1
|
Chen J, Yang Y, Feng H, Zhang L, Liu Z, Liu T, Vargas CE, Yu NY, Rwigema JCM, Keole SR, Patel SH, Vora SA, Shen J, Liu W. Robust Optimization for Spot-Scanning Proton Therapy based on Dose-Linear-Energy-Transfer Volume Constraints. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03646-0. [PMID: 39551105 DOI: 10.1016/j.ijrobp.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE Historically, spot-scanning proton therapy (SSPT) treatment planning uses dose-volume constraints and linear-energy-transfer (LET) volume constraints separately to balance tumor control and organs-at-risk (OARs) protection. We propose a novel dose-LET-volume constraint (DLVC)-based robust optimization (DLVCRO) method for SSPT in treating prostate cancer to obtain a desirable joint dose and LET distribution to minimize adverse events. METHODS AND MATERIALS DLVCRO treats DLVC as soft constraints that control the shapes of the dose-LET volume histogram (DLVH) curves. It minimizes the overlap of high LET and high dose in OARs and redistributes high LET from OARs to targets in a user-defined way. Ten patients with prostate cancer were included in this retrospective study. Rectum and bladder were considered as OARs. DLVCRO was compared with the conventional robust optimization (RO) method. Plan robustness was quantified using the worst-case analysis method. Besides the dose-volume histogram indices, the analogous LET-volume histogram, extrabiological dose (the product of per voxel dose and LET) volume histogram (xBDVH) indices characterizing the joint dose/LET distributions and DLVH indices were also used. The Wilcoxon signed-rank test was performed to measure statistical significance. RESULTS In the nominal scenario, DLVCRO significantly improved joint distribution of dose and LET to protect OARs compared with RO. The physical dose distributions in targets and OARs are comparable. In the worst-case scenario, DLVCRO markedly enhanced OAR protection (more robust) while maintaining almost the same plan robustness in target dose coverage and homogeneity. CONCLUSIONS DLVCRO upgrades 2D DVH-based to 3D DLVH-based treatment planning to adjust dose/LET distributions simultaneously and robustly. DLVCRO is potentially a powerful tool to improve patient outcomes in SSPT.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Yunze Yang
- Department of Radiation Oncology, the University of Miami, Florida
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona; College of Mathematics and Physics, China Three Gorges University, Yichang, Hubei, People's Republic of China; Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona; Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Zhengliang Liu
- School of Computing, University of Georgia, Athens, Georgia
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, Georgia
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona.
| |
Collapse
|
2
|
Rana S, Manthala Padannayil N, Tran L, Rosenfeld AB, Saeed H, Kasper M. Quantifying the Dosimetric Impact of Proton Range Uncertainties on RBE-Weighted Dose Distributions in Intensity-Modulated Proton Therapy for Bilateral Head and Neck Cancer. Curr Oncol 2024; 31:3690-3697. [PMID: 39057144 PMCID: PMC11275331 DOI: 10.3390/curroncol31070272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. METHODS The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient's plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. RESULTS The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78-10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. CONCLUSION The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Noufal Manthala Padannayil
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| | - Linh Tran
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Michael Kasper
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| |
Collapse
|
3
|
Sebastián SM, Alejandro C, Ignacio E, Sophia G, Pía VM, Andrea R. Monte Carlo simulations of cell survival in proton SOBP. Phys Med Biol 2023; 68:195024. [PMID: 37673077 DOI: 10.1088/1361-6560/acf752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Objective. The objective of this study is to develop a multi-scale modeling approach that accurately predicts radiation-induced DNA damage and survival fraction in specific cell lines.Approach. A Monte Carlo based simulation framework was employed to make the predictions. The FLUKA Monte Carlo code was utilized to estimate absorbed doses and fluence energy spectra, which were then used in the Monte Carlo Damage Simulation code to compute DNA damage yields in Chinese hamster V79 cell lines. The outputs were converted into cell survival fractions using a previously published theoretical model. To reduce the uncertainties of the predictions, new values for the parameters of the theoretical model were computed, expanding the database of experimental points considered in the previous estimation. Simulated results were validated against experimental data, confirming the applicability of the framework for proton beams up to 230 MeV. Additionally, the impact of secondary particles on cell survival was estimated.Main results. The simulated survival fraction versus depth in a glycerol phantom is reported for eighteen different configurations. Two proton spread out Bragg peaks at several doses were simulated and compared with experimental data. In all cases, the simulations follow the experimental trends, demonstrating the accuracy of the predictions up to 230 MeV.Significance. This study holds significant importance as it contributes to the advancement of models for predicting biological responses to radiation, ultimately contributing to more effective cancer treatment in proton therapy.
Collapse
Affiliation(s)
| | - Carabe Alejandro
- Hampton University Proton Therapy Institute, 40 Enterprise Pkwy Hampton, VA 2366, United States of America
| | - Espinoza Ignacio
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Galvez Sophia
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Valenzuela María Pía
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Russomando Andrea
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| |
Collapse
|
4
|
Jeong S, Kim C, An S, Kwon YC, Pak SI, Cheon W, Shin D, Lim Y, Jeong JH, Kim H, Lee SB. Determination of the proton LET using thin film solar cells coated with scintillating powder. Med Phys 2023; 50:1194-1204. [PMID: 36135795 DOI: 10.1002/mp.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The amount of luminescent light detected in a scintillator is reduced with increased proton linear energy transfer (LET) despite receiving the same proton dose, through a phenomenon called quenching. This study evaluated the ability of a solar cell coated with scintillating powder (SC-SP) to measure therapeutic proton LET by measuring the quenching effect of the scintillating powder using a solar cell while simultaneously measuring the dose of the proton beam. METHODS SC-SP was composed of a flexible thin film solar cell and scintillating powder. The LET and dose of the pristine Bragg peak in the 14 cm range were calculated using a validated Monte Carlo model of a double scattering proton beam nozzle. The SC-SP was evaluated by measuring the proton beam under the same conditions at specific depths using SC-SP and Markus chamber. Finally, the 10 and 20 cm range pristine Bragg peaks and 5 cm spread-out Bragg peak (SOBP) in the 14 cm range were measured using the SC-SP and the Markus chamber. LETs measured using the SC-SP were compared with those calculated using Monte Carlo simulations. RESULTS The quenching factors of the SC-SP and solar cell alone, which were slopes of linear fit obtained from quenching correction factors according to LET, were 0.027 and 0.070 µm/keV (R2 : 0.974 and 0.975). For pristine Bragg peaks in the 10 and 20 cm ranges, the maximum differences between LETs measured using the SC-SP and calculated using Monte Carlo simulations were 0.5 keV/µm (15.7%) and 1.2 keV/µm (12.0%), respectively. For a 5 cm SOBP proton beam, the LET measured using the SC-SP and calculated using Monte Carlo simulations differed by up to 1.9 keV/µm (18.7%). CONCLUSIONS Comparisons of LETs for pristine Bragg peaks and SOBP between measured using the SC-SP and calculated using Monte Carlo simulations indicated that the solar cell-based system could simultaneously measure both LET and dose in real-time and is cost-effective.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Chankyu Kim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Seohyeon An
- Proton Therapy Center, National Cancer Center, Goyang, Korea.,Department of Physics, Hanyang University, Seoul, Korea
| | - Yong-Cheol Kwon
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Sang-Il Pak
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Wonjoong Cheon
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Youngkyung Lim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Jong Hwi Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Se Byeong Lee
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| |
Collapse
|
5
|
Chaudhary P, Milluzzo G, McIlvenny A, Ahmed H, McMurray A, Maiorino C, Polin K, Romagnani L, Doria D, McMahon SJ, Botchway SW, Rajeev PP, Prise KM, Borghesi M. Cellular irradiations with laser-driven carbon ions at ultra-high dose rates. Phys Med Biol 2023; 68. [PMID: 36625355 DOI: 10.1088/1361-6560/aca387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023]
Abstract
Objective.Carbon is an ion species of significant radiobiological interest, particularly in view of its use in cancer radiotherapy, where its large Relative Biological Efficiency is often exploited to overcome radio resistance. A growing interest in highly pulsed carbon delivery has arisen in the context of the development of the FLASH radiotherapy approach, with recent studies carried out at dose rates of 40 Gy s-1. Laser acceleration methods, producing ultrashort ion bursts, can now enable the delivery of Gy-level doses of carbon ions at ultra-high dose rates (UHDRs), exceeding 109Gy s-1. While studies at such extreme dose rate have been carried out so far using low LET particles such as electrons and protons, the radiobiology of high-LET, UHDR ions has not yet been explored. Here, we report the first application of laser-accelerated carbon ions generated by focussing 1020W cm-2intense lasers on 10-25 nm carbon targets, to irradiate radioresistant patient-derived Glioblastoma stem like cells (GSCs).Approach.We exposed GSCs to 1 Gy of 9.5 ± 0.5 MeV/n carbon ions delivered in a single ultra-short (∼400-picosecond) pulse, at a dose rate of 2 × 109Gy s-1, generated using the ASTRA GEMINI laser of the Central Laser Facility at the Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK. We quantified carbon ion-induced DNA double strand break (DSB) damage using the 53BP1 foci formation assay and used 225 kVp x-rays as a reference radiation.Main Results.Laser-accelerated carbon ions induced complex DNA DSB damage, as seen through persistent 53BP1 foci (11.5 ± 0.4 foci/cell/Gy) at 24 h and significantly larger foci (1.69 ± 0.07μm2) than x-rays induced ones (0.63 ± 0.02μm2). The relative foci induction value for laser-driven carbon ions relative to conventional x-rays was 3.2 ± 0.3 at 24 h post-irradiation also confirming the complex nature of the induced damage.Significance.Our study demonstrates the feasibility of radiobiology investigations at unprecedented dose rates using laser-accelerated high-LET carbon ions in clinically relevant models.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Giuliana Milluzzo
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy
| | - Aodhan McIlvenny
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Hamad Ahmed
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Aaron McMurray
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Carla Maiorino
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania.,University College Cork, College of Medicine and Health, Discipline of Diagnostic Radiography and Radiation Therapy, Brookfield Health Sciences Complex, Brookfield College Road, T12AK54, Cork, United Kingdom
| | - Kathryn Polin
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Lorenzo Romagnani
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratoire LULI, École Polytechnique, Route de Saclay, F-91128 Palaiseau, Paris, France
| | - Domenico Doria
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania
| | - Stephen J McMahon
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Stanley W Botchway
- Research Complex at Harwell & Central Laser facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Pattathil P Rajeev
- Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Kevin M Prise
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Marco Borghesi
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Rana S, Traneus E, Jackson M, Tran L, Rosenfeld AB. Quantitative analysis of dose-averaged linear energy transfer (LET d ) robustness in pencil beam scanning proton lung plans. Med Phys 2022; 49:3444-3456. [PMID: 35194809 DOI: 10.1002/mp.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The primary objective of our study was to perform a quantitative robustness analysis of the dose-averaged linear energy transfer (LETd ) and related RBE-weighted dose in robustly optimized (in terms of the range and set up uncertainties) pencil beam scanning (PBS) proton lung cancer plans. METHODS In this study, we utilized the 4DCT data set of six anonymized lung patients. PBS lung plans were generated using a robust optimization technique (range uncertainty: ±3.5% and setup errors: ±5 mm) on the CTV for a total dose of 5000 cGy(RBE) in 5 fractions using RBE of 1.1. For each patient, the LETd distributions were calculated for the nominal plan and three groups. Group 1: two plan robustness scenarios for range uncertainties of ±3.5%; Group 2: twelve plan robustness scenarios (range uncertainty (±3.5%) in conjunction with setup errors (±5 mm)); and Group 3: ten different breathing phases of the 4DCT data set. RBE-weighted dose to the OARs was evaluated for all robustness scenarios and breathing phases. The variation (∆) in the mean LETd and mean RBE-weighted dose from each group was recorded. RESULTS The mean LETd in the CTV of nominal PBS lung plans among six patients ranged from 2.2 to 2.6 keV/μm. On average, for the combined range and setup uncertainties, the ∆ in the mean LETd among 12 scenarios of all six patients was 0.6 keV/μm, which is slightly higher than when only the range uncertainties were considered (0.4 keV/μm). The ∆ in the mean LETd in a patient was ≤1.7 keV/μm in the heart and ≤1.2 keV/μm in the esophagus and total lung. The ∆ in the mean RBE-weighted dose in a patient was up to 79 cGy for the total lung, 165 cGy for the heart, and 258 cGy for the esophagus. For ten breathing phases, the ∆ in the mean LETd in a patient was ≤0.3 keV/μm in the CTV, ≤0.5 keV/μm in the heart, ≤0.4 keV/μm in the esophagus, and ≤0.7 keV/μm in the total lung. CONCLUSION The addition of setup errors to the range uncertainties resulted in slightly less homogeneous LETd distributions. The variations in the mean LETd among ten breathing phases were slightly larger in the total lung than in the heart and esophagus. The combination of setup and range uncertainties had a greater impact than the effect of breathing phases on the variations in the mean RBE-weighted dose to the OARs. Overall, the LETd distributions in the CTV were less sensitive than those in the OARs to setup errors, range uncertainties, and breathing phases for robustly optimized PBS proton lung cancer plans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, Florida, USA.,Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Erik Traneus
- RaySearch Laboratories, Medical Physics, Stockholm, Sweden
| | - Michael Jackson
- Prince of Wales Hospital, Radiation Oncology, Randwick, Australia
| | - Linh Tran
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Upadhyay R, Liao K, Grosshans DR, McGovern SL, Frances McAleer M, Zaky W, Chintagumpala MM, Mahajan A, Nana Yeboa D, Paulino AC. Quantifying the risk and dosimetric variables of symptomatic brainstem injury after proton beam radiation in pediatric brain tumors. Neuro Oncol 2022; 24:1571-1581. [PMID: 35157767 PMCID: PMC9435496 DOI: 10.1093/neuonc/noac044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brainstem toxicity after radiation therapy (RT) is a devastating complication and a particular concern with proton radiation (PBT). We investigated the incidence and clinical correlates of brainstem injury in pediatric brain tumors treated with PBT. METHODS All patients <21 years with brain tumors treated with PBT at our institution from 2007-2019, with a brainstem Dmean >30 Gy and/or Dmax >50.4 Gy were included. Symptomatic brainstem injury (SBI) was defined as any new or progressive cranial neuropathy, ataxia, and/or motor weakness with corresponding radiographic abnormality within brainstem. RESULTS A total of 595 patients were reviewed and 468 (medulloblastoma = 200, gliomas = 114, ependymoma = 87, ATRT = 43) met our inclusion criteria. Median age at RT was 6.3 years and median prescribed RT dose was 54Gy [RBE]. Fifteen patients (3.2%) developed SBI, at a median of 4 months after RT. Grades 2, 3, 4, and 5 brainstem injuries were seen in 7, 5, 1, and 2 patients respectively. Asymptomatic radiographic changes were seen in 51 patients (10.9%). SBI was significantly higher in patients with age ≤3 years, female gender, ATRT histology, patients receiving high-dose chemotherapy with stem cell rescue, and those not receiving craniospinal irradiation. Patients with SBI had a significantly higher V50-52. In 2014, our institution started using strict brainstem dose constraints (Dmax ≤57 Gy, Dmean ≤52.4 Gy, and V54≤10%). There was a trend towards decrease in SBI from 4.4% (2007-2013) to 1.5% (2014-2019) (P = .089) without affecting survival. CONCLUSION Our results suggest a low risk of SBI after PBT for pediatric brain tumors, comparable to photon therapy. A lower risk was seen after adopting strict brainstem dose constraints.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The James Cancer Centre Ohio State University, Columbus, Ohio, USA
| | - Kaiping Liao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debra Nana Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnold C Paulino
- Corresponding Author: Arnold C. Paulino, MD, Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0097, Houston, TX 77030, USA ()
| |
Collapse
|
8
|
Hahn C, Ödén J, Dasu A, Vestergaard A, Fuglsang Jensen M, Sokol O, Pardi C, Bourhaleb F, Leite A, de Marzi L, Smith E, Aitkenhead A, Rose C, Merchant M, Kirkby K, Grzanka L, Pawelke J, Lühr A. Towards harmonizing clinical linear energy transfer (LET) reporting in proton radiotherapy: a European multi-centric study. Acta Oncol 2022; 61:206-214. [PMID: 34686122 DOI: 10.1080/0284186x.2021.1992007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Clinical data suggest that the relative biological effectiveness (RBE) in proton therapy (PT) varies with linear energy transfer (LET). However, LET calculations are neither standardized nor available in clinical routine. Here, the status of LET calculations among European PT institutions and their comparability are assessed. MATERIALS AND METHODS Eight European PT institutions used suitable treatment planning systems with their center-specific beam model to create treatment plans in a water phantom covering different field arrangements and fulfilling commonly agreed dose objectives. They employed their locally established LET simulation environments and procedures to determine the corresponding LET distributions. Dose distributions D1.1 and DRBE assuming constant and variable RBE, respectively, and LET were compared among the institutions. Inter-center variability was assessed based on dose- and LET-volume-histogram parameters. RESULTS Treatment plans from six institutions fulfilled all clinical goals and were eligible for common analysis. D1.1 distributions in the target volume were comparable among PT institutions. However, corresponding LET values varied substantially between institutions for all field arrangements, primarily due to differences in LET averaging technique and considered secondary particle spectra. Consequently, DRBE using non-harmonized LET calculations increased inter-center dose variations substantially compared to D1.1 and significantly in mean dose to the target volume of perpendicular and opposing field arrangements (p < 0.05). Harmonizing LET reporting (dose-averaging, all protons, LET to water or to unit density tissue) reduced the inter-center variability in LET to the order of 10-15% within and outside the target volume for all beam arrangements. Consequentially, inter-institutional variability in DRBE decreased to that observed for D1.1. CONCLUSION Harmonizing the reported LET among PT centers is feasible and allows for consistent multi-centric analysis and reporting of tumor control and toxicity in view of a variable RBE. It may serve as basis for harmonized variable RBE dose prescription in PT.
Collapse
Affiliation(s)
- Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics and Radiotherapy, Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Olga Sokol
- GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Pardi
- I-SEE (Internet-Simulation Evaluation Envision), Torino, Italy
| | - Faiza Bourhaleb
- I-SEE (Internet-Simulation Evaluation Envision), Torino, Italy
| | - Amélia Leite
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France
| | - Ludovic de Marzi
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France
- Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO, Orsay, France
| | - Edward Smith
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Adam Aitkenhead
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Christopher Rose
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Michael Merchant
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Karen Kirkby
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics and Radiotherapy, Department of Physics, TU Dortmund University, Dortmund, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| |
Collapse
|
9
|
Paganetti H. Mechanisms and Review of Clinical Evidence of Variations in Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2022; 112:222-236. [PMID: 34407443 PMCID: PMC8688199 DOI: 10.1016/j.ijrobp.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Proton therapy is increasingly being used as a radiation therapy modality. There is uncertainty about the biological effectiveness of protons relative to photon therapies as it depends on several physical and biological parameters. Radiation oncology currently applies a constant and generic value for the relative biological effectiveness (RBE) of 1.1, which was chosen conservatively to ensure tumor coverage. The use of a constant value has been challenged particularly when considering normal tissue constraints. Potential variations in RBE have been assessed in several published reviews but have mostly focused on data from clonogenic cell survival experiments with unclear relevance for clinical proton therapy. The goal of this review is to put in vitro findings in relation to clinical observations. Relevant in vivo pathways determining RBE for tumors and normal tissues are outlined, including not only damage to tumor cells and parenchyma but also vascular damage and immune response. Furthermore, the current clinical evidence of varying RBE is reviewed. The assessment can serve as guidance for treatment planning, personalized dose prescriptions, and outcome analysis.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
10
|
Smith EAK, Winterhalter C, Underwood TSA, Aitkenhead AH, Richardson JC, Merchant MJ, Kirkby NF, Kirby KJ, Mackay RI. A Monte Carlo study of different LET definitions and calculation parameters for proton beam therapy. Biomed Phys Eng Express 2021; 8. [PMID: 34874308 DOI: 10.1088/2057-1976/ac3f50] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
The strongin vitroevidence that proton Relative Biological Effectiveness (RBE) varies with Linear Energy Transfer (LET) has led to an interest in applying LET within treatment planning. However, there is a lack of consensus on LET definition, Monte Carlo (MC) parameters or clinical methodology. This work aims to investigate how common variations of LET definition may affect potential clinical applications. MC simulations (GATE/GEANT4) were used to calculate absorbed dose and different types of LET for a simple Spread Out Bragg Peak (SOBP) and for four clinical PBT plans covering a range of tumour sites. Variations in the following LET calculation methods were considered: (i) averaging (dose-averaged LET (LETd) & track-averaged LET); (ii) scoring (LETdto water, to medium and to mass density); (iii) particle inclusion (LETdto all protons, to primary protons and to particles); (iv) MC settings (hit type and Maximum Step Size (MSS)). LET distributions were compared using: qualitative comparison, LET Volume Histograms (LVHs), single value criteria (maximum and mean values) and optimised LET-weighted dose models. Substantial differences were found between LET values in averaging, scoring and particle type. These differences depended on the methodology, but for one patient a difference of ∼100% was observed between the maximum LETdfor all particles and maximum LETdfor all protons within the brainstem in the high isodose region (4 keVμm-1and 8 keVμm-1respectively). An RBE model using LETdincluding heavier ions was found to predict substantially different LET-weighted dose compared to those using other LET definitions. In conclusion, the selection of LET definition may affect the results of clinical metrics considered in treatment planning and the results of an RBE model. The authors' advocate for the scoring of dose-averaged LET to water for primary and secondary protons using a random hit type and automated MSS.
Collapse
Affiliation(s)
- Edward A K Smith
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Carla Winterhalter
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jenny C Richardson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen J Kirby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ranald I Mackay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
11
|
Pedersen J, Liang X, Bryant C, Mendenhall N, Li Z, Muren LP. Normal tissue complication probability models for prospectively scored late rectal and urinary morbidity after proton therapy of prostate cancer. Phys Imaging Radiat Oncol 2021; 20:62-68. [PMID: 34805558 PMCID: PMC8590075 DOI: 10.1016/j.phro.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Photons and protons have fundamentally different properties, i.e. protons have a reduced dose bath but a higher relative biological effectiveness. Photon-based normal tissue complication probability (NTCP) models may therefore not immediately be applicable to proton therapy (PT). The aim was to derive parameters of the Lyman-Kutcher-Burman (LKB) NTCP model using prospectively recorded late morbidity data from PT, focusing on rectal morbidity and prostate cancer. Materials and methods Prospectively collected data were available for 1151 prostate cancer patients treated with passive scattering PT and prescribed target doses of 78–82 Gy (RBE = 1.1) in 2 Gy fractions. Morbidity data (CTCAE v3.0) consisted of two alternative late grade 2 rectal bleeding endpoints: Medical Grade2A (GR2A) and procedural Grade2B (GR2B), as well as late grade 3 + urinary morbidity. GR2A + 2B were observed in 156/1047 patients (15%), GR2B in 45/1047 patients (4%), and urinary grade 3 + in 51/1151 patients (4%). LKB NTCP model parameters (D50, m, and n) were derived by maximum likelihood estimation. Results For the rectum/rectal wall the volume parameter n was low (0.07–0.14) for both GR2A + 2B and GR2B, as was the m parameter (range: 0.16–0.20). For the bladder/bladder wall both parameters were high (n-range: 0.20–0.36; m-range: 0.32–0.36). D50 parameters were higher for GR2B of the rectum/rectal wall (95.9–98.0 Gy) and bladder/bladder wall (118.1–119.9 Gy), but lower for GR2A2B (71.7–73.6 Gy). Conclusion PT specific LKB NTCP model parameters were derived from a population of more than 1000 patients. The D50 parameter differed for all structures and endpoints and deviated from typical photon-based LKB model values.
Collapse
Affiliation(s)
- Jesper Pedersen
- Danish Centre for Particle Therapy, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| | - Xiaoying Liang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Curtis Bryant
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Nancy Mendenhall
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Zuofeng Li
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Dell'Oro M, Wilson P, Short M, Hua CH, Merchant TE, Bezak E. Normal tissue complication probability modeling to guide individual treatment planning in pediatric cranial proton and photon radiotherapy. Med Phys 2021; 49:742-755. [PMID: 34796509 DOI: 10.1002/mp.15360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Proton therapy (PT) is broadly accepted as the gold standard of care for pediatric patients with cranial cancer. The superior dose distribution of PT compared to photon radiotherapy reduces normal tissue complication probability (NTCP) for organs at risk. As NTCPs for pediatric organs are not well understood, clinics generally base radiation response on adult data. However, there is evidence that radiation response strongly depends on the age and even sex of a patient. Furthermore, questions surround the influence of individual intrinsic radiosensitivity (α/β ratio) on pediatric NTCP. While the clinical pediatric NTCP data is scarce, radiobiological modeling and sensitivity analyses can be used to investigate the NTCP trends and its dependence on individual modeling parameters. The purpose of this study was to perform sensitivity analyses of NTCP models to ascertain the dependence of radiosensitivity, sex, and age of a child and predict cranial side-effects following intensity-modulated proton therapy (IMPT) and intensity-modulated radiotherapy (IMRT). METHODS Previously, six sex-matched pediatric cranial datasets (5, 9, and 13 years old) were planned in Varian Eclipse treatment planning system (13.7). Up to 108 scanning beam IMPT plans and 108 IMRT plans were retrospectively optimized for a range of simulated target volumes and locations. In this work, dose-volume histograms were extracted and imported into BioSuite Software for radiobiological modeling. Relative-Seriality and Lyman-Kutcher-Burman models were used to calculate NTCP values for toxicity endpoints, where TD50, (based on reported adult clinical data) was varied to simulate sex dependence of NTCP. Plausible parameter ranges, based on published literature for adults, were used in modeling. In addition to sensitivity analyses, a 20% difference in TD50 was used to represent the radiosensitivity between the sexes (with females considered more radiosensitive) for ease of data comparison as a function of parameters such as α/β ratio. RESULTS IMPT plans resulted in lower NTCP compared to IMRT across all models (p < 0.0001). For medulloblastoma treatment, the risk of brainstem necrosis (> 10%) and cochlea tinnitus (> 20%) among females could potentially be underestimated considering a lower TD50 value for females. Sensitivity analyses show that the difference in NTCP between sexes was significant (p < 0.0001). Similarly, both brainstem necrosis and cochlea tinnitus NTCP varied significantly (p < 0.0001) across tested α/β as a function of TD50 values (assumption being that TD50 values are 20% lower in females). If the true α/β of these pediatric tissues is higher than expected (α/β ∼ 3), the risk of tinnitus for IMRT can significantly increase (p < 0.0001). CONCLUSION Due to the scarcity of pediatric NTCP data available, sensitivity analyses were performed using plausible ranges based on published adult data. In the clinical scenario where, if female pediatric patients were 20% more radiosensitive (lower TD50 value), they could be up to twice as likely to experience side-effects of brainstem necrosis and cochlea tinnitus compared to males, highlighting the need for considering the sex in NTCP models. Based on our sensitivity analyses, age and sex of a pediatric patient could significantly affect the resultant NTCP from cranial radiotherapy, especially at higher α/β values.
Collapse
Affiliation(s)
- Mikaela Dell'Oro
- Cancer Research Institute, University of South Australia, Adelaide, Australia.,Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia.,UniSA STEM, University of South Australia, Adelaide, Australia
| | - Michala Short
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, Australia.,Department of Physics, University of Adelaide, Adelaide, Australia
| |
Collapse
|
13
|
Yang Y, Vargas CE, Bhangoo RS, Wong WW, Schild SE, Daniels TB, Keole SR, Rwigema JCM, Glass JL, Shen J, DeWees TA, Liu T, Bues M, Fatyga M, Liu W. Exploratory Investigation of Dose-Linear Energy Transfer (LET) Volume Histogram (DLVH) for Adverse Events Study in Intensity Modulated Proton Therapy (IMPT). Int J Radiat Oncol Biol Phys 2021; 110:1189-1199. [PMID: 33621660 DOI: 10.1016/j.ijrobp.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE We proposed a novel tool-a dose linear energy transfer (LET)-volume histogram (DLVH)-and performed an exploratory study to investigate rectal bleeding in prostate cancer treated with intensity modulated proton therapy. METHODS AND MATERIALS The DLVH was constructed with dose and LET as 2 axes, and the normalized volume of the structure was contoured in the dose-LET plane as isovolume lines. We defined the DLVH index, DLv%(d,l) (ie, v% of the structure) to have a dose of ≥d Gy and an LET of ≥l keV/μm, similar to the dose-volume histogram index Dv%. Nine patients with prostate cancer with rectal bleeding (Common Terminology Criteria for Adverse Events grade ≥2) were included as the adverse event group, and 48 patients with no complications were considered the control group. A P value map was constructed by comparison of the DLVH indices of all patients between the 2 groups using the Mann-Whitney U test. Dose-LET volume constraints (DLVCs) were derived based on the P value map with a manual selection procedure facilitated by Spearman's correlation tests. The obtained DLVCs were further cross-validated using a multivariate support vector machine (SVM)-based normal tissue complication probability (NTCP) model with an independent testing data set composed of 8 adverse event and 13 control patients. RESULTS We extracted 2 DLVC constraints. One DLVC was obtained, Vdose/LETboundary:2.5keVμmat 75 Gy to 3.2keVμmat8.65Gy <1.27% (DLVC1), revealing a high LET volume effect. The second DLVC, V(72.2Gy,0keVμm) < 2.23% (DVLC2), revealed a high dose volume effect. The SVM-based NTCP model with 2 DLVCs provided slightly superior performance than using dose only, with an area under the curve of 0.798 versus 0.779 for the testing data set. CONCLUSIONS Our results demonstrated the importance of rectal "hot spots" in both high LET (DLVC1) and high dose (DLVC2) in inducing rectal bleeding. The SVM-based NTCP model confirmed the derived DLVCs as good predictors for rectal bleeding when intensity modulated proton therapy is used to treat prostate cancer.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | | | - Jennifer L Glass
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Todd A DeWees
- Division of Biostatics, Mayo Clinic Arizona, Phoenix, Arizona
| | - Tianming Liu
- Department of Computer Science, the University of Georgia, Athens, Georgia
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
14
|
Deng W, Yang Y, Liu C, Bues M, Mohan R, Wong WW, Foote RH, Patel SH, Liu W. A Critical Review of LET-Based Intensity-Modulated Proton Therapy Plan Evaluation and Optimization for Head and Neck Cancer Management. Int J Part Ther 2021; 8:36-49. [PMID: 34285934 PMCID: PMC8270082 DOI: 10.14338/ijpt-20-00049.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
In this review article, we review the 3 important aspects of linear-energy-transfer (LET) in intensity-modulated proton therapy (IMPT) for head and neck (H&N) cancer management. Accurate LET calculation methods are essential for LET-guided plan evaluation and optimization, which can be calculated either by analytical methods or by Monte Carlo (MC) simulations. Recently, some new 3D analytical approaches to calculate LET accurately and efficiently have been proposed. On the other hand, several fast MC codes have also been developed to speed up the MC simulation by simplifying nonessential physics models and/or using the graphics processor unit (GPU)–acceleration approach. Some concepts related to LET are also briefly summarized including (1) dose-weighted versus fluence-weighted LET; (2) restricted versus unrestricted LET; and (3) microdosimetry versus macrodosimetry. LET-guided plan evaluation has been clinically done in some proton centers. Recently, more and more studies using patient outcomes as the biological endpoint have shown a positive correlation between high LET and adverse events sites, indicating the importance of LET-guided plan evaluation in proton clinics. Various LET-guided plan optimization methods have been proposed to generate proton plans to achieve biologically optimized IMPT plans. Different optimization frameworks were used, including 2-step optimization, 1-step optimization, and worst-case robust optimization. They either indirectly or directly optimize the LET distribution in patients while trying to maintain the same dose distribution and plan robustness. It is important to consider the impact of uncertainties in LET-guided optimization (ie, LET-guided robust optimization) in IMPT, since IMPT is sensitive to uncertainties including both the dose and LET distributions. We believe that the advancement of the LET-guided plan evaluation and optimization will help us exploit the unique biological characteristics of proton beams to improve the therapeutic ratio of IMPT to treat H&N and other cancers.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Robert H Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
15
|
Fjæra LF, Indelicato DJ, Ytre-Hauge KS, Muren LP, Lassen-Ramshad Y, Toussaint L, Dahl O, Stokkevåg CH. Spatial Agreement of Brainstem Dose Distributions Depending on Biological Model in Proton Therapy for Pediatric Brain Tumors. Adv Radiat Oncol 2021; 6:100551. [PMID: 33490724 PMCID: PMC7811129 DOI: 10.1016/j.adro.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 11/02/2022] Open
Abstract
Purpose During radiation therapy for pediatric brain tumors, the brainstem is a critical organ at risk, possibly with different radio-sensitivity across its substructures. In proton therapy, treatment planning is currently performed using a constant relative biological effectiveness (RBE) of 1.1 (RBE1.1), whereas preclinical studies point toward spatial variability of this factor. To shed light on this biological uncertainty, we investigated the spatial agreement between isodose maps produced by different RBE models, with emphasis on (smaller) substructures of the brainstem. Methods and Materials Proton plans were recalculated using Monte Carlo simulations in 3 anonymized pediatric patients with brain tumors (a craniopharyngioma, a low-grade glioma, and a posterior fossa ependymoma) to obtain dose and linear energy transfer distributions. Doses and volume metrics for the brainstem and its substructures were calculated using a constant RBE1.1, 4 phenomenological RBE models with varying (α/β)x parameters, and with a simpler linear energy transfer-dependent model. The spatial agreement between the dose distributions of constant RBE1.1 versus the variable RBE models was compared using the Dice similarity coefficient. Results The spatial agreement between the variable RBE dose distributions and RBE1.1 decreased with increasing isodose levels in all patient cases. The patient with ependymoma showed the greatest variation in dose and dose volumes, where V50Gy(RBE) in the brainstem increased from 32% (RBE1.1) to 35% to 49% depending on the applied model, corresponding to a spatial agreement (Dice similarity coefficient) between 0.79 and 0.95. The remaining patients showed similar trends, however, with lower absolute values due to lower brainstem doses. Conclusions All phenomenological RBE models fully enclosed the isodose volumes of the constant RBE1.1, and the volumes based on variable RBE spatially agreed. The spatial agreement was dependent on the isodose level, where higher isodose levels showed larger expansions and less agreement between the variable RBE models and RBE1.1.
Collapse
Affiliation(s)
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | | | - Ludvig P Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | | | - Laura Toussaint
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Missiaggia M, Cartechini G, Scifoni E, Rovituso M, Tommasino F, Verroi E, Durante M, La Tessa C. Microdosimetric measurements as a tool to assess potential in-field and out-of-field toxicity regions in proton therapy. Phys Med Biol 2020; 65:245024. [PMID: 32554886 DOI: 10.1088/1361-6560/ab9e56] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Relative biological effectiveness (RBE) variations are thought to be one of the primary causes of unexpected normal-tissue toxicities during tumor treatments with charged particles. Unlike carbon therapy, where treatment planning is optimized on the basis of the RBE-weighted dose, a constant RBE value of 1.1 is currently used in proton therapy. Assuming a uniform value can lead to under- or over-dosage, not just to the tumor but also to surrounding normal tissue. RBE changes have been linked with dose/fraction, the biological endpoint and beam properties. Understanding radiation quality and the associated RBE can improve the prediction of normal-tissue toxicities. In this study, we exploited microdosimetry for characterizing radiation quality in proton therapy in-field, and off-beam at 20 (beam edge), 50 (close out-of-field) and 100 (far out-of-field) mm from the beam center. We measured the lineal energy y spectra in a water phantom irradiated with 152 MeV protons, from which beam quality as well as the physical dose could be obtained. Taking advantage of the linear quadratic model and a modified version of the microdosimetric kinetic model, the microdosimetric data were combined with radiobiological parameters (α and β) of human salivary gland tumor cells for assessing cell survival RBE and RBE-weighted dose. The results indicate that if a dose of 60 Gy is delivered to the peak, the beam edge receives up to 6 Gy while the close and far out-of-field regions receive doses on the order of 10-3 Gy and 10-4 Gy, respectively. The RBE estimate in-beam shows large variations, ranging from 1.0 ± 0.2 at the entrance channel to 2.51 ± 0.15 at the tail. The beam edge follows a similar trend but the RBE calculated at the Bragg peak depth is 2.27 ± 0.17, i.e. twice the RBE in-beam (1.05 ± 0.15). Out-of-field, the estimated RBE is always significantly higher than 1.1 and increases with increasing lateral distance, reaching the overall highest value of 3.4 ± 0.3 at a depth of 206 mm and a lateral distance of 10 mm. The combination of RBE and dose into the biological dose points to the beam edge and the end-of-range in-beam as the areas with the highest risk of potential toxicities.
Collapse
Affiliation(s)
- M Missiaggia
- University of Trento, Via Sommarive 14, 38123 Trento, Italy. Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Teoh S, Fiorini F, George B, Vallis KA, Van den Heuvel F. Proton vs photon: A model-based approach to patient selection for reduction of cardiac toxicity in locally advanced lung cancer. Radiother Oncol 2020; 152:151-162. [PMID: 31431365 PMCID: PMC7707354 DOI: 10.1016/j.radonc.2019.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE/OBJECTIVE To use a model-based approach to identify a sub-group of patients with locally advanced lung cancer who would benefit from proton therapy compared to photon therapy for reduction of cardiac toxicity. MATERIAL/METHODS Volumetric modulated arc photon therapy (VMAT) and robust-optimised intensity modulated proton therapy (IMPT) plans were generated for twenty patients with locally advanced lung cancer to give a dose of 70 Gy (relative biological effectiveness (RBE)) in 35 fractions. Cases were selected to represent a range of anatomical locations of disease. Contouring, treatment planning and organs-at-risk constraints followed RTOG-1308 protocol. Whole heart and ub-structure doses were compared. Risk estimates of grade⩾3 cardiac toxicity were calculated based on normal tissue complication probability (NTCP) models which incorporated dose metrics and patients baseline risk-factors (pre-existing heart disease (HD)). RESULTS There was no statistically significant difference in target coverage between VMAT and IMPT. IMPT delivered lower doses to the heart and cardiac substructures (mean, heart V5 and V30, P < .05). In VMAT plans, there were statistically significant positive correlations between heart dose and the thoracic vertebral level that corresponded to the most inferior limit of the disease. The median level at which the superior aspect of the heart contour began was the T7 vertebrae. There was a statistically significant difference in dose (mean, V5 and V30) to the heart and all substructures (except mean dose to left coronary artery and V30 to sino-atrial node) when disease overlapped with or was inferior to the T7 vertebrae. In the presence of pre-existing HD and disease overlapping with or inferior to the T7 vertebrae, the mean estimated relative risk reduction of grade⩾3 toxicities was 24-59%. CONCLUSION IMPT is expected to reduce cardiac toxicity compared to VMAT by reducing dose to the heart and substructures. Patients with both pre-existing heart disease and tumour and nodal spread overlapping with or inferior to the T7 vertebrae are likely to benefit most from proton over photon therapy.
Collapse
Affiliation(s)
- S Teoh
- CRUK/MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; Department of Radiotherapy, Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, UK.
| | - F Fiorini
- CRUK/MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; Department of Radiotherapy, Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, UK
| | - B George
- CRUK/MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; Department of Radiotherapy, Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, UK
| | - K A Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; Department of Radiotherapy, Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, UK
| | - F Van den Heuvel
- CRUK/MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; Department of Radiotherapy, Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, UK
| |
Collapse
|
18
|
Hahn C, Eulitz J, Peters N, Wohlfahrt P, Enghardt W, Richter C, Lühr A. Impact of range uncertainty on clinical distributions of linear energy transfer and biological effectiveness in proton therapy. Med Phys 2020; 47:6151-6162. [PMID: 33118161 DOI: 10.1002/mp.14560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Increased radiation response after proton irradiation, such as late radiation-induced toxicity, is determined by high dose and elevated linear energy transfer (LET). Steep dose-averaged LET (LETd ) gradients and elevated LETd occur at the end of proton range and might be particularly sensitive to uncertainties in range prediction. Therefore, this study quantified LETd distributions and the impact of range uncertainty in robust dose-optimized proton treatment plans and assessed the biological effect in normal tissues and tumors of patients. METHODS For each of six cancer patients (two brain, head-and-neck, and prostate), two nominal treatment plans were robustly dose optimized using single- and multi-field optimization, respectively. For each plan, two additional scenarios with ±3.5% range deviation relative to the nominal plan were derived by global rescaling of stopping-power ratios. Dose and LETd distributions were calculated for each scenario using the beam parameters of the corresponding nominal plan. The variability in relative biological effectiveness (RBE) and probability of late radiation-induced brain toxicity (PIC ) was assessed. RESULTS The optimization technique (single- vs multi-field) had a negligible impact on the LETd distributions in the clinical target volume (CTV) and in most organs at risk (OARs). LETd distributions in the CTV were rather homogeneous with arithmetic mean of LETd below 3.2 keV/µm and robust against range deviations. The RBE variability within the CTV induced by range uncertainty was small (≤0.05, 95% confidence interval). In OARs, LETd hotspots (>7 keV/µm) occurred and LETd distributions were inhomogeneous and sensitive to range deviations. LETd hotspots and the impact of range deviations were most prominent in OARs of brain tumor patients which translated in RBE values exceeding 1.1 in all brain OARs. The near-maximum predicted PIC in healthy brain tissue of brain tumor patients was smaller than 5% and occurred adjacent to the CTV. Range deviations induced absolute differences in PIC up to 1.2%. CONCLUSIONS Robust dose optimization generates LETd distributions in the target volume robust against range deviations. The current findings support using a constant RBE within the CTV. The impact of range deviations on the considered probability of late radiation-induced toxicity in brain tissue was limited for robust dose-optimized treatment plans. Incorporation of LETd in robust optimization frameworks may further reduce uncertainty related to the RBE-weighted dose estimation in normal tissues.
Collapse
Affiliation(s)
- Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medical Physics and Radiotherapy, Faculty of Physics, TU Dortmund University, Dortmund, Germany
| | - Jan Eulitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Peters
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Patrick Wohlfahrt
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Wolfgang Enghardt
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Medical Physics and Radiotherapy, Faculty of Physics, TU Dortmund University, Dortmund, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Bertolet A, Carabe-Fernandez A. Clinical implications of variable relative biological effectiveness in proton therapy for prostate cancer. Acta Oncol 2020; 59:1171-1177. [PMID: 32427011 DOI: 10.1080/0284186x.2020.1762928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To study the potential consequences of differences in the evaluation of variable versus uniform relative biological effectiveness calculations in proton radiotherapy for prostate cancer. METHODS AND MATERIAL Experimental data with proton beams suggest that relative biological effectiveness increases with linear energy transfer. This relation also depends on the α / β ratio, characteristic of a tissue and a considered endpoint. Three phenomenological models (Carabe et al., Wedenberg et al. and McNamara et al.) are compared to a mechanistic model based on microdosimetry (microdosimetric kinetic model) and to the current assumption of uniform relative biological effectiveness equal to 1.1 in a prostate case. RESULTS AND CONCLUSIONS Phenomenological models clearly predict higher relative biological effectiveness values compared to microdosimetric kinetic model, that seems to approach to the constant value of 1.1 adopted in the clinics, at least for low linear energy transfer values achieved in typical prostate proton plans. All models predict a higher increase of the relative biological effectiveness-weighted dose for the prostate tumor than for the rest of structures involved due to its lower α / β ratio, even when linear energy transfer is, in general, lower in the tumor than on the surroundings tissues. Prostate cancer is, therefore, a good candidate to take advantage of variable relative biological effectiveness, especially if linear energy transfer is enhanced within the tumor. However, the discrepancies among models hinder the clinical implementation of variable relative biological effectiveness.
Collapse
Affiliation(s)
- A. Bertolet
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A. Carabe-Fernandez
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Khachonkham S, Mara E, Gruber S, Preuer R, Kuess P, Dörr W, Georg D, Clausen M. RBE variation in prostate carcinoma cells in active scanning proton beams: In-vitro measurements in comparison with phenomenological models. Phys Med 2020; 77:187-193. [PMID: 32871460 DOI: 10.1016/j.ejmp.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE In-vitro radiobiological studies are essential for modelling the relative biological effectiveness (RBE) in proton therapy. The purpose of this study was to experimentally determine the RBE values in proton beams along the beam path for human prostate carcinoma cells (Du-145). RBE-dose and RBE-LETd (dose-averaged linear energy transfer) dependencies were investigated and three phenomenological RBE models, i.e. McNamara, Rørvik and Wilkens were benchmarked for this cell line. METHODS Cells were placed at multiple positions along the beam path, employing an in-house developed solid phantom. The experimental setup reflected the clinical prostate treatment scenario in terms of field size, depth, and required proton energies (127.2-180.1 MeV) and the physical doses from 0.5 to 6 Gy were delivered. The reference irradiation was performed with 200 kV X-ray beams. Respective (α/β) values were determined using the linear quadratic model and LETd was derived from the treatment planning system at the exact location of cells. RESULTS AND CONCLUSION Independent of the cell survival level, all experimental RBE values were consistently higher in the target than the generic clinical RBE value of 1.1; with the lowest RBE value of 1.28 obtained at the beginning of the SOBP. A systematic RBE decrease with increasing dose was observed for the investigated dose range. The RBE values from all three applied models were considerably smaller than the experimental values. A clear increase of experimental RBE values with LETd parameter suggests that proton LET must be taken into consideration for this low (α/β) tissue.
Collapse
Affiliation(s)
- Suphalak Khachonkham
- Department of Radiation Oncology, Medical University Vienna, Austria; Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University Vienna, Austria; University of Applied Science Wiener, Neustadt, Austria
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University Vienna, Austria
| | - Rafael Preuer
- Department of Radiation Oncology, Medical University Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Monika Clausen
- Department of Radiation Oncology, Medical University Vienna, Austria.
| |
Collapse
|
21
|
Carabe A, Karagounis IV, Huynh K, Bertolet A, François N, Kim MM, Maity A, Abel E, Dale R. Radiobiological effectiveness difference of proton arc beams versus conventional proton and photon beams. Phys Med Biol 2020; 65:165002. [PMID: 32413889 DOI: 10.1088/1361-6560/ab9370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper aims to demonstrate the difference in biological effectiveness of proton monoenergetic arc therapy (PMAT) compared to intensity modulated proton therapy (IMPT) and conventional 6 MV photon therapy, and to quantify this difference when exposing cells of different radiosensitivity to the same experimental conditions for each modality. V79, H1299 and H460 cells were cultured in petri dishes placed in the central axis of a cylindrical and homogeneous solid water phantom of 20 cm in diameter. For the PMAT plan, cells were exposed to 13 mono-energetic proton beams separated every 15° over a 180° arc, designed to deliver a uniform dose of higher LET to the petri dishes. For the IMPT plans, 3 fields were used, where each field was modulated to cover the full target. Cells were also exposed to 6 MV photon beams in petri dishes to characterize their radiosensitivity. The relative biological effectiveness of the PMAT plans compared with those of IMPT was measured using clonogenic assays. Similarly, in order to study the quantity and quality of the DNA damage induced by the PMAT plans compared to that of IMPT and photons, γ-H2AX assays were conducted to study the relative amount of DNA damage induced by each modality, and their repair rate over time. The clonogenic assay revealed similar survival levels to the same dose delivered with IMPT or x-rays. However, a systematic average of up to a 43% increase in effectiveness in PMAT plans was observed when compared with IMPT. In addition, the repair kinetic assays proved that PMAT induces larger and more complex DNA damage (evidenced by a slower repair rate and a larger proportion of unrepaired DNA damage) than IMPT. The repair kinetics of IMPT and 6 MV photon therapy were similar. Mono-energetic arc beams offer the possibility of taking advantage of the enhanced LET of proton beams to increase TCP. This study presents initial results based on exposing cells with different radiosensitivity to other modalities under the same experimental conditions, but more extensive clonogenic and in-vivo studies will be required to confirm the validity of these results.
Collapse
Affiliation(s)
- Alejandro Carabe
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bertolet A, Carabe A. Proton monoenergetic arc therapy (PMAT) to enhance LETd within the target. Phys Med Biol 2020; 65:165006. [PMID: 32428896 DOI: 10.1088/1361-6560/ab9455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We show the performance and feasibility of a proton arc technique so-called proton monoenergetic arc therapy (PMAT). Monoenergetic partial arcs are selected to place spots at the middle of a target and its potential to enhance the dose-averaged linear energy transfer (LETd) distribution within the target. Single-energy partial arcs in a single 360 degree gantry rotation are selected to deposit Bragg's peaks at the central part of the target to increase LETd values. An in-house inverse planning optimizer seeks for homogeneous doses at the target while keeping the dose to organs at risk (OARs) within constraints. The optimization consists of balancing the weights of spots coming out of selected partial arcs. A simple case of a cylindrical target in a phantom is shown to illustrate the method. Three different brain cancer cases are then considered to produce actual clinical plans, compared to those clinically used with pencil beam scanning (PBS). The relative biological effectiveness (RBE) is calculated according to the microdosimetric kinetic model (MKM). For the ideal case of a cylindrical target placed in a cylindrical phantom, the mean LETd in the target increases from 2.8 keV μm-1 to 4.0 keV μm-1 when comparing a three-field PBS plan with PMAT. This is replicated for clinical plans, increasing the mean RBE-weighted doses to the CTV by 3.1%, 1.7% and 2.5%, respectively, assuming an [Formula: see text] ratio equal to 10 Gy in the CTV. In parallel, LETd to OARs near the distal edge of the tumor decrease for all cases and metrics (mean LETd, LD,2% and LD,98%). The PMAT technique increases the LETd within the target, being feasible for the production of clinical plans meeting physical dosimetric requirements for both target and OARs. Thus, PMAT increases the RBE within the target, which may lead to a widening of the therapeutic index in proton radiotherapy that would be highlighted for low [Formula: see text] ratios and hyperfractionated schedules.
Collapse
Affiliation(s)
- A Bertolet
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia 19104, PA, United States of America
| | | |
Collapse
|
23
|
Ma J, Wan Chan Tseung HS, Courneyea L, Beltran C, Herman MG, Remmes NB. Robust radiobiological optimization of ion beam therapy utilizing Monte Carlo and microdosimetric kinetic model. ACTA ACUST UNITED AC 2020; 65:155020. [DOI: 10.1088/1361-6560/aba08b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Kasamatsu K, Matsuura T, Tanaka S, Takao S, Miyamoto N, Nam JM, Shirato H, Shimizu S, Umegaki K. The impact of dose delivery time on biological effectiveness in proton irradiation with various biological parameters. Med Phys 2020; 47:4644-4655. [PMID: 32652574 DOI: 10.1002/mp.14381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the sublethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/β)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS Biological dose [relative biological effectiveness (RBE) × physical dose] calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/β)x and repair parameters ((α/β)x = 1-15 Gy, T1/2 = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/β)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/β)x range of 1-15 Gy for a fixed value of T1/2 = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/β)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 0608638, Japan
| | - Taeko Matsuura
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Sodai Tanaka
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Hiroki Shirato
- Department of Proton Beam Therapy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Shinichi Shimizu
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Kikuo Umegaki
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| |
Collapse
|
25
|
Ytre-Hauge KS, Fjæra LF, Rørvik E, Dahle TJ, Dale JE, Pilskog S, Stokkevåg CH. Inter-patient variations in relative biological effectiveness for cranio-spinal irradiation with protons. Sci Rep 2020; 10:6212. [PMID: 32277106 PMCID: PMC7148381 DOI: 10.1038/s41598-020-63164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Cranio-spinal irradiation (CSI) using protons has dosimetric advantages compared to photons and is expected to reduce risk of adverse effects. The proton relative biological effectiveness (RBE) varies with linear energy transfer (LET), tissue type and dose, but a variable RBE has not replaced the constant RBE of 1.1 in clinical treatment planning. We examined inter-patient variations in RBE for ten proton CSI patients. Variable RBE models were used to obtain RBE and RBE-weighted doses. RBE was quantified in terms of dose weighted organ-mean RBE ([Formula: see text] = mean RBE-weighted dose/mean physical dose) and effective RBE of the near maximum dose (D2%), i.e. RBED2% = [Formula: see text], where subscripts RBE and phys indicate that the D2% is calculated based on an RBE model and the physical dose, respectively. Compared to the median [Formula: see text] of the patient population, differences up to 15% were observed for the individual [Formula: see text] values found for the thyroid, while more modest variations were seen for the heart (6%), lungs (2%) and brainstem (<1%). Large inter-patient variation in RBE could be correlated to large spread in LET and dose for these organs at risk (OARs). For OARs with small inter-patient variations, the results show that applying a population based RBE in treatment planning may be a step forward compared to using RBE of 1.1. OARs with large inter-patient RBE variations should ideally be selected for patient-specific biological or RBE robustness analysis if the physical doses are close to known dose thresholds.
Collapse
Affiliation(s)
| | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Eivind Rørvik
- Department of Medical Physics, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Tordis J Dahle
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sara Pilskog
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Cao H, Xiao Z, Zhang Y, Kwong T, Danish SF, Weiner J, Wang X, Yue N, Dai Z, Kuang Y, Bai Y, Nie K. Dosimetric comparisons of different hypofractionated stereotactic radiotherapy techniques in treating intracranial tumors > 3 cm in longest diameter. J Neurosurg 2020; 132:1024-1032. [PMID: 30901747 DOI: 10.3171/2018.12.jns181578] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/10/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to compare the dosimetric quality of hypofractionated stereotactic radiosurgery in treating sizeable brain tumors across the following treatment platforms: GammaKnife (GK) Icon, CyberKnife (CK) G4, volumetric modulated arc therapy (VMAT) on the Varian TrueBeam STx, double scattering proton therapy (DSPT) on the Mevion S250, and intensity modulated proton therapy (IMPT) on the Varian ProBeam. METHODS In this retrospective study, stereotactic radiotherapy treatment plans were generated for 10 patients with sizeable brain tumors (> 3 cm in longest diameter) who had been treated with VMAT. Six treatment plans, 20-30 Gy in 5 fractions, were generated for each patient using the same constraints for each of the following radiosurgical methods: 1) GK, 2) CK, 3) coplanar arc VMAT (VMAT-C), 4) noncoplanar arc VMAT (VMAT-NC), 5) DSPT, and 6) IMPT. The coverage; conformity index; gradient index (GI); homogeneity index; mean and maximum point dose of organs at risk; total dose volume (V) in Gy to the normal brain for 2 Gy (V2), 5 Gy (V5), and 12 Gy (V12); and integral dose were compared across all platforms. RESULTS Among the 6 techniques, GK consistently produced a sharper dose falloff despite a greater central target dose. GK gave the lowest GI, with a mean of 2.7 ± 0.1, followed by CK (2.9 ± 0.1), VMAT-NC (3.1 ± 0.3), and VMAT-C (3.5 ± 0.3). The highest mean GIs for the proton beam treatments were 3.8 ± 0.4 for DSPT and 3.9 ± 0.4 for IMPT. The GK consistently targeted the lowest normal brain volume, delivering 5 to 12 Gy when treating relatively smaller- to intermediate-sized lesions (less than 15-20 cm3). Yet, the differences across the 6 modalities relative to GK decreased with the increase of target volume. In particular, the proton treatments delivered the lowest V5 to the normal brain when the target size was over 15-20 cm3 and also produced the lowest integral dose to the normal brain regardless of the target size. CONCLUSIONS This study provides an insightful understanding of dosimetric quality from both photon and proton treatment across the most advanced stereotactic radiotherapy platforms.
Collapse
Affiliation(s)
- Hongbin Cao
- 1Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyan Xiao
- 2Proton Therapy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yin Zhang
- 3Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Tiffany Kwong
- 4Department of Radiological Science, University of California Irvine, Irvine, California
| | - Shabbar F Danish
- 5Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Joseph Weiner
- 3Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Xiao Wang
- 3Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ning Yue
- 3Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Zhitao Dai
- 6Department of Radiation Oncology, Shanghai Hospital, The Second Military Medical University, Shanghai, China; and
| | - Yu Kuang
- 7Department of Medical Physics, University of Nevada, Las Vegas, Nevada
| | - Yongrui Bai
- 1Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Nie
- 3Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
27
|
Hirayama S, Matsuura T, Yasuda K, Takao S, Fujii T, Miyamoto N, Umegaki K, Shimizu S. Difference in LET-based biological doses between IMPT optimization techniques: Robust and PTV-based optimizations. J Appl Clin Med Phys 2020; 21:42-50. [PMID: 32150329 PMCID: PMC7170293 DOI: 10.1002/acm2.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose While a large amount of experimental data suggest that the proton relative biological effectiveness (RBE) varies with both physical and biological parameters, current commercial treatment planning systems (TPS) use the constant RBE instead of variable RBE models, neglecting the dependence of RBE on the linear energy transfer (LET). To conduct as accurate a clinical evaluation as possible in this circumstance, it is desirable that the dosimetric parameters derived by TPS (DRBE=1.1) are close to the “true” values derived with the variable RBE models (DvRBE). As such, in this study, the closeness of DRBE=1.1 to DvRBE was compared between planning target volume (PTV)‐based and robust plans. Methods Intensity‐modulated proton therapy (IMPT) treatment plans for two Radiation Therapy Oncology Group (RTOG) phantom cases and four nasopharyngeal cases were created using the PTV‐based and robust optimizations, under the assumption of a constant RBE of 1.1. First, the physical dose and dose‐averaged LET (LETd) distributions were obtained using the analytical calculation method, based on the pencil beam algorithm. Next, DvRBE was calculated using three different RBE models. The deviation of DvRBE from DRBE=1.1 was evaluated with D99 and Dmax, which have been used as the evaluation indices for clinical target volume (CTV) and organs at risk (OARs), respectively. The influence of the distance between the OAR and CTV on the results was also investigated. As a measure of distance, the closest distance and the overlapped volume histogram were used for the RTOG phantom and nasopharyngeal cases, respectively. Results As for the OAR, the deviations of DmaxvRBE from DmaxRBE=1.1 were always smaller in robust plans than in PTV‐based plans in all RBE models. The deviation would tend to increase as the OAR was located closer to the CTV in both optimization techniques. As for the CTV, the deviations of D99vRBE from D99RBE=1.1 were comparable between the two optimization techniques, regardless of the distance between the CTV and the OAR. Conclusion Robust optimization was found to be more favorable than PTV‐based optimization in that the results presented by TPS were closer to the “true” values and that the clinical evaluation based on TPS was more reliable.
Collapse
Affiliation(s)
- Shusuke Hirayama
- Research and Development Group, Center for Technology Innovation-Energy, Hitachi Ltd, Hitachi-shi, Ibaraki-ken, Japan.,Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koichi Yasuda
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takaaki Fujii
- Research and Development Group, Center for Technology Innovation-Energy, Hitachi Ltd, Hitachi-shi, Ibaraki-ken, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kikuo Umegaki
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinichi Shimizu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
28
|
Kobayashi D, Isobe T, Takada K, Mori Y, Takei H, Kumada H, Kamizawa S, Tomita T, Sato E, Yokota H, Sakae T. Establishment of a New Three-Dimensional Dose Evaluation Method Considering Variable Relative Biological Effectiveness and Dose Fractionation in Proton Therapy Combined with High-Dose-Rate Brachytherapy. J Med Phys 2020; 44:270-275. [PMID: 31908386 PMCID: PMC6936203 DOI: 10.4103/jmp.jmp_117_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 09/18/2019] [Accepted: 11/01/2019] [Indexed: 11/07/2022] Open
Abstract
Purpose: The purpose of this study is to evaluate the influence of variable relative biological effectiveness (RBE) of proton beam and dose fractionation has on dose distribution and to establish a new three-dimensional dose evaluation method for proton therapy combined with high-dose-rate (HDR) brachytherapy. Materials and Methods: To evaluate the influence of variable RBE and dose fractionation on dose distribution in proton beam therapy, the depth-dose distribution of proton therapy was compared with clinical dose, RBE-weighted dose, and equivalent dose in 2 Gy fractions using a linear-quadratic-linear model (EQD2LQL). The clinical dose was calculated by multiplying the physical dose by RBE of 1.1. The RBE-weighted dose is a biological dose that takes into account RBE variation calculated by microdosimetric kinetic model implemented in Monte Carlo code. The EQD2LQL is a biological dose that makes the RBE-weighted dose equivalent to 2 Gy using a linear-quadratic-linear (LQL) model. Finally, we evaluated the three-dimensional dose by taking into account RBE variation and LQL model for proton therapy combined with HDR brachytherapy. Results: The RBE-weighted dose increased at the distal of the spread-out Bragg peak (SOBP). With the difference in the dose fractionation taken into account, the EQD2LQL at the distal of the SOBP increased more than the RBE-weighted dose. In proton therapy combined with HDR brachytherapy, a divergence of 103% or more was observed between the conventional dose estimation method and the dose estimation method we propose. Conclusions: Our dose evaluation method can evaluate the EQD2LQL considering RBE changes in the dose distribution.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Radiology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Tomonori Isobe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kenta Takada
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Yutaro Mori
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hideyuki Takei
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroaki Kumada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Satoshi Kamizawa
- Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Tetsuya Tomita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Radiology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Eisuke Sato
- Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Hiroshi Yokota
- Department of Radiology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Takeji Sakae
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| |
Collapse
|
29
|
Baradaran-Ghahfarokhi M, Reynoso F, Prusator MT, Sun B, Zhao T. Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system. J Appl Clin Med Phys 2020; 21:26-37. [PMID: 31898873 PMCID: PMC7021009 DOI: 10.1002/acm2.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose This study aimed to present guidance on the correlation between treatment nozzle and proton source parameters, and dose distribution of a passive double scattering compact proton therapy unit, known as Mevion S250. Methods All 24 beam options were modeled using the MCNPX MC code. The calculated physical dose for pristine peak, profiles, and spread out Bragg peak (SOBP) were benchmarked with the measured data. Track‐averaged LET (LETt) and dose‐averaged LET (LETd) distributions were also calculated. For the sensitivity investigations, proton beam line parameters including Average Energy (AE), Energy Spread (ES), Spot Size (SS), Beam Angle (BA), Beam Offset (OA), and Second scatter Offset (SO) from central Axis, and also First Scatter (FS) thickness were simulated in different stages to obtain the uncertainty of the derived results on the physical dose and LET distribution in a water phantom. Results For the physical dose distribution, the MCNPX MC model matched measurements data for all the options to within 2 mm and 2% criterion. The Mevion S250 was found to have a LETt between 0.46 and 8.76 keV.μm–1 and a corresponding LETd between 0.84 and 15.91 keV.μm–1. For all the options, the AE and ES had the greatest effect on the resulting depth of pristine peak and peak‐to‐plateau ratio respectively. BA, OA, and SO significantly decreased the flatness and symmetry of the profiles. The LETs were found to be sensitive to the AE, ES, and SS, especially in the peak region. Conclusions This study revealed the importance of considering detailed beam parameters, and identifying those that resulted in large effects on the physical dose distribution and LETs for a compact proton therapy machine.
Collapse
Affiliation(s)
| | - Francisco Reynoso
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA
| | - Michael T Prusator
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA
| | - Baozhou Sun
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Cross-modality applicability of rectal normal tissue complication probability models from photon- to proton-based radiotherapy. Radiother Oncol 2020; 142:253-260. [DOI: 10.1016/j.radonc.2019.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 11/21/2022]
|
31
|
Gutierrez A, Rompokos V, Li K, Gillies C, D’Souza D, Solda F, Fersht N, Chang YC, Royle G, Amos RA, Underwood T. The impact of proton LET/RBE modeling and robustness analysis on base-of-skull and pediatric craniopharyngioma proton plans relative to VMAT. Acta Oncol 2019; 58:1765-1774. [PMID: 31429359 PMCID: PMC6882303 DOI: 10.1080/0284186x.2019.1653496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/04/2019] [Indexed: 11/04/2022]
Abstract
Purpose: Pediatric craniopharyngioma, adult base-of-skull sarcoma and chordoma cases are all regarded as priority candidates for proton therapy. In this study, a dosimetric comparison between volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) was first performed. We then investigated the impact of physical and biological uncertainties. We assessed whether IMPT plans remained dosimetrically superior when such uncertainty estimates were considered, especially with regards to sparing organs at risk (OARs).Methodology: We studied 10 cases: four chondrosarcoma, two chordoma and four pediatric craniopharyngioma. VMAT and IMPT plans were created according to modality-specific protocols. For IMPT, we considered (i) variable RBE modeling using the McNamara model for different values of (α/β)x, and (ii) robustness analysis with ±3 mm set-up and 3.5% range uncertainties.Results: When comparing the VMAT and IMPT plans, the dosimetric advantages of IMPT were clear: IMPT led to reduced integral dose and, typically, improved CTV coverage given our OAR constraints. When physical robustness analysis was performed for IMPT, some uncertainty scenarios worsened the CTV coverage but not usually beyond that achieved by VMAT. Certain scenarios caused OAR constraints to be exceeded, particularly for the brainstem and optical chiasm. However, variable RBE modeling predicted even more substantial hotspots, especially for low values of (α/β)x. Variable RBE modeling often prompted dose constraints to be exceeded for critical structures.Conclusion: For base-of-skull and pediatric craniopharyngioma cases, both physical and biological robustness analyses should be considered for IMPT: these analyses can substantially affect the sparing of OARs and comparisons against VMAT. All proton RBE modeling is subject to high levels of uncertainty, but the clinical community should remain cognizant possible RBE effects. Careful clinical and imaging follow-up, plus further research on end-of-range RBE mitigation strategies such as LET optimization, should be prioritized for these cohorts of proton patients.
Collapse
Affiliation(s)
- A. Gutierrez
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - V. Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - K. Li
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - C. Gillies
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - D. D’Souza
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - F. Solda
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - N. Fersht
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Y.-C. Chang
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - G. Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - R. A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - T. Underwood
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
32
|
Marteinsdottir M, Schuemann J, Paganetti H. Impact of uncertainties in range and RBE on small field proton therapy. ACTA ACUST UNITED AC 2019; 64:205005. [DOI: 10.1088/1361-6560/ab448f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Friedrich T. Proton RBE dependence on dose in the setting of hypofractionation. Br J Radiol 2019; 93:20190291. [PMID: 31437004 DOI: 10.1259/bjr.20190291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypofractionated radiotherapy is attractive concerning patient burden and therapy costs, but many aspects play a role when it comes to assess its safety. While exploited for conventional photon therapy and carbon ion therapy, hypofractionation with protons is only rarely applied. One reason for this is uncertainty in the described dose, mainly due to the relative biological effectiveness (RBE), which is small for protons, but not negligible. RBE is generally dose-dependent, and for higher doses as used in hypofractionation, a thorough RBE evaluation is needed. This review article focuses on the RBE variability in protons and associated issues or implications for hypofractionation.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
34
|
Ueno K, Matsuura T, Hirayama S, Takao S, Ueda H, Matsuo Y, Yoshimura T, Umegaki K. Physical and biological impacts of collimator-scattered protons in spot-scanning proton therapy. J Appl Clin Med Phys 2019; 20:48-57. [PMID: 31237090 PMCID: PMC6612695 DOI: 10.1002/acm2.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 11/29/2022] Open
Abstract
To improve the penumbra of low‐energy beams used in spot‐scanning proton therapy, various collimation systems have been proposed and used in clinics. In this paper, focused on patient‐specific brass collimators, the collimator‐scattered protons' physical and biological effects were investigated. The Geant4 Monte Carlo code was used to model the collimators mounted on the scanning nozzle of the Hokkaido University Hospital. A systematic survey was performed in water phantom with various‐sized rectangular targets; range (5–20 cm), spread‐out Bragg peak (SOBP) (5–10 cm), and field size (2 × 2–16 × 16 cm2). It revealed that both the range and SOBP dependences of the physical dose increase had similar trends to passive scattering methods, that is, it increased largely with the range and slightly with the SOBP. The physical impact was maximized at the surface (3%–22% for the tested geometries) and decreased with depth. In contrast, the field size (FS) dependence differed from that observed in passive scattering: the increase was high for both small and large FSs. This may be attributed to the different phase‐space shapes at the target boundary between the two dose delivery methods. Next, the biological impact was estimated based on the increase in dose‐averaged linear energy transfer (LETd) and relative biological effectiveness (RBE). The LETd of the collimator‐scattered protons were several keV/μm higher than that of unscattered ones; however, since this large increase was observed only at the positions receiving a small scattered dose, the overall LETd increase was negligible. As a consequence, the RBE increase did not exceed 0.05. Finally, the effects on patient geometries were estimated by testing two patient plans, and a negligible RBE increase (0.9% at most in the critical organs at surface) was observed in both cases. Therefore, the impact of collimator‐scattered protons is almost entirely attributed to the physical dose increase, while the RBE increase is negligible.
Collapse
Affiliation(s)
- Koki Ueno
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shusuke Hirayama
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hideaki Ueda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Matsuo
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takaaki Yoshimura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Tensaouti F, Ducassou A, Chaltiel L, Bolle S, Habrand JL, Alapetite C, Coche-Dequeant B, Bernier V, Claude L, Carrie C, Padovani L, Muracciole X, Supiot S, Huchet A, Leseur J, Kerr C, Hangard G, Lisbona A, Goudjil F, Ferrand R, Laprie A. Feasibility of Dose Escalation in Patients With Intracranial Pediatric Ependymoma. Front Oncol 2019; 9:531. [PMID: 31293971 PMCID: PMC6598548 DOI: 10.3389/fonc.2019.00531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background and purpose: Pediatric ependymoma carries a dismal prognosis, mainly owing to local relapse within RT fields. The current prospective European approach is to increase the radiation dose with a sequential hypofractionated stereotactic boost. In this study, we assessed the possibility of using a simultaneous integrated boost (SIB), comparing VMAT vs. IMPT dose delivery. Material and methods: The cohort included 101 patients. The dose to planning target volume (PTV59.4) was 59.4/1.8 Gy, and the dose to SIB volume (PTV67.6) was 67.6/2.05 Gy. Gross tumor volume (GTV) was defined as the tumor bed plus residual tumor, clinical target volume (CTV59.4) was GTV + 5 mm, and PTV59.4 was CTV59.4 + 3 mm. PTV67.6 was GTV+ 3 mm. After treatment plan optimization, quality indices and doses to target volume and organs at risk (OARs) were extracted and compared with the standard radiation doses that were actually delivered (median = 59.4 Gy [50.4 59.4]). Results: In most cases, the proton treatment resulted in higher quality indices (p < 0.001). Compared with the doses that were initially delivered, mean, and maximum doses to some OARs were no higher with SIB VMAT, and significantly lower with protons (p < 0.001). In the case of posterior fossa tumor, there was a lower dose to the brainstem with protons, in terms of V59 Gy, mean, and near-maximum (D2%) doses. Conclusion: Dose escalation with intensity-modulated proton or photon SIB is feasible in some patients. This approach could be considered for children with unresectable residue or post-operative FLAIR abnormalities, particularly if they have supratentorial tumors. It should not be considered for infratentorial tumors encasing the brainstem or extending to the medulla.
Collapse
Affiliation(s)
- Fatima Tensaouti
- ToNIC, Toulouse NeuroImaging Center, Universite de Toulouse, Inserm, Toulouse, France
- Department of Radiation Oncology, Institut Claudius Regaud, Institut Universitaire du, Cancer de Toulouse-Oncopole, Toulouse, France
| | - Anne Ducassou
- Department of Radiation Oncology, Institut Claudius Regaud, Institut Universitaire du, Cancer de Toulouse-Oncopole, Toulouse, France
| | - Léonor Chaltiel
- Department of Biostatistics, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Stéphanie Bolle
- Department of Radiotherapy Oncology, Institut Gustave Roussy, Villejuif, France
| | - Jean Louis Habrand
- Department of Radiation Oncology, Centre Francois Baclesse, Caen, France
| | | | | | - Valérie Bernier
- Department of Radiation Oncology, Centre Alexis Vautrin, Vandœuvre-lès-Nancy, France
| | - Line Claude
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Christian Carrie
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | | | | | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancerologie de l'Ouest, Nantes, France
| | - Aymeri Huchet
- Department of Radiation Oncology, Centre Hospitalier et Universitaire, Bordeaux, France
| | - Julie Leseur
- Department of Radiation Oncology, Centre Eugéne Marquis, Rennes, France
| | - Christine Kerr
- Department of Radiation Oncology, Institut Regional du Cancer Montpellier, Val d'Aurelle, Montpellier, France
| | - Grégorie Hangard
- Department of Engineering and Medical Physics, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Albert Lisbona
- Department of Radiation Oncology, Institut de Cancerologie de l'Ouest, Nantes, France
| | - Farid Goudjil
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Régis Ferrand
- Department of Engineering and Medical Physics, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Anne Laprie
- ToNIC, Toulouse NeuroImaging Center, Universite de Toulouse, Inserm, Toulouse, France
- Department of Radiation Oncology, Institut Claudius Regaud, Institut Universitaire du, Cancer de Toulouse-Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
36
|
Marteinsdottir M, Paganetti H. Applying a variable relative biological effectiveness (RBE) might affect the analysis of clinical trials comparing photon and proton therapy for prostate cancer. ACTA ACUST UNITED AC 2019; 64:115027. [DOI: 10.1088/1361-6560/ab2144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Perales Á, Baratto-Roldán A, Kimstrand P, Cortés-Giraldo MA, Carabe A. Parameterising microdosimetric distributions of mono-energetic proton beams for fast estimates of y
D
and y*. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab236a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Haas-Kogan D, Indelicato D, Paganetti H, Esiashvili N, Mahajan A, Yock T, Flampouri S, MacDonald S, Fouladi M, Stephen K, Kalapurakal J, Terezakis S, Kooy H, Grosshans D, Makrigiorgos M, Mishra K, Poussaint TY, Cohen K, Fitzgerald T, Gondi V, Liu A, Michalski J, Mirkovic D, Mohan R, Perkins S, Wong K, Vikram B, Buchsbaum J, Kun L. National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury. Int J Radiat Oncol Biol Phys 2019; 101:152-168. [PMID: 29619963 DOI: 10.1016/j.ijrobp.2018.01.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Proton therapy can allow for superior avoidance of normal tissues. A widespread consensus has been reached that proton therapy should be used for patients with curable pediatric brain tumor to avoid critical central nervous system structures. Brainstem necrosis is a potentially devastating, but rare, complication of radiation. Recent reports of brainstem necrosis after proton therapy have raised concerns over the potential biological differences among radiation modalities. We have summarized findings from the National Cancer Institute Workshop on Proton Therapy for Children convened in May 2016 to examine brainstem injury. METHODS AND MATERIALS Twenty-seven physicians, physicists, and researchers from 17 institutions with expertise met to discuss this issue. The definition of brainstem injury, imaging of this entity, clinical experience with photons and photons, and potential biological differences among these radiation modalities were thoroughly discussed and reviewed. The 3 largest US pediatric proton therapy centers collectively summarized the incidence of symptomatic brainstem injury and physics details (planning, dosimetry, delivery) for 671 children with focal posterior fossa tumors treated with protons from 2006 to 2016. RESULTS The average rate of symptomatic brainstem toxicity from the 3 largest US pediatric proton centers was 2.38%. The actuarial rate of grade ≥2 brainstem toxicity was successfully reduced from 12.7% to 0% at 1 center after adopting modified radiation guidelines. Guidelines for treatment planning and current consensus brainstem constraints for proton therapy are presented. The current knowledge regarding linear energy transfer (LET) and its relationship to relative biological effectiveness (RBE) are defined. We review the current state of LET-based planning. CONCLUSIONS Brainstem injury is a rare complication of radiation therapy for both photons and protons. Substantial dosimetric data have been collected for brainstem injury after proton therapy, and established guidelines to allow for safe delivery of proton radiation have been defined. Increased capability exists to incorporate LET optimization; however, further research is needed to fully explore the capabilities of LET- and RBE-based planning.
Collapse
Affiliation(s)
- Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School and Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - Daniel Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Natia Esiashvili
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Anita Mahajan
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Torunn Yock
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Stella Flampouri
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Shannon MacDonald
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Maryam Fouladi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kry Stephen
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Kalapurakal
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephanie Terezakis
- Department of Radiation Oncology, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Hanne Kooy
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - David Grosshans
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mike Makrigiorgos
- Department of Radiation Oncology, Harvard Medical School and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kavita Mishra
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Tina Young Poussaint
- Department of Radiology, Harvard Medical School and Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - Kenneth Cohen
- Department of Pediatrics, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Thomas Fitzgerald
- Department of Radiation Oncology, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Vinai Gondi
- Northwestern Medicine Chicago Proton Center, Chicago, Illinois
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Dragan Mirkovic
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth Wong
- Children's Hospital of Angeles and University of Southern California Keck School of Medicine, Los Angles, California
| | - Bhadrasain Vikram
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jeff Buchsbaum
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Larry Kun
- Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, Texas.
| |
Collapse
|
39
|
Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, Grosshans D, Held KD, Mohan R, Moiseenko V, Niemierko A, Stewart RD, Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys 2019; 46:e53-e78. [PMID: 30661238 DOI: 10.1002/mp.13390] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/21/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Indra J Das
- New York University Langone Medical Center & Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Bai X, Lim G, Grosshans D, Mohan R, Cao W. Robust optimization to reduce the impact of biological effect variation from physical uncertainties in intensity-modulated proton therapy. Phys Med Biol 2019; 64:025004. [PMID: 30523932 DOI: 10.1088/1361-6560/aaf5e9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Robust optimization (RO) methods are applied to intensity-modulated proton therapy (IMPT) treatment plans to ensure their robustness in the face of treatment delivery uncertainties, such as proton range and patient setup errors. However, the impact of those uncertainties on the biological effect of protons has not been specifically considered. In this study, we added biological effect-based objectives into a conventional RO cost function for IMPT optimization to minimize the variation in biological effect. One brain tumor case, one prostate tumor case and one head & neck tumor case were selected for this study. Three plans were generated for each case using three different optimization approaches: planning target volume (PTV)-based optimization, conventional RO, and RO incorporating biological effect (BioRO). In BioRO, the variation in biological effect caused by IMPT delivery uncertainties was minimized for voxels in both target volumes and critical structures, in addition to a conventional voxel-based worst-case RO objective function. The biological effect was approximated by the product of dose-averaged linear energy transfer (LET) and physical dose. All plans were normalized to give the same target dose coverage, assuming a constant relative biological effectiveness (RBE) of 1.1. Dose, biological effect, and their uncertainties were evaluated and compared among the three optimization approaches for each patient case. Compared with PTV-based plans, RO plans achieved more robust target dose coverage and reduced biological effect hot spots in critical structures near the target. Moreover, with their sustained robust dose distributions, BioRO plans not only reduced variations in biological effect in target and normal tissues but also further reduced biological effect hot spots in critical structures compared with RO plans. Our findings indicate that IMPT could benefit from the use of conventional RO, which would reduce the biological effect in normal tissues and produce more robust dose distributions than those of PTV-based optimization. More importantly, this study provides a proof of concept that incorporating biological effect uncertainty gap into conventional RO would not only control the IMPT plan robustness in terms of physical dose and biological effect but also achieve further reduction of biological effect in normal tissues.
Collapse
Affiliation(s)
- Xuemin Bai
- Department of Industrial Engineering, University of Houston, Houston, TX, United States of America
| | | | | | | | | |
Collapse
|
41
|
Yepes P, Adair A, Frank SJ, Grosshans DR, Liao Z, Liu A, Mirkovic D, Poenisch F, Titt U, Wang Q, Mohan R. Fixed- versus Variable-RBE Computations for Intensity Modulated Proton Therapy. Adv Radiat Oncol 2018; 4:156-167. [PMID: 30706024 PMCID: PMC6349601 DOI: 10.1016/j.adro.2018.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022] Open
Abstract
Purpose To evaluate how using models of proton therapy that incorporate variable relative biological effectiveness (RBE) versus the current practice of using a fixed RBE of 1.1 affects dosimetric indices on treatment plans for large cohorts of patients treated with intensity modulated proton therapy (IMPT). Methods and Materials Treatment plans for 4 groups of patients who received IMPT for brain, head-and-neck, thoracic, or prostate cancer were selected. Dose distributions were recalculated in 4 ways: 1 with a fast-dose Monte Carlo calculator with fixed RBE and 3 with RBE calculated to 3 different models—McNamara, Wedenberg, and repair-misrepair-fixation. Differences among dosimetric indices (D02, D50, D98, and mean dose) for target volumes and organs at risk (OARs) on each plan were compared between the fixed-RBE and variable-RBE calculations. Results In analyses of all target volumes, for which the main concern is underprediction or RBE less than 1.1, none of the models predicted an RBE less than 1.05 for any of the cohorts. For OARs, the 2 models based on linear energy transfer, McNamara and Wedenberg, systematically predicted RBE >1.1 for most structures. For the mean dose of 25% of the plans for 2 OARs, they predict RBE equal to or larger than 1.4, 1.3, 1.3, and 1.2 for brain, head-and-neck, thorax, and prostate, respectively. Systematically lower increases in RBE are predicted by repair-misrepair-fixation, with a few cases (eg, femur) in which the RBE is less than 1.1 for all plans. Conclusions The variable-RBE models predict increased doses to various OARs, suggesting that strategies to reduce high-dose linear energy transfer in critical structures should be developed to minimize possible toxicity associated with IMPT.
Collapse
Affiliation(s)
- Pablo Yepes
- Physics and Astronomy Department, Rice University, Houston, Texas.,Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Antony Adair
- Physics and Astronomy Department, Rice University, Houston, Texas.,Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas.,Experimental Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Amy Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Dragan Mirkovic
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Falk Poenisch
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Qianxia Wang
- Physics and Astronomy Department, Rice University, Houston, Texas.,Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| |
Collapse
|
42
|
Schuemann J, Bassler N, Inaniwa T. Computational models and tools. Med Phys 2018; 45:e1073-e1085. [PMID: 30421814 DOI: 10.1002/mp.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
In this chapter, we describe two different methods, analytical (pencil beam) algorithms and Monte Carlo simulations, used to obtain the intended dose distributions in patients and evaluate their strengths and shortcomings. We discuss the difference between the prescribed physical dose and the biologically effective dose, the relative biological effectiveness (RBE) between ions and photons and the dependence of RBE on the linear energy transfer (LET). Lastly, we show how LET- or RBE-based optimization can be used to improve treatment plans and explore how the availability of multimodality ion beam facilities can be used to design a tumor-specific optimal treatment.
Collapse
Affiliation(s)
- Jan Schuemann
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Sweden
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan
| |
Collapse
|
43
|
Paganetti H. Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 2018; 5:2-14. [PMID: 30370315 DOI: 10.14338/ijpt-18-00011.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proton therapy treatments are prescribed using a biological effectiveness relative to photon therapy of 1.1, that is, proton beams are considered to be 10% more biologically effective. Debate is ongoing as to whether this practice needs to be revised. This short review summarizes current knowledge on relative biological effectiveness variations and uncertainties in vitro and in vivo. Clinical relevance is discussed and strategies toward biologically guided treatment planning are presented.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Rørvik E, Fjæra LF, Dahle TJ, Dale JE, Engeseth GM, Stokkevåg CH, Thörnqvist S, Ytre-Hauge KS. Exploration and application of phenomenological RBE models for proton therapy. Phys Med Biol 2018; 63:185013. [PMID: 30102240 DOI: 10.1088/1361-6560/aad9db] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The relative biological effectiveness (RBE) of protons varies with multiple physical and biological factors. Phenomenological RBE models have been developed to include such factors in the estimation of a variable RBE, in contrast to the clinically applied constant RBE of 1.1. In this study, eleven published phenomenological RBE models and two plan-based models were explored and applied to simulated patient cases. All models were analysed with respect to the distribution and range of linear energy transfer (LET) and reference radiation fractionation sensitivity ((α/β) x ) of their respective experimental databases. Proton therapy plans for a spread-out Bragg peak in water and three patient cases (prostate adenocarcinoma, pituitary adenoma and thoracic sarcoma) were optimised using an RBE of 1.1 in the Eclipse™ treatment planning system prior to recalculation and modelling in the FLUKA Monte Carlo code. Model estimated dose-volume parameters for the planning target volumes (PTVs) and organs at risk (OAR) were compared. The experimental in vitro databases for the various models differed greatly in the range of (α/β) x values and dose-averaged LET (LETd). There were significant variations between the model estimations, which arose from fundamental differences in the database definitions and model assumptions. The greatest variations appeared in organs with low (α/β) x and high LETd, e.g. biological doses given to late responding OARs located distal to the target in the treatment field. In general, the variation in maximum dose (D2%) was larger than the variation in mean dose and other dose metrics, with D2% of the left optic nerve ((α/β) x = 2.1 Gy) in the pituitary adenoma case showing the greatest discrepancies between models: 28-52 Gy(RBE), while D2% for RBE1.1 was 30 Gy(RBE). For all patient cases, the estimated mean RBE to the PTV was in the range 1.09-1.29 ((α/β) x = 1.5/3.1/10.6 Gy). There were considerable variations between the estimations of RBE and RBE-weighted doses from the different models. These variations were a consequence of fundamental differences in experimental databases, model assumptions and regression techniques. The results from the implementation of RBE models in dose planning studies should be evaluated in light of these deviations.
Collapse
Affiliation(s)
- Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Bergen, Norway. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Relative Biological Effectiveness Uncertainties and Implications for Beam Arrangements and Dose Constraints in Proton Therapy. Semin Radiat Oncol 2018; 28:256-263. [DOI: 10.1016/j.semradonc.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Hirayama S, Matsuura T, Ueda H, Fujii Y, Fujii T, Takao S, Miyamoto N, Shimizu S, Fujimoto R, Umegaki K, Shirato H. An analytical dose‐averagedLETcalculation algorithm considering the off‐axisLETenhancement by secondary protons for spot‐scanning proton therapy. Med Phys 2018; 45:3404-3416. [DOI: 10.1002/mp.12991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shusuke Hirayama
- Faculty of Medicine Hokkaido University Sapporo Hokkaido 0608638 Japan
- Graduate School of Biomedical Science and Engineering Hokkaido University Sapporo Hokkaido 0608638 Japan
- Hitachi Ltd. Research and Development Group Center for Technology Innovation‐Energy Hitachi‐shi Ibaraki‐ken 3191221 Japan
| | - Taeko Matsuura
- Faculty of Engineering Hokkaido University Sapporo Hokkaido 0608628 Japan
- Global Station for Quantum Medical Science and Engineering Global Institution for Collaborative Research and Education (GI‐CoRE) Hokkaido University Sapporo Hokkaido 0608648 Japan
| | - Hideaki Ueda
- Faculty of Engineering Hokkaido University Sapporo Hokkaido 0608628 Japan
| | - Yusuke Fujii
- Hitachi Ltd. Research and Development Group Center for Technology Innovation‐Energy Hitachi‐shi Ibaraki‐ken 3191221 Japan
| | - Takaaki Fujii
- Faculty of Medicine Hokkaido University Sapporo Hokkaido 0608638 Japan
- Hitachi Ltd. Research and Development Group Center for Technology Innovation‐Energy Hitachi‐shi Ibaraki‐ken 3191221 Japan
| | - Seishin Takao
- Proton Beam Therapy Center Hokkaido University Hospital Sapporo Hokkaido 0608638 Japan
| | - Naoki Miyamoto
- Proton Beam Therapy Center Hokkaido University Hospital Sapporo Hokkaido 0608638 Japan
| | - Shinichi Shimizu
- Faculty of Medicine Hokkaido University Sapporo Hokkaido 0608638 Japan
- Global Station for Quantum Medical Science and Engineering Global Institution for Collaborative Research and Education (GI‐CoRE) Hokkaido University Sapporo Hokkaido 0608648 Japan
| | - Rintaro Fujimoto
- Hitachi Ltd. Research and Development Group Center for Technology Innovation‐Energy Hitachi‐shi Ibaraki‐ken 3191221 Japan
| | - Kikuo Umegaki
- Faculty of Engineering Hokkaido University Sapporo Hokkaido 0608628 Japan
- Global Station for Quantum Medical Science and Engineering Global Institution for Collaborative Research and Education (GI‐CoRE) Hokkaido University Sapporo Hokkaido 0608648 Japan
| | - Hiroki Shirato
- Faculty of Medicine Hokkaido University Sapporo Hokkaido 0608638 Japan
- Global Station for Quantum Medical Science and Engineering Global Institution for Collaborative Research and Education (GI‐CoRE) Hokkaido University Sapporo Hokkaido 0608648 Japan
| |
Collapse
|
47
|
Mee T, Kirkby NF, Kirkby KJ. Mathematical Modelling for Patient Selection in Proton Therapy. Clin Oncol (R Coll Radiol) 2018; 30:299-306. [PMID: 29452724 DOI: 10.1016/j.clon.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022]
Abstract
Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality-adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery.
Collapse
Affiliation(s)
- T Mee
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University, Manchester Academic Health Science Centre, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK.
| | - N F Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University, Manchester Academic Health Science Centre, Manchester, UK
| | - K J Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
48
|
Takada K, Sato T, Kumada H, Koketsu J, Takei H, Sakurai H, Sakae T. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. JOURNAL OF RADIATION RESEARCH 2018; 59:91-99. [PMID: 29087492 PMCID: PMC5778494 DOI: 10.1093/jrr/rrx057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Indexed: 06/07/2023]
Abstract
The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies.
Collapse
Affiliation(s)
- Kenta Takada
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tatsuhiko Sato
- Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Hiroaki Kumada
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Junichi Koketsu
- Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideyuki Takei
- Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideyuki Sakurai
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
49
|
Pedersen J, Petersen JBB, Stokkevåg CH, Ytre-Hauge KS, Flampouri S, Li Z, Mendenhall N, Muren LP. Biological dose and complication probabilities for the rectum and bladder based on linear energy transfer distributions in spot scanning proton therapy of prostate cancer. Acta Oncol 2017; 56:1413-1419. [PMID: 29037095 DOI: 10.1080/0284186x.2017.1373198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The increased linear energy transfer (LET) at the end of the Bragg peak causes concern for an elevated and spatially varying relative biological effectiveness (RBE) of proton therapy (PT), often in or close to dose-limiting normal tissues. In this study, we investigated dose-averaged LET (LETd) distributions for spot scanning PT of prostate cancer patients using different beam angle configurations. In addition, we derived RBE-weighted (RBEw) dose distributions and related normal tissue complication probabilities (NTCPs) for the rectum and bladder. MATERIAL AND METHODS A total of 21 spot scanning proton plans were created for each of six patients using a prescription dose of 78 Gy(RBE1.1), with each plan using two 'mirrored' beams with gantry angles from 110°/250° to 70°/290°, in steps of 2°. Physical dose and LETd distributions were calculated as well as RBEw dose distributions using either RBE = 1.1 or three different variable RBE models. The resulting biological dose distributions were used as input to NTCP models for the rectum and bladder. RESULTS For anterior oblique (AO) configurations, the rectum LETd volume and RBEw dose increased with increasing angles off the lateral opposing axis, with the RBEw rectum dose being higher than for all posterior oblique (PO) configurations. For PO configurations, the corresponding trend was seen for the bladder. Using variable RBE models, the rectum NTCPs were highest for the AO configurations with up to 3% for the 80°/280° configuration while the bladder NTCPs were highest for the PO configurations with up to 32% for the 100°/260°. The rectum D1cm3 constraint was fulfilled for most patients/configurations when using uniform RBE but not for any patient/configuration with variable RBE models. CONCLUSIONS Compared to using constant RBE, the variable RBE models predicted increased biological doses to the rectum, bladder and prostate, which in turn lead to substantially higher estimated rectum and bladder NTCPs.
Collapse
Affiliation(s)
- Jesper Pedersen
- Department of Medical Physics, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| | - Jørgen B. B. Petersen
- Department of Medical Physics, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| | - Camilla H. Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Stella Flampouri
- University of Florida Proton Therapy Institute, Gainesville, FL, USA
| | - Zuofeng Li
- University of Florida Proton Therapy Institute, Gainesville, FL, USA
| | - Nancy Mendenhall
- University of Florida Proton Therapy Institute, Gainesville, FL, USA
| | - Ludvig P. Muren
- Department of Medical Physics, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| |
Collapse
|
50
|
Henderson RH, Bryant C, Hoppe BS, Nichols RC, Mendenhall WM, Flampouri S, Su Z, Li Z, Morris CG, Mendenhall NP. Five-year outcomes from a prospective trial of image-guided accelerated hypofractionated proton therapy for prostate cancer. Acta Oncol 2017; 56:963-970. [PMID: 28514929 DOI: 10.1080/0284186x.2017.1287946] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To report 5-year outcomes of a prospective trial of image-guided accelerated hypofractionated proton therapy (AHPT) for prostate cancer. PATIENTS AND METHODS 215 prostate cancer patients accrued to a prospective institutional review board-approved trial of 70Gy(RBE) in 28 fractions for low-risk disease (n = 120) and 72.5Gy(RBE) in 29 fractions for intermediate-risk disease (n = 95). This trial excluded patients with prostate volumes of ≥60 cm3 or International Prostate Symptom Scores (IPSS) of ≥15, patients on anticoagulants or alpha-blockers, and patients in whom dose-constraint goals for organs at risk (OAR) could not be met. Toxicities were graded prospectively according to Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. This trial can be found on ClinicalTrials.gov (NCT00693238). RESULTS Median follow-up was 5.2 years. Five-year rates of freedom from biochemical and clinical disease progression were 95.9%, 98.3%, and 92.7% in the overall group and the low- and intermediate-risk subsets, respectively. Actuarial 5-year rates of late radiation-related CTCAE v3.0 grade 3 or higher gastrointestinal and urologic toxicities were 0.5% and 1.7%, respectively. Median IPSS before treatment and at 4+ years after treatment were 6 and 5 for low-risk patients and 4 and 6 for intermediate-risk patients. CONCLUSIONS Image-guided AHPT 5-year outcomes show high efficacy and minimal physician-assessed toxicity in selected patients. These results are comparable to the 5-year results of our prospective trials of standard fractionated proton therapy for patients with low-risk and intermediate-risk prostate cancer. Longer follow-up and a larger cohort are necessary to confirm these findings.
Collapse
Affiliation(s)
- Randal H. Henderson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Curtis Bryant
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Bradford S. Hoppe
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - R. Charles Nichols
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | | | - Stella Flampouri
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Zhong Su
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Zuofeng Li
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | | | - Nancy P. Mendenhall
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| |
Collapse
|