Ridge, New Jersey, USA
| | - Chin-Cheng Chen
- Department of Radiation Physics, ProCure Proton Center, Somerset, New Jersey, USA
| | - Dennis Mah
- Department of Radiation Physics, ProCure Proton Center, Somerset, New Jersey, USA
| | - Maria F Chan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Basking Ridge, New Jersey, USA
| |
Collapse
|
23
|
Casolaro P, Campajola L, Breglio G, Buontempo S, Consales M, Cusano A, Cutolo A, Di Capua F, Fienga F, Vaiano P. Real-time dosimetry with radiochromic films. Sci Rep 2019; 9:5307. [PMID: 30926839 PMCID: PMC6440967 DOI: 10.1038/s41598-019-41705-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Radiochromic film dosimetry has been widely employed in most of the applications of radiation physics for over twenty years. This is due to a number of appealing features of radiochromic films, such as reliability, accuracy, ease of use and cost. However, current radiochromic film reading techniques, based on the use of commercial densitometers and scanners, provide values of dose only after the exposure of the films to radiation. In this work, an innovative methodology for the real-time reading of radiochromic films is proposed for some specific applications. The new methodology is based on opto-electronic instrumentation that makes use of an optical fiber probe for the determination of optical changes of the films induced by radiation and allows measurements of dose with high degree of precision and accuracy. Furthermore, it has been demonstrated that the dynamic range of some kinds of films, such as the EBT3 Gafchromic films (intensively used in medical physics), can be extended by more than one order of magnitude. Owing to the numerous advantages with respect to the commonly used reading techniques, a National Patent was filed in January 2018.
Collapse
Affiliation(s)
- Pierluigi Casolaro
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy.
| | - Luigi Campajola
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Giovanni Breglio
- University of Napoli Federico II, Department of Electronical Engineering, I-80125, Napoli, Italy
| | - Salvatore Buontempo
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Marco Consales
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy.
| | - Andrea Cusano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Antonello Cutolo
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Francesco Di Capua
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Francesco Fienga
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Patrizio Vaiano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| |
Collapse
|
24
|
Smith BR, Pankuch M, Hammer CG, DeWerd LA, Culberson WS. LET response variability of Gafchromic TM EBT3 film from a 60 Co calibration in clinical proton beam qualities. Med Phys 2019; 46:2716-2728. [PMID: 30740699 DOI: 10.1002/mp.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/01/2019] [Accepted: 02/02/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To establish a method of accurate dosimetry required to quantify the expected linear energy transfer (LET) quenching effect of EBT3 film used to benchmark the dose distribution for a given treatment field and specified measurement depth. In order to facilitate this technique, a full analysis of film calibration which considers LET variability at the plane of measurement and as a function of proton beam quality is demonstrated. Additionally, the corresponding uncertainty from the process was quantified for several measurement scenarios. MATERIALS AND METHODS The net change in optical density (OD) from a single version of Gafchromic TM EBT3 film was measured using an Epson flatbed scanner and NIST-traceable OD filters. Film OD response was characterized with respect to the known dose to water at the point of measurement for both a NIST-traceable 60 Co beam at the UWADCL and several clinical single-energy and spread-out Bragg peak (SOBP) proton beam qualities at the Northwestern Medicine Chicago Proton Center. Increasing proton LET environments were acquired by placing film at increasing depths of Gammex HE Solid Water® whose water-equivalent thickness was characterized prior to measurement. RESULTS A strong LET dependence was observed near the Bragg peak (BP) consistent with previous studies performed with earlier versions of EBT3 film. The influence of range straggling on the film's LET response appears to have a uniform effect toward the BP regardless of the nominal beam energy. Proximal to this depth, the film's response decreased with decreasing energy at the same dose-average LET. The opposite trend was observed for depths past the BP. Changes in the SOBP energy modulation showed a linear relationship between the film's relative response and dose-averaged LET. Relative effectiveness factors (RE) were observed to range between 2%-7% depending on the width of the SOBP and depth of the film. Using the field-specific calibration technique, a total k = 1 uncertainty in the absorbed dose to water was estimated to range from 4.68%-5.21%. CONCLUSION While EBT3 film's strong LET dependence is a common problem in proton beam dosimetry, this work has shown that the LET dependence can be taken into account by carefully considering the depth and energy modulation across the film using field-specific corrections. RE factors were determined with a combined k = 1 uncertainty of 3.57% for SOBP environments and between 3.17%-4.69% for uniform, monoenergetic fields proximal to the distal 80% of the BP.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Pankuch
- Division of Medical Physics, Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, IL, 60555, USA
| | - Clifford G Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
25
|
DNA DSB Repair Dynamics following Irradiation with Laser-Driven Protons at Ultra-High Dose Rates. Sci Rep 2019; 9:4471. [PMID: 30872656 PMCID: PMC6418121 DOI: 10.1038/s41598-019-40339-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Protontherapy has emerged as more effective in the treatment of certain tumors than photon based therapies. However, significant capital and operational costs make protontherapy less accessible. This has stimulated interest in alternative proton delivery approaches, and in this context the use of laser-based technologies for the generation of ultra-high dose rate ion beams has been proposed as a prospective route. A better understanding of the radiobiological effects at ultra-high dose-rates is important for any future clinical adoption of this technology. In this study, we irradiated human skin fibroblasts-AG01522B cells with laser-accelerated protons at a dose rate of 109 Gy/s, generated using the Gemini laser system at the Rutherford Appleton Laboratory, UK. We studied DNA double strand break (DSB) repair kinetics using the p53 binding protein-1(53BP1) foci formation assay and observed a close similarity in the 53BP1 foci repair kinetics in the cells irradiated with 225 kVp X-rays and ultra- high dose rate protons for the initial time points. At the microdosimetric scale, foci per cell per track values showed a good correlation between the laser and cyclotron-accelerated protons indicating similarity in the DNA DSB induction and repair, independent of the time duration over which the dose was delivered.
Collapse
|
26
|
Anderson SE, Grams MP, Wan Chan Tseung H, Furutani KM, Beltran CJ. A linear relationship for the LET-dependence of Gafchromic EBT3 film in spot-scanning proton therapy. ACTA ACUST UNITED AC 2019; 64:055015. [DOI: 10.1088/1361-6560/ab0114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Gambarini G, Bettega D, Camoni G, Barzon G, Bettinelli L, Giove D, Carrara M, Mirandola A, Ciocca M. Development of a procedure for quenching-effect correction in images of absorbed dose from protons or carbon ions acquired with Gafchromic EBT3 films. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
DePew KD, Ahmad S, Jin H. Experimental Assessment of Proton Dose Calculation Accuracy in Small-Field Delivery Using a Mevion S250 Proton Therapy System. J Med Phys 2019; 43:221-229. [PMID: 30636847 PMCID: PMC6299753 DOI: 10.4103/jmp.jmp_33_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose: Dose calculation accuracy of the Varian Eclipse treatment planning system (TPS) is empirically assessed for small-aperture fields using a Mevion S250 double scattering proton therapy system. Materials and Methods: Five spherical pseudotumors were modeled in a RANDO head phantom. Plans were generated for the targets with apertures of 1, 2, 3, 4, or 5 cm diameter using one, two, and three beams. Depth-dose curves and lateral profiles of the beams were taken with the planned blocks and compared to Eclipse calculations. Dose distributions measured with EBT3 films in the phantom were also compared to Eclipse calculations. Film quenching effect was simulated and considered. Results: Depth-dose scans in water showed a range pullback (up to 2.0 mm), modulation widening (up to 9.5 mm), and dose escalation in proximal end and sub-peak region (up to 15.5%) when compared to the Eclipse calculations for small fields. Measured full width at half maximum and penumbrae for lateral profiles differed <1.0 mm from calculations for most comparisons. In the phantom study, Eclipse TPS underestimated sub-peak dose. Gamma passing rates improved with each beam added to the plans. Greater range pullback and modulation degradation versus water scans were observed due to film quenching, which became more noticeable as target size increased. Conclusions: Eclipse TPS generates acceptable target coverage for small targets with carefully arranged multiple beams despite relatively large dose discrepancy for each beam. Surface doses higher than Eclipse calculations can be mitigated with multiple beams. When using EBT3 film, the quenching effect should be considered.
Collapse
Affiliation(s)
- Kyle D DePew
- Department of Radiation Oncology, University of Oklahoma Health Sciences Centre, Oklahoma City, Oklahoma, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Centre, Oklahoma City, Oklahoma, USA
| | - Hosang Jin
- Department of Radiation Oncology, University of Oklahoma Health Sciences Centre, Oklahoma City, Oklahoma, USA
| |
Collapse
|
29
|
Abstract
The change in optical properties of GafChromic films depends not only on the absorbed dose, but also on the linear energy transfer (LET) of the ionizing radiation. The influence of LET on the film dose-response relationship is especially important when films are applied for dosimetry of energetic charged particles. In the present study, we examined the response of the unlaminated EBT3 and MD-V3 films to proton, deuterium and helium beams with energies in the range of several megaelectronvolts (MeV). Films were exposed to doses up to 200 Gy and a model based on the bimolecular chemical reaction was chosen to fit the measured film signals. The LET in the active layers of the films and the dose correction factors were computed with Monte Carlo software TRIM. Signal quenching, observed for all ion beams in comparison to x-rays, was investigated as a function of the LET in the range of 10-100 keV µm-1. The response of the films got weaker with increasing the LET and showed no dependence on the ion species. The LET effect was quantified by introducing a modified expression for the relative effectiveness (RE) by which a unique RE value is assigned to a single LET. The RE defined in that way decreased from about 90% for LET of 10 keV µm-1 to less than 50% for LET of 100 keV µm-1. Similar behavior was observed for EBT3 and MD-V3 film models.
Collapse
Affiliation(s)
- V. Grilj
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - D. J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Giordanengo S, Palmans H. Dose detectors, sensors, and their applications. Med Phys 2018; 45:e1051-e1072. [DOI: 10.1002/mp.13089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simona Giordanengo
- Istituto Nazionale di Fisica Nucleare, Section of Torino Via Giuria 1 10125 Torino Italy
| | - Hugo Palmans
- National Physical Laboratory Medical Radiation Science Hampton Road Teddington Middlesex TW11 0LW UK
- EBG MedAustron GmbH Marie‐Curiestraße 5 A‐2700 Wiener Neustadt Austria
| |
Collapse
|
31
|
Lewis DJ, Taylor PA, Followill DS, Sahoo N, Mahajan A, Stingo FC, Kry SF. A New Anthropomorphic Pediatric Spine Phantom for Proton Therapy Clinical Trial Credentialing. Int J Part Ther 2018; 4:20-27. [PMID: 30214913 DOI: 10.14338/ijpt-17-00024.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To design and evaluate an anthropomorphic spine phantom for use in credentialing proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core Houston QA Center. Materials and Methods A phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation, and proton treatment delivery. Because plastics that simulate bone in proton beams are unknown, 11 potential materials were tested to identify suitable phantom materials. Once built, preliminary testing using passive scattering and spot scanning treatment plans (including a field junction) were created in-house and delivered 3 times to test reproducibility. The following measured attributes were compared with the calculated values: absolute dose agreement using thermoluminescent dosimeters, planar gamma agreement, distal range, junction match, and right and left profile alignment using radiochromic film. Finally, credentialing results from 10 institutions were also assessed. Results A suitable bone substitute was identified (Techtron HPV Bearing Grade), which had a measured relative stopping power that agreed within 1.1% of its value calculated by Eclipse. In-house passive scatter testing of the phantom demonstrated that the phantom was suitable for assessing craniospinal irradiation dose delivery. However, the in-house scanning beam results were more mixed, highlighting challenges in treatment delivery. Seven of ten institutions passed the proposed criteria for this phantom, a pass rate consistent with other Imaging and Radiation Oncology phantoms. Conclusions An anthropomorphic proton spine phantom was developed to evaluate proton therapy delivery. This phantom provides a realistic challenge for centers wishing to participate in proton clinical trials and highlights the need for caution in applying advanced treatments.
Collapse
Affiliation(s)
- Dana J Lewis
- Imaging and Radiation Oncology Core Quality Assurance Office, Houston, TX, USA.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA
| | - Paige A Taylor
- Imaging and Radiation Oncology Core Quality Assurance Office, Houston, TX, USA.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA
| | - David S Followill
- Imaging and Radiation Oncology Core Quality Assurance Office, Houston, TX, USA.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA
| | - Anita Mahajan
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesco C Stingo
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen F Kry
- Imaging and Radiation Oncology Core Quality Assurance Office, Houston, TX, USA.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston TX, USA
| |
Collapse
|
32
|
de Vera P, Abril I, Garcia-Molina R. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy. Radiat Res 2018; 190:282-297. [PMID: 29995591 DOI: 10.1667/rr14988.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The number and energy of secondary electrons generated around the trajectories of swift protons interacting with biological materials are highly relevant in proton therapy, due to the prominent role of low-energy electrons in the production of biodamage. For a given material, electron energy distributions are determined by the proton energy; and it is imperative that the distribution of proton energy at depths around the Bragg peak region be described as accurately as possible. With this objective, we simulated the energy distributions of proton beams of clinically relevant energies (50-300 MeV) at depths around the Bragg peak in liquid water and the water-equivalent polymer poly(methyl methacrylate) (PMMA). By using a simple model, this simulation has been conveniently extended to account for nuclear fragmentation reactions, providing depth-dose curves in excellent agreement with available experimental data. Special care has been taken to describe the electronic excitation spectrum of the target, taking into account its condensed phase nature. A predictive formula has been obtained for the mean value and the width of the proton energy distribution at the Bragg peak depth, quantities which are found to grow linearly with the initial energy of the beam, in good agreement with available data. To accurately characterize (in number and energy) the electrons generated around the proton paths, the energy distributions of the latter at each depth have been convoluted with the energy-dependent ionization inverse mean free paths. This results in a number of low-energy electrons around the Bragg peak larger than when only the proton beam average energy at the given depths is considered. The convoluted ionization inverse mean free path closely resembles the Bragg curve shape. The average energy of the secondary electrons is nearly constant (∼55 eV for liquid water and ∼43 eV for PMMA) in the plateau of the Bragg curve, independent of the proton incident energy and suddenly decaying once the Bragg peak is reached. These findings highlight the importance of a precise calculation of the proton beam energy distribution as a function of the target depth to reliably characterize the secondary electrons generated around the Bragg peak region.
Collapse
Affiliation(s)
- Pablo de Vera
- a Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| | - Isabel Abril
- b Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain
| | - Rafael Garcia-Molina
- a Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
33
|
Zou W, Burgdorf B, Yue NJ, Yin L, Zhang M, Khan A, Jabbour SK, McDonough J, Dong L, Teo BKK. Efficient double-scattering proton therapy with a patient-specific bolus. Phys Med 2018; 50:1-6. [PMID: 29891088 PMCID: PMC10865432 DOI: 10.1016/j.ejmp.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Passive scattering proton radiotherapy utilizes beam-specific compensators to shape the dose to the distal end of the tumor target. These compensators typically require therapists to enter the treatment room to mount between beams. This study investigates a novel approach that utilizes a single patient-specific bolus to accomplish the role of multi-field compensators to improve the efficiency of the treatment delivery. METHODS Ray-tracing from the proton virtual source was used to convert the beam-specific compensators (mounted on the gantry nozzle) into an equivalent bolus thickness on the patient surface. The field bolus contours were combined to create a single bolus. A 3D acrylic bolus was milled for a head phantom. The dose distribution of the compensator plan was compared to the bolus plan using 3D Gamma analysis and film measurements. Boluses for two clinical patients were also designed. RESULTS The calculated phantom dose distribution of the original proton compensator plan was shown to be equivalent to the plan with the surface bolus. Film irradiations with the proton bolus also confirmed the dosimetric equivalence of the two techniques. The dose distribution equivalency of the bolus plans for the clinical patients were demonstrated. CONCLUSIONS We presented a novel approach that uses a single patient-specific bolus to replace patient compensators during passive scattering proton delivery. This approach has the potential to reduce the treatment time, the compensator manufacturing costs, the risk of potential collision between the compensator and the patient/couch, and the waste of compensator material.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Brendan Burgdorf
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, United States
| | - Lingshu Yin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Miao Zhang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, United States
| | - James McDonough
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
34
|
Lee KH, Shin JY, Kim EH. Measurement of activity distribution in an Am-241 disc source using peeled-off Gafchromic EBT3 films. Appl Radiat Isot 2018; 135:192-200. [PMID: 29413837 DOI: 10.1016/j.apradiso.2018.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
Abstract
Commercial alpha-emitting sources are fabricated mainly in a disc type. An alpha particle irradiator in Radiation Bioengineering Laboratory at Seoul National University was installed with an Am-241 disc source. Commercial Am-241 disc sources are fabricated by incorporating the radioactive element into a thin substrate layer. Those disc sources are utilized assuming that the radioactive element is uniformly distributed in the active layer of disc sources. In this study, we employed peeled-off Gafchromic EBT3 films to investigate the uniformity of areal radioactivity density over the disc source and to measure the effect of non-uniform activity distribution on dose distribution at the bottom of the cell culture dish positioned in a varying distance from the source. The measurements with the peeled-off EBT3 films informed that the areal activity density in the disc source differed by up to approximately 45% from the average. However, the inhomogeneous Am-241 distribution in a disc source did not affect the radial distribution of fluence rate at the inner bottom of cell dish when the dish is apart from the source sufficiently. The dose distribution measured with an EBT3 film nearly accorded with that obtained by Monte Carlo simulation assuming the uniform Am-241 activity distribution in the active layer of the disc source. Finally, the dose to a single-cell layer of 5 μm in a nominal thickness was obtained by Monte Carlo simulation assuming a uniform Am-241 activity distribution in the disc source at distances of 20 and 30 mm from the source. The cellular dose estimates were higher than the film dose estimates at all radial distances. The cellular dose decreased with an increasing radial distance from the center to a smaller extent than the EBT3 film dose did.
Collapse
Affiliation(s)
- Kwang-Ho Lee
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Yong Shin
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
35
|
Giordanengo S, Manganaro L, Vignati A. Review of technologies and procedures of clinical dosimetry for scanned ion beam radiotherapy. Phys Med 2017; 43:79-99. [DOI: 10.1016/j.ejmp.2017.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
|
36
|
Dover NP, Nishiuchi M, Sakaki H, Alkhimova MA, Faenov AY, Fukuda Y, Kiriyama H, Kon A, Kondo K, Nishitani K, Ogura K, Pikuz TA, Pirozhkov AS, Sagisaka A, Kando M, Kondo K. Scintillator-based transverse proton beam profiler for laser-plasma ion sources. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:073304. [PMID: 28764503 DOI: 10.1063/1.4994732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.
Collapse
Affiliation(s)
- N P Dover
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - H Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M A Alkhimova
- National Research Nuclear University (MEPhI), Moscow 115409, Russia
| | - A Ya Faenov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - Y Fukuda
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - H Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - A Kon
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Nishitani
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Ogura
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - T A Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - A S Pirozhkov
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - A Sagisaka
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M Kando
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
37
|
Chan MF, Chen CC, Shi C, Li J, Tang X, Li X, Mah D. Patient-Specific QA of Spot-Scanning Proton Beams using Radiochromic Film. ACTA ACUST UNITED AC 2017; 6:111-123. [PMID: 28620561 DOI: 10.4236/ijmpcero.2017.62011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radiochromic film for spot-scanning QA provides high spatial resolution and efficiency gains from one-shot irradiation for multiple depths. However, calibration can be a tedious procedure which may limit widespread use. Moreover, since there may be an energy dependence, which manifests as a depth dependence, this may require additional measurements for each patient. We present a one-scan protocol to simplify the procedure. A calibration using an EBT3 film, exposed by a 6-level step-wedge plan on a Proteus®PLUS proton system (IBA, Belgium), was performed at depths of 18, 20, 24cm using Plastic Water® (CIRS, Norfolk, VA). The calibration doses ranged from 65-250 cGy(RBE) (relative biological effectiveness) for proton energies of 170-200 MeV. A clinical prostate+nodes plan was used for validation. The planar doses at selected depths were measured with EBT3 films and analyzed using One-scan protocol (one-scan digitization of QA film and at least one film exposed to a known dose). The gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film and IBA MatriXX-PT, versus the RayStation TPS calculations were analyzed and compared. The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate of ~95% for 2%/2mm and slightly lower passing rates were obtained from an ion chamber array detector. We were able to demonstrate that the use of a proton step-wedge provided clinically acceptable results and minimized variations between film-scanner orientation, inter-scan, and scanning conditions. Furthermore, for relative dosimetry (calibration is not done at the time of experiment) it could be derived from no more than two films exposed to known doses (one could be zero) for rescaling the master calibration curve at each depth. The sensitivity of the calibration to depth variations has been explored. One-scan protocol results appear to be comparable to that of the ion chamber array detector. The use of a proton step-wedge for calibration of EBT3 film potentially increases efficiency in patient-specific QA of proton beams.
Collapse
Affiliation(s)
- Maria F Chan
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chin-Cheng Chen
- Dept. of Radiation Physics, ProCure Proton Center, Somerset, NJ
| | - Chengyu Shi
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jingdong Li
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaoli Tang
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiang Li
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dennis Mah
- Dept. of Radiation Physics, ProCure Proton Center, Somerset, NJ
| |
Collapse
|
38
|
Castriconi R, Ciocca M, Mirandola A, Sini C, Broggi S, Schwarz M, Fracchiolla F, Martišíková M, Aricò G, Mettivier G, Russo P. Dose–response of EBT3 radiochromic films to proton and carbon ion clinical beams. Phys Med Biol 2016; 62:377-393. [DOI: 10.1088/1361-6560/aa5078] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Ford E, Emery R, Huff D, Narayanan M, Schwartz J, Cao N, Meyer J, Rengan R, Zeng J, Sandison G, Laramore G, Mayr N. An image-guided precision proton radiation platform for preclinicalin vivoresearch. Phys Med Biol 2016; 62:43-58. [DOI: 10.1088/1361-6560/62/1/43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Peucelle C, Nauraye C, Patriarca A, Hierso E, Fournier-Bidoz N, Martínez-Rovira I, Prezado Y. Proton minibeam radiation therapy: Experimental dosimetry evaluation. Med Phys 2016; 42:7108-13. [PMID: 26632064 DOI: 10.1118/1.4935868] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. METHODS Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. RESULTS A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. CONCLUSIONS pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth, the worst scenario), while a spatial fractionation of the dose is retained in the normal tissues in the beam path, potentially leading to a gain in tissue sparing. This is the first complete experimental implementation of this promising technique. Biological experiments are needed in order to confirm the clinical potential of pMBRT.
Collapse
Affiliation(s)
- C Peucelle
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - C Nauraye
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - A Patriarca
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - E Hierso
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - N Fournier-Bidoz
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - I Martínez-Rovira
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| |
Collapse
|
41
|
Durante M, Paganetti H. Nuclear physics in particle therapy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096702. [PMID: 27540827 DOI: 10.1088/0034-4885/79/9/096702] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy. Department of Physics, University Federico II, Naples, Italy
| | | |
Collapse
|
42
|
McAuley GA, Teran AV, Slater JD, Slater JM, Wroe AJ. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery. J Appl Clin Med Phys 2015; 16:51-64. [PMID: 26699554 PMCID: PMC5691016 DOI: 10.1120/jacmp.v16i6.5391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 08/26/2015] [Accepted: 06/20/2015] [Indexed: 12/04/2022] Open
Abstract
The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1–2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real‐time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20 mm were delivered using single‐stage scattering and four modulations (0, 15, 30, and 60 mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge‐on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation‐dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diode vs. Markus depth‐dose profiles, as well as Markus relative dose ratio vs. simulated dose‐weighted average lineal energy plots, suggest that any LET‐dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth‐dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge‐on orientation) that is crucial for small fields and high‐dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high‐resolution, real‐time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications. PACS numbers: 87.56.‐v, 87.56.jf, 87.56.Fc
Collapse
|
43
|
Vadrucci M, Esposito G, Ronsivalle C, Cherubini R, Marracino F, Montereali RM, Picardi L, Piccinini M, Pimpinella M, Vincenti MA, De Angelis C. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60
Co γ-rays. Med Phys 2015; 42:4678-84. [DOI: 10.1118/1.4926558] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Yeo IJ, Teran A, Ghebremedhin A, Johnson M, Patyal B. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement. J Appl Clin Med Phys 2015; 16:5402. [PMID: 26103499 PMCID: PMC5690120 DOI: 10.1120/jacmp.v16i3.5402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 12/21/2014] [Indexed: 11/23/2022] Open
Abstract
Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was reproducible within 10%. These large discrepancies were identified to have been contributed by film processor uncertainty across a layer of film and the misalignment of film edge to the frontal phantom surface. The deviations could drop from 5 to 2 mm in SOBP and from 10% to 4.5% at 5 cm depth in a well-controlled processor condition(i.e., warm up). In addition to the validation of the calibration method done by the DD measurements, the concurrent film and IC measurement independently validated the model by showing the constancy of depth-dependent calibration factors. For profile measurement, the film showed good agreement with ion chamber measurement. In agreement with the experimental findings, computationally obtained ratio of film dose to water dose assisted understanding of the trend of the film response by revealing relatively large and small variances of the response for DD and beam profile measurements, respectively. Conclusions are as follows. For proton beams, radiographic film proved to offer accurate beam profile measurements. The adaptive calibration method proposed in this study was validated. Using the method, film dosimetry could offer reasonably accurate DD constancy checks, when provided with a well-controlled processor condition. Although the processor warming up can promote a uniform processing across a single layer of the film, the processing remains as a challenge.
Collapse
|
45
|
Adolfsson E, White S, Landry G, Lund E, Gustafsson H, Verhaegen F, Reniers B, Carlsson Tedgren Å, Carlsson GA. Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film. Phys Med Biol 2015; 60:3869-82. [PMID: 25906141 DOI: 10.1088/0031-9155/60/9/3869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film. Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water. Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison. This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies ((192)Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.
Collapse
Affiliation(s)
- Emelie Adolfsson
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mayer R, Lin L, Fager M, Douglas D, McDonough J, Carabe A. Proposed linear energy transfer areal detector for protons using radiochromic film. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:044301. [PMID: 25933872 DOI: 10.1063/1.4917418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.
Collapse
Affiliation(s)
- Rulon Mayer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817, USA
| | - Liyong Lin
- Department of Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Marcus Fager
- Department of Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Dan Douglas
- Department of Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - James McDonough
- Department of Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Alejandro Carabe
- Department of Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
47
|
Reinhardt S, Würl M, Greubel C, Humble N, Wilkens JJ, Hillbrand M, Mairani A, Assmann W, Parodi K. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:71-79. [PMID: 25572031 DOI: 10.1007/s00411-014-0581-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.
Collapse
Affiliation(s)
- S Reinhardt
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany.
| | - M Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany
| | - C Greubel
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, 85779, Neubiberg, Germany
| | - N Humble
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - J J Wilkens
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - M Hillbrand
- Rinecker Proton Therapy Center, Munich, Germany
| | - A Mairani
- Medical Physics Unit CNAO Foundation, Pavia, Italy
| | - W Assmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany
| | - K Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany
| |
Collapse
|
48
|
Doran S, Gorjiara T, Kacperek A, Adamovics J, Kuncic Z, Baldock C. Issues involved in the quantitative 3D imaging of proton doses using optical CT and chemical dosimeters. Phys Med Biol 2015; 60:709-26. [PMID: 25555069 PMCID: PMC5390951 DOI: 10.1088/0031-9155/60/2/709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 11/12/2022]
Abstract
Dosimetry of proton beams using 3D imaging of chemical dosimeters is complicated by a variation with proton linear energy transfer (LET) of the dose-response (the so-called 'quenching effect'). Simple theoretical arguments lead to the conclusion that the total absorbed dose from multiple irradiations with different LETs cannot be uniquely determined from post-irradiation imaging measurements on the dosimeter. Thus, a direct inversion of the imaging data is not possible and the proposition is made to use a forward model based on appropriate output from a planning system to predict the 3D response of the dosimeter. In addition to the quenching effect, it is well known that chemical dosimeters have a non-linear response at high doses. To the best of our knowledge it has not yet been determined how this phenomenon is affected by LET. The implications for dosimetry of a number of potential scenarios are examined.Dosimeter response as a function of depth (and hence LET) was measured for four samples of the radiochromic plastic PRESAGE(®), using an optical computed tomography readout and entrance doses of 2.0 Gy, 4.0 Gy, 7.8 Gy and 14.7 Gy, respectively. The dosimeter response was separated into two components, a single-exponential low-LET response and a LET-dependent quenching. For the particular formulation of PRESAGE(®) used, deviations from linearity of the dosimeter response became significant for doses above approximately 16 Gy. In a second experiment, three samples were each irradiated with two separate beams of 4 Gy in various different configurations. On the basis of the previous characterizations, two different models were tested for the calculation of the combined quenching effect from two contributions with different LETs. It was concluded that a linear superposition model with separate calculation of the quenching for each irradiation did not match the measured result where two beams overlapped. A second model, which used the concept of an 'effective dose' matched the experimental results more closely. An attempt was made to measure directly the quench function for two proton beams as a function of all four variables of interest (two physical doses and two LET values). However, this approach was not successful because of limitations in the response of the scanner.
Collapse
Affiliation(s)
- Simon Doran
- CRUK Cancer Imaging Centre, Institute of Cancer Research, London, UK
- Department of Physics, University of Surrey, Guildford, Surrey, UK
| | - Tina Gorjiara
- Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | | | - John Adamovics
- Department of Chemistry and Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Zdenka Kuncic
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| | - Clive Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| |
Collapse
|
49
|
Subiel A, Moskvin V, Welsh GH, Cipiccia S, Reboredo D, Evans P, Partridge M, DesRosiers C, Anania MP, Cianchi A, Mostacci A, Chiadroni E, Di Giovenale D, Villa F, Pompili R, Ferrario M, Belleveglia M, Di Pirro G, Gatti G, Vaccarezza C, Seitz B, Isaac RC, Brunetti E, Wiggins SM, Ersfeld B, Islam MR, Mendonca MS, Sorensen A, Boyd M, Jaroszynski DA. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations. Phys Med Biol 2014; 59:5811-29. [PMID: 25207591 DOI: 10.1088/0031-9155/59/19/5811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.
Collapse
Affiliation(s)
- A Subiel
- Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Le Deroff C, Cherel M, Guertin A, Haddad F, Koumeir C, Métivier V, Michel N, Poirier F, Servagent N, Schwob L, Varmenot N. EBT2 films response to alpha radiation at 48.3 MeV. RADIATION PROTECTION DOSIMETRY 2014; 161:428-432. [PMID: 24825916 DOI: 10.1093/rpd/ncu151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To advance the development of a radiobiological experimental set-up for alpha particle irradiations at the Arronax cyclotron, experiments were performed to get the dose response of Gafchomic EBT2 films for alpha particles at 48.3 MeV. A system has been developed using a thin monitor copper foil and an X-ray spectrometer to measure the beam intensity and to calculate the delivered dose. On the other hand, the authors have irradiated EBT2 films, with 6-MV X rays, to get the dose response of EBT2 films for photons. The dose response curve for alpha particles shows an effect of polymerisation saturation compared with the dose response curve for photons.
Collapse
Affiliation(s)
| | | | - A Guertin
- SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - F Haddad
- GIP ARRONAX, Saint-Herblain, France SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - C Koumeir
- GIP ARRONAX, Saint-Herblain, France SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - V Métivier
- SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - N Michel
- GIP ARRONAX, Saint-Herblain, France SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - F Poirier
- GIP ARRONAX, Saint-Herblain, France SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - N Servagent
- SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
| | - L Schwob
- GIP ARRONAX, Saint-Herblain, France
| | - N Varmenot
- GIP ARRONAX, Saint-Herblain, France Institut de Cancérologie de l'Ouest (R. Gauducheau), Saint-Herblain, France
| |
Collapse
|