1
|
Boye TL, Hammerhøj A, Nielsen OH, Wang Y. Metabolomics for enhanced clinical understanding of inflammatory bowel disease. Life Sci 2024:123238. [PMID: 39537099 DOI: 10.1016/j.lfs.2024.123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Metabolomics is an emerging field involving the systematic identification and quantification of numerous metabolites in biological samples. Precision medicine applies multiomics systems biology to individual patients for reliable diagnostic classification, disease monitoring, and treatment. Multiomics systems biology encompasses genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Therefore, metabolomic techniques could be highly valuable for future clinical decision-making. This review provides a technical overview of two commonly used techniques for metabolomics measurements: mass spectrometry (MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. We also discuss recent clinical advances in these techniques. Individuals with inflammatory bowel disease (IBD) exhibit significant variability in prognosis and response to treatment. Since both genetic predisposition and environmental factors contribute to this condition, targeting the metabolome may provide key insights for distinguishing and profiling patients with different clinical needs. Additionally, the considerable overlap in the clinical presentation of various disease subtypes emphasizes the need for enhanced diagnostic methods to improve patient care.
Collapse
Affiliation(s)
- Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark.
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner T, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2024:S1556-8598(24)00081-6. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Johnson KA, Pawela CP, Nencka AS, Sidabras JW. Asymmetric spin echo multi-echo echo planar imaging (ASEME-EPI) sequence for pre-clinical high-field fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617985. [PMID: 39416106 PMCID: PMC11482890 DOI: 10.1101/2024.10.12.617985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In functional magnetic resonance imaging (fMRI) of the blood oxygen level-dependent (BOLD) contrast, gradient-recalled echo (GRE) acquisitions offer high sensitivity but suffer from susceptibility-induced signal loss and lack specificity to microvasculature. In contrast, spin echo (SE) acquisitions provide improved specificity at the cost of reduced sensitivity. This study introduces Asymmetric Spin Echo Multi-Echo Echo Planar Imaging (ASEME-EPI), a technique designed to combine the benefits of both GRE and SE for high-field preclinical fMRI. ASEME-EPI employs a spin echo readout followed by two asymmetric spin echo (ASE) GRE readouts, providing an initial T2-weighted SE image and subsequent T2*-weighted ASE images. A feasibility study for the technique was implemented on a 9.4 T pre-clinical MRI system and tested using a visual stimulation in northern tree shrews. Comparing ASEME-EPI with conventional GRE echo planar imaging (GRE-EPI) and SE echo planar imaging (SE-EPI) acquisitions, results showed that ASEME-EPI achieved BOLD contrast-to-noise ratio (CNR) comparable to GRE-EPI while offering improved specificity in activation maps. ASEME-EPI activation was more confined to the primary visual cortex (V1), unlike GRE-EPI which showed activation extending beyond anatomical boundaries. Additionally, ASEME-EPI demonstrated the ability to recover signal in areas of severe field inhomogeneity where GRE-EPI suffered from signal loss. The performance of ASEME-EPI is attributed to its multi-echo nature, allowing for SNR-optimized combination of echoes, effectively denoising the data. The inclusion of the initial SE also contributes to signal recovery in areas prone to susceptibility artifacts. This feasibility study demonstrates the potential of ASEME-EPI for high-field pre-clinical fMRI, offering a promising compromise between GRE sensitivity and SE specificity while addressing challenges of T2* decay at high field strengths.
Collapse
Affiliation(s)
- Kyle A. Johnson
- Department of Biomedical Engineering, Medical College of Wisconsin, Wauwatosa, WI, United States of America
| | | | - Andrew S. Nencka
- Department of Radiology, Medical College of Wisconsin, Wauwatosa, WI, United States of America
| | - Jason W. Sidabras
- Department of Biophysics, Medical College of Wisconsin, Wauwatosa, WI, United States of America
| |
Collapse
|
5
|
Kebaya LMN, Tang L, Altamimi T, Kowalczyk A, Musabi M, Roychaudhuri S, Vahidi H, Meyerink P, de Ribaupierre S, Bhattacharya S, de Moraes LTAR, Lawrence KS, Duerden EG. Altered functional connectivity in preterm neonates with intraventricular hemorrhage assessed using functional near-infrared spectroscopy. Sci Rep 2024; 14:22300. [PMID: 39333278 PMCID: PMC11437059 DOI: 10.1038/s41598-024-72515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Intraventricular hemorrhage (IVH) is a common neurological injury following very preterm birth. Resting-state functional connectivity (RSFC) using functional magnetic resonance imaging (fMRI) is associated with injury severity; yet, fMRI is impractical for use in intensive care settings. Functional near-infrared spectroscopy (fNIRS) measures RSFC through cerebral hemodynamics and has greater bedside accessibility than fMRI. We evaluated RSFC in preterm neonates with IVH using fNIRS and fMRI at term-equivalent age, and compared fNIRS connectivity between healthy newborns and those with IVH. Sixteen very preterm born neonates were scanned with fMRI and fNIRS. Additionally, fifteen healthy newborns were scanned with fNIRS. In preterms with IVH, fNIRS and fMRI connectivity maps were compared using Euclidean and Jaccard distances. The severity of IVH in relation to fNIRS-RSFC strength was examined using generalized linear models. fNIRS and fMRI RSFC maps showed good correspondence. Connectivity strength was significantly lower in healthy newborns (p-value = 0.023) and preterm infants with mild IVH (p-value = 0.026) compared to infants with moderate/severe IVH. fNIRS has potential to be a new bedside tool for assessing brain injury and monitoring cerebral hemodynamics, as well as a promising biomarker for IVH severity in very preterm born infants.
Collapse
Affiliation(s)
- Lilian M N Kebaya
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Paediatrics, Division of Neonatal-Perinatal Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lingkai Tang
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
| | - Talal Altamimi
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alexandra Kowalczyk
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Melab Musabi
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sriya Roychaudhuri
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Homa Vahidi
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Paige Meyerink
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sandrine de Ribaupierre
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Soume Bhattacharya
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Keith St Lawrence
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
- Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Emma G Duerden
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada.
- Applied Psychology, Faculty of Education, Western University, 1137 Western Road, London, ON, N6G 1G7, Canada.
| |
Collapse
|
6
|
Cramer SR, Han X, Chan DCY, Neuberger T, Zhang N. Neuroimaging model of visceral manipulation in awake rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613477. [PMID: 39345508 PMCID: PMC11429785 DOI: 10.1101/2024.09.17.613477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents. To further refine the mechanistic understanding of visceral influence on brain states, however, new paradigms that allow for more invasive, and ultimately more informative, measurements and perturbations must be explored. Further, such paradigms should prioritize human translatability. In the current paper, we address these issues by demonstrating the feasibility of non-anesthetized animal imaging during visceral manipulation. More specifically, we used a barostat interfaced with an implanted gastric balloon to cyclically induce distension of a non-anesthetized rat's stomach during simultaneous BOLD fMRI. General linear modeling and spatial independent component analysis revealed several regions with BOLD activation temporally coincident with the gastric distension stimulus. The ON-OFF (20 mmHg - 0 mmHg) barostat-balloon pressure cycle resulted in widespread BOLD activation of the inferior colliculus, cerebellum, ventral midbrain, and a variety of hippocampal structures. These results suggest that neuroimaging models of gastric manipulation in the non-anesthetized rat are achievable and provide an avenue for more comprehensive studies involving the integration of other neuroscience techniques like electrophysiology. Significance Statement It is unclear to what extent measurements of brain activity are affected by background, and experimentally unrelated, interoceptive processes. To advance our understanding of ongoing visceral activity's influence on brain states, here we provide a proof of concept, anesthesia-free animal model of visceral manipulation during simultaneous BOLD fMRI. We successfully demonstrated BOLD activation during gastric distension of the unanesthetized rat in both classically reported (cerebellum, hippocampus) and novel (inferior colliculus) regions. This paradigm establishes an important foundation for further interrogation of viscera-brain interactions.
Collapse
|
7
|
Yoon JH, Lee H, Kwon D, Lee D, Lee S, Cho E, Kim J, Kim D. Integrative approach of omics and imaging data to discover new insights for understanding brain diseases. Brain Commun 2024; 6:fcae265. [PMID: 39165479 PMCID: PMC11334939 DOI: 10.1093/braincomms/fcae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Treatments that can completely resolve brain diseases have yet to be discovered. Omics is a novel technology that allows researchers to understand the molecular pathways underlying brain diseases. Multiple omics, including genomics, transcriptomics and proteomics, and brain imaging technologies, such as MRI, PET and EEG, have contributed to brain disease-related therapeutic target detection. However, new treatment discovery remains challenging. We focused on establishing brain multi-molecular maps using an integrative approach of omics and imaging to provide insights into brain disease diagnosis and treatment. This approach requires precise data collection using omics and imaging technologies, data processing and normalization. Incorporating a brain molecular map with the advanced technologies through artificial intelligence will help establish a system for brain disease diagnosis and treatment through regulation at the molecular level.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jaehoon Kim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
8
|
Khan AF, Yuan H, Smith ZA, Ding L. Distinct Time-Resolved Brain-Wide Coactivations in Oxygenated and Deoxygenated Hemoglobin. IEEE Trans Biomed Eng 2024; 71:2463-2472. [PMID: 38478444 PMCID: PMC11364165 DOI: 10.1109/tbme.2024.3377109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Human resting-state networks (RSNs) estimated from oxygenated (HbO) and deoxygenated hemoglobin (HbR) data exhibit strong similarities, while task-based studies show different dynamics in HbR and HbO responses. Such a discrepancy might be explained due to time-averaged estimations of RSNs. Our study investigated differences between HbO and HbR on time-resolved brain-wide coactivation patterns (CAPs). METHODS Diffuse optical tomography was reconstructed from resting-state whole-head functional near-infrared spectroscopy data of HbR and HbO in individual healthy participants. Time-averaged RSNs were obtained using the group-level independent component analysis. Time-resolved CAPs were estimated using a clustering approach on the time courses of all obtained RSNs. Characteristics of the RSNs and CAPs from HbR and HbO were compared. RESULTS Spatial patterns of HbR and HbO RSNs exhibited significant similarities. Meanwhile, HbR CAPs revealed much more organized spatial and dynamic characteristics than HbO CAPs. The entire set of HbR CAPs suggests a superstructure resulted from brain-wide neuronal dynamics, which is less evident in the set of HbO CAPs. These differences between HbO and HbR CAPs were consistently replicated in individual session data. CONCLUSION Our results suggest that human resting brain-wide neuronal activations are preserved better in time-resolved brain-wide patterns, i.e., CAPs, from HbR than those from HbO, while such a difference is lost between time-averaged HbR and HbO RSNs. SIGNIFICANCE Our results reveal, for the first time, HbR concentration fluctuations are more directly coupled with resting dynamics of brain-wide neuronal activations in human brains.
Collapse
|
9
|
Rathbone E, Fu D. Quantitative Optical Imaging of Oxygen in Brain Vasculature. J Phys Chem B 2024; 128:6975-6989. [PMID: 38991095 DOI: 10.1021/acs.jpcb.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The intimate relationship between neuronal activity and cerebral oxygenation underpins fundamental brain functions like cognition, sensation, and motor control. Optical imaging offers a noninvasive approach to assess brain oxygenation and often serves as an indirect proxy for neuronal activity. However, deciphering neurovascular coupling─the intricate interplay between neuronal activity, blood flow, and oxygen delivery─necessitates independent, high spatial resolution, and high temporal resolution measurements of both microvasculature oxygenation and neuronal activation. This Perspective examines the established optical techniques employed for brain oxygen imaging, specifically functional near-infrared spectroscopy, photoacoustic imaging, optical coherence tomography, and two-photon phosphorescent lifetime microscopy, highlighting their fundamental principles, strengths, and limitations. Several other emerging optical techniques are also introduced. Finally, we discuss key technological challenges and future directions for quantitative optical oxygen imaging, paving the way for a deeper understanding of oxygen metabolism in the brain.
Collapse
Affiliation(s)
- Emily Rathbone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Warioba CS, Carroll TJ, Christoforidis G. Flow augmentation therapies preserve brain network integrity and hemodynamics in a canine permanent occlusion model. Sci Rep 2024; 14:16871. [PMID: 39043723 PMCID: PMC11266609 DOI: 10.1038/s41598-024-67361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The acute phase of ischemic stroke presents a critical window for therapeutic intervention, where novel approaches such as hyper-acute cerebral flow augmentation offer promising avenues for neuroprotection. In this study, we investigated the effects of two such therapies, NEH (a combination of norepinephrine and hydralazine) and Sanguinate (pegylated bovine carboxyhemoglobin), on resting-state functional connectivity, global mean signal (GMS), and blood oxygen level-dependent (BOLD) time lag in a pre-clinical canine model of stroke via permanent occlusion of the middle cerebral artery (total of n = 40 IACUC-approved mongrel canines randomly split into control/natural history and two treatment groups). Utilizing group independent component analysis (ICA), we identified and examined the integrity of sensorimotor and visual networks both pre- and post-occlusion, across treatment and control groups. Our results demonstrated that while the control group exhibited significant disruptions in these networks following stroke, the treatment groups showed remarkable preservation of network integrity. Voxel-wise functional connectivity analysis revealed less pronounced alterations in the treatment groups, suggesting maintained neural connections. Notably, the treatments stabilized GMS, with only minimal reductions observed post-occlusion compared to significant decreases in the control group. Furthermore, BOLD time-lag unity plots indicated that NEH and Sanguinate maintained consistent hemodynamic response timing, as evidenced by tighter clustering around the line of unity, suggesting a potential neuroprotective effect. These findings were underscored by robust statistical analyses, including paired T-tests and Mann-Whitney U tests, which confirmed the significance of the connectivity changes observed. The correlation of BOLD time-lag variations with neuroimaging functional biomarkers highlighted the impact of stroke and the efficacy of early therapeutic interventions. Our study supports the further study of flow augmentation therapies such as NEH and Sanguinate in stroke treatment protocols and suggests flow augmentation therapies should be further explored in an effort to improve patient outcomes.
Collapse
Affiliation(s)
- Chisondi S Warioba
- Department of Radiology, The University of Chicago, Chicago, IL, 60615, USA.
| | - Timothy J Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, 60615, USA
| | | |
Collapse
|
11
|
Keeling EG, Bergamino M, Ragunathan S, Quarles CC, Newton AT, Stokes AM. Optimization and validation of multi-echo, multi-contrast SAGE acquisition in fMRI. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-20. [PMID: 39449748 PMCID: PMC11497078 DOI: 10.1162/imag_a_00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 10/26/2024]
Abstract
The purpose of this study was to optimize and validate a multi-contrast, multi-echo fMRI method using a combined spin- and gradient-echo (SAGE) acquisition. It was hypothesized that SAGE-based blood oxygen level-dependent (BOLD) functional MRI (fMRI) will improve sensitivity and spatial specificity while reducing signal dropout. SAGE-fMRI data were acquired with five echoes (2 gradient-echoes, 2 asymmetric spin-echoes, and 1 spin-echo) across 12 protocols with varying acceleration factors, and temporal SNR (tSNR) was assessed. The optimized protocol was then implemented in working memory and vision tasks in 15 healthy subjects. Task-based analysis was performed using individual echoes, quantitative dynamic relaxation times T2 * and T2, and echo time-dependent weighted combinations of dynamic signals. These methods were compared to determine the optimal analysis method for SAGE-fMRI. Implementation of a multiband factor of 2 and sensitivity encoding (SENSE) factor of 2.5 yielded adequate spatiotemporal resolution while minimizing artifacts and loss in tSNR. Higher BOLD contrast-to-noise ratio (CNR) and tSNR were observed for SAGE-fMRI relative to single-echo fMRI, especially in regions with large susceptibility effects and for T2-dominant analyses. Using a working memory task, the extent of activation was highest with T2 *-weighting, while smaller clusters were observed with quantitative T2 * and T2. SAGE-fMRI couples the high BOLD sensitivity from multi-gradient-echo acquisitions with improved spatial localization from spin-echo acquisitions, providing two contrasts for analysis. SAGE-fMRI provides substantial advantages, including improving CNR and tSNR for more accurate analysis.
Collapse
Affiliation(s)
- Elizabeth G. Keeling
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Maurizio Bergamino
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sudarshan Ragunathan
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- Hyperfine, Inc., Guilford, CT, United States
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Allen T. Newton
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
| | - Ashley M. Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
12
|
Meyer-Baese L, Morrissette AE, Wang Y, Le Chatelier B, Borden PY, Keilholz SD, Stanley GB, Jaeger D. Cortical Networks Relating to Arousal Are Differentially Coupled to Neural Activity and Hemodynamics. J Neurosci 2024; 44:e0298232024. [PMID: 38769007 PMCID: PMC11209646 DOI: 10.1523/jneurosci.0298-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Even in the absence of specific sensory input or a behavioral task, the brain produces structured patterns of activity. This organized activity is modulated by changes in arousal. Here, we use wide-field voltage imaging to establish how arousal relates to cortical network voltage and hemodynamic activity in spontaneously behaving head-fixed male and female mice expressing the voltage-sensitive fluorescent FRET sensor Butterfly 1.2. We find that global voltage and hemodynamic signals are both positively correlated with changes in arousal with a maximum correlation of 0.5 and 0.25, respectively, at a time lag of 0 s. We next show that arousal influences distinct cortical regions for both voltage and hemodynamic signals. These include a broad positive correlation across most sensory-motor cortices extending posteriorly to the primary visual cortex observed in both signals. In contrast, activity in the prefrontal cortex is positively correlated to changes in arousal for the voltage signal while it is a slight net negative correlation observed in the hemodynamic signal. Additionally, we show that coherence between voltage and hemodynamic signals relative to arousal is strongest for slow frequencies below 0.15 Hz and is near zero for frequencies >1 Hz. We finally show that coupling patterns are dependent on the behavioral state of the animal with correlations being driven by periods of increased orofacial movement. Our results indicate that while hemodynamic signals show strong relations to behavior and arousal, these relations are distinct from those observed by voltage activity.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | | | - Yunmiao Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | - Peter Y Borden
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | - Shella D Keilholz
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | - Garrett B Stanley
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
13
|
Nistri R, Ianniello A, Pozzilli V, Giannì C, Pozzilli C. Advanced MRI Techniques: Diagnosis and Follow-Up of Multiple Sclerosis. Diagnostics (Basel) 2024; 14:1120. [PMID: 38893646 PMCID: PMC11171945 DOI: 10.3390/diagnostics14111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Brain and spinal cord imaging plays a pivotal role in aiding clinicians with the diagnosis and monitoring of multiple sclerosis. Nevertheless, the significance of magnetic resonance imaging in MS extends beyond its clinical utility. Advanced imaging modalities have facilitated the in vivo detection of various components of MS pathogenesis, and, in recent years, MRI biomarkers have been utilized to assess the response of patients with relapsing-remitting MS to the available treatments. Similarly, MRI indicators of neurodegeneration demonstrate potential as primary and secondary endpoints in clinical trials targeting progressive phenotypes. This review aims to provide an overview of the latest advancements in brain and spinal cord neuroimaging in MS.
Collapse
Affiliation(s)
- Riccardo Nistri
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Valeria Pozzilli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- MS Center Sant’Andrea Hospital, 00189 Rome, Italy
| |
Collapse
|
14
|
Stumpo V, Sayin ES, Bellomo J, Sobczyk O, van Niftrik CHB, Sebök M, Weller M, Regli L, Kulcsár Z, Pangalu A, Bink A, Duffin J, Mikulis DD, Fisher JA, Fierstra J. Transient deoxyhemoglobin formation as a contrast for perfusion MRI studies in patients with brain tumors: a feasibility study. Front Physiol 2024; 15:1238533. [PMID: 38725571 PMCID: PMC11079274 DOI: 10.3389/fphys.2024.1238533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently been shown to represent a comparable contrast to gadolinium-based contrast agents for generating resting perfusion measures in healthy subjects. Here, we investigate the feasibility of translating this non-invasive approach to patients with brain tumors. Methods: A computer-controlled gas blender was used to induce transient precise isocapnic lung hypoxia and thereby transient arterial dOHb during echo-planar-imaging acquisition in a cohort of patients with different types of brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit time (MTT) using a standard model-based analysis. The transient hypoxia induced-dOHb MRI perfusion maps were compared to available clinical DSC-MRI. Results: Transient hypoxia induced-dOHb based maps of resting perfusion displayed perfusion patterns consistent with underlying tumor histology and showed high spatial coherence to gadolinium-based DSC MR perfusion maps. Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated in patients with different types of brain tumors, and the generated rCBV, rCBF and MTT maps appear in good agreement with perfusion maps generated with gadolinium-based DSC MR perfusion.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Jacopo Bellomo
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivia Sobczyk
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Martina Sebök
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zsolt Kulcsár
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - David D. Mikulis
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Jorn Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Nghiem TAE, Lee B, Chao THH, Branigan NK, Mistry PK, Shih YYI, Menon V. Space wandering in the rodent default mode network. Proc Natl Acad Sci U S A 2024; 121:e2315167121. [PMID: 38557177 PMCID: PMC11009630 DOI: 10.1073/pnas.2315167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024] Open
Abstract
The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.
Collapse
Affiliation(s)
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nicholas K. Branigan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Percy K. Mistry
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
| | - Yen-Yu Ian Shih
- Center for Animal MRI, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC27514
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA94304
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA94304
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
16
|
Notte C, Alionte C, Strubakos CD. The efficacy and methodology of using near-infrared spectroscopy to determine resting-state brain networks. J Neurophysiol 2024; 131:668-677. [PMID: 38416714 DOI: 10.1152/jn.00357.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Functional connectivity is a critical aspect of brain function and is essential for understanding, diagnosing, and treating neurological and psychiatric disorders. It refers to the synchronous activity between different regions of the brain, which gives rise to communication and information processing. Resting-state functional connectivity is a subarea of study that allows researchers to examine brain activity in the absence of a task or stimulus. This can provide insight into the brain's intrinsic functional architecture and help identify neural networks that are active during rest. Thus, determining functional connectivity topography is valuable both clinically and in research. Traditional methods using functional magnetic resonance imaging have proven to be effective, however, they have their limitations. In this review, we investigate the feasibility of using functional near-infrared spectroscopy (fNIRS) as a low-cost, portable alternative for measuring functional connectivity. We first establish fNIRS' ability to detect localized brain activity during task-based experiments. Next, we verify its use in resting-state studies with results showing a high degree of correspondence with resting-state functional magnetic resonance imaging (rs-fMRI). Also discussed are various data-processing methods and the validity of filtering the global signal, which is the current standard for analysis. We consider the possible origins of the global signal, if it contains pertinent neuronal information that could be of importance in better understanding neuronal networks, and what we believe is the best method of approaching signal analysis and regression.
Collapse
Affiliation(s)
- Christian Notte
- Department of Physics, University of Windsor, Windsor, Ontario, Canada
| | - Caroline Alionte
- Department of Physics, University of Windsor, Windsor, Ontario, Canada
| | | |
Collapse
|
17
|
Wang MH, Wang YX, Xie M, Chen LY, He MF, Lin F, Jiang ZL. Transcutaneous auricular vagus nerve stimulation with task-oriented training improves upper extremity function in patients with subacute stroke: a randomized clinical trial. Front Neurosci 2024; 18:1346634. [PMID: 38525376 PMCID: PMC10957639 DOI: 10.3389/fnins.2024.1346634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a promising brain stimulation modality in poststroke upper extremity rehabilitation. Although several studies have examined the safety and reliability of taVNS, the mechanisms underlying motor recovery in stroke patients remain unclear. Objectives This study aimed to investigate the effects of taVNS paired with task-oriented training (TOT) on upper extremity function in patients with subacute stroke and explore the potential underlying mechanisms. Methods In this double-blinded, randomized, controlled pilot trial, 40 patients with subacute stroke were randomly assigned to two groups: the VNS group (VG), receiving taVNS during TOT, and the Sham group (SG), receiving sham taVNS during TOT. The intervention was delivered 5 days per week for 4 weeks. Upper extremity function was measured using the Fugl-Meyer Assessment-Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT). Activities of daily living were measured by the modified Barthel Index (MBI). Motor-evoked potentials (MEPs) were measured to evaluate cortical excitability. Assessments were administered at baseline and post-intervention. Additionally, the immediate effect of taVNS was detected using functional near-infrared spectroscopy (fNIRS) and heart rate variability (HRV) before intervention. Results The VG showed significant improvements in upper extremity function (FMA-UE, ARAT) and activities of daily living (MBI) compared to the SG at post-intervention. Furthermore, the VG demonstrated a higher rate of elicited ipsilesional MEPs and a shorter latency of MEPs in the contralesional M1. In the VG, improvements in FMA-UE were significantly associated with reduced latency of contralesional MEPs. Additionally, fNIRS revealed increased activation in the contralesional prefrontal cortex and ipsilesional sensorimotor cortex in the VG in contrast to the SG. However, no significant between-group differences were found in HRV. Conclusion The combination of taVNS with TOT effectively improves upper extremity function in patients with subacute stroke, potentially through modulating the bilateral cortex excitability to facilitate task-specific functional recovery.
Collapse
Affiliation(s)
- Meng-Huan Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Xiu Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xie
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Yan Chen
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-Fei He
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong-Li Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
19
|
Lee Y, Jung J, Kim H, Lee S. Comparison of the Influence of Dual-Task Activities on Prefrontal Activation and Gait Variables in Older Adults with Mild Cognitive Impairment during Straight and Curved Walking. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:235. [PMID: 38399523 PMCID: PMC10890268 DOI: 10.3390/medicina60020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Mild cognitive impairment (MCI) is an early stage of dementia in which everyday tasks can be maintained; however, notable challenges may occur in memory, focus, and problem-solving skills. Therefore, motor-cognitive dual-task training is warranted to prevent cognitive decline and improve cognition in aging populations. This study aimed to determine the influence of such dual-task activities during straight and curved walking on the activities of the prefrontal cortex and associated gait variables in older adults with MCI. Materials and Methods: Twenty-seven older adults aged ≥65 years and identified as having MCI based on their scores (18-23) on the Korean Mini-Mental State Examination were enrolled. The participants performed four task scenarios in random order: walking straight, walking straight with a cognitive task, walking curved, and walking curved with a cognitive task. The activation of the prefrontal cortex, which is manifested by a change in the level of oxyhemoglobin, was measured using functional near-infrared spectroscopy. The gait speed and step count were recorded during the task performance. Results: Significant differences were observed in prefrontal cortex activation and gait variables (p < 0.05). Specifically, a substantial increase was observed in prefrontal cortex activation during a dual task compared with that during a resting-state (p < 0.013). Additionally, significant variations were noted in the gait speed and step count (p < 0.05). Conclusions: This study directly demonstrates the impact of motor-cognitive dual-task training on prefrontal cortex activation in older adults with MCI, suggesting the importance of including such interventions in enhancing cognitive function.
Collapse
Affiliation(s)
- Yumin Lee
- Department of Physical Therapy, Graduate School, Sahmyook University, 815 Hwarang-ro, Seoul 01795, Republic of Korea;
| | - Jihye Jung
- Institute of SMART Rehabilitation, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea;
| | - Hyunjoong Kim
- Neuromusculoskeletal Science Laboratory, 15 Gangnam-daero 84-gil, Seoul 06232, Republic of Korea;
| | - Seungwon Lee
- Institute of SMART Rehabilitation, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea;
- Department of Physical Therapy, Sahmyook University, 815 Hwarang-ro, Seoul 01795, Republic of Korea
| |
Collapse
|
20
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Fasoula NA, Xie Y, Katsouli N, Reidl M, Kallmayer MA, Eckstein HH, Ntziachristos V, Hadjileontiadis L, Avgerinos DV, Briasoulis A, Siasos G, Hosseini K, Doulamis I, Kampaktsis PN, Karlas A. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:383. [PMID: 37754812 PMCID: PMC10531807 DOI: 10.3390/jcdd10090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Microvascular changes in diabetes affect the function of several critical organs, such as the kidneys, heart, brain, eye, and skin, among others. The possibility of detecting such changes early enough in order to take appropriate actions renders the development of appropriate tools and techniques an imperative need. To this end, several sensing and imaging techniques have been developed or employed in the assessment of microangiopathy in patients with diabetes. Herein, we present such techniques; we provide insights into their principles of operation while discussing the characteristics that make them appropriate for such use. Finally, apart from already established techniques, we present novel ones with great translational potential, such as optoacoustic technologies, which are expected to enter clinical practice in the foreseeable future.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yi Xie
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Michael A. Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros Briasoulis
- Aleksandra Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Gerasimos Siasos
- Sotiria Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran;
| | - Ilias Doulamis
- Department of Surgery, The Johns Hopkins Hospital, School of Medicine, Baltimore, MD 21287, USA;
| | | | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
22
|
Bonanno M, Calabrò RS. Bridging the Gap between Basic Research and Clinical Practice: The Growing Role of Translational Neurorehabilitation. MEDICINES (BASEL, SWITZERLAND) 2023; 10:45. [PMID: 37623809 PMCID: PMC10456256 DOI: 10.3390/medicines10080045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Translational neuroscience is intended as a holistic approach in the field of brain disorders, starting from the basic research of cerebral morphology and with the function of implementing it into clinical practice. This concept can be applied to the rehabilitation field to promote promising results that positively influence the patient's quality of life. The last decades have seen great scientific and technological improvements in the field of neurorehabilitation. In this paper, we discuss the main issues related to translational neurorehabilitation, from basic research to current clinical practice, and we also suggest possible future scenarios.
Collapse
Affiliation(s)
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejox”, Via Palermo, SS 113, C. da Casazza, 98124 Messina, Italy;
| |
Collapse
|
23
|
Zhang J, Liu Y, Li Z, Hu Q, Huang X, Lv H, Xu J, Yu H. Functional magnetic resonance imaging studies of acupuncture at ST36: a coordinate-based meta-analysis. Front Neurosci 2023; 17:1180434. [PMID: 37360179 PMCID: PMC10287969 DOI: 10.3389/fnins.2023.1180434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) has been widely used to investigate the brain effect of acupuncture point Stomach 36 (ST36, Zusanli). However, inconsistent results have hindered our understanding of the neural mechanisms of acupuncture at ST36. Objective To perform a meta-analysis of fMRI studies on acupuncture at ST36 to assess the brain atlas of acupuncture at ST36 from available studies. Method Based on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases was searched up to August 9, 2021, without language restrictions. Peak coordinates were extracted from clusters that showed significant signal differences before and after acupuncture treatment. A meta-analysis was performed using seed-based d mapping with permutation of subject images (SDM-PSI), a newly improved meta-analytic method. Results A total of 27 studies (27 ST36) were included. This meta-analysis found that ST36 could activate the left cerebellum, the bilateral Rolandic operculum, the right supramarginal gyrus, and the right cerebellum. Functional characterizations showed that acupuncture at ST36 was mainly associated with action and perception. Conclusion Our results provide a brain atlas for acupuncture at ST36, which, besides offering a better understanding of the underlying neural mechanisms, also provides the possibility of future precision therapies.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zihan Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xingxian Huang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hanqing Lv
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
24
|
Gorniak SL, Wagner VE, Vaughn K, Perry J, Cox LG, Hibino H, Montero-Hernandez SA, Hernandez AE, Pollonini L. Functional near infrared spectroscopy detects cortical activation changes concurrent with memory loss in postmenopausal women with Type II Diabetes. Exp Brain Res 2023; 241:1555-1567. [PMID: 37127798 PMCID: PMC10699502 DOI: 10.1007/s00221-023-06581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
Older adults with Type II Diabetes Mellitus (DM) experience mild cognitive impairment, specifically in the domain of recall/working memory. No consistent causative structural cortical deficits have been identified in persons with DM (PwDM). Memory deficits may be exacerbated in older adult females, who are at the highest risk of cardiovascular decline due to DM. The focus of the current study was to evaluate functional cortical hemodynamic activity during memory tasks in postmenopausal PwDM. Functional Near Infrared Spectroscopy (fNIRS) was used to monitor oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) during memory-based tasks in a cross-sectional sample of postmenopausal women with DM. Twenty-one community-dwelling DM females (age = 65 ± 6 years) and twenty-one age- and sex-matched healthy controls (age = 66 ± 6 years) were evaluated. Working memory performance (via N-back) was evaluated while study participants donned cortical fNIRS. Health state, metabolic data, and menopausal status data were also collected. Deficits in working memory accuracy were found in the DM group as compared to controls. Differences in HbO responses emerged in the DM group. The DM group exhibited altered PFC activity magnitudes and increased functional cortical activity across ROIs compared to controls. HbO and HbR responses were not associated with worsened health state measures. These data indicate a shift in cortical activity patterns with memory deficits in postmenopausal PwDM. This DM-specific shift of HbO is a novel finding that is unlikely to be detected by fMRI. This underscores the value of using non-MRI-based neuroimaging techniques to evaluate cortical hemodynamic function to detect early mild cognitive impairment.
Collapse
Affiliation(s)
- Stacey L Gorniak
- Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA.
| | - Victoria E Wagner
- Department of Psychology, University of Houston, Houston, TX, 77204, USA
| | - Kelly Vaughn
- Department of Psychology, University of Houston, Houston, TX, 77204, USA
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jonathan Perry
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Lauren Gulley Cox
- Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | - Hidetaka Hibino
- Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | | | - Arturo E Hernandez
- Department of Psychology, University of Houston, Houston, TX, 77204, USA
| | - Luca Pollonini
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
- Department of Electrical and Computer Engineering, University of Houston, 77204, Houston, USA
- Department of Biomedical Engineering, University of Houston, 77204, Houston, USA
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| |
Collapse
|
25
|
Yang Q, Yang L, Peng C, Zhu X, Wu Z, Huang L, Luo Y. Testicular torsion diagnosis and injury assessment using photoacoustic oxygenation imaging. PHOTOACOUSTICS 2023; 31:100499. [PMID: 37180959 PMCID: PMC10172716 DOI: 10.1016/j.pacs.2023.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Testicular torsion (TT) is a medical emergency that requires immediate diagnostic evaluation. Photoacoustic imaging (PAI) has the potential to provide spatially resolved oxygen saturation (sO2), which can serve as a valuable marker in TT diagnosis. We investigated the potential of PAI as an alternative method for TT diagnosis and testicular injury assessment. We measured sO2 levels in different degrees of TT models using PAI at various time points. Based on histopathological results, we found that the averaged sO2 per pixel (sO2®) and reduction of sO2® (rsO2) in twisted testicles had significant correlations with hypoxic conditions. Both sO2® and rsO2 exhibited excellent diagnostic abilities in detecting TT and identifying ischemia/hypoxia injury following TT. Furthermore, PAI-measured sO2 demonstrated favorable diagnostic capabilities in discriminating if the testicle had suffered irreversible injury. In summary, PAI presents a potentially promising novel approach in evaluating TT and warrants further clinical investigation.
Collapse
Affiliation(s)
- Qianru Yang
- Department of Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lulu Yang
- Department of Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chihan Peng
- Department of Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoxia Zhu
- Department of Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Corresponding authors.
| | - Yan Luo
- Department of Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
- Corresponding authors.
| |
Collapse
|
26
|
Klingbeil J, Brandt ML, Stockert A, Baum P, Hoffmann KT, Saur D, Wawrzyniak M. Associations of lesion location, structural disconnection, and functional diaschisis with depressive symptoms post stroke. Front Neurol 2023; 14:1144228. [PMID: 37265471 PMCID: PMC10231644 DOI: 10.3389/fneur.2023.1144228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Post-stroke depressive symptoms (PSDS) are common and relevant for patient outcome, but their complex pathophysiology is ill understood. It likely involves social, psychological and biological factors. Lesion location is a readily available information in stroke patients, but it is unclear if the neurobiological substrates of PSDS are spatially localized. Building on previous analyses, we sought to determine if PSDS are associated with specific lesion locations, structural disconnection and/or localized functional diaschisis. Methods In a prospective observational study, we examined 270 patients with first-ever stroke with the Hospital Anxiety and Depression Scale (HADS) around 6 months post-stroke. Based on individual lesion locations and the depression subscale of the HADS we performed support vector regression lesion-symptom mapping, structural-disconnection-symptom mapping and functional lesion network-symptom-mapping, in a reanalysis of this previously published cohort to infer structure-function relationships. Results We found that depressive symptoms were associated with (i) lesions in the right insula, right putamen, inferior frontal gyrus and right amygdala and (ii) structural disconnection in the right temporal lobe. In contrast, we found no association with localized functional diaschisis. In addition, we were unable to confirm a previously described association between depressive symptom load and a network damage score derived from functional disconnection maps. Discussion Based on our results, and other recent lesion studies, we see growing evidence for a prominent role of right frontostriatal brain circuits in PSDS.
Collapse
Affiliation(s)
- Julian Klingbeil
- Neuroimaging Laboratory, Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Max-Lennart Brandt
- Neuroimaging Laboratory, Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anika Stockert
- Neuroimaging Laboratory, Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Petra Baum
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, University of Leipzig Medical Center, Leipzig, Germany
| | - Dorothee Saur
- Neuroimaging Laboratory, Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Max Wawrzyniak
- Neuroimaging Laboratory, Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
27
|
Zhang F, Khan AF, Ding L, Yuan H. Network organization of resting-state cerebral hemodynamics and their aliasing contributions measured by functional near-infrared spectroscopy. J Neural Eng 2023; 20:016012. [PMID: 36535032 PMCID: PMC9855663 DOI: 10.1088/1741-2552/acaccb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization.
Collapse
Affiliation(s)
- Fan Zhang
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
| | - Ali F Khan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
| | - Lei Ding
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, United States of America
| | - Han Yuan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, United States of America
| |
Collapse
|
28
|
Thomasson M, Ceravolo L, Corradi-Dell’Acqua C, Mantelli A, Saj A, Assal F, Grandjean D, Péron J. Dysfunctional cerebello-cerebral network associated with vocal emotion recognition impairments. Cereb Cortex Commun 2023; 4:tgad002. [PMID: 36726795 PMCID: PMC9883615 DOI: 10.1093/texcom/tgad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Vocal emotion recognition, a key determinant to analyzing a speaker's emotional state, is known to be impaired following cerebellar dysfunctions. Nevertheless, its possible functional integration in the large-scale brain network subtending emotional prosody recognition has yet to be explored. We administered an emotional prosody recognition task to patients with right versus left-hemispheric cerebellar lesions and a group of matched controls. We explored the lesional correlates of vocal emotion recognition in patients through a network-based analysis by combining a neuropsychological approach for lesion mapping with normative brain connectome data. Results revealed impaired recognition among patients for neutral or negative prosody, with poorer sadness recognition performances by patients with right cerebellar lesion. Network-based lesion-symptom mapping revealed that sadness recognition performances were linked to a network connecting the cerebellum with left frontal, temporal, and parietal cortices. Moreover, when focusing solely on a subgroup of patients with right cerebellar damage, sadness recognition performances were associated with a more restricted network connecting the cerebellum to the left parietal lobe. As the left hemisphere is known to be crucial for the processing of short segmental information, these results suggest that a corticocerebellar network operates on a fine temporal scale during vocal emotion decoding.
Collapse
Affiliation(s)
- Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland,Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Centre for Affective Sciences, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland,Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Leonardo Ceravolo
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Centre for Affective Sciences, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland
| | - Corrado Corradi-Dell’Acqua
- Theory of Pain Laboratory, Department of Psychology, Faculty of Psychology and Educational Sciences (FPSE), University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland,Geneva Neuroscience Centre, University of Geneva, Rue Michel-Servet 1, Geneva 1206, Switzerland
| | - Amélie Mantelli
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland
| | - Arnaud Saj
- Department of Psychology, University of Montreal, Montreal, 90 avenue Vincent d'Indy Montréal, H2V 2S9 Montréal, Québec, Canada
| | - Frédéric Assal
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland,Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1206, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Centre for Affective Sciences, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland
| | - Julie Péron
- Corresponding author: Clinical and Experimental Neuropsychology Laboratory, Faculté de Psychologie et des Sciences de l’Education, Université de Genève, 40 bd du Pont d’Arve, Geneva 1205, Switzerland.
| |
Collapse
|
29
|
Chen Z, Gezginer I, Augath M, Liu Y, Ni R, Deán‐Ben XL, Razansky D. Simultaneous Functional Magnetic Resonance and Optoacoustic Imaging of Brain-Wide Sensory Responses in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205191. [PMID: 36437110 PMCID: PMC9875624 DOI: 10.1002/advs.202205191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Indexed: 05/30/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has massively contributed to the understanding of mammalian brain function. However, the origin and interpretation of the blood oxygen level-dependent (BOLD) signals retrieved by fMRI remain highly disputed. This article reports on the development of a fully hybridized system enabling concurrent functional magnetic resonance optoacoustic tomography (MROT) measurements of stimulus-evoked brain-wide sensory responses in mice. The highly complementary angiographic and soft tissue contrasts of both modalities along with simultaneous multi-parametric readings of stimulus-evoked hemodynamic responses are leveraged in order to establish unequivocal links between the various counteracting physiological and metabolic processes in the brain. The results indicate that the BOLD signals are highly correlated, both spatially and temporally, with the total hemoglobin readings resolved with volumetric multi-spectral optoacoustic tomography. Furthermore, the differential oxygenated and deoxygenated hemoglobin optoacoustic readings exhibit superior sensitivity as compared to the BOLD signals when detecting stimulus-evoked hemodynamic responses. The fully hybridized MROT approach greatly expands the neuroimaging toolset to comprehensively study neurovascular and neurometabolic coupling mechanisms and related diseases.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Mark‐Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Yu‐Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
- Zurich Neuroscience Center (ZNZ)ZurichSwitzerland
| | - Xosé Luís Deán‐Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
- Zurich Neuroscience Center (ZNZ)ZurichSwitzerland
| |
Collapse
|
30
|
Lambers H, Wachsmuth L, Lippe C, Faber C. The impact of vasomotion on analysis of rodent fMRI data. Front Neurosci 2023; 17:1064000. [PMID: 36908777 PMCID: PMC9998505 DOI: 10.3389/fnins.2023.1064000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Small animal fMRI is an essential part of translational research in the cognitive neurosciences. Due to small dimensions and animal physiology preclinical fMRI is prone to artifacts that may lead to misinterpretation of the data. To reach unbiased translational conclusions, it is, therefore, crucial to identify potential sources of experimental noise and to develop correction methods for contributions that cannot be avoided such as physiological noise. Aim of this study was to assess origin and prevalence of hemodynamic oscillations (HDO) in preclinical fMRI in rat, as well as their impact on data analysis. Methods Following the development of algorithms for HDO detection and suppression, HDO prevalence in fMRI measurements was investigated for different anesthetic regimens, comprising isoflurane and medetomidine, and for both gradient echo and spin echo fMRI sequences. In addition to assessing the effect of vasodilation on HDO, it was studied if HDO have a direct neuronal correlate using local field potential (LFP) recordings. Finally, the impact of HDO on analysis of fMRI data was assessed, studying both the impact on calculation of activation maps as well as the impact on brain network analysis. Overall, 303 fMRI measurements and 32 LFP recordings were performed in 71 rats. Results In total, 62% of the fMRI measurements showed HDO with a frequency of (0.20 ± 0.02) Hz. This frequent occurrence indicated that HDO cannot be generally neglected in fMRI experiments. Using the developed algorithms, HDO were detected with a specificity of 95%, and removed efficiently from the signal time courses. HDO occurred brain-wide under vasoconstrictive conditions in both small and large blood vessels. Vasodilation immediately interrupted HDO, which, however, returned within 1 h under vasoconstrictive conditions. No direct neuronal correlate of HDO was observed in LFP recordings. HDO significantly impacted analysis of fMRI data, leading to altered cluster sizes and F-values for activated voxels, as well as altered brain networks, when comparing data with and without HDO. Discussion We therefore conclude that HDO are caused by vasomotion under certain anesthetic conditions and should be corrected during fMRI data analysis to avoid bias.
Collapse
Affiliation(s)
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Chris Lippe
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
31
|
Aksenov DP, Rutila K, Li L, Miller MJ, Gascoigne DA, Serdyukova NA, Doubovikov ED, Linsenmeier RA, Drobyshevsky A. Brain Tissue Oxygen and BOLD fMRI Under Different Levels of Neuronal Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:3-8. [PMID: 37845431 PMCID: PMC11259030 DOI: 10.1007/978-3-031-42003-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Localized increases in neuronal activity are supported by the hemodynamic response, which delivers oxygen to the brain tissue to support synaptic functions, action potentials and other neuronal processes. However, it remains unknown if changes in baseline neuronal activity, which are expected to reflect neuronal metabolic demand, alter the relationship between the local hemodynamic and oxygen behaviour. In order to better characterize this system, we examine here the relationship between brain tissue oxygen (PO2) and hemodynamic responses (BOLD functional MRI) under different levels of neuronal activity. By comparing the stimulus-evoked responses during different levels of baseline neuronal activity, the awake state vs isoflurane anesthesia, we were able to measure how a known change in neuronal demand affected tissue PO2 as well as the hemodynamic response to stimulation. We observed a high correlation between stimulus-evoked PO2 and BOLD responses in the awake state. Moreover, we found that the evoked PO2 and BOLD responses were still present despite the elevated tissue oxygen baseline and decreased baseline of neuronal activity under low concentration isoflurane, and that the magnitudes of these responses decreased by similar proportions but the relationship between these signals was distorted. Our findings point to distortion of the BOLD-PO2 relationship due to anesthesia. The feedback mechanism to adjust the level of brain tissue oxygen, as well as the correlation between BOLD and PO2 responses, are impaired even by a small dose of anesthetics.
Collapse
Affiliation(s)
- D P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, USA.
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - K Rutila
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - L Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - M J Miller
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - D A Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - N A Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - E D Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - R A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - A Drobyshevsky
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
32
|
Ma H, Zhai Y, Xu Z, Fan S, Wu X, Xu J, Wu S, Ma C. Increased cerebral cortex activation in stroke patients during electrical stimulation of cerebellar fastigial nucleus with functional near-infrared spectroscopy. Front Neurosci 2022; 16:895237. [PMID: 36061594 PMCID: PMC9433974 DOI: 10.3389/fnins.2022.895237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Electrical stimulation of the cerebellar fastigial nucleus (FNS) has been shown to protect animals against cerebral ischemic injury. However, the changes in cortical activation as a response to FNS have not been illustrated in humans. Objective This study aims to detect functional connectivity changes in the brain of stroke patients, and investigate the cortical activation caused by FNS through measuring the oxygenated hemoglobin concentration (HBO) in the cerebral cortex of stroke patients and healthy controls (HCs). Methods This study recruited 20 patients with stroke and 20 HCs with all the following factors matched: age, gender and BMI. The experiment session was made up of the pre-task baseline, FNS task period, and post-task baseline. FNS task period contains 5 blocks, each block encompassing the resting state (30 s) and the FNS state (30 s). HBO signals were acquired by functional near-infrared spectroscopy (fNIRS) from the Prefrontal Cortex (PFC), the Motor Cortex (MC) and the Occipital Cortex (OC) throughout the experiment. The Pearson correlation coefficient was used to calculate the resting-state functional connectivity strength between the two groups, and the general linear model (GLM) was used to calculate the activation of 39 fNIRS channels during FNS in stroke patients and HCs, respectively. Results The coupling strength of stroke patients were significantly decreased in the following regions: right MC and left MC (t = 4.65, p = 0.0007), right MC and left OC (t = 2.93, p = 0.04), left MC and left OC (t = 2.81, p = 0.04). In stroke patients, the changes in cerebral oxygenated hemoglobin (ΔHBO) among 12 channels (CH) in the bilateral PFC and bilateral MC regions were significantly increased during the FNS state (FDR corrected p < 0.05) compared with the resting state. In HCs, only 1 channel was increased (FDR corrected p < 0.05) in the left PFC during FNS. Conclusion By using the FNS and fNIRS techniques, the characteristics of functional connectivity were found to decrease in stroke patients. It was also noticed that FNS activates the PFC and MC regions. These findings may help to guide functional rehabilitation in stroke patients.
Collapse
|
33
|
Khan AF, Zhang F, Shou G, Yuan H, Ding L. Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data. Neuroimage 2022; 260:119460. [PMID: 35868615 PMCID: PMC9472706 DOI: 10.1016/j.neuroimage.2022.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Brain-wide patterns in resting human brains, as either structured functional connectivity (FC) or recurring brain states, have been widely studied in the neuroimaging literature. In particular, resting-state FCs estimated over windowed timeframe neuroimaging data from sub-minutes to minutes using correlation or blind source separation techniques have reported many brain-wide patterns of significant behavioral and disease correlates. The present pilot study utilized a novel whole-head cap-based high-density diffuse optical tomography (DOT) technology, together with data-driven analysis methods, to investigate recurring transient brain-wide patterns in spontaneous fluctuations of hemodynamic signals at the resolution of single timeframes from thirteen healthy adults in resting conditions. Our results report that a small number, i.e., six, of brain-wide coactivation patterns (CAPs) describe major spatiotemporal dynamics of spontaneous hemodynamic signals recorded by DOT. These CAPs represent recurring brain states, showing spatial topographies of hemispheric symmetry, and exhibit highly anticorrelated pairs. Moreover, a structured transition pattern among the six brain states is identified, where two CAPs with anterior-posterior spatial patterns are significantly involved in transitions among all brain states. Our results further elucidate two brain states of global positive and negative patterns, indicating transient neuronal coactivations and co-deactivations, respectively, over the entire cortex. We demonstrate that these two brain states are responsible for the generation of a subset of peaks and troughs in global signals (GS), supporting the recent reports on neuronal relevance of hemodynamic GS. Collectively, our results suggest that transient neuronal events (i.e., CAPs), global brain activity, and brain-wide structured transitions co-exist in humans and these phenomena are closely related, which extend the observations of similar neuronal events recently reported in animal hemodynamic data. Future studies on the quantitative relationship among these transient events and their relationships to windowed FCs along with larger sample size are needed to understand their changes with behaviors and diseased conditions.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA
| | - Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA
| | - Guofa Shou
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, USA.
| |
Collapse
|
34
|
Whittaker JR, Steventon JJ, Venzi M, Murphy K. The Spatiotemporal Dynamics of Cerebral Autoregulation in Functional Magnetic Resonance Imaging. Front Neurosci 2022; 16:795683. [PMID: 35873811 PMCID: PMC9304653 DOI: 10.3389/fnins.2022.795683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
The thigh-cuff release (TCR) maneuver is a physiological challenge that is widely used to assess dynamic cerebral autoregulation (dCA). It is often applied in conjunction with Transcranial Doppler ultrasound (TCD), which provides temporal information of the global flow response in the brain. This established method can only yield very limited insights into the regional variability of dCA, whereas functional MRI (fMRI) has the ability to reveal the spatial distribution of flow responses in the brain with high spatial resolution. The aim of this study was to use whole-brain blood-oxygenation-level-dependent (BOLD) fMRI to characterize the spatiotemporal dynamics of the flow response to the TCR challenge, and thus pave the way toward mapping dCA in the brain. We used a data driven approach to derive a novel basis set that was then used to provide a voxel-wise estimate of the TCR associated haemodynamic response function (HRF TCR ). We found that the HRF TCR evolves with a specific spatiotemporal pattern, with gray and white matter showing an asynchronous response, which likely reflects the anatomical structure of cerebral blood supply. Thus, we propose that TCR challenge fMRI is a promising method for mapping spatial variability in dCA, which will likely prove to be clinically advantageous.
Collapse
Affiliation(s)
- Joseph R. Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jessica J. Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marcello Venzi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
35
|
Lambers H, Wachsmuth L, Thomas D, Boumezbeur F, Hoesker V, Pradier B, Faber C. Fiber-based lactate recordings with fluorescence resonance energy transfer sensors by applying an magnetic resonance-informed correction of hemodynamic artifacts. NEUROPHOTONICS 2022; 9:032212. [PMID: 35558647 PMCID: PMC9084224 DOI: 10.1117/1.nph.9.3.032212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Significance: Fluorescence resonance energy transfer (FRET) sensors offer enormous benefits when studying neurophysiology through confocal microscopy. Yet, their use for fiber-based in vivo recordings is hampered by massive confounding effects and has therefore been scarcely reported. Aim: We aim to investigate whether in vivo fiber-based lactate recordings in the rodent brain are feasible with FRET sensors and implement a correction algorithm for the predominant hemodynamic artifact. Approach: We performed fiber-based FRET recordings of lactate (Laconic) and calcium (Twitch-2B) simultaneously with functional MRI and pharmacological MRI. MR-derived parameters were applied to correct hemodynamic artifacts. Results of FRET measurements were validated by local field potential, magnetic resonance spectroscopy, and blood analysis. Results: Hemodynamic artifacts dominated fiber-based in vivo FRET measurements with both Laconic and Twitch-2B. Our MR-based correction algorithm enabled to remove the artifacts and detect lactate and calcium changes during sensory stimulation or intravenous lactate injections. Conclusions: In vivo fiber-based lactate recordings are feasible using FRET-based sensors. However, signal corrections are required. MR-derived hemodynamic parameters can successfully be applied for artifact correction.
Collapse
Affiliation(s)
- Henriette Lambers
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Lydia Wachsmuth
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Dominik Thomas
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-Sur-Yvette, France
| | - Vanessa Hoesker
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Bruno Pradier
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Cornelius Faber
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| |
Collapse
|
36
|
Chitneni A, Rupp A, Ghorayeb J, Abd-Elsayed A. Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review. Brain Sci 2022; 12:brainsci12050557. [PMID: 35624944 PMCID: PMC9139132 DOI: 10.3390/brainsci12050557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/13/2023] Open
Abstract
With the significant rise in the prevalence of diabetes worldwide, diabetic peripheral neuropathy (DPN) remains the most common complication among type 1 and 2 diabetics. The adverse sequelae of DPN, which include neuropathic pain, diabetic foot ulcers and lower-limb amputations, significantly impact quality of life and are major contributors to the biopsychosocial and economic burden of diabetes at the individual, societal and health system levels. Because DPN is often diagnosed in the late stages of disease progression by electromyography (EMG), and neuropathic pain as a result of DPN is difficult to treat, the need for earlier detection is crucial to better ascertain and manage the condition. Among the various modalities available to aid in the early detection of DPN, functional magnetic resonance imaging (fMRI) has emerged as a practical tool in DPN imaging due to its noninvasive radiation-free nature and its ability to relate real-time functional changes reflecting the local oxygen consumption of regions of the CNS due to external stimuli. This review aims to summarize the current body of knowledge regarding the utility of fMRI in detecting DPN by observing central nervous system (CNS) activity changes among individuals with DPN when compared to controls. The evidence to date points toward a tendency for increased activity in various central neuroanatomical structures that can be detected by fMRI and positively correlates with diabetic neuropathic pain.
Collapse
Affiliation(s)
- Ahish Chitneni
- Department of Rehabilitation and Regenerative Medicine, NewYork-Presbyterian Hospital—Columbia and Cornell, New York, NY 10065, USA
- Correspondence: (A.C.); (A.A.-E.); Tel.: +1-608-263-6039 (A.A.-E.)
| | - Adam Rupp
- Department of Physical Medicine and Rehabilitation, University of Kansas Health System, Kansas City, MO 66160, USA;
| | - Joe Ghorayeb
- Department of Physical Medicine and Rehabilitation, University of Medicine & Health Sciences, New York, NY 10001, USA;
| | - Alaa Abd-Elsayed
- Department of Anesthesia, Division of Pain Medicine, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53726, USA
- Correspondence: (A.C.); (A.A.-E.); Tel.: +1-608-263-6039 (A.A.-E.)
| |
Collapse
|
37
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
38
|
Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Wiginton J, Brazdzionis J, Patchana T, Hung J, Zhang Y, Miulli DE. Novel Method of Electromagnetic Field Measurements of the Human Brain. Cureus 2022; 14:e21982. [PMID: 35282504 PMCID: PMC8906554 DOI: 10.7759/cureus.21982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/06/2022] [Indexed: 11/05/2022] Open
|
40
|
Chow-Wing-Bom HT, Callaghan MF, Wang J, Wei S, Dick F, Yu-Wai-Man P, Dekker TM. Neuroimaging in Leber Hereditary Optic Neuropathy: State-of-the-art and future prospects. Neuroimage Clin 2022; 36:103240. [PMID: 36510411 PMCID: PMC9668671 DOI: 10.1016/j.nicl.2022.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Leber Hereditary Optic Neuropathy (LHON) is an inherited mitochondrial retinal disease that causes the degeneration of retinal ganglion cells and leads to drastic loss of visual function. In the last decades, there has been a growing interest in using Magnetic Resonance Imaging (MRI) to better understand mechanisms of LHON beyond the retina. This is partially due to the emergence of gene-therapies for retinal diseases, and the accompanying expanded need for reliably quantifying and monitoring visual processing and treatment efficiency in patient populations. This paper aims to draw a current picture of key findings in this field so far, the challenges of using neuroimaging methods in patients with LHON, and important open questions that MRI can help address about LHON disease mechanisms and prognoses, including how downstream visual brain regions are affected by the disease and treatment and why, and how scope for neural plasticity in these pathways may limit or facilitate recovery.
Collapse
Affiliation(s)
- Hugo T Chow-Wing-Bom
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Junqing Wang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Frederic Dick
- Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom; Department of Psychological Sciences, Birkbeck, University of London, United Kingdom; Department of Experimental Psychology, UCL, London, United Kingdom
| | - Patrick Yu-Wai-Man
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Tessa M Dekker
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom; Department of Experimental Psychology, UCL, London, United Kingdom
| |
Collapse
|
41
|
Schulz J, Zimmermann J, Sorg C, Menegaux A, Brandl F. Magnetic resonance imaging of the dopamine system in schizophrenia - A scoping review. Front Psychiatry 2022; 13:925476. [PMID: 36203848 PMCID: PMC9530597 DOI: 10.3389/fpsyt.2022.925476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, aberrant dopamine transmission has been proposed to play a central role in schizophrenia pathophysiology. These theories are supported by human in vivo molecular imaging studies of dopamine transmission, particularly positron emission tomography. However, there are several downsides to such approaches, for example limited spatial resolution or restriction of the measurement to synaptic processes of dopaminergic neurons. To overcome these limitations and to measure complementary aspects of dopamine transmission, magnetic resonance imaging (MRI)-based approaches investigating the macrostructure, metabolism, and connectivity of dopaminergic nuclei, i.e., substantia nigra pars compacta and ventral tegmental area, can be employed. In this scoping review, we focus on four dopamine MRI methods that have been employed in patients with schizophrenia so far: neuromelanin MRI, which is thought to measure long-term dopamine function in dopaminergic nuclei; morphometric MRI, which is assumed to measure the volume of dopaminergic nuclei; diffusion MRI, which is assumed to measure fiber-based structural connectivity of dopaminergic nuclei; and resting-state blood-oxygenation-level-dependent functional MRI, which is thought to measure functional connectivity of dopaminergic nuclei based on correlated blood oxygenation fluctuations. For each method, we describe the underlying signal, outcome measures, and downsides. We present the current state of research in schizophrenia and compare it to other disorders with either similar (psychotic) symptoms, i.e., bipolar disorder and major depressive disorder, or dopaminergic abnormalities, i.e., substance use disorder and Parkinson's disease. Finally, we discuss overarching issues and outline future research questions.
Collapse
Affiliation(s)
- Julia Schulz
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
42
|
Walton LR, Verber M, Lee SH, Chao THH, Wightman RM, Shih YYI. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. Neuroimage 2021; 244:118634. [PMID: 34624504 PMCID: PMC8667333 DOI: 10.1016/j.neuroimage.2021.118634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular contributions of neurotransmitters to the hemodynamic response are gaining more attention in neuroimaging studies, as many neurotransmitters are vasomodulatory. To date, well-established electrochemical techniques that detect neurotransmission in high magnetic field environments are limited. Here, we propose an experimental setting enabling simultaneous fast-scan cyclic voltammetry (FSCV) and blood oxygenation level-dependent functional magnetic imaging (BOLD fMRI) to measure both local tissue oxygen and dopamine responses, and global BOLD changes, respectively. By using MR-compatible materials and the proposed data acquisition schemes, FSCV detected physiological analyte concentrations with high temporal resolution and spatial specificity inside of a 9.4 T MRI bore. We found that tissue oxygen and BOLD correlate strongly, and brain regions that encode dopamine amplitude differences can be identified via modeling simultaneously acquired dopamine FSCV and BOLD fMRI time-courses. This technique provides complementary neurochemical and hemodynamic information and expands the scope of studying the influence of local neurotransmitter release over the entire brain.
Collapse
Affiliation(s)
- Lindsay R Walton
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Matthew Verber
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - R Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
43
|
Early Development of the GABAergic System and the Associated Risks of Neonatal Anesthesia. Int J Mol Sci 2021; 22:ijms222312951. [PMID: 34884752 PMCID: PMC8657958 DOI: 10.3390/ijms222312951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal studies have elucidated the apparent neurodevelopmental effects resulting from neonatal anesthesia. Observations of learning and behavioral deficits in children, who were exposed to anesthesia early in development, have instigated a flurry of studies that have predominantly utilized animal models to further interrogate the mechanisms of neonatal anesthesia-induced neurotoxicity. Specifically, while neonatal anesthesia has demonstrated its propensity to affect multiple cell types in the brain, it has shown to have a particularly detrimental effect on the gamma aminobutyric acid (GABA)ergic system, which contributes to the observed learning and behavioral deficits. The damage to GABAergic neurons, resulting from neonatal anesthesia, seems to involve structure-specific changes in excitatory-inhibitory balance and neurovascular coupling, which manifest following a significant interval after neonatal anesthesia exposure. Thus, to better understand how neonatal anesthesia affects the GABAergic system, we first review the early development of the GABAergic system in various structures that have been the focus of neonatal anesthesia research. This is followed by an explanation that, due to the prolonged developmental curve of the GABAergic system, the entirety of the negative effects of neonatal anesthesia on learning and behavior in children are not immediately evident, but instead take a substantial amount of time (years) to fully develop. In order to address these concerns going forward, we subsequently offer a variety of in vivo methods which can be used to record these delayed effects.
Collapse
|
44
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|
45
|
Yin Y, Shu S, Qin L, Shan Y, Gao JH, Lu J. Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation. J Cereb Blood Flow Metab 2021; 41:2216-2228. [PMID: 33563081 PMCID: PMC8393298 DOI: 10.1177/0271678x21992896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterizing the effect of limited oxygen availability on brain metabolism during brain activation is an essential step towards a better understanding of brain homeostasis and has obvious clinical implications. However, how the cerebral oxygen extraction fraction (OEF) depends on oxygen availability during brain activation remains unclear, which is mostly attributable to the scarcity and safety of measurement techniques. Recently, a magnetic resonance imaging (MRI) method that enables noninvasive and dynamic measurement of the OEF has been developed and confirmed to be applicable to functional MRI studies. Using this novel method, the present study investigated the motor-evoked OEF response in both normoxia (21% O2) and hypoxia (12% O2). Our results showed that OEF activation decreased in the brain areas involved in motor task execution. Decreases in the motor-evoked OEF response were greater under hypoxia (-21.7% ± 5.5%) than under normoxia (-11.8% ± 3.7%) and showed a substantial decrease as a function of arterial oxygen saturation. These findings suggest a different relationship between oxygen delivery and consumption during hypoxia compared to normoxia. This methodology may provide a new perspective on the effects of mild hypoxia on brain function.
Collapse
Affiliation(s)
- Yayan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Su Shu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lang Qin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institution for Brain Research, Peking University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Vu AT, Feinberg DA. The Role of Cerebral Metabolism in Improving Time Pressured Decisions. Front Psychol 2021; 12:690198. [PMID: 34354635 PMCID: PMC8329240 DOI: 10.3389/fpsyg.2021.690198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Speed-accuracy tradeoff (SAT) theory dictates that decisions can be made more quickly by sacrificing accuracy. Here we investigate whether the human brain can operate in a brief metabolic overdrive to overcome SAT and successfully make decisions requiring both high levels of speed and accuracy. In the context of BOLD fMRI we expect “a brief metabolic overdrive” to involve an increase in cerebral oxygen metabolism prior to increased cerebral blood flow–a phenomenon known as the “initial dip” which results from a sudden drop in oxyhemoglobin in perfusing blood. Human subjects performed a motion discrimination task consisting of different difficulties while emphasizing either accuracy (i.e., without time pressure) or both speed and accuracy (i.e., with time pressure). Using simultaneous multi-slice fMRI, for very fast (333 ms) measurement of whole brain BOLD activity, revealed two modes of physiological overdrive responses when subjects emphasized both speed and accuracy. The majority of subjects exhibited the hypothesized enhancement of initial dip amplitude in posterior visual cortex (PVC) with the size of the enhancement significantly correlated with improvement in behavioral performance. For these subjects, the traditionally analyzed post-stimulus overshoot was not affected by task emphasis. These results demonstrate the complexity and variability of the BOLD hemodynamic response. The discovered relationships between BOLD response and behavior were only observed when subjects emphasized both speed and accuracy in more difficult trials suggesting that the brain can perform in a state of metabolic overdrive with enhanced neural processing of sensory information specifically in challenging situations.
Collapse
Affiliation(s)
- An Thanh Vu
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - David A Feinberg
- Advanced Magnetic Resonance Imaging (MRI) Technologies, Sebastopol, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
47
|
Higashiyama Y, Hamada T, Saito A, Morihara K, Okamoto M, Kimura K, Joki H, Kishida H, Doi H, Ueda N, Takeuchi H, Tanaka F. Neural mechanisms of foreign accent syndrome: Lesion and network analysis. NEUROIMAGE-CLINICAL 2021; 31:102760. [PMID: 34274725 PMCID: PMC8319358 DOI: 10.1016/j.nicl.2021.102760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Foreign accent syndrome (FAS) is a rare acquired speech disorder wherein an individual's spoken accent is perceived as "foreign." Most reported cases involve left frontal brain lesions, but it is known that various other lesions can also cause FAS. To determine whether heterogeneous FAS-causing lesions are localized to a common functional speech network rather than to a single anatomical site, we employed a recently validated image analysis technique known as "lesion network mapping." METHODS We identified 25 published cases of acquired neurogenic FAS without aphasia, and mapped each lesion volume onto a reference brain. We next identified the network of brain regions functionally connected to each FAS lesion using a connectome dataset from normative participants. Network maps were then overlapped to identify common network sites across the lesions. RESULTS Classical lesion overlap analysis showed heterogeneity in lesion anatomical location, consistent with prior reports. However, at least 80% of lesions showed network overlap in the bilateral lower and middle portions of the precentral gyrus and in the medial frontal cortex. The left lower portion of the precentral gyrus is suggested to be the location of lesions causing apraxia of speech (AOS), and the middle portion is considered to be a larynx-specific motor area associated with the production of vowels and stop/nasal consonants and with the determination of pitch accent. CONCLUSIONS The lesions that cause FAS are anatomically heterogeneous, but they share a common functional network located in the bilateral posterior region of the frontal lobe. This network specifically includes not only the lower portion of the central gyrus, but also its middle region, which is referred to as the larynx motor cortex and is known to be associated with phonation. Our findings suggest that disrupted networks in FAS might be anatomically different from those in AOS.
Collapse
Affiliation(s)
- Yuichi Higashiyama
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tomoya Hamada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Department of Speech-Language-Hearing Therapy, Japan Welfare Education College, 2-16-3 Takadanobaba, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Asami Saito
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Morihara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Mitsuo Okamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Katsuo Kimura
- Department of Neurology, Yokohama City University Medical Center Hospital, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Hideto Joki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center Hospital, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center Hospital, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
48
|
Khan AF, Zhang F, Yuan H, Ding L. Brain-wide functional diffuse optical tomography of resting state networks. J Neural Eng 2021; 18. [PMID: 33946052 DOI: 10.1088/1741-2552/abfdf9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Objective.Diffuse optical tomography (DOT) has the potential in reconstructing resting state networks (RSNs) in human brains with high spatio-temporal resolutions and multiple contrasts. While several RSNs have been reported and successfully reconstructed using DOT, its full potential in recovering a collective set of distributed brain-wide networks with the number of RSNs close to those reported using functional magnetic resonance imaging (fMRI) has not been demonstrated.Approach.The present study developed a novel brain-wide DOT (BW-DOT) framework that integrates a cap-based whole-head optode placement system with multiple computational approaches, i.e. finite-element modeling, inverse source reconstruction, data-driven pattern recognition, and statistical correlation tomography, to reconstruct RSNs in dual contrasts of oxygenated (HbO) and deoxygenated hemoglobins (HbR).Main results.Our results from the proposed framework revealed a comprehensive set of RSNs and their subnetworks, which collectively cover almost the entire neocortical surface of the human brain, both at the group level and individual participants. The spatial patterns of these DOT RSNs suggest statistically significant similarities to fMRI RSN templates. Our results also reported the networks involving the medial prefrontal cortex and precuneus that had been missed in previous DOT studies. Furthermore, RSNs obtained from HbO and HbR suggest similarity in terms of both the number of RSN types reconstructed and their corresponding spatial patterns, while HbR RSNs show statistically more similarity to fMRI RSN templates and HbO RSNs indicate more bilateral patterns over two hemispheres. In addition, the BW-DOT framework allowed consistent reconstructions of RSNs across individuals and across recording sessions, indicating its high robustness and reproducibility, respectively.Significance.Our present results suggest the feasibility of using the BW-DOT, as a neuroimaging tool, in simultaneously mapping multiple RSNs and its potential values in studying RSNs, particularly in patient populations under diverse conditions and needs, due to its advantages in accessibility over fMRI.
Collapse
Affiliation(s)
- Ali F Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States of America
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States of America
| |
Collapse
|
49
|
Połczyńska MM. Organizing Variables Affecting fMRI Estimates of Language Dominance in Patients with Brain Tumors. Brain Sci 2021; 11:brainsci11060694. [PMID: 34070413 PMCID: PMC8226970 DOI: 10.3390/brainsci11060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous variables can affect the assessment of language dominance using presurgical functional magnetic resonance (fMRI) in patients with brain tumors. This work organizes the variables into confounding and modulating factors. Confounding factors give the appearance of changed language dominance. Most confounding factors are fMRI-specific and they can substantially disrupt the evaluation of language dominance. Confounding factors can be divided into two categories: tumor-related and fMRI analysis. The tumor-related confounds further subdivide into tumor characteristics (e.g., tumor grade) and tumor-induced conditions (aphasia). The fMRI analysis confounds represent technical aspects of fMRI methods (e.g., a fixed versus an individual threshold). Modulating factors can modify language dominance without confounding it. They are not fMRI-specific, and they can impact language dominance both in healthy individuals and neurosurgical patients. The effect of most modulating factors on fMRI language dominance is smaller than that of confounding factors. Modulating factors include demographics (e.g., age) and linguistic variables (e.g., early bilingualism). Three cases of brain tumors in the left hemisphere are presented to illustrate how modulating confounding and modulating factors can impact fMRI estimates of language dominance. Distinguishing between confounding and modulating factors can help interpret the results of presurgical language mapping with fMRI.
Collapse
Affiliation(s)
- Monika M Połczyńska
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
50
|
Aksenov DP. Normal Development of Local Neurovascular Interactions and the Diagnostic Value of Resting State Functional MRI in Neurovascular Deficiency Based on the Example of Neonatal Anesthesia Exposure. Front Neurol 2021; 12:664706. [PMID: 33995262 PMCID: PMC8116565 DOI: 10.3389/fneur.2021.664706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 01/25/2023] Open
Affiliation(s)
- Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States.,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|